

VoiceGenie 7.2.2

Media Platform

User’s Guide

The information contained herein is proprietary and confidential and cannot be disclosed or duplicated
without the prior written consent of Genesys Telecommunications Laboratories, Inc.
Copyright © 2000–2009 Genesys Telecommunications Laboratories, Inc. All rights reserved.

About Genesys

Genesys Telecommunications Laboratories, Inc., a subsidiary of Alcatel-Lucent, is 100% focused on software for call
centers. Genesys recognizes that better interactions drive better business and build company reputations. Customer
service solutions from Genesys deliver on this promise for Global 2000 enterprises, government organizations, and
telecommunications service providers across 80 countries, directing more than 100 million customer interactions
every day. Sophisticated routing and reporting across voice, e-mail, and Web channels ensure that customers are
quickly connected to the best available resource—the first time. Genesys offers solutions for customer service, help
desks, order desks, collections, outbound telesales and service, and workforce management. Visit
www.genesyslab.com for more information.

Each product has its own documentation for online viewing at the Genesys Technical Support website or on the
Documentation Library DVD, which is available from Genesys upon request. For more information, contact your sales
representative.

Notice

Although reasonable effort is made to ensure that the information in this document is complete and accurate at the
time of release, Genesys Telecommunications Laboratories, Inc., cannot assume responsibility for any existing
errors. Changes and/or corrections to the information contained in this document may be incorporated in future
versions.

Your Responsibility for Your System’s Security

You are responsible for the security of your system. Product administration to prevent unauthorized use is your
responsibility. Your system administrator should read all documents provided with this product to fully understand the
features available that reduce your risk of incurring charges for unlicensed use of Genesys products.

Trademarks

Genesys, the Genesys logo, and T-Server are registered trademarks of Genesys Telecommunications Laboratories,
Inc. All other trademarks and trade names referred to in this document are the property of other companies. The
Crystal monospace font is used by permission of Software Renovation Corporation, www.SoftwareRenovation.com.

Technical Support from VARs

If you have purchased support from a value-added reseller (VAR), please contact the VAR for technical support.

Technical Support from Genesys

If you have purchased support directly from Genesys, please contact Genesys Technical Support at the following
regional numbers:

Region Telephone E-Mail

North America and Latin America +888-369-5555 or +506-674-6767 support@genesyslab.com

Europe, Middle East, and Africa +44-(0)-127-645-7002 support@genesyslab.co.uk

Asia Pacific +61-7-3368-6868 support@genesyslab.com.au

Japan +81-3-6361-8950 support@genesyslab.co.jp

Prior to contacting technical support, please refer to the Genesys Technical Support Guide for complete contact
information and procedures.

Ordering and Licensing Information

Complete information on ordering and licensing Genesys products can be found in the Genesys 7 Licensing Guide.

Released By

Genesys Telecommunications Laboratories, Inc. www.genesyslab.com
Document Version: 10-2009

http://www.genesyslab.com/�
mailto:support@genesyslab.com�
mailto:support@genesyslab.co.uk�
mailto:support@genesyslab.com.au�
mailto:support@genesyslab.co.jp�
http://genesyslab.com/support/dl/retrieve/default.asp?item=B3BFC6DABE22B62AAE32A6D31E6396E3�
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A1D12650�
http://www.genesyslab.com/�

Media Platform — User’s Guide 3

Chapter 1 Introduction..7
1.1 Terminology...7
1.2 Document Structure...8
1.3 Further Information ..9

1.3.1 VoiceGenie Documents ...9
1.3.2 Third Party Documents ..9
1.3.3 Genesys Web Sites ...10
1.3.4 Third Party Web Sites .. 10
1.3.5 Related Standards and Specifications10

Chapter 2 VoiceGenie 7.2 System Overview ..13
2.1 The Media Platform ...13

2.1.1 Call Manager..13
2.1.2 The VoiceXML Interpreter..15
2.1.3 The Fetching Module ...15

2.2 Speech Resource Manager (SRM)..16
2.3 Operation, Administration and Management (OA&M) 17
2.4 Other VoiceGenie Components...19

2.4.1 SIP Proxy ...19
2.4.2 CTI Connectors..21
2.4.3 Call Control XML (CCXML) Platform ...23

Chapter 3 Running Applications on the Media Platform.....................................25
3.1 Application Provisioning (DNIS – URL Mapping)............................... 25

3.1.1 Choosing Defaults for Each Application..................................... 30
3.1.2 Multiple Default Settings ..31

3.2 VoiceXML Applications and the VoiceXML Interpreters 31
3.2.1 URL Reference Syntax Supported by the VoiceXML
Interpreters..32
3.2.2 Communicating with the Legacy Interpreter via CLC................. 33
3.2.3 Limitations..34

3.3 Conferencing ...35
3.3.1 Conferencing via SIP Interface ..35

Table of Contents

Table of Contents

4 VoiceGenie 7.2.2

3.3.2 Conferencing via VXML Interface ..36
3.4 Application Count Service (Partition Definition) 37

3.4.1 Activate PortCount CMAPI application 37
3.4.2 Associate PortCount application with partition name
in DNIS-URL mapping ..38
3.4.3 Define Partition ..38
3.4.4 Alarms and Metrics ..39

3.5 HTTP/HTTPS Support ...39
3.6 Caching in VoiceGenie 7.2 Media Platform.......................................42

3.6.1 Caching Architecture..42
3.6.2 Web Proxy caching ..43
3.6.3 Caching policies...46
3.6.4 How to use maxage and maxstale attributes 48
3.6.5 Determination of an Expiry Time.. 49
3.6.6 Squid Caching Proxy ...49

Chapter 4 Network Interfaces...57
4.1 SIP...57

4.1.1 Standards...57
4.1.2 SIP Call Connection Mechanisms.. 58
4.1.3 Interoperability ...58
4.1.4 SIP INFO support...59
4.1.5 SIP customizable headers and parameters 65
4.1.6 Codec Negotiation ...67
4.1.7 Enabling SIP TCP Support ..68
4.1.8 Burke Draft Support ...68
4.1.9 Limitations..68

4.2 H.323 ...69
4.2.1 Standards...69
4.2.2 Architectures ..69
4.2.3 Interoperability ...70
4.2.4 Codec Negotiation ...70
4.2.5 Limitations..70

4.3 RTP Support ..70
4.3.1 Standards...70
4.3.2 General Usage...72
4.3.3 DTMF ...72

4.4 Multiple Line Managers..72

Chapter 5 Call Control ..75

Table of Contents

Media Platform — User’s Guide 5

5.1 Incoming Call ...75
5.2 Outgoing Call ...76

5.2.1 Dialing Rules..77
5.2.2 Destination Format (VoIP) ...82

5.3 Call Routing in VoIP...84
5.3.1 IP/PSTN gateway...84
5.3.2 SIP Proxies/Registrars...85
5.3.3 H.323 Gatekeeper..86

Chapter 6 Call Transfer...87
6.1 General Information...87
6.2 Transfer Framework ..89

6.2.1 Type and Method ...89
6.2.2 Backward Compatibility with VoiceXML 2.0............................... 91

6.3 VoIP Transfer...92
6.4 Whisper Transfer ...92
6.5 CTI Call Release..93

Chapter 7 Video Support ..95
7.1 Overview..95
7.2 Video Deployment Architectures ...95
7.3 Supported Protocols and Specifications .. 97
7.4 VoiceXML Feature Support ...98
7.5 Advanced VoiceGenie Feature Support .. 99

7.5.1 VCR Controls ...100
7.5.2 Advanced Barge-in Features ... 100
7.5.3 Conferencing..100
7.5.4 Full Call Recording...101
7.5.5 Media Redirect Transfer ..101
7.5.6 SIP/NETANN Access...101

7.6 Known Issues and Limitations ...101

Chapter 8 Other Features ...103
8.1 Remote Dial ...103

8.1.1 Overview ..103
8.1.2 System Requirements..103
8.1.3 Socket API ...103
8.1.4 Telnet/Socket Interface ..104
8.1.5 How to Make a Call ..106
8.1.6 Known Issues...108

Table of Contents

6 VoiceGenie 7.2.2

8.2 Full Call Recording ..108
8.2.1 Overview ..108
8.2.2 Enabling/disabling Full Call Recording 109
8.2.3 Gain control..111
8.2.4 Known limitations ...112

8.3 RTSP URI Support ..112
8.3.1 Overview ..112
8.3.2 RTSP Deployment Architecture ... 113
8.3.3 Generate Media Files for RTSP Server114
8.3.4 VCR Control...114
8.3.5 Known Limitations..115

Chapter 9 Operations..117
9.1 Metrics and Logging/Billing..117

9.1.1 General Metrics..117
9.1.2 Metrics for Transfer..118

9.2 Alarms in Media Platform...119
9.2.1 Syslog ..119
9.2.2 Alarm Browser ...120

9.3 Health Status ...122
9.3.1 Overview ..122
9.3.2 Call Manager..125
9.3.3 Legacy Interpreter (VXMLi) .. 127
9.3.4 Fetching Module/Web Proxy (iproxy) 127

9.4 Preventive Maintenance ..128

Appendix A Burke Draft Support ..131
A.1 Support..131

Media Platform — User’s Guide 7

This is the User’s Guide for the VoiceGenie 7.2 Media Platform product. It is
provides an overview of the VoiceGenie 7.2 media platform architecture and
capabilities, and describes how to provision, monitor and maintain the system.

1.1 Terminology
The following table gives definitions of some acronyms that are used
throughout this document:

Acronyms Full Definitions

ASR Automated Speech Recognition (Engines/Technologies)

CLC Command Line Console –
A command line interface that can be used to query
information and issue commands

MRCP Media Resource Control Protocol –
Adopted by the VoiceGenie Media Platform to control ASR
and TTS resources

SRM Speech Resource Management –
A component integrated into the VoiceGenie Media Platform
to provide Speech Recognition and Synthesis functionalities to
the application developers

SMC System Management Console –
A web based tool for administering clusters of VoiceGenie
VoiceXML Platforms

OA&M Operation, Administration and Management

TTS Text To Speech (Engines/Technologies)

Chapter

1 Introduction

Chapter 1: Introduction 1.2 Document Structure

8 VoiceGenie 7.2.2

The following sections may contain references to terminology that has
become:

Historical Terms New Terms

PhoneWeb Software /

NeXusPoint 6.4.x Software

VoiceGenie 7.2 Software

Cluster Management Platform (CMP) OA&M Framework

Voice Resource Manager (VRM) Speech Resource Management (SRM)

VoiceGenie Management Console
(VMC)

System Management Console (SMC)

1.2 Document Structure
This document is intended to provide a complete resource for information
regarding the VoiceGenie 7.2 platform. The remainder of this document is
structured as follows:

 Introduction – A brief introduction to the VoiceGenie Media Platform

 VoiceGenie 7.2 System Overview – Explains the overall VoiceGenie 7.2
System Architecture, and provides information for various modules within
the Media Platform as well as how the Media Platform interacts with other
VoiceGenie components.

 Running Applications on the Media Platform – Instructs users on how
to use the Media Platform to run their desired applications. The section
explains how applications are mapped based on the DNIS information in
incoming calls on the platform, as well as the caching/fetching
mechanisms of the call manager component.

 Network Interfaces – A description of the telephony interfaces to the
platform and supported telephony technologies, including PSTN, VoIP and
Hybrid setups of the two. Specific features of each line manager will be
discussed in details. Application provisioning is covered in this section.

 Call Control – A description of the platform basic call control support
capabilities, including VoIP and PSTN interfaces.

 Call Transfer – A description of the platform advanced call control
support capabilities and an overview of extended features

 Other Features – Covers other Media Platform capabilities such as
Remote Dial, Call Analysis, Full Call Recording and Conferencing.

 Operations – Provides information about system logging/billing
(“application metrics”), alarming, health status checking and system
maintenance.

Chapter 1: Introduction 1.3 Further Information

Media Platform — User’s Guide 9

1.3 Further Information

1.3.1 VoiceGenie Documents

The following VoiceGenie documents provide additional information
regarding the VoiceGenie Gateway.

 VoiceGenie 7.2 Installation Guide – Information regarding the installation
and deployment of the VoiceGenie platform.

 VoiceGenie 7.2 Media Platform System Reference Guide – A guide that
provides in-depth references to configuration information, metrics and
alarm entries of the VoiceGenie 7.2 Media Platform.

 VoiceGenie 7.2 OA&M Framework User’s Guide – A guide to the use of
OA&M Framework and the user interfaces. Along with this guide,
additional guides are available for each component in the OA&M
Framework, including the Cluster Management Platform (CMP); the
System Management Console (SMC) which is a web based tool for
administering clusters of VoiceGenie VoiceXML Platforms; the Command
Line Console (CLC) which is a command line interface that can be used to
query information and issue commands and the SNMP Agent.
 VoiceGenie 7.2 OA&M Framework – SMC User’s Guide
 VoiceGenie 7.2 OA&M Framework – CLC User’s Guide
 VoiceGenie 7.2 OA&M Framework – SNMP User’s Guide

 VoiceGenie 7.2 Speech Resource Management User’s Guide and
VoiceGenie 7.2 Speech Resource Management System Reference Guide –
The guides that covers all the information for the VoiceGenie 7.2 Speech
Resource Management components.

 VoiceGenie 7.2 Media Platform Release Notes – Contains information
regarding known issues, fixed problems, and behavioral information
regarding the VoiceXML Gateway.

 VoiceGenie 7.2 Application Migration Guide – A guide that outlines the
new features and changes in the VoiceGenie 7.2 release that may require
changes to existing VoiceXML applications.

Additional documentation may be provided with particular system releases.

1.3.2 Third Party Documents

Each supported speech engine may include vendor provided documentation.
These documentation sets are available from Genesys.

Chapter 1: Introduction 1.3 Further Information

10 VoiceGenie 7.2.2

1.3.3 Genesys Web Sites

Genesys maintains a number of web sites to support developers and
customers:

 http://developer.voicegenie.com – A free online resource for
documentation, testing of VoiceXML applications, and collaboration
between VoiceXML developers.

 http://support.voicegenie.com – The support resource for Genesys
customers, including documentation, tutorials, and other information.

 http://www.genesyslab.com – Genesys‘s corporate web site, providing
case studies, white papers, and general information regarding Genesys.

1.3.4 Third Party Web Sites

There are a number of third party web resources that provide useful
information regarding Genesys and VoiceXML.

 http://www.w3c.org/Voice – The Voice Browser Working Group of the
World Wide Web Consortium (W3C) – this group holds primary
responsibility for the evolution of Voice related technologies such as
VoiceXML, and the Speech Recognition Grammar and Speech Synthesis
language specifications.

 http://www.voicexml.org – The VoiceXML Forum web site – The
VoiceXML Forum is an industry consortium of VoiceXML supporters,
responsible for activities such as education and conformance, as well as
the initial evolution of the VoiceXML specification.

 http://www.voicexmlreview.org – An on-line magazine providing
information regarding VoiceXML and VoiceXML applications, published
by the VoiceXML Forum.

1.3.5 Related Standards and Specifications

The following specifications are published and maintained by the W3C Voice
Browser Working Group:

 VoiceXML 2.0 Specification

 Speech Recognition Grammar Specification

 Speech Synthesis Markup Language Specification

The VoiceGenie platform is based on open standards – as a result, the platform
provides complete or subset support for many Requests for Comments (RFCs)
published and maintained by the Internet Engineering Task Force (IETF –
http://www.ietf.org). These include:

 RFC 1738 Uniform Resource Locators

http://developer.voicegenie.com/�
http://support.voicegenie.com/�
http://www.genesyslab.com/�

Chapter 1: Introduction 1.3 Further Information

Media Platform — User’s Guide 11

 RFC 1808 Relative Uniform Resource Locators

 RFC 1867 Form-based File Upload in HTML

 RFC 2109 HTTP State Management Mechanism

 RFC 2190 RTP Payload Format for H.263 Video Streams

 RFC 2388 Returning Values from Forms: multipart/form-data

 RFC 2326 Real Time Streaming Protocol (RTSP)

 RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax

 RFC 2429 RTP Payload Format for the 1998 Version of ITU-T Rec. H.263
Video (H263+)

 RFC 2616 Hypertext Transfer Protocol – HTTP/1.1 (subset)

 RFC 2806 URLs for Telephone Calls

 RFC 2833 RTP Payload for DTMF Digits, Telephony Tones and
Telephony Signals

 RFC 2964 Use of HTTP State Management

 RFC 2965 HTTP State Management Mechanism

 RFC 2976 The SIP INFO Method

 RFC 3261 SIP: Session Initiation Protocol (subset)

 RFC 3264 An Offer/Answer Model with the Session Description Protocol
(SDP)

 RFC 3267 Real Time Transport Protocol (RTP) Payload Format and File
Storage Format for the Adaptive Multi-Rate (AMR) and Adaptive Multi-
Rate Wideband (AMR-WB) Audio Codecs

 RFC 3515 The SIP REFER Method

 RFC 3550 RTP: A Transport Protocol for Real-Time Applications

 Most extensions from proposed IETF draft “A SIP Interface to VoiceXML
Dialog Servers” (http://tools.ietf.org/id/draft-burke-vxml-02.txt)

 Some extensions from proposed IETF draft “Basic Network Media
Services with SIP” (http://www.ietf.org/rfc/rfc4240.txt)

The platform also includes complete support for many network related (i.e.
TCP/IP, SNMP) and other protocols. Contact Genesys for additional details.

Media Platform — User’s Guide 13

2.1 The Media Platform
The VoiceGenie Media Platform provides the infrastructure for supporting
interpreted dialog management services suitable for deployment by carriers
and enterprises, including related operational and management tools.

The platform provides a number of services:

 Call control and state management

 Media routing and negotiation

 Interpreter dialog execution and state management, using standard
languages such as VoiceXML

 Complete HTTP document management, including advanced caching and
proxy support

2.1.1 Call Manager

The Call Manager is a major subcomponent of media platform responsible for
call state management. The Call Manager is responsible for call control and
media routing for the platform. The Call Manager is designed to support
multiple ‘line managers’ (call control interfaces – i.e. SIP, and H.323)
simultaneously.

The Call Manager provides call signaling and media transport across a number
of underlying protocols and networks. Call signaling interfaces are used to
establish and terminate calls, and to perform advanced call control functions
such as call transfer, and call conferencing. Media transport functionality
allows media to be exchanged with the end user on established calls, enabling
playback of stored audio/video and TTS, recording, and ASR.

Chapter

2 VoiceGenie 7.2 System
Overview

Chapter 2: VoiceGenie 7.2 System Overview 2.1 The Media Platform

14 VoiceGenie 7.2.2

The following summarizes the basic functionalities:

 Call setup

 Call teardown

 Messaging to the network infrastructure

 In-band and/or out-of-band reporting of DTMF

 Overall channel state management

 Possibly test/maintenance functionality

 Media routing and characteristic negotiation

The Call Manager subsystem includes the following components:

 CMAPI (Call Manager API) and Applications – an interface to the call
manager that is intended to enable the integration of arbitrary interpreters
and applications with an underlying platform abstracted by the Call
Manager. This API encapsulates the entire functionality of the VoiceGenie
platform, providing an application (or interpreter delivering an application)
with the following key groups of capabilities:
 Basic, Q.931-like call control (accepting or rejecting calls, placing

outbound calls)
 Enhanced call control (call join, call transfer, network-based

conferencing, etc).
 DTMF detection and generation
 Media playback (locally stored, cached, streamed via HTTP)
 Media recording (multiple concurrent recordings, background mixed

recording)
 Media switching between calls (join/release, TLT, bridge transfers)
 Advanced media services (e.g. local conferencing)
 Speech recognition via VoiceGenie’s SRM component
 Text-to-speech output via VoiceGenie’s SRM component

In addition to providing the above capabilities, the Call Manager API also
provides application management capabilities that allow applications
created using different languages and technologies to interact with a call,
concurrently in some cases. In future releases of VoiceGenie platforms,
this will enable VoiceXML applications and technologies such as SALT to
be delivered by a single instance of the platform, and will enable CCXML
applications to invoke and control VoiceXML applications.

 Line Managers – each Line Manager provides a protocol specific
interface to an underlying call control mechanism. Currently supported
Line Managers include SIP and H323.

 Media Transports – media transport is available using RTP streams.

Chapter 2: VoiceGenie 7.2 System Overview 2.1 The Media Platform

Media Platform — User’s Guide 15

2.1.2 The VoiceXML Interpreter

The VoiceXML Interpreter is a major subcomponent of the Media Platform
responsible for parsing, understanding, and executing application written in
VoiceXML, a dialog description language. The VoiceGenie 7.2 Media
Platform supports two VoiceXML Interpreters: the Legacy Interpreter
(VXMLi) and the Next Generation Interpreter (NGI).

The Legacy Interpreter is the latest version of the VoiceXML Interpreter that
has been used in pre-7.2 VoiceGenie Media Platforms. It is a mature software
component that handles millions of calls every day in deployments around the
world.

The Next Generation Interpreter is the latest VoiceXML Interpreter with a
number of improvements over the Legacy Interpreter. It is re-architected to
leverage today’s multi-core, multi-processor systems. The new architecture is
also well suited for the forthcoming standards such as VoiceXML 3.

Both Interpreters implement the VoiceXML 2.1 language as specified by the
Voice Browser Working Group of the W3C (http://www.w3.org/Voice).
VoiceXML applications and the Interpreter allow the application authors to
write applications in a high-level, portable language without the need to
understand the various complicated low-level telephony protocols. In addition,
the VoiceXML language and the Interpreter uses file-based and HTTP
protocols to deliver applications from the application server to the Interpreter.
This allows the user of the VoiceGenie Media Platform to re-use their existing
web infrastructure for their Voice Gateway.

The following summarizes basic functionalities:

 Issues commands to the Fetching Module to acquire VoiceXML
applications

 Parse and executes VoiceXML applications, according to the VoiceXML
specificcation

 Issues commands to the Call Manager to execute call and media
operations, such as prompt playing, recording, speech recognition, call
transfer, etc.

 Handles Call Manager responses and continues the application execution.

 Performs DTMF recognition

2.1.3 The Fetching Module

The Fetching Module is a major subcomponent of the Media Platform
responsible for performing fetching. It uses shared memory to communicate
between itself and the interpreter and the call manager. The Interpreter issues
HTTP requests to the fetching module, and after the fetching module acquires

Chapter 2: VoiceGenie 7.2 System Overview 2.2 Speech Resource Manager (SRM)

16 VoiceGenie 7.2.2

the resource it will respond back to the Interpreter. The fetching module
connects to an external http proxy (squid) for HTTP fetching. The fetching
module also does in-memory caching and sharing of these HTTP requests,
which allows for more efficient operation.

The following summarizes basic functionalities:

 Receives HTTP and File-based requests from the Interpreter, and returns
the results in the same format back to the Interpreter.

 Connects to squid for HTTP requests, while accessing the file directly for
file-based requests.

 Performs shared-memory caching.

2.2 Speech Resource Manager (SRM)
With modern day telephony applications, it is no longer sufficient to provide
services to customers using only touch-tones input and pre-recorded audio.
VoiceGenie Media Platform can accept speech as user input and can provider
dynamically generated prompts by interacting with the Speech Resource
Management (SRM) component.

The SRM is used to manage 3rd party Automatic Speech Recognition (ASR)
and Text-to-Speech (TTS) engines. It consists of three components: the SRM
client component, the SRM server component and MRCP proxy component.
Using SRM, VoiceGenie Media Platform can work with the different
TTS/ASR products provided by different vendors.

The SRM client component is integrated to the VoiceGenie Media Platform as
a Dynamic Link Library. The Speech Resources (i.e. the TTS/ASR servers)
are provisioned to Media Platform via System Management Console. The
Media Platform uses the SRM client library to access ASR/TTS functionality
based on the Media Resource Control Protocol (MRCP).

The diagram below depicts the Media Platform’s position in a the SRM
architecture, with the Media Platform being a SRM client:

Chapter 2: VoiceGenie 7.2 System Overview 2.3 Operation, Administration and Management (OA&M)

Media Platform — User’s Guide 17

For details of the SRM components, please refer to the following documents:

 VoiceGenie 7.2 Speech Resource Management User’s Guide

 VoiceGenie 7.2 Speech Resource Management System Reference Guide

 VoiceGenie 7.2 MRCP Proxy User’s Guide

 VoiceGenie 7.2 MRCP Proxy System Reference Guide

2.3 Operation, Administration and
Management (OA&M)

The VoiceGenie Media Platform relies upon a combination of on board and
distributed OAM&P tools to provide support for management of the platform,
including logging, provisioning, alarming and other maintenance operations.
These components include:

 The Cluster Management Platform (CMP) Server – it is responsible for
all centralized logging and configuration capability. All CMP Proxies in
the VoiceGenie network of servers connect to a CMP Server.

 The CMP Proxy – which must run on every server that is managed or
monitored by the OA&M Framework. It acts as a single point of
communication for all VoiceGenie software running on that server. The
CMP Proxy is responsible for server level logging; this includes the

SRM Server Tier

MRCP/SRM Proxy Tier

MRCP/SRM Client Tier

VoiceGenie
Media Platform

SRM Client

MRCP Client
(e.g. Cisco AS5350)

VoiceGenie
MRCP/SRM Proxy

VoiceGenie
MRCP/SRM Proxy

VoiceGenie
SRM Server

Native MRCP Server
(e.g. SSFT SWMS)

MRCP

MRCP

Chapter 2: VoiceGenie 7.2 System Overview 2.3 Operation, Administration and Management (OA&M)

18 VoiceGenie 7.2.2

metrics logs, alarms and system level logging. Also, the CMP Proxy is
responsible for starting and stopping all VoiceGenie software components.
In addition, the CMP Proxy monitors the disk, CPU and memory
utilization of the system, as well as the CPU and memory utilization of all
VoiceGenie processes and can restart them if required.

 The Command Line Console (CLC) – a command line interface to the
OA&M Framework. Through this interface, users can query information
about the components that are part of the VoiceGenie network of servers.
Also, the CLC allows users to inject commands into the OA&M
Framework to carry out various tasks.

 The System Management Console (SMC) – consists of a web interface
that can be used to access various monitoring, operations, installation,
configuration, and administration capabilities. Through the web interface
users can access both real time and historical information about the
VoiceGenie software, as well as perform various operations and carry out
configuration and provision changes.

 The VoiceGenie SNMP – the SNMP agent for all VoiceGenie
components. Via the VoiceGenie SNMP Agent users can receive SNMP
traps whenever an alarm condition occurs, also, SNMP gets and sets are
supported.

Each platform includes facilities suitable for managing the platform as a
standalone unit, and for integrating into a cluster managed by a distributed
management console, or an existing network management solution.

The following diagram illustrates the architecture and distribution of the
various OA&M components as well as the Media Platform in an “all-in-one”
setup, i.e. the CMP Proxy & CLC, CMP Server, SMC, VoiceGenie SNMP and
the rest of the VoiceGenie components are installed on a single server:

Chapter 2: VoiceGenie 7.2 System Overview 2.4 Other VoiceGenie Components

Media Platform — User’s Guide 19

For details about the OA&M architecture and component details, please refer
to the following documents:

 VoiceGenie 7.2 OA&M Framework User’s Guide

 VoiceGenie 7.2 OA&M Framework – SMC User’s Guide

 VoiceGenie 7.2 OA&M Framework – CLC User’s Guide

 VoiceGenie 7.2 OA&M Framework – SNMP User’s Guide

2.4 Other VoiceGenie Components

2.4.1 SIP Proxy

SIP proxies provide a variety of services in VOIP networks that are based on
the use of SIP, such as authorization and access control, validation and
security, call routing, accounting, user location, and others. A variety of SIP

VoiceGenie Server

CMP Proxy

CMP Agent

Call Manager

CMP Agent

VXML Interpreter

CMP Agent

SRM Proxy

CMP Engine MySQL Database

CMP Java Agent

SMC (JSP/Java)

JSP / Java
Container
(Tomcat)

CMP Agent

CLC

C
M

P
S
er

ve
r

CMP Proxy

Media Platform

SMC

MRCP Proxy

CMP Agent

VG SNMP

VG SNMP

Chapter 2: VoiceGenie 7.2 System Overview 2.4 Other VoiceGenie Components

20 VoiceGenie 7.2.2

proxies are available, some of which are commercial (e.g. Cisco) and some of
which are open source (e.g. Vovida, iptel.org). Fundamentally, any SIP
proxy delivers services by controlling how requests and responses are routed
between a SIP client (UAC) and a SIP server (UAS), generally by deciding on
how requests get routed, as well as by manipulating headers in the request or
response. A simple example of this is shown in the figure below:

VoiceGenie’s SIP proxy provides a very specific set of services that are not
available from general-purpose SIP proxies that are widely available. These
services are specific to providing media-centric SIP services, such as
VoiceXML dialogs, and conferencing capabilities. VoiceGenie’s SIP Proxy is
also designed for scalability and has redundant architecture to protect against
server failures.

From a logical perspective, the purpose of VoiceGenie’s SIP proxy is to act as
an interface to a collection of media processing resources, such as
VoiceGenie’s media platform, CCXML platform, audio/video conferencing or
other resources. SIP devices and applications can then make use of media-
centric services through the proxy, without having to know the actual location
of those resources or how to manage various routing decisions. The services
provided by the VoiceGenie SIP proxy are used not only by clients such as
media gateways or softswitches, but may also be used by internal media
resources to co-ordinate interactions with one another. For instance,
VoiceGenie’s CCXML platform offers the ability to manage a VoiceXML
dialog that actually executes on VoiceGenie’s media platform; the CCXML
platform may make use of proxy capabilities to locate an appropriate
VoiceXML platform. The following diagram illustrates this logical
architecture:

SIP/PSTN
Gateway

SIP
Phone

SIP Proxy

PSTN

RTP

SIP

INVITE sip:2001@here.com INVITE sip:line1@10.0.0.1

Chapter 2: VoiceGenie 7.2 System Overview 2.4 Other VoiceGenie Components

Media Platform — User’s Guide 21

Although the above diagram shows a number of elements, both users of media
services managed by the proxy as well as the underlying media-centric
services that the proxy routes to, the actual configuration used in a deployment
is typically much simpler. For instance, in a contact centre environment
providing automated self-service or call routing, the deployment might consist
solely of a number of SIP/PSTN gateways to handle incoming calls, a cluster
of VoiceGenie media platforms that provide the actual treatment of calls
through touch-tone or speech applications, and a redundant pair of VoiceGenie
SIP proxies that provide load balancing across the available VoiceGenie
platforms. In more complex next-generation network architectures, the
VoiceGenie SIP proxy essentially acts as a logical media server, aggregating
the capabilities of heterogeneous array of processing resources and acting as a
single interface point for media services users.

2.4.2 CTI Connectors

The VoiceGenie platform provides a number of ways to support CTI
integration. The two most common are:

 Application Server Side Integration

 Media Platform Integration

IP Phone

SIP/PSTN
Gateway

VoiceGenie
Media
Platform

SIP Proxy

PSTN

RTP

SIP

Softswitch VoiceGenie
SIP Proxy

Media
Server

VoiceGenie
CCXML
Platform

Other SIP
services

Media-centric processing Media services users

Chapter 2: VoiceGenie 7.2 System Overview 2.4 Other VoiceGenie Components

22 VoiceGenie 7.2.2

Application Server Integration

The VoiceGenie platform delivers call-related data to the application server as
part of the initial page fetch related to a VoiceXML call. This data includes the
information required to interface to an external CTI server – information such
as port number, session identifier, and so on. This allows the application server
to manage interaction with the CTI infrastructure.

Media Platform Integration

Media platform integration allows for CTI infrastructure interaction to take
place on the media platform itself. The most common features are provided
completely transparently to the application. This method has benefits to the
application developer. The VoiceGenie media platform has integrated with the
Cisco ICM package.

Architectural Overview – VoiceGenie and ICM

When ICM support is configured, the component architecture is as shown in
the following figure.

The VoiceGenie Media Platform loads an optional dynamic library named
libappccm.so. CCM is an acronym for Call Control Module. When there is an
incoming call to the Media Platform, control of the call is routed to the CCM
instead of to a VoiceXML script. The CCM establishes a dialog with the Call
Control Platform, using an internal CCI (Call Control Interface) protocol. The
CCP uses the CCI protocol to control the call. For example, the CCP can select
and launch VoiceXML scripts to handle the call, and can then initiate a call
transfer when the VoiceXML script has completed.

The VoiceGenie Call Control Platform loads an optional dynamic library
named libccpicm.so. This module acts as a protocol converter, between the
CCI protocol, and the Cisco ICM/VRU Interface protocol which is supported
by ICM. A VRU (Voice Response Unit) is Cisco’s terminology for a media

Cisco ICM
(PG)

VoiceGenie ICM
Connector

VoiceGenie Media
Platform

VoiceGenie
Cluster

Management
Platform

libappccm.so

Chapter 2: VoiceGenie 7.2 System Overview 2.4 Other VoiceGenie Components

Media Platform — User’s Guide 23

server platform. A VoiceGenie CCP, and the Media Platforms to which it’s
connected, look like one VRU as far as ICM is concerned. The VoiceGenie
CCP can drive one or more media platforms.

The Cisco ICM protocol supports two different interfaces:

 “Routing” and “Event Data Feed” interface – VoiceGenie can use these
to tell ICM when a call is connected and disconnected, and to request a
route (a transfer destination address) for a given call. Using these
interfaces, it helps to think of the VRU as being the client, and the ICM as
being a server: the VRU issues route requests, and gets route responses
from ICM.

 “Service Control” interface – ICM can use this to tell VoiceGenie what
VoiceXML scripts it should run, as well as when and where to transfer
calls. Using this interface, it helps to think of ICM as being the client, and
the VRU as being the server: the ICM issues requests to start a VoiceXML
script or to transfer a call, which are obeyed by the VRU.

VoiceGenie supports both of these interfaces. However, at run-time ICM
supports one or the other of these interfaces for a given VRU (you cannot use
both interfaces simultaneously).

2.4.3 Call Control XML (CCXML) Platform

VoiceGenie CCXML Platform provides a CCXML interpreter that integrates
with existing VoiceGenie infrastructure such as the Media Platform and SIP
Proxy. The underlying network protocol for CCXML Platform is SIP; this
means that CCXML Platform can interoperate with other conferencing server
or dialog server.

Although VoiceGenie has traditionally provided extended call control
capabilities through proprietary extensions to VoiceXML, the development of
Call Control XML (CCXML) provides a standard, XML-based language for
scripting call control logic. Like VoiceXML, CCXML is independent of the
environment in which it operates, and can run in environments ranging from
VOIP-based softswitch products to integrated residential gateways that
manage a single telephone call.

In a clustered environment, SIP Proxy manages multiple instances of CCXML
Platforms and Media Platforms. External elements send to the SIP Proxy to
forward the SIP requests to the appropriate SIP service. The following
diagram, similar to the architecture diagram above, shows elements managed
by the SIP Proxy:

Chapter 2: VoiceGenie 7.2 System Overview 2.4 Other VoiceGenie Components

24 VoiceGenie 7.2.2

Other all other components, the CCXML Platform resides within VoiceGenie
OA&M framework that allows CCXML Platform to be deployed, configured,
monitored, and managed in a consistent manner with other VoiceGenie
software components.

CCXML Platform

SIP Proxy

Conference
Server

Border
Element

SIP

SIP SIP SIP

RTP RTP

RTP

CCXML Platform

Media
Platform

Media
Platform

Media Platform — User’s Guide 25

The VoiceGenie 7.2 Media Platform delivers speech enabled services and
applications through a variety of means, which includes VoiceXML
applications and conferencing applications (which are all CMAPI application
modules). When an incoming call is received from the telephony network, an
application is selected to handle the call, and the selection criteria is based on
the dialed number (DNIS) information associated with the call from the
telephony network.

The mappings are stored as provisioning data in the file cm_provision.dat,
which is located in /usr/local/phoneweb/config for Linux systems and
($INSTALLROOT)\mp\config in Windows systems. This file is managed by the
OA&M Framework and cannot be changed manually. All changes must be
made via the SMC Interface.

3.1 Application Provisioning (DNIS – URL
Mapping)

To edit the application provisioning, log into SMC and click on the
Configuration tab. Under the Media Platform there should be a link for DNIS -
URL Mapping.

A user must first select the CMAPI application module to handle the incoming
call (Note that the list of CMAPI application modules is defined in call
manager configurations under the parameters sessmgr.modules and
sessmgr.appmodules. Here is a description for each of the available options:

 VoiceXML – This application module interfaces with Next Generation
Interpreter for the required VXML-defined application logic for a call. See
3.2 VoiceXML Applications and the VoiceXML Interpreterrs for more
information.

Chapter

3 Running Applications on
the Media Platform

Chapter 3: Running Applications on the Media Platform 3.1 Application Provisioning (DNIS – URL Mapping)

26 VoiceGenie 7.2.2

 VoiceXML – Pre 7.2 Compatibility Mode – This application module
interfaces with the Legacy Interpreter for the required VXML-defined
application logic for a call. See 3.2 VoiceXML Applications and the
VoiceXML Interpreter for more information.

 ICM Call Control (CCM) – This application module is designed to work
with VoiceGenie ICM Connector module. This application module is
hardwired as a “parent” of VXML application module (and forward
requests to VXML application module if necessary). For more information
on ICM integration, please see the following documents:
 VoiceGenie 7.2 ICM Connector User’s Guide
 VoiceGenie 7.2 ICM Connector System Reference Guide

 Policy Client (PolicyClient) – This application module is designed to
work with an external DCL (Data Connection) outgoing/transferring
policy server in a customized project. This application module is
hardwired as a “parent” of VXML application module. Hence, besides
transfer operations where this application module needs to perform policy
checking with the policy server, all other operations will pass through
directly between the VXML application module and the call manager. This
application module is using proprietary extensions for a customized
project and is not available for general usage by other customers.

 Continuity Check (ContCheck) – This application module is designed to
work with VoiceGenie CCP-SS7 platform to perform continuity check
functionality. When accepting an incoming call, the application performs a
media loopback operation and waits for a disconnect request.

 Conferencing (Conference) – This application module joins a call to a
conference session (based on information in the incoming SIP message –
see 3.3 Conferencing for more information), and waits for a disconnection
request to remove the call from conference. The application module
automatically manages creation and destruction of conference sessions.

 VoiceXML w/ PortCount (PortCount) – This application module is
required for performing the application port count service (see 3.4
Application Count Service (Partition Definition) for details). The
application module is hardwired as a “parent” of the VXML application
module. It only intercepts incoming call and outgoing call requests to
perform application port count checking. All operations after this point
will pass through this module, and will be directly executed between the
VXML application module and the call manager.

To create a new DNIS – URL Mapping entry, enter the DNIS and URL for the
new entry:

 DNIS – The Dialed Number presented to the platform by the network
(Dialed Number Identification Service). This is the key for the DNIS to
URL lookup.

Chapter 3: Running Applications on the Media Platform 3.1 Application Provisioning (DNIS – URL Mapping)

Media Platform — User’s Guide 27

Note that XXXX is a special default DNIS. If the incoming DNIS does not
match any other entries, it will be handled by the XXXX entry. Also,
wildcard suffix is supported. For example, 123* will match all DNIS with
prefix=123. The Media Platform will perform a longest prefix match if
multiple entries are matched (ie, if both 123* and 1234 are defined as DNIS
keys, then incoming call with DNIS=1234 will match the 1234 DNIS key
entry).

 URL – The initial URL of the VoiceXML application. This parameter is
only mandatory for the VXML application module (or all application
modules that are hardwired as “parent” of the VXML application module).

 VoiceXML Defaults – The default properties page of the VoiceXML
application. This parameter is only required for the VXML application
module (and all application modules that are hardwired as “parent” of the
VXML application module).

 Parameter Name/Value – additional parameters can be passed to each
application module to provide additional information about handling of the
incoming call (which will be passed to the VXML Interpreter).

Here is an example:

In the DNIS – URL Mapping entry, specify Parameter Name = FOO and
Value = BAR.

For Legacy Interpreter, add session.connection.foo|FOO|0 to
session_var under the VoiceXML Interpreter Configuration section via
SMC.

For Next Generation Interpreter, add session.connection.foo|FOO|0 to
session_var under the Call Manager Configuration section via SMC.

In the vxml page, a check such as the following can be performed:

<if cond=“session.connection.foo == ‘BAR’”>

In Legacy Interpreter, the following parameters change the behavior of the
application, particularly the behavior of the initial page (note that the
names are not case-sensitive):

Chapter 3: Running Applications on the Media Platform 3.1 Application Provisioning (DNIS – URL Mapping)

28 VoiceGenie 7.2.2

Parameter Name Value

INIT_URL.maxage -2 (and INIT_URL.maxstale also set to
-2): Does not cache the initial page at
all. The Pragma header in the
corresponding http request will be set
to no-cache.

Any positive number represents the
maxage time in seconds in the
corresponding http request, if it is a
VoiceXML 2.0 application.

Default: -2

INIT_URL.maxstale -2 (and INIT_URL.maxage also set to
-2): Does not cache the initial page at
all. The Pragma header in the
corresponding http request will be set
to no-cache.

Any positive number represents the
maxstale time in seconds in the
corresponding http request, if it is a
VoiceXML 2.0 application.

Default: -2

INIT_URL.method POST: Posts additional session data
that is specified in
INIT_URL.postbody to the application
server.

Default: Not set.

INIT_URL.postbody The session data (in addition to the
data specified in session_vars in the
voicexml.cfg) that is included in the
request of the initial page in the
request body.

Note: The content of each name and
value must be URL encoded.

In order to include the session data,
the INIT_URL.method must be set to
POST.

Default: Not set.

Chapter 3: Running Applications on the Media Platform 3.1 Application Provisioning (DNIS – URL Mapping)

Media Platform — User’s Guide 29

Parameter Name Value

PROP.<VoiceXML Property name> The corresponding VoiceXML
property value.

Only on the initial page, the specified
VoiceXML properties take
precedence over the same properties
in defaults.vxml.

The document fetch/cache properties
specified here do not affect the initial
page fetch/cache behavior.

Default: Not set.

VXMLI.default_xmllang A valid language that is listed in the
supported_language item of
voicexml.cfg.

The specified language is used as the
vxmli.default_xmllang for the
application.

Default: Not set.

VXMLI. default_transfer_connect_timeout Integer that is greater than 5 and less
than 2147483648.

The specified value (in seconds) is
used as the vxmli.
default_transfer_connect_timeout
for the application.

Default: Not set.

Click on Create to create the DNIS – URL Mapping entry.

Once the entry has been created users can click on Select Target to select the
systems to receive this mapping.

To update the contents of an entry, make changes to any of the parameters and
click on Update. This will send all changes to the platforms that are selected as
targets.

To delete an entry simply click on Delete.

Chapter 3: Running Applications on the Media Platform 3.1 Application Provisioning (DNIS – URL Mapping)

30 VoiceGenie 7.2.2

Advanced users may make use of the Advanced button to further customize
information related to the handling of the incoming call. By clicking on it a
XML based editing tool will be launched allowing the user to manually edit
the parameters and settings. The following is an example of a VoiceXML
application module entry:
<key name=“DNIS” value=“4321”/>
<application module=“VXML”>
<param name=“url” value=“file:///usr/local/phoneweb/msh/test.vxml”/>
<param name=“default” value=“defaults.vxml”/>
</application>

3.1.1 Choosing Defaults for Each Application

The DNIS – URL Mapping entries are used by the VoiceGenie platform to
associate an application with each DNIS or VoIP address that can be used to
call in to the platform. (For details on using DNIS – URL Mapping entries
with a VoIP-based platform, see Calling In – #1 and 2, in the VoIP tutorial.)

Chapter 3: Running Applications on the Media Platform 3.2 VoiceXML Applications and the VoiceXML Interpreters

Media Platform — User’s Guide 31

Also, the entry determines the appropriate defaults file to use for the call. This
is specified in the VoiceXML Defaults field.

The following sections explain how multiple default settings can be defined
and how a default setting is chosen for each different application.

3.1.2 Multiple Default Settings

The VoiceGenie platform uses the default settings to specify property values
and event handlers, in case the developer does not specify them in their
VoiceXML page.

The VoiceGenie platform supports the use of multiple default settings, so that
a different set of values can be used for each application running on the same
platform. This is beneficial, for example, on a platform that has multiple ASR
and TTS engines installed. In this case, any applications using ASR engine #1
could use default settings which are appropriate for that ASR engine, such as:
 <property name=“ASRENGINE” value=“ASR1”/>
 <property name=“CONFIDENCELEVEL” value=“0.35”/>
 ... [other speech-related properties] ...

while applications using ASR engine #2 could use default settings which are
appropriate for that other ASR engine, such as:
 <property name=“ASRENGINE” value=“ASR2”/>
 <property name=“CONFIDENCELEVEL” value=“0.5”/>
 ... [other speech-related properties].

Note: In this example, all properties and event handlers unrelated to speech
would be the same as the original default setting.

Having multiple default settings can also be beneficial if a set of related
applications running on the same platform is using a different set of event
handlers from the other applications on the same platform. Rather than
redefining them in every application, this set of applications could use a
different default setting, which redefines the event handlers once.

3.2 VoiceXML Applications and the
VoiceXML Interpreters

The VoiceGenie 7.2 Media Platform supports two VoiceXML Interpreters: the
field proven Legacy Interpreter (VXMLi) and the Next Generation Interpreter
(NGI).

When an incoming call’s DNIS is mapped to a VXML application, upon
receiving the call, the Call Manager will submit a new call request to the
VoiceXML Interpreter (VXMLi). The VXMLi will first initiate a fetching

Chapter 3: Running Applications on the Media Platform 3.2 VoiceXML Applications and the VoiceXML Interpreters

32 VoiceGenie 7.2.2

request via the fetching module (iproxy), which makes use of 3.5
HTTP/HTTPS Support and 3.6 Caching in VoiceGenie 7.2 Media Platform.

If the page can be successfully fetched, the Legacy Interpreter will compile the
page and upon success, it will instruct the Call Manager to accept the call. If
any problem is encountered when fetching the page, the Legacy Interpreter
will try to fetch and compile the alternate page. The alternate page can be
specified by the parameter ALTER_URL or by configuration. Please see
Application Provisioning (DNIS-URL Mapping) for details on how the
ALTER_URL parameter can be specified as part of a DNIS-URL mapping. For
the Legacy Interpreter, the alternate page is specified using the
alternate_initial_page parameter in the VoiceXML Interpreter
Configuration section. For the Next Generation Interpreter, it is specified
using the vxmli.default.alternate_uri parameter in the Call Manager
Configuration section. If an alternate page is specified by both the ALTER_URL
parameter and through configuration, the value of the ALTER_URL parameter will
be used.

For details regarding the VoiceXML language, please visit:

 http://support.voicegenie.com

 http://developer.voicegenie.com

3.2.1 URL Reference Syntax Supported by the VoiceXML
Interpreter

The valid forms of URL supported by VoiceXML Interpreter are:

 http[s]://<host>[:<port>][<absolute_path>[?<query string>][#<anchor>]]
 file:///<absolute path>[#anchor]

Example:

 http://vxml.example.com:8080/testbed/a1.jsp#welcome
 https://secure.example.com:8080/testbed/b1.jsp?d=5&r=test
 file:///usr/local/phoneweb/samples/helloasr.vxml
 file:///C:/VoiceGenie/mp/samples/helloaudio.vxml#form1

A URL that does not begin with a valid scheme will be treated as a relative
URL.

http://support.voicegenie.com/�
http://developer.voicegenie.com/�

Chapter 3: Running Applications on the Media Platform 3.2 VoiceXML Applications and the VoiceXML Interpreters

Media Platform — User’s Guide 33

3.2.2 Communicating with the Legacy Interpreter via CLC

By issuing the sendevent command at the CLC prompt, it’s possible to send
messages to active VoiceXML sessions. The command has the following
format:
sendevent vxmli [host] [instance] [recipient_session_id]
[sender_address] [message]

where all parameters are required. The parameters are defined as follows:

 [host] – the host where the Legacy Interpreter is running. For localhost, a
- can be used

 [instance] – the instance of the interpreter, - implies instance 1

 [recipient_session_id] – the unique session ID of the interpreter session
the message will be sent to. A typical session ID looks as follows:

0C9703E2-0C0028ED-0001

The session ID of a VoiceXML session can be determined in different
ways, including:
 The value of the session.com.voicegenie.instance.myself session

variable of that session.
 The value of the X-Session-Id HTTP header in the HTTP requests

performed by that session.

 [sender_address] – can also be specified as a valid session ID of an
interpreter session, or any character string whose length is under 127
characters. If the sender_address is a valid session ID, the recipient session
would be able to send back a message to the session with the ID specified
by the sender_address, which is dependent on the VoiceXML application.

 [message] – any combination of characters, with a maximum length of
2999 characters.

Example: The following is an example using the sendevent command:
CLC> sendevent vxmli - - 0C9703E2-0C0028ED-0001 1234 Hello World!

The following table outlines the return values and their meanings:

Result Meaning

Sending Message from <sender_address>
to <recipient_address>

Success.

Usage: sendevent [service] [hostname]
[inatnce] [recipient_address]
[sender_address] [message]

Failed, invalid format command.

Can not deliver message Failed.

Failed to send message Failed.

Chapter 3: Running Applications on the Media Platform 3.2 VoiceXML Applications and the VoiceXML Interpreters

34 VoiceGenie 7.2.2

3.2.3 Limitations

 When the available disk space has reached a point so low that the Legacy
Interpreter process cannot write to the disk any more (e.g. creating new
promptsfile), the process will exit. At this point, the following actions
should be performed:
 Shutdown the Media Platform
 Clean up the disk space
 Restart the Media Platform

 When the Media Platform is being shut down, all unsent maintainer emails
would be discarded

 Special characters <, >, ?, : and + in DTMF grammars are not supported

 The DTMF digits A, B, C and D are not supported

 With the Legacy Interpreter, rule names in SRGS DTMF grammars are
concatenated to form qualified ECMAScript variable names. If a grammar
contains very long rule names, their concatenation may hit an internal limit
(which is roughly 500 characters), causing a grammar processing error.

 With the Legacy Interpreter, property scriptfetchhint should always be
set to prefetch. The value safe is not supported. This is also applicable to
the fetchhint attribute in the <script> tag.

The custom application log file that is specified by the dest attribute in the

log element is managed by the VoiceXML Interpreters. It has the following

limitations:

NGI:
 Writing to the custom application log file is not thread safe. When

under load, some log entries may be missing.

 The log file is rotated without saving the previous data after the file size
exceeds its configured value, which is specified by
vxml.max_application_logfile_size in callmgr.cfg.

VGI:
 There is no built-in mechanism to rotate the custom application log

file. The user must manage the file size. If the file size exceeds 2GB
in Linux, the pwvxmli process will crash.

Due to the above limitations, the custom log file is not recommended to be

used in a production environment. The pw_metrics file should be used for

VoiceXML application logging.

Chapter 3: Running Applications on the Media Platform 3.3 Conferencing

Media Platform — User’s Guide 35

3.3 Conferencing
Many interesting voice applications require the use of conferencing capability
in order to deliver the intended user experience. One of the functions that
VoiceGenie product is expected to perform, in addition to supporting
VoiceXML, prompt playback, SIP/RTP, and speech, is conferencing.
Examples of applications that can make use of conferencing including
enhanced voice activated dialers that allow multiple people to be called
simultaneously, voicemail and other applications that allow outbound calls
while staying on the line, delivery of IP Centrex conferencing services (in
conjunction with a soft-switch application), and numerous others.
Conferencing capability is included in the VoiceGenie 7.2 Media Platform
product. There are two interfaces to access the conferencing feature. One is via
SIP interface, and the other is via VXML interface.

3.3.1 Conferencing via SIP Interface

An incoming SIP call can be routed to a conference directly without using any
VXML application. For this scenario, a Conference CMAPI application will
be used to handle the call and manage the call’s interactions with the
conference bridge. In order to use this feature, the following Call Manager
parameters (accessible via SMC) must be configured properly in call manager
configuration:

 Conference must be included in sessmgr.modules

 Conference:Conference must be included in sessmgr.appmodules

 Sessmgr.Conference.Conference must be set as Conference

In addition, there are a few parameters in call manager configuration that can
be used to define default properties of all calls joining the conference via SIP
interface: conference.limit, conference.initial_gain,
conference.input_delay, conference.confdir, conference.highest_input,
conference.suppress_silence, conference.silence_fill and
conference.audio_format.

Once the Conference CMAPI application is set up, a SIP call can be routed to
join a conference (provided that the conference ID is known) directly using
one of the following ways. Note that a new conference session will be created
implicitly if there are no existing participants for the given conference ID:

1. Netann IETF draft

Make a SIP call to the VoiceGenie platform with:

sip:conf=<XXX>@<host> in the request URI.

Chapter 3: Running Applications on the Media Platform 3.3 Conferencing

36 VoiceGenie 7.2.2

This is a request to join a conference with ID <XXX> on the VoiceGenie
platform <host>. For details, see section 5 of
http://www.ietf.org/rfc/rfc4240.txt.

2. DNIS-URL mapping with request parameters

Under SMC’s DNIS-URL Mapping Configuration section, create a
Conferencing mapping entry with the DNIS set to WWWW. There is no need to
set any URL; the SMC will set it automatically. (See 3.1 Application
Provisioning (DNIS – URL Mapping) for details on how to add DNIS-URL
Mapping entries through SMC.)

Make a SIP call to the VoiceGenie platform with WWWW in the user portion
of the SIP request URI and with confinstid=<XXX> in the SIP request
parameters. The call will be routed to the Conference CMAPI application
as a request to join a conference with ID <XXX>. So calling
sip:WWWW@<host>;confinstid=123 will join the user to conference 123 on
<host>.

3. DNIS-URL mapping without request parameters

In the SMC DNIS-URL Mapping Configuration, create a Conferencing
mapping entry with the DNIS set to WWWW*. There is no need to set any URL;
the SMC will set it automatically. (See 3.1 Application Provisioning
(DNIS – URL Mapping) for details on how to add DNIS-URL Mapping
entries through SMC.) Then, when a SIP call is made to the VoiceGenie
platform with a DNIS of the format WWWWconfid<XXX>[confdir<Y>], it will
be taken as a request to join a conference with ID <XXX> on the VoiceGenie
platform being called, with mode optionally specified by <Y> (0 for talk-
only, 1 for listen-only, 2 for talk/listen). If <Y> is not specified, the value
defined by the conference.confdir parameter in the Call Manager
configuration will be used.

When the SIP call disconnects from the platform (eg, via a SIP BYE), it will
exit from the conference. When there are no more participants in a conference,
the conference session will be destroyed implicitly.

3.3.2 Conferencing via VXML Interface

Conference participation can also be controlled from the VXML application
using <join> and <release> tags. There is no need to configure Conference
CMAPI application module as described in the previous section. The default
conference session properties can be defined using the following VXML
properties:

 com.voicegenie.conference.createnew

 com.voicegenie.conference.limit

 com.voicegenie.conference.initialgain

 com.voicegenie.conference.inputdelay

Chapter 3: Running Applications on the Media Platform 3.4 Application Count Service (Partition Definition)

Media Platform — User’s Guide 37

 com.voicegenie.conference.highestinput

 com.voicegenie.conference.suppresssilence

 com.voicegenie.conference.silencefill

 com.voicegenie.conference.audioformat

The conference session will be identified using conf:<conferenceID>. The
conference session identifier can be used directly in from, to, listen, talk,
chan attributes in <join> and <release> tags.

For example, if the variable caller contains a reference to the original inbound
caller’s session ID, and the variable conf is set to ‘conf:123’, then:
<join name=“j1” from=“caller” to=“conf”/>

would join the caller to the conference with ID 123, so that they can speak to
the conference, and also listen to the conference output. If the contents of the
from and to attributes are switched, the behaviour will remain the same.

Currently the Next Generation Interpreter does not support <join> and
<release> tags for conferencing.

3.4 Application Count Service (Partition
Definition)

Paritition in this context is a group of VoiceGenie media platforms viewed as
one entity in executing a group of VoiceXML applications. VoiceGenie media
platforms existing in the same network (reachable through multi-casting) and
same CMP cluster can join the same partition. A partition associates a group of
VoiceGenie media platforms to a group of VoiceXML applications. This
allows the partition definition to limit the maximum concurrent applications
count over a group of VoiceGenie media platforms. VoiceXML application is
associated with partition through DNIS-URL mapping configuration where
DNIS is associated with a partition through a parameter name called partition
whose value is the partition name. In order to use the Application Count
Service, configuration must be setup in three steps: 1) Activate PortCount
CMAPI application, 2) Associate PortCount application with partition name in
DNIS-URL mapping, and 3) Define partition.

3.4.1 Activate PortCount CMAPI application

PortCount application module must be enabled from call manager
configuration.

1. Add PortCount to sessmgr.modules list.

2. Add PortCount:PortCount to sessmgr.appmodules list.

3. Add PortCount to the sessmgr.portcount.portcount list.

Chapter 3: Running Applications on the Media Platform 3.4 Application Count Service (Partition Definition)

38 VoiceGenie 7.2.2

3.4.2 Associate PortCount application with partition name in
DNIS-URL mapping

In DNIS-URL mapping, choose PortCount from the Application Module list.
Insert the initial VoiceXML URL into the rest of the fields just as a regular
VoiceXML app would be configured. On Parameter Name/Value field, type in
partition and the name of partition to associate respectively.

To specifiy the VoiceXML Interpreter to be used, add a new parameter
‘gvp.appmodule’ in the Parameter Name/Value field. The value should be
‘VXML’ for the Legacy Interpreter or ‘VXML-NG’ for the Next Generation
Interpreter. If gvp.appmodule is not specified, the default VoiceXML
Interpreter specified by the Call Manager configuration parameter
sessmgr.default_vxml_interpreter will be used.

3.4.3 Define Partition

The following is a snippet from the Partition Definition section of
VoiceGenie SMC interface.

 Partition Name should be the partition name associated in DNIS-URL
mapping.

 Description can be any text comment for the partition.

 Port Count - Soft Limit defines the limit after which alarms will be
generated to the O&AM framework. Limit is based on the maximum
combined number of estimated incoming calls to the associated DNIS
applications associated to the partition.

 Port Count - Hard Limit defines the limit after which calls will either be
rejected or redirected to an alternate VoiceXML page. Limit is based on
the maximum combined number of estimated incoming calls to the
associated DNIS applications associated to the partition.

Chapter 3: Running Applications on the Media Platform 3.5 HTTP/HTTPS Support

Media Platform — User’s Guide 39

 Treatment following Port Count - Hard Limit is whether to reject or
redirect when Port Count - Hard Limit is exceeded. Disconnect with
Cause Code parameter applies only to PSTN environments and the Cause
Code is the ISDN cause code. In the SIP case, calls will be declined with a
503 response.

 Port Count - Minimum Allocation defines the minimum number of calls
that must exist in this partition.

 Treatment following Port Count - Minimum Allocation is whether to reject
or redirect when Port Count - Minimum Allocation is not met. The
incoming calls affected are the calls coming into other partitions.
Disconnect with Cause Code parameter applies only to PSTN
environments and the Cause Code is the ISDN cause code. In the SIP case,
calls will be declined with a 503 response.

3.4.4 Alarms and Metrics

Whenever a limit is exceeded, an alarm will be raised. Please refer to the
VoiceGenie 7.2 Media Platform System Reference Guide for information on
the alarms related to the Application Count Service:

 Soft limit exceeded

 Hard limit exceeded

 Minimum required limit exceeded

If a call is rejected by the Disconnect with Cause Code treatment, the reject
reason in metrics logs will be interrupt, for example
2005-12-02/17:58:10.529 METRIC 00020039-10002E26 incall_initiated

0:0
2005-12-02/17:58:10.531 METRIC 00020039-10002E26 call_reference

00000000-D5EDD98C-4443@10.0.0.208
2005-12-02/17:58:10.531 METRIC 00020039-10002E26 incall_reject

sip:1234@10.0.0.104:5060|sip:VoiceGenie@10.0.0.208:4443|20051202
564290013|N/A|N/A|N/A|interrupt

Note: When used in combination with the SS7 Connector a call will be
shown being rejected with the default cause code 41, instead of the
cause code defined by the Call Manager configuration parameter
sessmgr.disconnect_cause.decline.

3.5 HTTP/HTTPS Support
The VoiceGenie platform provides support for HTTP 1.0, with many of the
most useful features of HTTP 1.1, including:

 Connection keepalive

Chapter 3: Running Applications on the Media Platform 3.5 HTTP/HTTPS Support

40 VoiceGenie 7.2.2

 HTTP/1.1 cache control

 RFC 2109 state management (cookies)

The platform also supports Secure Socket Layer (SSL) connections using the
conventional ‘https’ scheme.

Note: Complete use of SSL will have an impact on platform capacity,
depending upon the amount of data transferred using SSL. In addition
to this, data fetched with https will not be cached.

When using the Next Generation Interpreter (NGi), the Content-Type: header
in the HTTP response from a web server must be present. Although some
values are recommended by W3C, e.g. application/voicexml+xml for vxml
pages, NGi places no limitations on the exact type, so for vxml pages
application/vxml, text/plain, text/xml will all be accepted.

The Legacy Interpreter supports a number of configuration items related to
HTTP and HTTPS. In particular, the following items can be configured in the
voicexml.cfg configuration file:

 USER_AGENT – This parameter allows the user to override the user agent
HTTP request header sent by the VoiceGenie platform as part of HTTP
requests. It is advisable to extend the default parameter (VoiceGenie
NXP/$v where $v is the version of the VoiceGenie platform, e.g. 7.0.0)
rather than completely overriding it. Third party application servers rely
upon this to detect the VoiceGenie platform.

 HTTP_ACCEPT – This parameter allows the definition of the content types to
be sent as part of the HTTP Accept: HTTP request header line. This is
useful when the user cannot control the headers returned by a particular
web server, and wishes to advertise the appropriate headers to the server
for delivery.

 HTTP_VERSION – This parameter allows the version header value to be
specified – Use this with caution however, as it may result in the server
using an HTTP/1.1 capability not fully supported by the platform.

Some configuration changes may be required to use SSL for connections. This
is done in the Web Proxy configuration in the SMC. Note that changes made
to the Web Proxy configuration are applied to all modules that perform
fetching (ie. the Legacy Interpreter and the NextGen Interpreter). The
following are the parameters relevant for SSL configuration:

SSL Configuration Setting

iproxy.ssl_cert The file name of your certificate. The default format is PEM and can be
changed with the configuration parameter iproxy.ssl_cert_type.

Chapter 3: Running Applications on the Media Platform 3.5 HTTP/HTTPS Support

Media Platform — User’s Guide 41

SSL Configuration Setting

iproxy.ssl_cert_type The format of the certificate.

Possible values: PEM, DER

Default: PEM

iproxy.ssl_key The file name of the private key. The default format for the key is PEM
and may be changed by the parameter iproxy.ssl_key_type.

iproxy.ssl_key_type The format of the private key.

Possible values: PEM, DER, ENG

Default: PEM

iproxy.ssl_key_passwd The password required to use the iproxy.ssl_key.

iproxy.ssl_engine The identifier for the crypto engine you want to use for your private
key.

iproxy.ssl_engine_default Sets the actual crypto engine as the default for (asymetric) crypto
operations.

iproxy.ssl_version Set what version of SSL to attempt to use. By default, the SSL library
will try to solve this by itself although some servers make this difficult
why you at times may have to use this option.

Possible values: 2, 3

Default: 2

iproxy.ssl_verify_peer Do you want verify the peer’s certificate. When this option is set, you
should set one of iproxy.ssl_ca_info or iproxy.ssl_ca_path.

Possible values: 0, 1

Default: 0

iproxy.ssl_ca_info The file name holding one or more certificates to verify the peer with.

iproxy.ssl_ca_path The path holding multiple CA certificates to verify the peer with. The
certificate directory must be prepared using the openssl c_rehash
utility.

iproxy.ssl_random_file The path to a file which is read from to seed the random engine for
SSL.

iproxy.ssl_verify_host Should the Common name from the peer certificate in the SSL
handshake be verified?

Possible values: 0, 1, 2

Default: 0

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

42 VoiceGenie 7.2.2

SSL Configuration Setting

iproxy.ssl_cipher_list The list of ciphers to use for the SSL connection. The list must be
syntactly correct, it consists of one or more cipher strings sepa-
separated rated by colons. Commas or spaces are also acceptable
separators but colons are normally used, , - and + can be used as
operators. Valid examples of cipher lists include RC4-SHA, SHA1+DES,
TLSv1 and DEFAULT. You’ll find more details about cipher lists on this
URL: http://www.openssl.org/docs/apps/ciphers.html.

Default: 0

If a specific port number is specified for https, for example:
https://mozart.voicegenie.com:8553/test.vxml

Then this port number must be configured in the proxy configuration file in
order to allow the SSL connection to be established. Add port number (8553)
to the two lines below. 443 and 563 are the defaults.
 acl SSL_ports port 443 563 8553
 acl Safe_ports port 443 563 8553 # https, snews

Additional caching proxy configuration is described in the following sections.

3.6 Caching in VoiceGenie 7.2 Media
Platform

The VoiceXML interpreter context, like visual browsers, can use caching to
improve performance in fetching documents and other resources; audio/video
recordings (which can be quite large) are as common to VoiceXML
documents as images are to HTML pages. In a visual browser it is common to
include end user controls to update or refresh content that is perceived to be
stale. This is not the case for the VoiceXML interpreter context, since it lacks
equivalent end user controls. Thus enforcement of cache refresh is at the
discretion of the document through appropriate use of the maxage, and
maxstale attributes. The most common uses of these attributes are shown in
3.6.4 How to use maxage and maxstale attributes.

3.6.1 Caching Architecture

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

Media Platform — User’s Guide 43

In the VoiceGenie Platform, caching is performed at multiple levels. The
following diagram describes the levels of caching:

When a VoiceXML session needs to fetch a resource, it performs the fetch via
the Web Proxy. This is a module built by VoiceGenie, which performs http
fetches on behalf of the VoiceXML sessions. It also performs some limited in-
memory caching (to be described in the section below) which is not HTTP/1.1
compliant. If the Web Proxy determines that it cannot serve the request from
its in-memory cache, it will go to the Squid Caching Proxy to try to fetch the
content. The Squid Caching Proxy performs HTTP/1.1 compliant caching, to
be described in 3.6.6 Squid Caching Proxy. If Squid determines that it cannot
serve the content from its cache, it will go to the Web Server to try to fetch the
content.

3.6.2 Web Proxy caching

Even though the Web Proxy is a separate process from the VoiceXML
interpreter, the communication between these processes is via share memory.
Therefore, it is very efficient for the Web Proxy to pass fetch results and other
information back to the VoiceXML interpreter. For performance reasons
(especially for mostly static content such as large audio/video files), the web
proxy performs caching (which is not HTTP/1.1 compliant). The following are
the configuration parameters affecting Web Proxy caching:

VoiceXML Interpreter
Session

Fetching Module/Web
Proxy (iproxy)

Squid Caching Proxy

Web Server

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

44 VoiceGenie 7.2.2

Parameter Description

iproxy.cache_max_age Maximum age for data cached in iproxy in
seconds (default is 60). It applies only if data is
cacheable. iproxy caching could be turned off
by setting this to 0.

Default: 60

iproxy.cache_error_max_age Maximum age of cache for failed fetches in
seconds.

Default: 0

iproxy.no_cache_url_substr If a URL contains any one of the sub-strings in
this list, it will not be cached.

Default: cgi-bin

iproxy.use_strict_caching_rule
s

When set to true, the Fetching Module
performs strictly HTTP/1.1-conformant caching.
Setting this parameter to false results in better
performance.

Possible values: true, false

Default: true

If an application is a dynamic document, meaning that its content always
changes, it cannot be cached. The application URL or sub-string of the
application URL must be added to iproxy.no_cache_url_substr. For example,
jsp can be listed in iproxy.no_cache_url_substr for all the applications that
have “jsp” in their URL.

If strict conformance to HTTP/1.1 caching behavior is not necessary, it is
suggested to set iproxy.use_strict_caching_rules to false for better
performance.

When the VoiceXML interpreter requests the Web Proxy to perform a fetch to
URI, it uses the following algorithm to determine whether it will use the
cached version within its own memory:
if (URI contains one of the items in the iproxy.no_cache_url_substr

list)
 re-fetch the item from the squid proxy
else
 if (the URI matches exactly [including all parameters] with a URI

in Web Proxy cache)
 if (the previous was a fetch error)
 if (the previous result was fetched within

iproxy.cache_error_max_age seconds)
 return result from cache;

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

Media Platform — User’s Guide 45

 end if
 else if (the previous was a successful fetch)
 if (the previous result was fetched within iproxy.cache_ max_age

seconds)
 return result from cache;
 end if
 end if
 end if
 re-fetch the item from the squid proxy
end if

This level of caching is non-compliant, and should be used carefully. If
HTTP/1.1 compliance is desired, this should be turned off, by either adding
more to the iproxy.no_cache_url_substr list, or by changing the
iproxy.cache_max_age and iproxy.cache_error_max_age values to 0.

Note that the preceding Web Proxy caching algorithm has the following
exceptions that relate to the initial document and to the root documents of a
VoiceXML application:

 For both the Next Generation and the Legacy VoiceXML interpreters, the
initial document is not cached by the Web Proxy if the session data is
included in the request.

 For the Legacy VoiceXML interpreter, if the parameters INIT_URL.maxage
and INIT_URL.maxstale in the DNIS-URL mapping are not set or are both
set to -2, the initial document is not cached by the Web Proxy, and the
Pragma header in the http request is set to no-cache. For details about
INIT_URL.* parameters, refer to Section 3.1: Application Provisioning
(DNIS – URL Mapping).

 For the Legacy VoiceXML interpreter and VMXL 2.0+ application, the
documentmaxage and documentmaxstale properties in defaults.vxml
determine whether root documents are fetched, and also determine the
cache behavior. If neither documentmaxage nor documentmaxstale is set, root
documents are cached by the Web Proxy based on the iproxy cache
configuration. If documentmaxage = -2 and documentmaxstale = -2, root
documents are fetched for every call. The http request will have the Pragma
no-cache header. If either property is set to a positive number, the
corresponding values of documentmaxage and documentmaxstale are
reflected in the cache control header of the http request.

 For the Legacy VoiceXML interpreter and VMXL 1.0 application, the
caching property in defaults.vxml determines whether root documents are
fetched. If it is set to FAST, root documents are cached by iproxy based on
the iproxy cache configuration. If the property is set to SAFE, root
documents are fetched for every call.

 For the Next Generation interpreter, the root document in the initial page is
always cached by the Web Proxy based on the iproxy cache configuration;

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

46 VoiceGenie 7.2.2

neither documentmaxage nor documentmaxstale property values affect it. The
root documents in the other VoiceXML document (not the initial
document) are cached, and the documentmaxage or documentmaxstale
property value affects the cache behavior of the root document the same
way as it affects the cache behavior of the VoiceXML document that owns
the root document.

3.6.3 Caching policies

Here is a summary of caching in VoiceXML 2.1 on the VoiceGenie platform:

 The application server maintainer/content provider can provide guidelines
for content expiry using the Cache-Control and Expires HTTP response
headers

 If these headers are not present, the caching proxy will use heuristics to
generate expiry times

 The application developer can deterministically control the caching
behaviour of application resources using the maxage and maxstale
attributes for each URI-related VoiceXML tag, including forcing a
validation of the current cache contents (using maxage), and accepting
expired cache contents (using maxstale)

 The platform maintainer can control cache resource usage using the
caching proxy configuration

 The caching proxy generates HTTP/1.0 requests, but supports HTTP/1.1
caching functionality if iproxy.use_strict_caching_rules is set to true.

The primary impact of this is that the client has control over what it will accept
from the cache, even if the server has specified an Expires header or
maxage/maxstale attributes, or if the caching proxy has generated an expiry
time itself.

VoiceXML 2.1 Caching Algorithms

The caching policy used by the VoiceXML interpreter context must adhere to
the cache correctness rules of HTTP 1.1. In particular, the Expires and Cache-
Control headers must be honored.

Documents from the web server will be delivered with zero, one, or both of the
response headers. If an Expires header is present, it is used to set the expiry
time of the object in the cache. If the Expiry header is not present, the caching
proxy will apply a heuristic to set an expiry time. If a Cache-Control header is
in the response, it will be used to control expiry times, and will override an
Expiry time if also provided.

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

Media Platform — User’s Guide 47

The following algorithm summarizes these rules and represents the interpreter
context behaviour when requesting a resource:
If the resource is not present in the cache, fetch it from the
server using get.

If the resource is in the cache,
 If a maxage value is provided,
 If age of the cached resource <= maxage,
 If the resource has expired,
 Perform maxstale check.
 Otherwise, use the cached copy.
 Otherwise, fetch it from the server using get.
 Otherwise,
 If the resource has expired,
 Perform maxstale check.
 Otherwise, use the cached copy.

Here is the algorithm for the “maxstale check”:
If maxstale is provided,
 If cached copy has exceeded its expiration time by no more than
maxstale seconds,
 then use the cached copy.
 Otherwise, fetch it from the server using get.
Otherwise, fetch it from the server using get.

Note: It is an optimization to perform a “get if modified” (the request
includes an If-Modified-Since (IMS) header) on a document still
present in the cache when the policy requires a fetch from the server.
The caching proxy in use on the VoiceGenie platform does perform
this optimization.

VoiceXML allows the author to control this caching policy for each use of
each resource.

Each resource-related element may specify maxage and maxstale attributes.
Setting maxage to a non-zero value can be used to get a fresh copy of a resource
that may not have yet expired in the cache. A fresh copy can be
unconditionally requested by setting maxage to zero.

Using maxstale enables the author to state that an expired copy of a resource,
that is not too stale (according to the rules of HTTP 1.1) may be used. This can
improve performance by eliminating a fetch that would otherwise be required
to get a fresh copy. It is especially useful for authors who may not have direct
server-side control of the expiration dates of large static files.

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

48 VoiceGenie 7.2.2

Note: Note the fact that caching proxies using these techniques will not
delete items from the cache after their expiry time, unless other cache
requirements (i.e., memory or disk usage limits) dictate such action.
The reason for this is that the client may specify that an expired
resource is acceptable; this is done with the maxstale attribute.

While the maxage and maxstale attributes are drawn from and are directly
supported by HTTP 1.1, some resources may be addressed by URIs that name
protocols other than HTTP. If the protocol does not support the notion of
resource age, the interpreter context shall compute a resource’s age from the
time it was received. If the protocol does not support the notion of resource
staleness, the interpreter context shall consider the resource to have expired
immediately upon receipt.

3.6.4 How to use maxage and maxstale attributes

Using the maxage and maxstale attributes can provide the document author with
fine-grained control over when documents are returned from the cache, or
fetched from the origin server. However, these do interact with server-
provided expiry times as well. In order to ‘force’ particular behaviour, you can
use maxage and maxstale to achieve your goals.

Here are some sample behaviours you might find interesting:

Desired
Behaviour

maxage maxstale Notes

VoiceXML 1.0
caching=“safe”

maxage=“0” maxage=“0” Caching based on
Expires header; will use
IMS for each reference

VoiceXML 1.0
caching=“fast”

maxage=“large_value” maxstale=“0” Caching based on
Expires header; will not
consult server until
expiry. On expiry, will
use IMS.

Client control over
Expiry

maxage=“desired_expiry” maxstale=“0” Caching based on
Expires header; refetch
based on maxage and
maxstale; uses IMS.

Expired document
acceptable

maxage=“large_value” maxstale=“desired_maxstale” Caching based on
Expires header: refetch
after Expiry time plus
maxstale; uses IMS.

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

Media Platform — User’s Guide 49

3.6.5 Determination of an Expiry Time

Web servers may or may not return an Expires response header to the client. In
the event that they do, this expiry time is used in the cache refresh algorithm.
If this information is instead provided as part of a Cache-Control header (using
maxage/maxstale), this information will be used to control cache expiry.

The caching proxy used by VoiceGenie uses a Refresh-Rate model, rather than
a time-based expiration model. Objects are no longer purged from the cache
when they expire. Instead of assigning a ‘time-to-live’ when the object enters
the cache, freshness requirements are checked when objects are requested. If
an object is “fresh” it is given directly to the client. If it is “stale” then the
caching proxy will make an If-Modified-Since request for it.

In the event that no Expiry header is returned, and that a relevant Cache-
Control header is absent in the response, the following algorithm is used to
calculate an expiry time.

Note: HTTP 1.1 does not mandate this algorithm, beyond noting that some
heuristic is often used (Section 13.2.2). However, this algorithm, or
one similar to it, is used by a number of such caching proxies.

3.6.6 Squid Caching Proxy

Squid Configuration

The Squid configuration file controls configuration of the caching proxy:

/usr/local/squid/etc/squid.conf (linux)

C:\squid\etc\squid.conf (windows)

This is a text file, which includes keywords and values. For example:
http_port 3128

defines the TCP port number, which the caching proxy will use for receiving
requests (note the absence of an equal sign (=) here).

Changes to this file are not reflected in the running configuration immediately.
It is necessary to issue the following command on the platform:

/usr/local/squid/bin/squid -k reconfigure (linux)

C:\squid\sbin\squid.exe -k reconfigure -n squidNT (windows)

in order to force a re-read of the configuration file.

In general, the default squid configuration file should be suitable for most
installations. However, there are a number of common configuration elements
that are addressed here. For details regarding all squid configuration items, see

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

50 VoiceGenie 7.2.2

the Squid Configuration Guide
(http://squid.visolve.com/squid24s1/contents.htm).

Using a Second-level Proxy Server

In order to configure for a second level proxy, add the following lines to the
squid.conf file:
cache_peer parentcache.yourdomain.com parent 3128 0 no-query
default
acl local-servers dstdomain yourdomain.com
acl all src 0.0.0.0/0.0.0.0
never_direct deny local-servers
never_direct allow all

The bold items will need to be altered for the particular caching infrastructure.
The required information includes the next proxy in the chain
(parentcache.yourcomain.com), identification of domains that should not go
through the parent proxy (yourdomain.com) and the port number on which the
parent cache is listening (8080).

Squid Expiry Time Generation

When checking the object freshness, the following values are calculated:

 AGE is how much the object has aged since it was retrieved:

AGE = NOW - OBJECT_DATE

 LM_AGE is how old the object was when it was retrieved:

LM_AGE = OBJECT_DATE - LAST_MODIFIED_TIME

 LM_FACTOR is the ratio of AGE to LM_AGE:

LM_FACTOR = AGE / LM_AGE

 CLIENT_MAX_AGE is the (optional) maximum object age the client will accept
as taken from the Cache-Control request header.

 EXPIRES is the (optional) expiry time from the server reply headers. These
values are compared with the parameters of the refresh_pattern rules (see
Squid Specific Configuration Elements).

The refresh parameters are:

 URL regular expression

 MIN_AGE

 PERCENT

 MAX_AGE

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

Media Platform — User’s Guide 51

The URL regular expressions are checked in the order listed until a match is
found. Then this algorithm is applied for determining if an object is fresh or
stale:
if (CLIENT_MAX_AGE)
 if (AGE > CLIENT_MAX_AGE)
 return STALE
if (AGE <= MIN_AGE)
 return FRESH
if (EXPIRES) {
 if (EXPIRES <= NOW)
 return STALE
 else
 return FRESH
}
if (AGE > MAX_AGE)
 return STALE
if (LM_FACTOR < PERCENT)
 return FRESH
return STALE

Note: the Max-Age in a client request takes the highest precedence. The MIN
value should normally be set to zero since it has higher precedence
than the server‘s Expires: value. But if you wish to override the
Expires: headers, you may use the MIN value.

Squid Specific Configuration Elements

Squid allows control over refresh behaviour based on regular expression
matching of request URIs. These would likely only be used for very specific
situations, and it is unlikely that these need to be (or in fact should be)
modified. The one exception could be a situation where you cannot configure
your server to deliver Expires headers, and wish to change the defaults
provided by squid.

Configuration elements include:
Tag Name refresh_pattern
Usage refresh_pattern [-i] regex min percent max [options]

 Min is the time (in minutes) an object without an explicit expiry time
should be considered fresh. The recommended value is 0; any higher
values may cause dynamic applications to be erroneously cached unless
the application designer has taken the appropriate actions.

 Percent is a percentage of the objects age (time since last modification
age) an object without explicit expiry time will be considered fresh.

 Max is an upper limit on how long objects without an explicit expiry time
will be considered fresh.

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

52 VoiceGenie 7.2.2

Options:

 override-expire

 override-lastmod

 reload-into-ims

 ignore-reload

 override-expire enforces min age even if the server sent a Expires:
header. Doing this violates the HTTP standard. Enabling this feature could
make you liable for problems, which it causes

 override-lastmod enforces min age even on objects that was modified
recently.

 reload-into-ims changes client no-cache or “reload’’ to If-Modified-
Since requests. Doing this violates the HTTP standard. Enabling this
feature could make you liable for problems, which it causes.

 ignore-reload ignores a client no-cache or “reload’’ header. Doing this
violates the HTTP standard. Enabling this feature could make you liable
for problems, which it causes.

A cached object is basically:
FRESH if expires < now, else STALE
STALE if age > max
FRESH if lm-factor < percent, else STALE
FRESH if age < min
else STALE

The refresh_pattern lines are checked in the order listed here. The first entry
that matches is used. If none of the entries match, then the default will be used.

The default for refresh_pattern is set as: refresh_pattern. 0 20% 4320

The caching proxy logs can provide useful information when attempting to
identify performance issues or resolve application problems. Following is a
description of the contents of the proxy log files, and some guidelines on how
to interpret the information in these files.

 Access Log

 Caching Proxy Log

Access.log field definitions

The squid access.log file can be found at either /usr/local/squid/var/logs/
(linux) or C:\squid\var\logs\ (windows). The native access.log has ten (10)
fields. There is one entry for each HTTP (client) request and each ICP Query.
HTTP requests are logged when the client socket is closed. A single dash (-)
indicates unavailable data.

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

Media Platform — User’s Guide 53

Timestamp

The time when the client socket is closed. The format is “Unix time” (seconds
since Jan 1, 1970) with millisecond resolution. This can be modified to visible
format by:
cat access.log | perl -nwe ‘s/^(\d+)/localtime($1)/e; print’

Elapsed Time

The elapsed time of the request, in milliseconds. This is time between the
accept() and close() of the client socket.

Client Address

The IP address of the connecting client, or the fully qualified domain name
(FQDN) if the log_fqdn option is enabled in the configuration file. This
parameter is normally turned off for performance reasons.

Log Tag/HTTP Code

The Log Tag describes how the request was treated locally (hit, miss, etc). All
the tags are described below. The HTTP code is the reply code taken from the
first line of the HTTP reply header. Non-HTTP requests may have zero reply
codes.

Size

The number of bytes written to the client.

Request Method

The HTTP request method, or ICP_QUERY for ICP requests.

URL

The requested URL.

Ident

If ident_lookup is on, this field may contain the username associated with the
client connection as derived from the ident service. This lookup is typically
turned off for performance reasons.

Hierarchy Data/ Hostname

A description of how and where the requested object was fetched.

Content Type

The Content-type field from the HTTP reply.

Access Log Tag/HTTP Code

TCP_ refers to requests on the HTTP port.

TCP_HIT A valid copy of the requested object was in the cache.

TCP_MISS The requested object was not in the cache

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

54 VoiceGenie 7.2.2

TCP_REFRESH_HIT The object was in the cache, but STALE. An If-Modified-Since
request was made and a 304 Not Modified reply was received.

TCP_REF_FAIL_HIT The object was in the cache, but STALE. The request to validate the
object failed, so the old (stale) object was returned.

TCP_REFRESH_MISS The object was in the cache, but STALE. An If-Modified-Since
request was made and the reply contained new content.

TCP_CLIENT_REFRESH The client issued a request with the no-cache pragma.

TCP_CLIENT_REFRESH_MISS The client issued a no-cache pragma, or some analogous cache
control command along with the request. Thus, the cache has to
refetch the object from origin server. It is users pushing that reload-
button forcingthe proxy to check for a new copy (also triggered by
selecting a bookmark some browser versions). In short, the browser
forced the proxy to check for a new version

TCP_IMS_HIT The client issued an If-Modified-Since request and the object was
in the cache and still fresh. TCP_HIT and TCP_IMS_HIT are hits, the
only difference is that in the TCP_IMS_HIT case the browser already
had an up to date version so there was no need to send the Squid
cached copy to the requestor.

TCP_IMS_MISS The client issued an If-Modified-Since request for a stale object.

TCP_NEGATIVE_HIT A previously failed request is satisfied from the cache, as the proxy
believes it still be a problem.

TCP_SWAPFAIL The object was believed to be in the cache, but could not be
accessed.

TCP_DENIED Access was denied for this request

Inter-Cache Protocol Entries

UDP_ refers to requests on the ICP port

UDP_HIT A valid copy of the requested object was in the cache.

UDP_HIT_OBJ Same as UDP_HIT, but the object data was small enough to be sent
in the UDP reply packet. Saves the following TCP request.

UDP_MISS The requested object was not in the cache.

UDP_DENIED Access was denied for this request.

UDP_INVALID An invalid request was received.

UDP_RELOADING The ICP request was “refused” because the cache is busy reloading
its metadata.

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

Media Platform — User’s Guide 55

Refreshing an Object in the Cache

From the System Managemant Console (SMC), click on the Operations tab
and click on View Cache, select the platform and click on either View In
Memory Cache or View All Cache. Find the cached object you would like to
reload and click on the Reload link.

For Linux:

From the Linux shell, issue the following command, replacing the <uri> with
the full URI of the object:
/usr/local/squid/bin/client -s -r <uri>

For Windows:

From the cmd Console Window, issue the following command and replace the
<uri> with the full URI of the object:
C:\VoiceGenie\cmp\cmp-proxy\scripts\cacheclient.bat fetch <uri>

Purging an Object from the Cache

From the System Management Console (SMC), click on the Operations tab
and click on View Cache, select the platform and click on either View In
Memory Cache or View All Cache. Find the cached object you would like to
purge and click on the Purge link.

For Linux:

From the Linux shell, issue the following command, replacing the <uri> with
the full URI of the object
/usr/local/squid/bin/client -s -m <PURGE> <uri>

For Windows:

From the cmd Console Window, issue the following command and replace the
<uri> with the full URI of the object:
C:\VoiceGenie\cmp\cmp-proxy\scripts\cacheclient.bat purge <uri>

Clearing the entire Cache

From the System Management Console (SMC), click on the Operations tab
and click on Start/Stop Cache, select Restart and the platform on which you
would like to clear the cache. Then, select Yes for Purge All at Start, then
click on the Execute button.

For Linux:

From the Linux shell, issue the following commands:
/usr/local/squid/bin/squid -k shutdown
echo ““ > /usr/local/squid/cache/swap.state
/usr/local/squid/bin/squid

Chapter 3: Running Applications on the Media Platform 3.6 Caching in VoiceGenie 7.2 Media Platform

56 VoiceGenie 7.2.2

For Windows:

From the cmd Console Window, issue the following command:
C:\VoiceGenie\cmp\cmp-proxy\scripts\startcache.bat restart purgeall

Media Platform — User’s Guide 57

For 7.2, the Media Platform can be deployed in VoIP-only telephony
configurations:

VoIP Only: no telephony hardware required; both call control and media
operations are over IP. The Media Platform uses SIP and/or H.323 for call
control and RTP for media operation signaling. Call control and media traffic
transit one of the LAN interfaces.

4.1 SIP

4.1.1 Standards

The Media Platform SIP implementation of VoIP is compliant to the following
standards:

 RFC 3261 Session Initiation Protocol (SIP)

 RFC 2327 Session Description Protocol (SDP)

 RFC 1889 Real-time Transport Protocol (RTP)

 RFC 2833 RTP Payload for DTMF Digits, Telephony Tones and
Telephony Signals

 RFC 2976 The SIP INFO Method

 RFC 3515 The SIP REFER Method

 RFC 3264 An Offer/Answer Model with the Session Description Protocol
(SDP)

 Most extensions from proposed IETF draft “A SIP Interface to VoiceXML
Dialog Servers” (http://tools.ietf.org/id/draft-burke-vxml-
02.txt)

 Some extensions from proposed IETF draft “Basic Network Media
Services with SIP” (http://www.ietf.org/rfc/rfc4240.txt)

Chapter

4 Network Interfaces

http://tools.ietf.org/id/draft-burke-vxml-02.txt�
http://tools.ietf.org/id/draft-burke-vxml-02.txt�

Chapter 4: Network Interfaces 4.1 SIP

58 VoiceGenie 7.2.2

Please refer to 4.3 RTP Support to see the list of supported codecs.

4.1.2 SIP Call Connection Mechanisms

When both the physical network and necessary call routing parameters have
been properly configured, the Media Platform will be able to receive calls
using SIP in the following ways:

 Direct Connect – Directly from another SIP endpoint (i.e. IP phone), at a
SIP address of sip: <dnis>@machine.voicegenie.com [: 5060]. This
assumes that the VoiceGenie software is not configured to run on an
alternate endpoint or to restrict incoming calls.

 Via the SIP proxy server – if the VoiceGenie software is configured to
register with the SIP proxy server at a particular address, and the SIP
proxy server is configured to accept this registration.

 Integrated media and signalling gateways – The Media Platform can
receive SIP and RTP data from PSTN/VoIP gateways such as the Cisco
AS5300 gateway. On some gateways it is possible to configure any of the
above two addresses to be referred by a PSTN phone number.

 Softswitch architecture – The Media Platform can also work with a
softswitch controller and SIP application server to participate in a fully
distributed softswitch architecture

 CCXML Platform – The Media Platform can be directly controlled by a
CCXML Platform

Once connected, and with the exception of call transfer, there should be no
notable differences between the operation of a SIP based platform and a
PSTN-based platform.

4.1.3 Interoperability

VoiceGenie has performed interoperability testing with the following devices:

 Cisco Universal Access Gateways, including the AS5300, AS5350,
AS5400 and AS5850

 Cisco 7960 IP Phone

 Cisco ATA-186 analog gateway (residential gateway)

 AudioCodes media gateways, including the IPMedia 2000, Mediant 2000
and MP-104 gateways

 Pingtel xpressa IP phone

 Pingtel instant xpressa soft-phone

 Vovida SIP Proxy Server

 X-lite

Chapter 4: Network Interfaces 4.1 SIP

Media Platform — User’s Guide 59

 And various other soft-phone clients

4.1.4 SIP INFO support

One way for SIP User Agents to communicate with each other within a call
dialog session is via the SIP INFO method. The VoiceGenie 7.2 Media Platform
is capable of sending and receiving SIP INFO messages.

Sending SIP INFO messages with the Legacy
Interpreter

A VXML application can trigger the sending of a SIP INFO message by using
the <log> tag with dest=“callmgr” within a call session. This will generate an
application event from the VXML Interpreter to the Call Manager component
in the Media Platform. Call Manager will then generate a SIP INFO message to
be sent to the remote end of this SIP call dialog. By default, the content type of
this message is application/text. Currently, the content type is configurable
using the platform-wide Call Manager configuration parameter
sip.info.contenttype.

For example, the following <log> tag can be defined to send an application
event to Call Manager:
<block>
 <log dest=“callmgr”>abc=123;def=567</log>
</block>

When the above application event is received, Call Manager will send the
following SIP INFO message:
INFO sip:12345@205.150.90.93 SIP/2.0
Via: SIP/2.0/UDP 10.0.0.254:5060;branch=z9hG4bK0842fa306569b6
From: sip:unknown@10.0.0.254:5060;tag=AFCD0B00-34F6-F636-AE8D-

3CB2ED51A556
To: <sip:12345@205.150.90.93>;tag=AB230400-CE35-4817-C313-

3F55A485C57
Max-Forwards: 70
Call-ID: AFCD0B00-34F6-206F-5109-41DD81235E8F@205.150.90.93
Contact: sip:VoiceGenie@10.0.0.254:5060
CSeq: 2 INFO
Content-Type: application/text
Content-Length: 15

abc=123;def=567

http://sip:VoiceGenie@205.150.90.93.com/�
mailto:B00-34F6-206F-5109-41DD81235E8F@227.0.0.1:5060�

Chapter 4: Network Interfaces 4.1 SIP

60 VoiceGenie 7.2.2

Receiving SIP INFO messages with the Legacy
Interpreter

Call Manager is responsible for receiving SIP INFO messages and passing the
content of these messages to the VXML application. After a SIP INFO message
is received, Call Manager will examine the content type of the message. By
default, all non-DTMF (SIP INFO DTMF events have content
type=“application/dtmf-relay”) SIP INFO messages will be notified to VXML
Interpreter. Filtering can be applied using call manager configuration
parameter, sip.sipinfoallowedcontenttypes, to provision a list of content
types that are allowed. Call Manager will pass the SIP INFO content body to
VXML Interpreter as a SIP INFO event.

At the application level, VoiceGenie proprietary Call Control extension
already provides a well-defined mechanism to receive external messages.
When a VoiceXML Interpreter session receives a message sent from another
VoiceXML session or from clc command (sendevent), event
com.voicegenie.message will be generated.

SIP INFO events will be handled using the same mechanism. When a SIP INFO
message is received, an event com.voicegenie.message will be generated which
can be thrown to the application immediately or be queued, depending on the
property com.voicegenie.messagehandling (queue/immediate/discard). The
queued event will be thrown before executing a form item or a menu. If the
parameter com.voicegenie.processmessagequeue is set to true, the queued
event will be thrown before executing a form item or a menu, otherwise sip
info can only be received using synchronous <receive>.

There are four shadow variables available for <receive>.

Property Description

name$.msgsourcetype One of vxmlisession, CLC or sipinfo.

name$.msgsource The instance ID of the sender; undefined if
msgsourcetype is sipinfo.

name$.contenttype The content type of the sip info. It’s undefined if
name.msgsourcetype is not sipinfo.

name$.msgcontent The contents of the message.

 When event com.voicegenie.message is thrown, the application must use
<receive> tag to access the message through shadow variables. Below is an
example of using <receive> when com.voicegenie.messagehandling =
immediate or queue and com.voicegenie.processmessagequeue = true:
 <catch event=“com.voicegenie.message”>
 <receive name=“info” mode=“first”/>
 <log> The message type :<value expr=“info$.msgsourcetype”/> </log>
 <log> The content is : <value expr=“info$.msgcontent”/> </log>

Chapter 4: Network Interfaces 4.1 SIP

Media Platform — User’s Guide 61

 <log> content type is : <value expr=“info$.contenttype”/> </log>
 </catch>

An example of using synchronous <receive> to receive sip info:
<block>
<receive name=“msg” mode=“first” maxtime=“20”/>
 <if cond=“msg==‘success’”>
 The message type :<value expr=“info$.msgsourcetype”/>
 The content is : <value expr=“msg$.msgcontent”/>.
 The content type is : <value expr=“msg$.contentype”/>.
 </if>
</block>

When synchronous <receive> is executed, vxmli would be waiting for
message within certain time (specified by maxtime).

Sending SIP INFO messages with the Next Generation
Interpreter

A VXML application can send a SIP INFO message by using the <vg:send>
tag. The <vg:send> tag allows the VXML Interpreter session to send a request
to the Call Manager. Call Manager would then generate a SIP INFO message
that is sent to the caller.

If either the body, bodyexpr, event or eventexpr attribute of the <vg:send> tag
is specified, then the content of that attribute will appear as content of the SIP
INFO message. If the namelist attribute of the <vg:send> tag is specified, and
the namelist contains a single element which is a number or a string, then this
element’s value will appear as content of the SIP INFO message. Otherwise,
the ECMAscript variables of the namelist are converted into a string of
name/value pairs, and this string will appear as content of the SIP INFO
message. The format of the string is:

 “<name1>=<value1>;<name2>=<value2>;<name3>=<value3>”…

The value of an ECMAScript object is output with the following format,:
“{<property_name1>=<value1>;<property_name2>=<value2>;<property_na
me2>=<value2>…}”

If the contenttype or contenttypeexpr attribute of the <vg:send> tag is
specified, then the content of that attribute will appear as the Content-Type
header of the SIP INFO message. If the target or targetexpr attribute is
specified, it is ignored by the platform, and the message is always sent to the
caller of the page. Note that there is no confirmation response for a send
request.

The following example demonstrates the use of <send>:
<vxml version="2.1"

Chapter 4: Network Interfaces 4.1 SIP

62 VoiceGenie 7.2.2

 xmlns="http://www.w3.org/2001/vxml">

 <form>
 <field name="user_pin" type="digits">
 <prompt>please enter pin</prompt>
 <filled>
 <vg:send async="false"
 bodyexpr="'<pin>' + user_id +
'</pin>'"
 contenttype="text/xml"/>
 </filled>
 </field>
 </form>
</vxml>

The <vg:send> tag also supports the async boolean attribute, but it currently
has no effect

Receiving SIP INFO messages with the Next
Generation Interpreter

Call Manager is responsible for receiving SIP INFO messages and passing the
content and content-type of these messages to the VXML application. After a
SIP INFO message is received, Call Manager will pass the information to the
VXML Interpreter. The SIP INFO message content will be exposed via the
VXML shadow variable application.lastmessage$.content, and the Content-
Type SIP message header will be exposed as
application.lastmessage$.contenttype.

A VXML application can receive SIP INFO messages in asynchronous or
synchronous mode. The VXML property
com.voicegenie.externalevents.enable boolean controls the mode. When set to
true, asynchronous mode is used and when set to false (default) synchronous
mode is used.

Synchronous Mode:

In synchronous mode the <vg:receive> tag is used to receive a SIP INFO
message within a VXML application. When a <vg:receive> element is
executed it checks to see if any external SIP INFO messages are available. If
available, the oldest SIP INFO message is processed. Otherwise <vg:receive>
waits until an external event is received and then processes it. The time
specified by the "maxtime/maxtimeexpr" attribute can be used to limit the
maximum time that <vg:receive> will wait. If this time elapses, then an
error.badfetch is thrown. When more than one external SIP INFO message is

Chapter 4: Network Interfaces 4.1 SIP

Media Platform — User’s Guide 63

available, <vg:receive> must be called separately for each SIP INFO message.
The <vg:receive> tag processes SIP INFO messages by populating the
application.lastmessage$.content and application.lastmessage$.contenttype
shadow variables.

The com.voicegenie.externalevents.queue boolean property controls whether
SIP INFO messages are queued. When this property is set to false, incoming
SIP INFO messages will only be processed when <vg:receive> is actively
waiting at the time the message arrives; otherwise, the incoming SIP INFO
message is discarded. When set to true, SIP INFO messages will be queued
and made available for the next <vg:receive> call.

Example:

<vxml version="2.1"
 xmlns="http://www.w3.org/2001/vxml">

 <property name="com.voicegenie.externalevents.queue"
value="true"/>
 <form>
 <catch event="error.badfetch">
 <log>timed out waiting for SIP INFO message</log>
 </catch>

 <block>
 One moment...
 <receive maxtime="10s”/>
 <log>SIP INFO msg: <value
expr="application.lastmessage$.content"/></log>
 </block>
 </form>

</vxml>

Asynchronous Mode:

When the com.voicegenie.externalevents.enable property is set to true,
external messages will be handled asynchronously. All incoming external
events will be queued up by the VXML session. Just before the VXML
application enters a waiting state (when executing <field>, <initial>,
<transfer>, or <record>), it checks to see if an external SIP INFO message is
pending. If at least one received message is pending, the application will throw
an 'externalmessage' VoiceXML event. This received message event is no
longer considered pending. In addition, the application.lastmessage$.content
and application.lastmessage$.contenttype shadow variables will be populated.

Chapter 4: Network Interfaces 4.1 SIP

64 VoiceGenie 7.2.2

In asynchronous mode, when a VXML application attempts to enter a waiting
state while an external SIP INFO message is pending, there are certain cases
when the application will not throw an ‘externalmessage’ event. For instance,
when a 'connection.disconnect' event is pending, it takes precedence over the
'externalmessage' and the latter is not thrown. When the VXML session is
already in the final processing state, it must carry out an implicit exit when it
attempts to enter a waiting state, and the 'externalmessage' event is not thrown.

In asynchronous mode, a SIP INFO message could be received while the
application is waiting for input. This would cause the ‘externalmessage'
VoiceXML event to be thrown and cause the active input request to be

aborted.

When 'externalmessage ' is thrown, it is thrown in the scope of the form item.
After the ‘externalmessage’ event is handled, FIA resumes as normal by
selecting the next form item to visit. If another message is pending on the
external message queue, it will be processed before the next waiting state.
Also, in asynchronous mode the <vg:receive> tag behaves the same as it
would in synchronous mode with com.voicegenie.externalevents.queue set to
true.

Example:

<vxml version="2.1"
 xmlns="http://www.w3.org/2001/vxml">
 <property name="com.voicegenie.externalevents.enable"
value="true"/>
 <catch event="externalmessage">
 <log>received <value expr="lm.content"/></log>
 <script>
 </catch>

 <form>
 <field name="num" type="digits">
 <prompt>pick a number</prompt>
 <catch event="noinput nomatch">
 Try again
 <reprompt/>
 </catch>
 <filled>
 You said the number <value expr="num"/>
 <clear/>
 </filled>
 </field>
 </form>
</vxml>

Chapter 4: Network Interfaces 4.1 SIP

Media Platform — User’s Guide 65

For more details about <send> and <receive>, please refer to
http://developer.voicegenie.com.

4.1.5 SIP customizable headers and parameters

The SIP version (using SIP2 line manager) of VoiceGenie 7.2 Media Platform
supports propagation of SIP headers, parameters and request URI parameters
to the VXML applications for incoming SIP messages, and customization of
SIP headers, parameters and request URI parameters for outgoing SIP
messages.

The VoiceGenie 7.2 Media Platform can be configured to pass incoming SIP
INVITE requests’ URI’s parameters, headers, and parameters of any headers to
the VXML application as session variables.

The Call Manager configuration parameters sip.in.invite.headers and
sip.in.invite.params can be defined to abstract information from incoming
SIP messages. They will generate variables to be sent from the Call Manager
to the VXML Interpreter in Sip.Invite.<headername> and
Sip.Inivte.<headername>.<paramname> formats respectively.
Sip.Invite.<headername> will contain the header value, as well as all its
parameters. Sip.Invite.<headername>.<paramname> will contain the value of a
specific header parameter.

Detailed information for the above two parameters, along with examples, can
be found in the:

VoiceGenie 7.2 Media Platform System Reference Guide, under the
“Customizable Headers and Parameters” section of the SIP line manager.

The Legacy Interpreter configuration parameter session_vars and the Next
Generation Interpreter configuration parameter vxmli.session_vars can be
defined to provide the session variables to the VXML applications. For details
please see the VoiceGenie 7.2 Media Platform System Reference Guide, under
the “Next Generation Interpreter” section.

Here is an example configuration for exposing request URI’s paramA, request
URI’s paramB, From header, and To header’s paramC:

Call Manager:
sip.in.invite.headers=From
sip.in.invite.params=RequestURI To

Next Generation Interpreter:
Vxmli.session_vars=...|session.connection.protocol.sip.invite.from

|Sip.Invite.From|0|session.connection.protocol.sip.invite.reques
turi.paramA|Sip.Invite.RequestURI.paramA|0|session.connection.pr
otocol.sip.invite.requesturi.paramB|Sip.Invite.RequestURI.paramB
|0|session.connection.protocol.sip.invite.to.paramC|Sip.Invite.T
o.paramC|0

http://developer.voicegenie.com/�

Chapter 4: Network Interfaces 4.1 SIP

66 VoiceGenie 7.2.2

Legacy Interpreter:
session_vars=...|session.connection.protocol.sip.invite.from

|Sip.Invite.From|0|session.connection.protocol.sip.invite.reques
turi.paramA|Sip.Invite.RequestURI.paramA|0|session.connection.pr
otocol.sip.invite.requesturi.paramB|Sip.Invite.RequestURI.paramB
|0|session.connection.protocol.sip.invite.to.paramC|Sip.Invite.T
o.paramC|0

With the configuration above and the following SIP INVITE message:
INVITE sip:test1@10.0.0.25;paramA=valueA;paramB=valueB SIP/2.0
Via: SIP/2.0/UDP 205.150.90.207:5060;branch=z9hG4bK0809fb404f9bcd
From: <sip:VoiceGenie@205.150.90.207:5060>;tag=9FB30200-B96C-01D0-
5052-C114EBCA0416
To: <sip:test1@10.0.0.25>;paramC=valueC
Max-Forwards: 70
CSeq: 1 INVITE
Call-ID: 9FB30200-B96C-C781-2A00-F3B654BEA9AD@205.150.90.207:5060
Contact: sip:VoiceGenie@205.150.90.207:5060
Content-Length: 190
Content-Type: application/sdp

v=0
o=Cisco-SIPUA 2455 9673 IN IP4 205.150.90.208
s=SIP Call
c=IN IP4 205.150.90.208
t=0 0
m=audio 30400 RTP/AVP 0 101
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15

the following session variables will be defined:

Session variable Value

session.connection.protocol.sip.invite.from <sip:VoiceGenie@205.150.90.207:5060>;tag
=9FB30200-B96C-01D0-5052-
C114EBCA0416

session.connection.protocol.sip.invite.requesturi.paramA valueA

session.connection.protocol.sip.invite.requesturi.paramB valueB

session.connection.protocol.sip.invite.to.paramC valueC

The VoiceGenie 7.2 Media Platform can also be configured to set outgoing
SIP INVITE or REFER requests’ URI’s parameters, headers, and parameters of
any headers (limitations) using signaling variables from VXML application.
This feature is supported for <transfer> and remdial calls, and can be enabled
by configuring sip.out.invite.headers, sip.out.invite.params,

Chapter 4: Network Interfaces 4.1 SIP

Media Platform — User’s Guide 67

sip.out.refer.headers and sip.out.refer.params. Again please see the
VoiceGenie 7.2 Media Platform regarding the details for these parameters.

The following is an example Call Manager configuration for customizing
request URI’s paramA, request URI’s paramB and HeaderC in outgoing INVITE
messages (for <transfer> involving two call legs and remdial calls):
sip.out.invite.headers=HeaderC
sip.out.invite.params=RequestURI

If the following signaling variables are defined (or the equivalent name/value
list is defined and appended to the remdial call request):
 Sip.Invite.RequestURI.paramA=valueA
 Sip.Invite.RequestURI.paramB=valueB
 Sip.Invite.HeaderC=valueC

Then, the following SIP INVITE message will be generated for the outgoing
call:
INVITE sip:test1@10.0.0.25;paramA=valueA;paramB=valueB SIP/2.0
Via: SIP/2.0/UDP 205.150.90.207:5060;branch=z9hG4bK0809fb404f9bcd
From: <sip:VoiceGenie@205.150.90.207:5060>;tag=9FB30200-B96C-01D0-
5052-C114EBCA0416
To: <sip:test1@10.0.0.25>
Max-Forwards: 70
CSeq: 1 INVITE
Call-ID: 9FB30200-B96C-C781-2A00-F3B654BEA9AD@205.150.90.207:5060
Contact: sip:VoiceGenie@205.150.90.207:5060
HeaderC: valueC
Content-Length: 190
Content-Type: application/sdp

v=0
o=Cisco-SIPUA 2455 9673 IN IP4 205.150.90.208
s=SIP Call
c=IN IP4 205.150.90.208
t=0 0
m=audio 30400 RTP/AVP 0 101
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15

4.1.6 Codec Negotiation

SIP systems can be configured to support multiple codec simultaneously using
the parameter mpc.codec accessible via SMC under the Call Manger
Configuration section.

mpc.codec allows a space-delimited list that specifies the list of codec that can
be supported. For SIP calls, the VoiceGenie 7.2 Media Platform performs
media capability exchange using the SDP Offer/Answer model (RFC3264).
During SIP/SDP media negotiation, the codec list will be used as the offering

Chapter 4: Network Interfaces 4.1 SIP

68 VoiceGenie 7.2.2

media capabilities from the Media Platform, or used to match the remote’s
offer to generate the answering media capabilities from the Media Platform.
Normally in SIP, the media capabilities are exchanged in the INVITE/200OK/ACK
sequence. The caller usually includes a SDP offer in the INVITE message.
However, the VoiceGenie Media Platform can also support incoming INVITE
without a SDP so that the platform will generate a SDP offer in the 200OK
response. As well, the VoiceGenie Media Platform can handle re-
INVITE/200OK/ACK for in-call media information updates. For outgoing calls, the
VoiceGenie Media Platform also supports incoming SDP in the 183 Session
Progress response. Note that multiple audio codec can be used within a single
SIP call if both VoiceGenie Media Platform and the remote endpoints are
configured to negotiate multiple codec for a call session.

If media negotiation returns more than one supported codecs, the parameter
mpc.transmitmultiplecodec can specify whether to allow transmission of all
supported codecs or restrict transmission to only one codec. If it is set to 1
(default), more than one codec can be transmitted. If it is set to 0, only the
codec at the top of the negotiated codec list will be transmitted.

4.1.7 Enabling SIP TCP Support

The sip.transport.X parameters configures the SIP stack’s transport settings.
By default sip.transport.0 has the value transport0 udp:any:5060.

To enable TCP transport:

1. Enable sip.transport.1 and assign its value as transport1 tcp:any:5060

2. Enable sip.route.default.udp and assign its value as 0

3. Enable sip.route.default.tcp and assign its value as 1

4.1.8 Burke Draft Support

The VoiceGenie 7.2 Media Platform with the Next-Generation VoiceXML
Interpreter supports many features described in the Burke Draft. Please refer
to Appendix A for a detailed list of supported Burke Draft features.

4.1.9 Limitations

 Volume Control is not supported for VoIP protocols, including SIP

 Speed Control is not supported for VoIP protocols, including SIP

Chapter 4: Network Interfaces 4.2 H.323

Media Platform — User’s Guide 69

4.2 H.323

4.2.1 Standards

The Media Platform H.323 implementation of VoIP is compliant to the
following standards:

 ITU H323 v4

 ITU H4501

 ITU H4502

Please refer to 4.3 RTP Support to see the list of supported codecs.

4.2.2 Architectures

When both the physical network and necessary call routing parameters have
been properly configured, the Media Platform will be able to receive calls
using H.323 in the following ways:

 Direct Connect – Directly from another H.323 endpoint (i.e. IP phone,
software phones), at a H.323 IP address:
<dnis>@machine.voicegenie.com[:1720]. This assumes that the
VoiceGenie software is not configured to run on an alternate endpoint or to
restrict incoming calls.

 H.323 Gatekeeper – if the VoiceGenie software is configured to register
with the H.323 gatekeeper using one or more alias(es) via Admission
Reqeuest (ARQ). Usage of ARQ for inbound and outbound calls can be
configured independently.

The alias(es) can be in any ASCII format:
 PSTN phone number such as 4167360905
 A string such as VGMediaServer.

 Softswitch architecture – The Media Platform can also work with a
softswitch controller and SIP/H.323 application server to participate in a
fully distributed softswitch architecture

 Integrated media and signalling gateways – The Media Platform can
receive H.323 and RTP data from PSTN/VoIP gateways such as the Cisco
AS5300 gateway. On some gateways it is possible to configure any of the
two aforementioned H.323-endpoint identifying mechanisms also as a
PSTN phone number.

Once connected, and with the exception of call transfer, there should be no
notable differences between the operation of a H.323 based platform and a
PSTN-based platform.

Chapter 4: Network Interfaces 4.3 RTP Support

70 VoiceGenie 7.2.2

4.2.3 Interoperability

VoiceGenie has performed interoperability testing with the following devices:

 Cisco Universal Access Gateways, including the AS5300, AS5350,
AS5400 and AS5850

 Cisco 2621/7204 H323 gatekeeper

 Avaya Definity switching software

 Microsoft Netmeeting

 And various other soft-phone clients

VoiceGenie is also deployed within the AT&T V-Plus architecture, and the
Voxeo hosted application infrastructure.

4.2.4 Codec Negotiation

H.323 systems can be configured to support a single codec only at a time,
using the h323.codec parameter accessible via SMC under the Call Manager
Configuration section.

H.323 media capability exchange can happen in H.245 TCS (Terminal
Capability Set) exchange. When faststart and/or tunneling are enabled, the
media capability can be included in faststart element or tunneled in the
Q.931/H.225.0 call control messages. However, the VoiceGenie Media
Platform only supports a single codec simultaneously for H.323 calls.

4.2.5 Limitations

 Volume Control is not supported for VoIP protocols, including H.323

 Speed Control is not supported for VoIP protocols, including H.323

4.3 RTP Support

4.3.1 Standards

The Real Time Protocol (RTP) is used by the VoiceGenie 7.2 Media Platform
to send and receive media – which is typically an audio/video conversation –
on connections to an end user of the system. RTP streams are carried between
a UDP port on the media platform, and a UDP port on a media gateway, IP
phone, or other VoIP device. The RTP streams are used in conjunction with
SIP and H.323 protocols. Please see 4.1 SIP and 4.2 H.323 regarding SIP and
H.323.

Chapter 4: Network Interfaces 4.3 RTP Support

Media Platform — User’s Guide 71

Note: The UDP port that the Media Platform uses to receive media is
also the port that it uses to send media.

The VoiceGenie Media Platform RTP implementation is compliant to the
following standards:

 RFC 3550 Real-time Transport Protocol (RTP)

 RFC 2833 DTMF digit signalling using RTP

 RFC 2190 RTP Payload Format for H.263 Video Streams

 RFC 2429 RTP Payload Format for the 1998 Version of ITU-T Rec. H.263
Video (H263+)

 RFC 3267 Real Time Transport Protocol (RTP) Payload Format and File
Storage Format for the Adaptive Multi-Rate (AMR) and Adaptive Multi-
Rate Wideband (AMR-WB) Audio Codecs

The VoiceGenie Media Platform supports the following codec in the RTP
implementation:

 pcmu (G.711 mulaw)

 pcma (G.711 alaw)

 g726 (G.726 32-bit)

 gsm (GSM 6.10)

 g729 (G.729 and G.729A)

 amr (AMR-NB)

 aurora (Aurora)

Note: Aurora is only supported on SIP systems. It is only supported as an
input audio format (ie, the VoiceGenie Media Platform does not
generate Aurora format output) with ASR engines that can support
Aurora audio format.

 tfci (proprietary text based)

Note: Tfci (Telephony Free Client Interface) is a proprietary text-based
media format where TTS, audio filenames, and ASR recognition
results are transmitted as text. This is currently supported on
platforms configured as SIP only.

 h263 (H.263 video)

 h263-1998 (H.263+ video)

Note: The VoiceGenie Media Platform only supports H.263 mode-A
transmission as specified in rfc 2190. This is currently supported
on platforms configured as SIP only.

Chapter 4: Network Interfaces 4.4 Multiple Line Managers

72 VoiceGenie 7.2.2

4.3.2 General Usage

The UDP ports used to carry RTP traffic are chosen dynamically by the Media
Platform on a call-by-call basis. In some network environments, it may be
desirable to ensure that UDP ports selected by the media platform for RTP
traffic are within a certain range. For example, when the media platform is
deployed behind a firewall, it may be desirable to constrain the RTP ports to a
particular range that the firewall is configured to pass through, so that VoIP
devices that are outside the firewall are able to communicate with the media
platform. The configuration parameters mpc.rtp.portlow and mpc.rtp.porthigh
can be used to specify a particular range of UDP ports to be used for
sending/receiving RTP streams.

4.3.3 DTMF

The VoiceGenie 7.2 Media Platform can support sending of in-band DTMF
audio. However, in-band DTMF detections are not supported on the
VoiceGenie 7.2 Media Platform under VoIP configuration. Instead, the
VoiceGenie 7.2 Media Platform relies on out-of-band events for DTMF
detection under VoIP environment. Currently, we support three types of out-
of-band DTMF events:

 RFC2833 – This is the most typical way to transmit DTMF events on
VoIP systems. The VoiceGenie Media Platform can detect RFC2833
packets on the RTP stream as incoming DTMF digits.

 SIP INFO – When using SIP, the VoiceGenie Media Platform is also
capable of detecting incoming DTMF digits through SIP INFO messages
with content-type application/dtmf-relay. The body of the SIP INFO
messages should be in the Signal= <digit> format. The VoiceGenie Media
Platform can also generate DTMF events using the same formatted SIP
INFO messages when sip.sipinfodtmf is set to 1 (default is 0) in Call
Manager configuration. The DTMF event will be generated when the
VXML application tries to play an audio file that is named
dtmf_<digit>.vox or dtmf_<digit>.wav.

 H.245 events – The H.323 line manager is capable of
transmitting/receiving DTMFs through the H.245 channel using H.245
user indication events.

4.4 Multiple Line Managers
The VoiceGenie Media Platform has the flexibility to allow multiple line
managers to be configured and operate concurrentldy. A Media Platform can
be configured to handle both SIP/RTP and H323/RTP calls simultaneously.
This flexible configuration allows experimental integration (between VoIP

Chapter 4: Network Interfaces 4.4 Multiple Line Managers

Media Platform — User’s Guide 73

protocols) to be performed easily without re-configurating the VoiceGenie
Media Platform.

Media Platform — User’s Guide 75

5.1 Incoming Call
As mentioned in Running Applications on the Media Platform, the Media
Platform selects an application to handle an incoming calls based on the
DNIS-URL mapping.

H.323 calls have DNIS values embedded in the protocol’s messages.

With SIP, calls do not have an explicit DNIS value. Instead, the To: field in the
incoming INVITE message is used to route the call. The SIP URL in the To:
field is always in the form sip:user[:password]@address[:port] [;uri-
parameters], where the [:password], [:port] and [;uri-parameters] are
optional and may not be included. The default SIP port of 5060 is used if the
[:port] is not included. The Media Platform treats the [:password] as part of
the DNIS. Calls from the PSTN are always redirected to a corresponding SIP
URL, so regardless of whether or not a gateway is used, the To: field will
always be in the format indicated above.

If the user portion of the SIP URL is of the form:
dialog.vxml.<value>

then <value> will be used as the initial VXML URL. Note that <value> must
encode special characters, such as :, that are not permissible in the SIP user
field. This usage is based on IETF draft draft-rosenberg-sip-vxml-00.

For example, a call to:
sip:dialog.vxml.http%3A%2F%2Fvxml.com%2Ftest.vxml@heart.voicegenie.c

om

would result in http://vxml.com/test.vxml being used as the initial URL.

Here, : is encoded as %3A and / is encoded as %2F.

Otherwise, the user portion of the SIP URL is treated as the DNIS for the call,
and the appropriate entry from DNIS–URL mapping will be used. For

Chapter

5 Call Control

http://vxml com/test.vxml�

Chapter 5: Call Control 5.2 Outgoing Call

76 VoiceGenie 7.2.2

instance, a call to sip:1005@heart.voicegenie.com would use the DNIS entry
for 1005.

Note: If the SIP URL is sent as sip:dialog.vxml.http:...@address or
sip:dialog.vxml.file:...@address), only "http" or "file" will actually be
used as the <value> (i.e. the initial VoiceXML URL), and everything
else up to "@" will be taken as a password. The ':' will probably not be
encoded automatically by the calling SIP phone, so the caller should
encode it directly in the SIP URL that they enter.

The VXML URL can also be specified using the format based on IETF draft
http://www.ietf.org/rfc/rfc4240.txt.

For example, a call to:
sip:dialog@mediaserver.example.net;voicexml=http://vxmlserver.exa

mple.net/cgi-bin/script.vxml

would result in http://vxmlserver.example.net/cgi-bin/script.vxml being
used as the initial URL.

When a VXML URL is specified in the SIP INVITE, the SIP Request URI
parameter gvp.appmodule can be used to select the VoiceXML interpreter.
One can specify gvp.appmodule=VXML for the Legacy Interpreter, and
gvp.appmodule-VXML-NG for the Next Generation Intepreter. For instance,
the following SIP Request URI will result in Next Generation Intepreter being
selected as the interpreter.

sip:dialog@mediaserver.example.net;voicexml=http://vxmlserver.exa
mple.net/cgi-bin/script.vxml;
gvp.appmodule=VXML-NG

If gvp.appmodule is not specified, the default VoiceXML Interpreter specified
by the Call Manager configuration parameter sessmgr.default_vxml_interpreter
will be used.

5.2 Outgoing Call
There are two principal mechanisms of initiating outgoing calls with the
Media Platform:

 Application-initiated

 Remote Dial

An application, during its interaction with an existing call, can initiate a new
outgoing call on a different call leg. For VXML applications, this can be
performed using <call> tag, or using <transfer> tag that performs bridge
transfer.

Remote Dial can be viewed as an asynchronous way to initiate outgoing call.
Rather than using an existing application to initiate a call, a VXML application
can be specified and associated with the new outgoing call. Please see

Chapter 5: Call Control 5.2 Outgoing Call

Media Platform — User’s Guide 77

5.1 Incoming Call Chapter 5 “Incoming Call” section for more information.

When initiating an outbound call using the above mechanisms, sometimes it is
desirable to enforce a certain restrictions on the allowable outgoing destination
to prevent application misusages. It is also desirable to perform certain
automatic address pattern manipulation and translation. The Media Platform
supports the use of Dialing Rules, which provides a powerful way to
manipulate telephone numbers that are being used for initiating an outbound
call. Please see the next section for more information.

Note: For certain switches, dialing +1 before the local phone number will
result in rejected calls.

5.2.1 Dialing Rules

Overview

The Dialing Rules entry can be access under the Other Configuration section
of the Configuration tab on the SMC. It provides a powerful way to
manipulate telephone numbers that are being used for initiating an outbound
call. This might include the number used for a bridged outbound call (using
the <transfer> tag), a non-bridged outbound call (for particular call release
technologies), or for calls placed with the <call> tag, or using the outbound
calling interface.

The dialing rules file configures the following capabilities:

 Calls to undesirable numbers can be blocked.

 Calls to certain numbers can be remapped to call other numbers instead.

 Calls to certain numbers can be assigned to a particular line manager.

Chapter

5 Call Control

Chapter 5: Call Control 5.2 Outgoing Call

78 VoiceGenie 7.2.2

 Capability to apply rules based on incoming line manager, DNIS, or other
properties.

How it Works

The dialing rules configuration provides a mapping of user-specified numbers
to the numbers that are actually used for placing the outbound call. The
processing transforms.
{target-number,inbound-line-manager-id,extra-parameters (i.e. DNIS)}

into
{destination-address,outbound-line-manager-id,rule-parameters}

based on the configured rules. The target number can be straight digits (xxx
will be interpreted as tel:xxx), or may have a prefix identifying a type (i.e.
sip:1234).

Creating Dialing Rules

To create a new Dialing Rules entry, enter the rule details, i.e. rule type,
address type, address pattern, etc., and click on the plus sign on the right. The
rule will be added in the Rules field. The context and priority are optional
parameters. To add a context, enter the context attribute and value, then click
on the plus sign on the right. The context will be added into the Context field.
Use the up and down arrows to adjust the order of the rules. To delete a rule
from the Rules field, select the rule and click on the minus sign. Once all
Dialing Rule details have been entered, click on Create to create the Dialing
Rules entry.

The following table explains the various fields for dialing rules creation:

Field Meaning

rule-type a[ccept] for accept rules, or r[eject] for rejection rules.

addr-type tel to match telephone addresses, or sip to match SIP
addresses

addr-pattern Regular expression used for matching against target address.
Unlike old rules, a leading ^ is assumed and does not need to
be inserted.

xlat-type tel to translate to a phone number, sip to translate to a SIP
address, or - not to translate

Chapter 5: Call Control 5.2 Outgoing Call

Media Platform — User’s Guide 79

Field Meaning

xlat-pattern Destination pattern that is parsed and turned into the returned
address for the call. This should be - if xlat-type is -.
Otherwise, it is a normal string that will substitute \1, \2,
\3, etc with the 1st, 2nd, 3rd, etc regular expression matches,
as one would expect.

out-lm-id Is the ID of the line manager on which the call should be
made. The possible values are 0, 4 and 8.

0: Use the incoming line ID. (if available)
4: LMSIP2
8: LMH323

rule-params Specify a list of parameters, in
attribute1=value1,attribute2=value2,... format. These
will be returned for accept rules that are matched against.

Rules may have a context in which they are valid. Rules will only be applied if
the context of the call matches the context of the rules. The context for a group
of rules is specified through a context line, which identifies the context for all
further rules until another context line is hit. The format of a context line is a
set of context requirements, enclosed in square brackets. The format of the
context line is thus:
 [attribute1=value1 attribute2=value2 ...]

Context requirements will be matched against context information passed by
CMAPI when requesting processing of a dial request. The attribute lm is a
special context attribute which will be matched against the incoming line-id.
Extra rules in the context of a dial request that are not explicitly mentioned by
the rule context will not affect processing of rules.

For instance
 [lm=1]
 rule1
 [dnis=1234]
 rule2
 [lm=1 dnis=1234]
 rule3

will apply rule 1 if lm=1 but dnis <> 1234, rule2 if dnis=1234 but lm <> 1,
and rules 1, 2, 3 if lm=1 and dnis=1234. Any rules that appear before the first
context line, or after the null ([]) context line will be matched against all calls.

Once the entry has been created, users can click on Select Target to target
where that Dialing Rules entry is targeted.

To update the contents of an entry, make changes to any of the parameters of
the entry and click on Update. This will send any changes to the targeted
platforms at run time.

Chapter 5: Call Control 5.2 Outgoing Call

80 VoiceGenie 7.2.2

To delete an entry simply click on Delete.

Note: Reject rules must specify -:- for xlat-type:xlat-pattern and 0 for
out-lm-id.

Chapter 5: Call Control 5.2 Outgoing Call

Media Platform — User’s Guide 81

Rule File Processing

 Rules are processed in the order that they appear in the rules field, without
regard to context.

 Rules are processed before sip.defaultgw or h323.defaultgw settings are
applied.

 Only rules for which there is a context match will be processed. Other
rules will be ignored.

 If a reject rule matches the destination number being processed, the call
will be rejected.

 If an accept rule matches the destination number being processed, the call
will be accepted and the translation parameters/outbound-LM/rule-
parameters specified in the rule will be returned with the results.

 If no rules match a number, the call will be accepted with no translation,
the same incoming & outgoing LM, and no rule parameters.

 If a translation exists, then the translated address will be used as the target
address. If not, the original address will be used as the target address.

 If a call is accepted but after applying all of the above rules, the destination
LM is equal to zero (possible if a call has no associated incoming line
manager, such as the case of remote dial), then the line manager ID will be
set to 4 for SIP calls or 8 for H323 calls.

Some operational notes

Phone numbers have the following restrictions at the moment:

 Main phone number: 0–9

 Extension number: 0–9, a–d, #, *, and ,

For details regarding the regular expressions in use, see the standard Linux
regex library which supports POSIX 1003.2 extended REs. man 7 regex
provides the details under RH7.2.

Dialing Rules and VoIP

The use of dialing rules with VoIP provides two alternative ways of setting up
certain behavior. In the case that it is desirable to allow the use of an IP/PSTN
gateway to complete calls to PSTN numbers using VoIP, it is possible to
enable the use of a default gateway:
[Call Manager Configuration]
sip.defaultgw=pstn-gw.voicegenie.com:5060

The above line will cause any outbound calls to PSTN numbers directed at the
SIP line manager to be routed to the specified default gateway. Alternatively,

Chapter 5: Call Control 5.2 Outgoing Call

82 VoiceGenie 7.2.2

it is also possible to use the dialing rules module to accomplish this for
specific numbers:
[Dialing Rules Entry]
a tel:416([2-9][0-9]{6}) sip:1416\1@pstn-gw.voicegenie.com 0

The dialing rule shown above will accept any 10-digit phone number starting
with 416, and having a digit from 2–9 as the first digit following the 416. It
will translate the number so that the original number will be used, prefixed by
a 1, with the resulting number being used in a SIP address that directs the call
to a PSTN gateway.

Either of the above approaches is acceptable; the choice of which method is
used will generally depend on the level of control that is desired. The first
approach, using a default PSTN gateway, is simple to configure and easily
handles calls to any number. It is also the easiest way to route all PSTN calls
to a SIP proxy for further routing decisions to be made. On the other hand, the
second approach, using dialing rules, allows finer control over what numbers
can and cannot be called, and also allows different numbers to be routed to
different gateways:
[Dialing Rules Entry]
a tel:416([2-9][0-9]{6}) sip:416\1@gw-416.voicegenie.com 0
a tel:905([2-9][0-9]{6}) sip:905\1@gw-905.voicegenie.com 0

5.2.2 Destination Format (VoIP)

In PSTN environments, a telephone number is always used to address possible
destinations. A full telephone number consists of a country code, an area code,
and a local number, although the country code or area code is not always
required, but certain dialing prefixes (such as 1 for national calls or 011 for
international calls – these are prefixes for North America only) may be
required. By assigning a unique country code to each country/group of
countries, and with local authorities in each country assigning area codes, no
two telephones have the same phone number, and a fully qualified phone
number is capable of reaching any phone worldwide.

In VoIP environments, a single global addressing scheme does not exist. To
some degree, an IP address can be used for addressing, but unlike phone
numbers IP addresses often change and cannot be migrated. Also, a single IP
address might host multiple virtual users. There are many possible solutions
for addressing in a VoIP environment, and different protocols use different
mechanisms to accomplish this. With SIP in particular, users are addressed
using a SIP URL, similar to an HTTP URL:
sip:user[:password]@host[:port][;additional-parameters=additional-
values]

For H.323, the H.323 URL format is as follows:
h323:user@host[:port][;additional-parameters=additional-values]

Chapter 5: Call Control 5.2 Outgoing Call

Media Platform — User’s Guide 83

The leading sip:/h323: tag identifies that the URL is a SIP/H.323 URL,
allowing it to be differentiated from other URLs such as HTTP URLs. The
host (and to some degree, port) and user fields are the key fields in a
SIP/H.323 address; some additional parameters may be present but these are
usually for information and do not affect the usage of a SIP address (not for
the H.323 case).

The host and port fields (5060/1720 is used as the default SIP/H.323 port if it is
not specified) provide the IP address (and port number) of a SIP user
agent/H.323 endpoint, which is simply a network element that is capable of
sending and receiving SIP/H.323 messages – much like an HTTP client or
server. SIP user agents may be either clients or servers, and are usually both –
allowing them both to initiate requests (such as making an outbound call) as
well as to respond to received requests. The same can be applied for H.323
endpoints – that they are capable of making/receiving H.323 calls. In a PSTN
environment, this essentially would be the number of your telephone – it is an
address unique to each device on a given network that can be used to establish
communication with that device.

The host field can either specify an IP address, such as 192.168.1.2, or a
hostname, such as sip.voicegenie.com. Hostnames will be translated, using
DNS, into an IP address to actually communicate with the target system.

Particularly, in SIP, an address can contain additional information beyond
what is necessary to reach the network element associated with a transport
address. This is the user field, and specifies which user on a particular network
element should be contacted. Some devices may have only a single user, and
may actually ignore the user component of the SIP URL; other devices may
support many users (or virtual users), and may use the user component of the
SIP URL to select which user participates in a given session.

The above is only a brief introduction to SIP/H.323 URLs, but the underlying
principle is that like HTML pages, everything that can participate in a SIP
session can be reached by specifying a URL that is unique to that user/entity.

Unlike (sometimes) DNIS and ANI, in SIP, the same format is used for both
the calling party address, and the called party address. SIP encodes these in
headers called From and To that are sent in all messages – similar to E-mail. For
instance, a SIP request containing:
From: sip:jsmith@205.150.90.118:4060
To: sip:voip@sip.voicegenie.com:5060

would be interpreted as being from user jsmith, whose SIP user agent can be
contacted at 205.150.90.118:4060, and to a user named VoIP, whose SIP user
agent can be contacted at sip.voicegenie.com, on the default SIP port number.

Chapter 5: Call Control 5.3 Call Routing in VoIP

84 VoiceGenie 7.2.2

Note: Because of the usage of SIP proxies and the translation of addresses,
the actual address contacted to reach voip@sip.voicegenie.com:5060
could be something other than sip.voicegenie.com. 5.3.2 SIP
Proxies/Registrars explains this briefly; a full discussion of SIP call
routing is beyond the scope of this document.

Finally, it should be noted that only the SIP URL portion of the From/To
headers are important; it is legitimate to format these headers as:
From: John Smith <sip:jsmith@205.150.90.118:4060>
To: VoiceXML Gateway <sip:voip@sip.voicegenie.com:5060>

5.3 Call Routing in VoIP

5.3.1 IP/PSTN gateway

Voice-over-IP is an extremely flexible technology for building
communications networks and network-based media services. However, the
vast majority of endpoints that it is desirable to make a call to are still PSTN-
based – widespread adoption of VoIP and use of VoIP protocols to make and
receive all calls (landline and wireless) is still a long way off. As such, the
majority of VoIP networks are interconnected with the PSTN via an IP/PSTN
gateway of some sort which bridges between the two networks.

Most IP/PSTN gateways follow the convention of using the phone number in
the user field of the SIP URL. For instance, to call 4167360905 through an
IP/PSTN gateway at pstn-gw.voicegenie.com, the destination address should
be set to sip:4167360905@ pstn-gw.voicegenie.com:5060.

Note: Note that how an IP/PSTN gateway handles the call and actually
places the call is also determined by routing rules that specific to the
IP/PSTN gateway. Thus, the above destination address would cause
the VoiceGenie gateway to deliver a call to the IP/PSTN gateway;
however, the IP/PSTN gateway must be appropriately configured to
route the call to the PSTN once it is received.

To facilitate existing applications and to move some elements of the routing
decision into the platform, VoiceGenie allows the application developer to
conveniently use PSTN style URI even at the application layer. Depending on
the application context, this can be accomplished using these parameters:
sip.defaultgw, sip.outcalluseoriggw = 1, h323.defaultgw, and
h323.usesamegwfortransfer. When these parameters are used properly, the
Media Platform can perform automatic conversion of the PSTN URI to the
corresponding VoIP URI and ensure the request is forwarded to the
appropriate IP/PSTN gateway.

Chapter 5: Call Control 5.3 Call Routing in VoIP

Media Platform — User’s Guide 85

In general, when making PSTN calls, the sip.defaultgw/h323.defaultgw
should be set. One exception in H323 is when calls are to be transferred with
multiple gateways in the environment, and it is desired to place the outgoing
call to the same gateway where the incoming call is from (because of transfer
limitations in PSTN gateways). Under this situation, the configuration value
h323.usesamegwfortransfer should be set to 1.

Please see the VoiceGenie 7.2 Media Platform System Referenec Guide “Call
Manager Configuration” section for more details.

Note that in addition to the forementioned parameters, 5.2.1 Dialing Rules can
also play a significant role in destination address manipulation and controlling
how a call is routed.

However, extension dialing is supported on PSTN technologies but is not
supported with VoIP directly by the VoiceGenie gateway. The IP/PSTN
gateway may still support the use of extensions that are encoded into the user
field of the SIP URL; support for this will depend on the IP/PSTN gateway
used. Similarly, analysis is not supported with VoIP.

5.3.2 SIP Proxies/Registrars

When making an outbound SIP call, the call destination is specified as a SIP
URL, as described in the preceding section. However, how this call will be
routed depends on the configuration of the VoiceGenie gateway.

By default, the system will send a SIP INVITE message (used to initiate a call)
to the IP address and port that are specified via the host and port parameters of
the destination address. Using the example above, if an outbound call or
transfer was made to voip@sip.voicegenie.com:5060, then the INVITE message
will be sent to sip.voicegenie.com, on port 5060. UDP is used as the default
transport for SIP messages.

Note: the actual INVITE message will always present the To: header exactly
as is specified in the destination address field for the outbound call or
transfer.

In addition to routing calls based as above, it is also possible to configure an
outbound proxy to which calls will be routed. If configured, instead of sending
the SIP INVITE message directly to the destination, the INVITE message will
instead be sent to the SIP proxy for further routing and processing. Please see
the Call Manager Configuration section, SIP Call Routing subsection for
more details.

Moreover, the Media Platform also supports the use of SIP REGISTER message
to perform registration with SIP Registrar servers. This allows users to
perform look-up with the SIP Registrar server to locate and SIP INVITE
requests to the Media Platform.

mailto:voip@sip.voicegenie.com:5060�

Chapter 5: Call Control 5.3 Call Routing in VoIP

86 VoiceGenie 7.2.2

5.3.3 H.323 Gatekeeper

H.323 gatekeeper can be used to translate H.323 aliases. For example,
assuming that both the user John Smith has registered his ip phone with an
extention 12345 and that the VoiceGenie software is registered to the same
H.323 gatekeeper (more details to follow), a call can be placed to John Smith
using the H.323 url phone:12345. The VoiceGenie software will first consult
the gatekeeper by sending an admission request (ARQ), and the gatekeeper
will respond an admission confirm containing the ip address of John Smith’s
soft phone so that the VoiceGenie software knows where to route the call to.

The gatekeeper can be configured using h.323.gatekeeper.* and
h323.ras.inarqmode/outarqmode. The gatekeeper registration information can
be configured using h323.ras.registrationinfo. More information is
available in the H323 Gatekeeper configuration section.

Media Platform — User’s Guide 87

6.1 General Information
The Media Platform offers many call release and call bridging technologies.
The usage of these technologies depends on the protocol and the integration
environment. This section provides information on the technologies that the
Media Platform is capable of.

From VoiceGenie implementation perspective, the various transfer methods
can generally be divided into three main categories:

 One Leg Transfer – Transfer that requires only one call leg from
VoiceGenie Media Platform’s perspective. In other words, the transfer
occupies only one channel on the Media Platform. The transfer is
performed by sending various signals on the inbound call leg, and the
switch supporting the transfer will handle the signal accordingly and
perform the transfer; resulting in the original call leg being released from
the platform. This is referred as One-leg-style transfer in this document.

 Two Leg Transfer – Transfer that requires two call legs (ie, occupying
two channels), and the two call legs are bridged and released at the
network layer. The Media Platform is responsible for making the outbound
call request, and then transmits the required signals via the two call legs to
the call routing entity (normally a switch). The routing entity, upon
receiving the signals, will join the two calls together and release them from
the Media Platform. This is referred as Join-style transfer in this document
(note that this is different from <join> where media is joined).

 Bridged Transfer – Transfer that requires two call legs, and the Media
Platform stays in the signaling path and is responsible for bridging the two
call legs. The Media Platform is responsible for making the outbound call
request, and then bridging the media path between the caller and the callee.
The Media Platform is responsible for maintaining this connection until
transfer completes. This is referred as Bridge-style transfer in this

Chapter

6 Call Transfer

Chapter 6: Call Transfer 6.1 General Information

88 VoiceGenie 7.2.2

document. Note that this style of transfer relies completely on the Media
Platform’s capabilities (call routing entity, or the switch needs to have the
capability)

The following table summarizes the transfer methods under each of the three
styles of transfer:

Transfer style Transfer methods

One-leg hkf, h450, refer, inband

Join h450join, referjoin

Bridge bridge, mediaredirect

It is important to understand these three transfer styles to fully understand the
difference between the metrics-billing behaviors among the transfer methods.
This also helps understand the relationship between transfer method and
transfer type. In addition, for Join-style transfers, when type=blind, the
transfer request signal(s) will be sent before the outbound call leg is
connected. When type=consultation, the transfer request signal(s) is only sent
after the outbound call leg is connected. Understanding this difference is
crucial to understand why some transfer methods (like RLT) cannot be
supported with type=blind.

One interesting usage of Join-style transfers is <call>/<join type=network>.
Typical <call>/<join> usages are essentially performing media bridging
between the caller and the callee when the <join> tag is executed. For <join>
tag with type=network, the outgoing call request is made as usual during the
<call> tag execution. Just like a normal <call> tag usage, the Media Platform
can interact with the inbound and outbound call legs in various ways. When a
<join> tag with type=network is executed, transfer request(s) will be made to
the call routing entity (or the switch) to perform the actual transfer (or joining
at the network layer) and release the call. Hence, different from a typical
<join> tag, the calls will be released from the Media Platform after execution.

Furthermore, since release 6.4, the Media Platform supports fallback for Join-
style transfers. As mentioned, for Join-style transfers, after the outbound call
request is made, signals will be sent to either or both inbound and outbound
call legs to perform the transfer request. For any reason, if the call routing
entity fails the transfer request at this stage, the Media Platform is capable of
falling back to a Bridge-style transfer. With this capability, users can assure
that transfers can always be made successfully even with a malfunctioning call
routing entity or under fail-over scenarios. This behavior can be configured
using the sessmgr.ECS_Fallback and/or sessmgr.Join_Fallback parameter.

Chapter 6: Call Transfer 6.2 Transfer Framework

Media Platform — User’s Guide 89

6.2 Transfer Framework
Since release 6.4, the Media Platform has updated its internal transfer
framework. The major benefits to the users include:

 Support for multiple transfer methods simultaneously

 Allow the VXML application to dynamically select the transfer method
when performing a transfer request

 Support VXML 2.1 syntax for <transfer> tag

 Separation of transfer behavior at application level and transfer mechanism
at telephony level

 Allow fallback transfer method (see “Advanced User” section)

6.2.1 Type and Method

To understand the new transfer framework, it is important to understand the
difference between transfer type and transfer method. This can be best
understood by first looking into the VoiceXML 2.1 syntax for the transfer tag
(VoiceXML 2.0 style of transfer tag is still supported).

Transfer syntax for VoiceXML 2.1
<transfer
 name=“string”
 expr=“ECMAScript_Expression”
 cond=“ECMAScript_Expression”
 dest=“URI”
 destexpr=“ECMAScript_Expression”
 method=“string”
 type=“blind” | “consultation” | “bridge”
 connecttimeout=“time_interval”
 maxtime=“time_interval”
 transferaudio=“URI”
 analysis=“boolean”
 connectwhen=“analysis” | “answered” | “immediate”
 aai=“string”
 aaiexpr=“ECMAScript_Expression”
 detectansweringmachine=“boolean”
 signalvar=“ECMAScript_Object”
 consultexpr=“ECMAScript_Expression”>
 child elements
</transfer>

One new attribute, method, is introduced. Values to the attribute, type, also
changed.

 method signifies the transfer method name (case-insensitive). It defines the
actual mechanism to be used to perform the transfer at the telephony layer.
In other words, it is one of the methods defined in the previous two

Chapter 6: Call Transfer 6.2 Transfer Framework

90 VoiceGenie 7.2.2

sections. In Media Platform 6.4 and above, instead of relying on the old
attribute bridge, type and the call manager configuration to determine the
actual transfer method being performed, the method attribute explicitly
determines the transfer method. If method is not specified or is an empty
string, default method will be chosen depending on the call manager
configuration.

 type now signifies the transfer behavior viewed by the VoiceXML
application.
 If blind is specified, application will get detached from the incoming

call (as well as outbound call if it is involved) as soon as transfer is
successfully initiated. It will be unable to detect the result of the
transfer request once the request can be made to the telephony
network. It is because by the time the transfer process fails, application
is already detached from the call.

 If consultation is specified, application will get detached from the
incoming call once the transfer process finishes successfully. Hence, it
is possible to report transfer failure using this type of transfer. If the
transfer process fails, application will retain relationship with the call.
If the transfer process succeeds, then the VoiceXML application will
detach from the call.

 If bridge is specified, application will never get detached from the
incoming call unless the incoming call actually disconnects. The
control of the call will always return to the application when the
transfer ends (regardless of the result).

Different combinations of type and method create interesting scenarios that
were not possible with VoiceXML 2.0. One example is that the transfer
method behavior can be such that the transferred call is taking place on the
platform, while the type mandates that the application be detached from the
call. Take for instance a transfer with method=bridge type=blind. In this case,
from the platform point of view, both outbound and inbound call will exist on
the platform while the VoiceXML application already received transfer
complete and disconnect event from both inbound and outbound call legs.

On the other hand, it is important to note that some transfer methods may not
be supported for all three transfer types, due to the transfer methods’
mechanisms. For example, method=hkf (Hook Flash) cannot be supported with
type=bridge, since the call will be disconnected from the Media Platform if
the transfer is successful. It is impossible to have the application proceed with
the transfer and wait for transfer to end successfully without detaching the call.

The following table summarizes the method and type attribute values that are
allowed for each telephony technology used:

Telephony
technology

Description Method Blind
type

Consult
type

Bridge
type

All Bridge transfer bridge YES YES YES

Chapter 6: Call Transfer 6.2 Transfer Framework

Media Platform — User’s Guide 91

Telephony
technology

Description Method Blind
type

Consult
type

Bridge
type

Inband DTMF transfer inband YES NO NO

Hook flash transfer hkf YES NO NO

Refer refer YES YES NO

Refer with replace header referjoin YES YES NO

SIP

Media redirect transfer mediaredirect YES YES YES

Hook flash transfer hkf YES NO NO

H.450.2 transfer with 1 leg h450 YES YES NO

H.450.2 transfer with 2 legs h450join YES YES NO

H.323

Media redirect transfer mediaredirect YES YES NO

For the list of available signalvar, please refer to
http://developer.voicegenie.com/reference.php?ref=variablesdetails#sign
alvar.

6.2.2 Backward Compatibility with VoiceXML 2.0

The Media Platform is backward compatible with the use of VoiceXML 2.0
syntax. VoiceXML 2.0 controls the transfer behavior by the combination of
bridge and type attribute, and the Media Platform supports the older syntax by
doing the following mapping to the new method and type:

Old Type
Attribute

Local Network Supervised Unsupervised

Bridge True False True False True False True False

New Type
Attribute

Bridge Blind Bridge Blind Bridge Consultation Bridge Blind

Method empty empty empty empty empty empty empty empty

Also, when <join> tag is used with type=network, platform configuration will
be used to determine the actual telephony transfer method to use (cannot
specify this from the VoiceXML page). This is performed automatically by
selecting a transfer method defined on the supported list/bitmap that can be
used. In particular, a Join-style transfer must be configured (see next section
for more information). If no Join-style transfer method is defined, the transfer
request will fail.

http://developer.voicegenie.com/reference.php?ref=variablesdetails%23signalvar�
http://developer.voicegenie.com/reference.php?ref=variablesdetails%23signalvar�

Chapter 6: Call Transfer 6.3 VoIP Transfer

92 VoiceGenie 7.2.2

6.3 VoIP Transfer
A summary of the Media Platform VoIP supported call transfer methods is
shown in the table below:

Call Transfer Method Protocols Notes

SIP Refer SIP

SIP Refer with Replace header SIP

H.450.2 with one call leg H.323

H.450.2 with two call legs H.323

Hook Flash H.323 and SIP Can transmit inband dtmf, or out-of-band RFC 2833
events (or H.245 events for H.323)

Inband H.323 and SIP Can transmit inband dtmf, or out-of-band RFC 2833
events (or H.245 events for H.323)

Media Redirect H.323 and SIP Media are connected directly between caller and
callee (network) while call control events are
bridged thru the Media Platform

Bridge H.323 and SIP Media and call control events are bridged at the
Media Platform

By default, bridge transfer is always supported by the Media Platform. Refer
and Referjoin methods are enabled for SIP by default. With the exception of
inband transfer, each of the other transfer methods can be configured via SMC
under the Call Manager configuration using sip.transfermethods and
h323.transfermethods.

Some transfer methods may require further parameters to suit the switch’s and
the environment’s behavior. Please see the corresponding Call Manager
configuration sections in the VoiceGenie 7.2 Media Platform System
Reference Guide for further details.

6.4 Whisper Transfer
Traditionally, when performing transfer with our platform, it is always
assumed that the callee always accepts the transfer. This limitation has been
relaxed since release 6.2 with the whisper transfer feature (also known as
consultative transfer). After the transfer operation is requested and performed,
there is an option to delay the connection of the caller and the callee. This
allows the platform to continue performing media operations with the callee,
and transfer out the call at a later phase. From the application point of view, a
VXML application can be written to consult with the callee to determine

Chapter 6: Call Transfer 6.5 CTI Call Release

Media Platform — User’s Guide 93

whether the callee would like to answer the transferred call from the caller.
The transfer proceeds as usual if the callee agrees. The callee can also reject
the transfer request, in which the callee will be disconnected and the VXML
application will return the control to the original caller. This is achieved by
using the consultexpr attribute on the <transfer> tag.

Currently, this feature is supported with the following transfer methods:

 SIP – referjoin, hookflash, bridge, mediaredirect

 H323 – h450join, bridge

6.5 CTI Call Release
The VoiceGenie Media Platform is often deployed in conjunction with various
CTI products. In those deployments, CTI can be used to perform the call
transferring capability and release the call from the Media Platform. In
addition, the VoiceGenie Call Control Platform provides native integration
with the Media Platform to support some of the popular CTI products in the
market. Please see the Call Control Platform document for more information.

Media Platform — User’s Guide 95

7.1 Overview
The VoiceGenie Media Platform includes rich support for video applications.
This allows for the development of applications such as:

 Video voice-mail

 Video conferencing and conferencing management

 Entertainment applications

Video support is not defined as part of VoiceXML 2.0 or VoiceXML 2.1. It is
being considered for inclusion in VoiceXML 3.0, currently being developed
by the Voice Browser Working Group (VBWG) in the W3C. Video support
has been added to the VoiceGenie platform as an extension to VoiceXML, by
enhancing the <audio/> and <record/> tags to support video. The simplest
applications will take advantage of this video ‘play’ and ‘record’ functionality
to build video enabled applications like video voicemail.

Video is supported by the VoiceGenie Media Platform, as well as the
VoiceGenie CCXML Platform and SIP Proxy.

7.2 Video Deployment Architectures
The VoiceGenie infrastructure uses SIP call control and RTP media to manage
video and audio streams. SIP endpoints can make use of the audio and video
capabilities of the VoiceGenie solution directly. Commercial gateways such as
those from Dilithium and Radvision can be used to interconnect VoiceGenie
infrastructure to the ISDN or SS7 network.

In order to deploy VoiceGenie video, the following components are required:

 VoiceGenie 7.2 Media Platform;

 Video capable SIP softphone;

Chapter

7 Video Support

Chapter 7: Video Support 7.2 Video Deployment Architectures

96 VoiceGenie 7.2.2

 Web Application Server;

 Compatible video files;

 VoiceXML pages describing the video application;

Optional components include:

 Video gateway, terminating 3G-324M TDM video, and transcoding to SIP
and RTP

When deployed with a video gateway, the conversion between RTP and 3G-
324M (including any transcoding) happens at the Dilithium or Radvision
gateway.

If AMR-NB audio is being used on the 3G-324M (TDM) side of the gateway,
then the video gateway converts the audio from either G.711u or G.711a to
AMR-NB. The .AVI container file used by VoiceGenie would therefore
contain either G.711u or G.711a. The video gateway does not have to perform
transcoding is if AMR-NB is used on the Media Platform.

Similarly, the video gateway converts the H.263 video (being delivered by the
VoiceGenie platform) to a format that fits within the 64kbit/s bandwidth
available with 3G-324M. Containers and supported protocols will vary
depending upon the video gateway. Dilithium supports H.263 + G.711, or
H.263 + AMR-NB.

A typical architecture supporting audio-only and video applications is shown
in the diagram below.

Chapter 7: Video Support 7.3 Supported Protocols and Specifications

Media Platform — User’s Guide 97

7.3 Supported Protocols and
Specifications

The VoiceGenie solution currently supports the following video formats:

 AVI container files with H.263 encoded video and G.711 encoded audio
(8kHz)

Chapter 7: Video Support 7.4 VoiceXML Feature Support

98 VoiceGenie 7.2.2

 3GPP container files with H.263 encoded video and AMR encoded audio
(8kHz).

The following mime types are supported:

File extension Format MIME Type

.avi AVI video/avi;codec=<audio codec>;videocodec=<video codec>

.3gp 3GP video/3gpp;codec=<audio codec>;videocodec=<video codec>

.263 RAW video/H263 or video/H263-1998 or video/x-h263

 audio_codec for AVI can be: ulaw (g.711 mulaw), alaw (g.711 alaw), pcm16 (signed linear PCM 16-
bit), or pcm (unsigned linear PCM 8-bit)

 audio_codec for 3GP can be: amr (AMR-NB)

 video_codec for AVI and 3GP can be: h263 (h.263) or h263-1998 (h.263+)

H.263 media transport over RTP conforms to Mode A transmission as defined
in RFC2190.

H.263+ media transport over RTP conforms to RFC2429.

Please contact Genesys sales for additional file containers and encodings and
other enhancements planned for future releases.

7.4 VoiceXML Feature Support
Video on the VoiceGenie platform fully supports the following VoiceXML
features:

 Video file playback (including embedded audio);

 Video file record (including embedded audio);

 DTMF recognition;

 Speech recognition;

 Speech and DTMF Barge-in;

 Prompt queuing;

 Caching.

Prompt queuing is discussed at:

http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=promp
t_queueing

Cache management is described at:

http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=cachi
ng_howto2

Here is a sample VoiceXML script providing a menu for video playback:
<?xml version=“1.0”?>

http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=prompt_queueing�
http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=prompt_queueing�
http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=caching_howto2�
http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=caching_howto2�

Chapter 7: Video Support 7.5 Advanced VoiceGenie Feature Support

Media Platform — User’s Guide 99

<vxml version=“2.0” xmlns=“http://www.w3.org/2001/vxml”>
<meta name=“application” content=“Video Playback Example”/>
 <form id=“Welcome”>
 <block name=“Hello”>
 <audio src=“builtin:prompts/sting.vox”/>
Which trailer would you like to watch, Harry Potter or Jurassic
Park?
 </block>
 <field name=“movie”>
 <option> Harry Potter </option>
 <option> Jurassic Park </option>
 <filled>
 <if cond=“movie==‘Harry Potter’”>
 Here’s the trailer for Harry Potter
 <audio src=“harrypotter.avi”/>
 <elseif cond=“movie=‘Jurassic Park’”/>
 Here’s the trailer for Jurassic Park
 <audio src=“jurassic.avi”/>
 </if>
 </filled>
 </field>
 </form>
</vxml>

Here is a sample VoiceXML script for recording video:
<?xml version=“1.0”?>
<vxml version=“2.0” xmlns=“http://www.w3.org/2001/vxml”>
<meta name=“application” content=“Video Recording Example”/>
<property name=“caching” value=“safe”/>
<property name=“bargein” value=“false”/>
<property name=“confidencelevel” value=“0.45”/>
<property name=“loglevel” value=“4”/>
<form>
 <record name=“video_message” beep=“true” maxtime=“30s”
finalsilence=“5s” dtmfterm=“true”
dest=“RecordedFile/” type=“video/avi;codec=pcm16;videocodec=h263”>
 <prompt> please re cord your message </prompt>
 <filled>
 Here is your video message <value expr=“video_message”/>
 </filled>
 </record>
</form>
</vxml>

7.5 Advanced VoiceGenie Feature Support
A number of advanced VoiceGenie features work well with video.

Chapter 7: Video Support 7.5 Advanced VoiceGenie Feature Support

100 VoiceGenie 7.2.2

7.5.1 VCR Controls

The VoiceGenie platform supports ‘VCR Controls’, allowing the caller to
navigate within an audio or video stream using DTMF keys. The available
functions include pause and resume, skip forwards or backwards, and several
other features. Please see the tutorial at:

http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=audio
_control

for further information.

7.5.2 Advanced Barge-in Features

The VoiceGenie platform supports reporting of barge-in offsets based on time
and ‘marks’ set in the prompt stream. This allows intelligent prompt playback,
as well as confirmation of what prompt components have been heard by the
caller. There are several VoiceGenie extensions related to this, documented in:

http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=Voice
Genie_audio_offset

There are also related features in VoiceXML 2.1:

http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=vxml2
1_features#mark

7.5.3 Conferencing

Video conferences can be managed by the CCXML and Media platforms.
Features include:

 Full, or half-duplex conference connections, including Listen only, Send-
only, or full bidirectional video and audio;

 Video switching;

 Video pre-select;

 Video based on active (loudest) speaker;

The following <join/> attributes are added for specifying video conferencing
behavior:

 videoalgorithm = “loudest” | “fixed” | “none” (optional)

If this join request allows a participant to connect to a conference, this
attribute specifies the video algorithm used for this conference.
 loudest – video from the active (loudest) participant will be selected.
 fixed – pre-select video channel as specified by videosource attribute.
 none – disable video for the conference.

Chapter 7: Video Support 7.6 Known Issues and Limitations

Media Platform — User’s Guide 101

defaults to the value of <property/>
com.voicegenie.conference.videoalgorithm.

 videosource = “ECMAScript_Expression” (optional)

An ECMAScript expression to be evaluated and used as the channel ID of
the video used for the conference. Applied only if this join request allows a
participant to connect to a conference and videoalgorithm=“fixed”.
Default to 0, which means the creator (first participant) of the conference
will be selected.

Information on conferencing with the VoiceGenie CCXML platform is
available at:

http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=ccxml
_intro

Conferencing on the VoiceGenie Media Platform is documented at:

http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=confe
rencing

7.5.4 Full Call Recording

Full call recording includes support for recording the video interaction on a
call. Control over full call recording is documented at:

http://support.voicegenie.com/tutorials.php?tutorial=wholecallrecording

7.5.5 Media Redirect Transfer

Transfer and Media Redirect Transfer works with video, allowing the
VoiceGenie platform to remain in the call control path, while redirecting
media to the appropriate endpoints.

7.5.6 SIP/NETANN Access

Access to NETANN services including video behave as expected.

7.6 Known Issues and Limitations
 The H.263 codec is not enabled by default. This can be enabled either

during installation, or by manually modifying the platform configuration
by:
 Go to the Configuration tab, Call Manager section via SMC
 Edit the configuration profile
 Add h263 and/or h263-1998 to mpc.codec

http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=ccxml_intro�
http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=ccxml_intro�
http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=conferencing�
http://developer.voicegenie.com/tutorials_VoiceGenie.php?tutorial=conferencing�
http://support.voicegenie.com/tutorials.php?tutorial=wholecallrecording�

Chapter 7: Video Support 7.6 Known Issues and Limitations

102 VoiceGenie 7.2.2

 Make sure the platform is targeted and updated for the configuration
change

 Maximum RTP packet size is limited to 20000 bytes by default
(configurable using Call Manager configuration parameter
mpc.rtp.maxrtppacketsize). Since VoiceGenie only supports mode-A
transmission for H.263 codec, this imposes a limitation on the maximum
size per GOB (Group-Of-Block). Transmission of H263+ codec follows
RFC2429 and does not have such limitation.

Note: Each video picture frame can be segmented into multiple GOB.
Some advanced video encoder allows GOB size to be adjusted
during encoding process.

Media Platform — User’s Guide 103

8.1 Remote Dial

8.1.1 Overview

The VoiceGenie Media Platform provides a complete VoiceXML 2.1, 2.0 and
1.0 implementation, along with many other features that make the platform
attractive to those deploying large scale speech applications. One of the most
useful features is the ability to initiate outbound calls in an asynchronous
manner. This section provides details of how to use the outbound calling
features of the VoiceGenie Media Platform. Outbound calling is subject to the
restricted calling database maintained by the VoiceGenie Media Platform.

8.1.2 System Requirements

To use the outbound calling functionality, it is required that you have access to
a VoiceGenie Media Platform. The Media Platform must be configured with
either bi-directional, or outbound channels. You may require additional
resources to host the API software, although it can be hosted on the platform
itself.

8.1.3 Socket API

The current implementation of the remote dialer includes the Command-
line/socket interface. This provides full access to the outbound call
functionality. This includes: Outbound call placement, associated with a
VoiceXML URL; DNIS delivery; Specification of User to User Information
(UUIDATA); detailed status reporting.

Chapter

8 Other Features

Chapter 8: Other Features 8.1 Remote Dial

104 VoiceGenie 7.2.2

Other interfaces are under consideration, including direct Java class access,
and an interface supporting XML.

8.1.4 Telnet/Socket Interface

By connecting to port preconfigured for remote dial (default to 6999) on a
platform with enabled outbound dialling, the user can make use of a simple
interactive interface to place outbound calls. Using telnet for example, the user
can request that an outbound call be placed, and provide the URL of a
VoiceXML page to be associated with the call. A sample is shown below:
pw@galahad 379>
pw@galahad 379> telnet localhost 6999
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.
PW RemoteDial>
call 4167360905 4167362012 http://www.voicegenie.com/helloworld.vxml

0001 Test
!CALL_SENT 1: telno:4167360905 dnis:4167362012

url:http://www.voicegenie.com/helloworld.vxml uuidata:Test
PW RemoteDial>
!CALL_STATUS 1: CONNECTED: Line is connected.
PW RemoteDial>
!CALL_DROP 1 41: USER_END: User hung up call. (time spent was 41

secs) (protocol reason: [DlgcChannel] User hangup)
PW RemoteDial>

This shows the placement of a call using the command-line interface. This
interface is also suitable for use programmatically via a socket connection.
Details of the command-line interface follow below.

Telnet Interface Commands

The command line interface provides a number of useful commands. These
include:
call <telno> <ani> <url> <refno> [uuidata] [defaults]
[parameter_list]

Chapter 8: Other Features 8.1 Remote Dial

Media Platform — User’s Guide 105

The call command initiates an outbound call to the specified telephone number
(<telno>). <telno> can accept up to 1023 characters. When connected, the
VoiceXML page referred to by the specified URL (<url>) is ‘attached’ to the
call, just as if the user had called in themselves. <platform ANI> can accept up
to 32 characters. The actual number of ANI digits that can be delivered on
PSTN depends on the network, e.g. the maximum number on ISDN T1 is 15.
The reference number (<refno>) is a user-supplied identifier that can be used
to associate status replies with this call initiation and should be unique for each
active call. The reference number must be an integer between 0 and
2147483647. There are three other optional parameters that can be specified:

 [uuidata] – user-to-user info element, not longer than 254

 [defaults] –default voicexml page used by the url

 [parameter_list] – the name value pair separated by | that can be passed
from the interface to the call manager. Please refer to
http://developer.voicegenie.com/reference.php?ref=variablesdetails#
signalvar for the list of signalvars that can be specified using the
parameter list.
The parameter list can also be used to specifiy the VoiceXML Interpreter
to be used to execute the vxml page. One can specify gvp.appmodule=VXML
to select the Legacy Interpreter, or gvp.appmodule=VXML-NG to select the
Next Generation Interpreter. If gvp.appmodule is not specified, the default
VoiceXML Interpreter specified by the Call Manager configuration
parameter sessmgr.default_vxml_interpreter will be used.

If you wish to specify either of the parameter, you can either specify all the
parameters before this parameter or specify - for the default value. For e.g., if
you wish to specify the parameter list but not the uuidata and the defaults file,
you can use - to provide default values for uuidata and the defaults in the call
command as seen in the example below:
PW RemoteDial> call 4167366493 2323

http://205.150.90.12/developer/main/cgi-bin/index.cgi 1223 - -
NWNAME=dtiB1T21|NUMBERINGPLAN=0

Note: the size of <uuidata> cannot exceed 254 characters, and is typically
less than 128 characters.

Other valid commands within the interface are:

 cc – This command clears all message counters.

 dump – This command toggles the display of raw debug information.

 e / q / x – Any of these will exit the command-line interface.

 setto <unit_type> <num_units> – This command sets the timeout
associated with call setup. It can be set to a number of seconds (using
unit_type s). The <num_units> parameter specifies the number of seconds
to try to connect the call. The default value is 120 seconds.

http://developer.voicegenie.com/reference.php?ref=variablesdetails%23signalvar�
http://developer.voicegenie.com/reference.php?ref=variablesdetails%23signalvar�

Chapter 8: Other Features 8.1 Remote Dial

106 VoiceGenie 7.2.2

 timelimit <seconds> – This command sets the maximum number of
seconds for the call. The default is 604800 seconds.

 end <refno> – This can be used to request to end a call that was initiated
from the remdial interface.

 analysis y|n|a – This command controls the enabling of Dialogic call
analysis with y or a, which could be used to detect busy, no-answer, fax or
answering machine. The default is y (yes). The a option is for
disconnecting the call on answering machine detection.

 scall – This command shows the calls in this session.

 scount – This command displays counters from this session.

 show – This command displays the current settings. Sample output is:

!SETTINGS: max_calls:500 timeout_length:120 timeout_unit:s

call_analysis:enabled time_limit:604800

 ? or h – This command will get help information for using the interface.

Any other invalid command will be replied with !UNRECOGNIZED_CMD: <entered
command>

8.1.5 How to Make a Call

After connecting to the service, a call is placed by issuing the call command,
as described above. After issuing the call command, you will receive an
immediate reply. This message will indicate one of the results shown below.

Notes: The <refno> returned in the status message will match the one
provided in the call command:

!CALL_SENT <refno>: telno:<telno> dnis:<dnis> url:<url>

uuidata:<uuid> defaults_file:<defaults>
parameter_list:<parameter_list>

 !SOCKET_ERROR <refno>: Socket not found!

 !NO_REFNO : No refernce number

 !INVALID_REFNO <refno>: Invalid refernce number

 !TOO_MANY_CALLS <refno>: Too many calls in progress

 !INVALID_TELNO <refno>: Incorrect telephone format

 !INVALID_URL <refno>: Incorrect URL format

 !INVALID_UUIDATA <refno>: Incorrect UUIDATA format

 !INVALID_DEFAULTFILE: Incorrect DEFAULTFILE format.

 !INVALID_PAIRLIST: Incorrect PAIRLIST format.

 !CALL_FAILED <refno>: telno:<telno> dnis:<dnis> url:<url>

uuidata:<uuid> defaults_file:<defaults>
parameter_list:<parameter_list>

Chapter 8: Other Features 8.1 Remote Dial

Media Platform — User’s Guide 107

 In all these cases, except for CALL_SENT, there will be no further status
returned for this call attempt.

Once the call has been placed with CALL_SENT notification, there are two
possibilities:

1. The call connects successfully, in this case the following status will be
returned:

!CALL_STATUS <refno>: <follow by one of:>

 CONNECTED: successfully connected
 MACHINE: answering machine (if analysis is y)
 UNKNOWN_STATUS <status number>: unknown status

And then the call is dropped in due course with the following message:

!CALL_DROP <refno> <timespent> <network disconnect reason>: <one of

the disconnect reason listed below:> <protocol reason: protocol
disconnect string>

 USER_END: User hung up
 APPL_END: application ended call
 TIMELIMIT_END: timelimit of call reached
 UNKNOWN_REASON <internal disconnect reason number>: unknown

reason

2. The call does not connect and is dropped right away. In this case no
!CALL_STATUS message will be received instead a !CALL_DROP message is
received:

!CALL_DROP <refno> <timespent> <network disconnect reason>:

<drop_status>. < protocol reason: protocol disconnect string>

where <drop_status> is one of:
 MACHINE: Answering machine. (Only if analysis is a)
 VXML_DECLINE: Voicexml Interpreter declined the call.
 BUSY: Line is Busy.
 NO_ANSWER: No answer in <num_units> <unit_type>
 NO_RESOURCES: no free channel or media resource.
 CALL_FAILED: Call failed.
 URLTIMEOUT: Fetch URL timeout.
 BADURI: Invalid URI type.
 NOAUTH: Network denied.
 GKREJECT: H.323 Gatekepper returned ARJ.
 SHUTTINGDOWN: Interpreter is shutting down.
 NETWORKTIMEOUT: Network timeout.
 BADDEST: Invalid number.
 NO_LICENSE: no licenses available.

Chapter 8: Other Features 8.2 Full Call Recording

108 VoiceGenie 7.2.2

 RESTRICTED_TELNO: Restricted telephone number.
 UNSUPPORTED_URL: url is unsupported.
 INVALID_TELNO: Invalid telephone number.
 USER_END: User hung up
 UNKNOWN_REASON <internal disconnect reason number>: unknown

reason

The <network disconnect reason> and the <protocol disconnect string>
are returned by the callmanager to give more information about the reason
the call was dropped.

8.1.6 Known Issues

 When the commands are sent to the telnet interface programmatically
without reading the reply back from the previously sent command, these
two commands may be received by the interface as a concatenated single
command. This would cause unexpected behavior.

 There is currently no way of terminating a call that was initiated using the
OB API.

8.2 Full Call Recording

8.2.1 Overview

A significant component of delivering voice services is the ability to tune and
troubleshoot those services. One component of this tuning involves the use of
logged information to understand the performance of ASR in a particular
application, or the call flow of a particular call.

However, in addition to using information logged about a call, it is also
desirable to capture the actual audio associated with a call. Although the
<record> tag provides some capabilities in this regard, a shortcoming of the
<record> tag is that only the input from the user can be recorded; output of the
platform is not capture by the <record> tag. Also, only one <record> may be
active at a given time, so it is not possible to record two audio files – one for
real application use (e.g. recording a voicemail) and the other for
tuning/debugging use.

In order to improve capabilities in the above areas, the following
improvements are made since 5.8:

 Recording capabilities of the call manager is extended to support a
selection of what actually gets recorded – input, or mixed input & output.
Using mixed input/output will have performance implications, however,
since these capabilities are generally used on either prototype systems or in

Chapter 8: Other Features 8.2 Full Call Recording

Media Platform — User’s Guide 109

a limited (spot check) fashion on production systems, this performance
impact will likely be acceptable.

 Multiple simultaneous recording operations is supported. This allows a
long-running tuning-oriented mixed recording to be performed
concurrently with normal application-level recording.

8.2.2 Enabling/disabling Full Call Recording

Existing VoiceGenie extensions to the <log> tag allow the destination for a
logging message to be controlled via the dest attribute. A new value is
supported for the dest attribute, and the actual text of the <log> tag control is
used to enable or disable logging of a particular type of information on a
particular call. Currently, only full call recording logging is supported.

The following are examples of enabling full call recording logging:

with VoiceGenie Legacy VoiceXML Interpreter:
<log dest=“calllog”>
 directory /usr/local/phoneweb/callrec;
 enable callrec recsrc=mixed;
 keep-files true;
</log>

with VoiceGenie NextGen VoiceXML Interpreter:
<log vg:dest="calllog">
 directory /usr/local/phoneweb/callrec
 enable callrec recsrc=mixed type=audio/x-wav
 keep-files true
</log>

Complete Full Call Recording Commands:

Note: In VoiceGenie NextGen VoiceXML Interpreter, semicolons are no
longer used as command delimiters and are simply ignored (or treated as part
of the command). Only line breaks are treated as command delimiters. As a
result, it is no longer possible to have multiple commands on a single line,
delimited by semicolons. Please refer to
VG_7_2_Application_Migration_Guide section Full Call Recording for more
details.

1. directory <local-directory-name> [absolute];

The directory command specifies the directory in which call-specific log
files will be collected.

Chapter 8: Other Features 8.2 Full Call Recording

110 VoiceGenie 7.2.2

<local-directory-name> specifies the directory, such as
/usr/local/phoneweb/callrec, in which audio/information will be
recorded. If this attribute is not provided, the Media Platform will make
use of the path as specified in the configuration parameter
calllog.directory which can be accessed via SMC.

The given directory will be treated as a root directory, and a subdirectory,
named based on the call ID of a call (in the format of <call
ID>.<timestamp in YYMMDDhhmmss format>.<file extension>), will be
created and used to store actual files for a particular call. If it is desired to
place the files in the directory directly, without a subdirectory, then this
can be achieved by specifying absolute as the last token on the directory
line.

If this command is not given, the default local directory, defined in
callmgr.cfg, will be used instead.

If specifying the directory in which to save the FCR files, it must be done
when the recording starts, along with the enable callrec command. It
must appear in the first instance of a <log> tag with the calllog destination
or it will be ignored. In particular, it is not possible to change the directory
later in the application by using only the line directory <New Directory>
as in the following example (shown using syntax for the Legacy
VoiceXML Interpreter):

<log dest="calllog">
 directory /usr/local/phoneweb/callrec/newdata;
</log>

However, if multiple files are created (by multiple Full Call Recording
sessions), it is possible to specify a different directory for each file. For
example, if a single VoiceXML application contains the following code
snippet (shown with syntax for the Legacy VoiceXML Interpreter), the
two resulting Full Call Recording files are saved in two different
directories:

<!-- start first recording -->
<log dest="calllog">
 directory /usr/local/phoneweb/callrec/dir1;
 enable callrec recsrc=mixed type=audio/basic;
</log>
... record for a while, then stop recording...
...
<!-- start second recording -->
<log dest="calllog">
 directory /usr/local/phoneweb/callrec/dir2;
 enable callrec recsrc=mixed type=audio/basic;
</log>

Chapter 8: Other Features 8.2 Full Call Recording

Media Platform — User’s Guide 111

2. enable callrec [recsrc=<in/mixed>] [type=<MIME-type>];

Enables call recording, or restarts call recording (in a new recording file) if
it has already been started. All audio data on the call from this point
forward will be recorded into the newly opened recording file. This will
continue until the call terminates, a subsequent enable callrec command is
issued, or until a disable callrec command is issued.

If recsrc=<in/mixed> is specified, it forces call recording to record the
inbound (from user), or mixed (combination of from & to user) audio
paths. If this attribute is not specified, mixed will be assumed.

If type=<MIME-type> is used, then the given MIME-type will be used to
determine the file type used for the recording. The list of MIME-types
supported is not specific to full call recording and is the same as defined
for the <audio> and <record> tags. Full rate G.711 raw files can be
recorded using audio/basic and audio/x-alaw-basic; G.726 raw files can
be recorded using audio/x-g726-24, audio/x-g726, etc. The reference for
the <record> tag will have up to date information with respect to MIME
types supported.

3. disable callrec;

Disables call recording, terminating any recordings in progress. Audio will
be recorded up until the point that this command is executed.

4. keep-files [true/false]

Controls whether or not files on the VG server are maintained after the call
is terminated; if set to true, files will be maintained, otherwise, they will
be deleted.
Note: The default value is true. This command may be issued at any time
while a call is active. The purpose of this capability is to keep files only if
the call ends in an error condition. If a call is disconnected due to
excessive <nomatch> events, the <nomatch> event handler could perform a
<log dest="calllog">keep-files true;</log> to retain temporary files on
the server.

8.2.3 Gain control

Fixed gain control for full call recording is a new feature introduced in release
7. It allows a fixed gain to be applied to all full call recordings when
recsrc=mixed is used, on a platform-wide basis. The gain level can be
configured via SMC using the following call manager parameter:
mediatransport.fcr.gain

Gain on FCR input from call participants (-30 to 30 dB)

Chapter 8: Other Features 8.3 RTSP URI Support

112 VoiceGenie 7.2.2

Default is set to 0.

8.2.4 Known limitations

 Due to prompt queuing feature, the <log> tag is sometimes processed
before the actual prompt is played. The general rule is that all <log> tags
within a queued prompt group are processed before the prompts are
played.

 It is only possible to enable full call recording by adding <log> tag to the
VXML application(s). It is currently not possible to turn on full call
recording at the platform level without adding <log> tag to the VXML
application(s).

 In pre-7.0, MIME-type cannot contain the semi-colon character

 The Full Call Recording files destination should not be a network mounted
file system (e.g. NFS), as it can block I/O operations and result in
unexpected Media Platform behaviors.

 For SIP devices that support multiple codecs, the configuration parameter
sip.transmitmultiplecodec must be set to 0 for full call recording to work
properly.

 For video-enabled Full Call Recording calls with recsrc set to mixed (note
that the mime type must be set to a file container that can record video),
the platform will always select platform output as the video source.

 For audio and video enabled FCR, if the input video stream has been
paused and resumed during the call, there will be audio video
synchronization problem in the recorded file.

8.3 RTSP URI Support

8.3.1 Overview

RFC2326 Real Time Streaming Protocol (RTSP) defines a protocol for control
over the delivery of data with real-time property. The VoiceGenie 7.2 Media
Platform supports RTSP URI that begins with ‘rtsp://’ in the <audio/> tag,
which allows development of VoiceXML applications that deliver media
content from a RTSP server to the end user. VCR control is also supported
with RTSP URI using the VoiceGenie audio control extensions.

The RTSP URI implementation of the VoiceGenie 7.2 Media Platform is
compatible with Real Helix Server and Apple Darwin Streaming Server.

Chapter 8: Other Features 8.3 RTSP URI Support

Media Platform — User’s Guide 113

8.3.2 RTSP Deployment Architecture

In a typical RTSP server deployment, the RTSP server resides on a separate
physical server, although it is also possible to run the RTSP server and the
Media Platform on the same physical server. When the Media Platform
attempts to play a RTSP prompt, it makes the request to the RTSP server
specified in the URI using the RTSP protocol. The request involves
confirming the availability of the requested media, ensuring the media codec is
supported, and setting up the RTP connection. If the request is successful, the
RTSP server will stream the requested media to the Media Platform via the
negotiated RTP connection. Note that TCP transport is used for the RTSP
connection. A new TCP/RTSP connection is created for each prompt and is
torn down when the prompt has completed.

When the Media Platform receives the RTP packets from the RTSP server, it
deframes the RTP packets and performs transcoding to the media if required.
The media is then re-packetized and transmitted to the SIP phone or SIP
gateway. The Media Platform does not directly forward the received RTP
packets to the SIP phone or the SIP gateway.

RTSP
Server

SIP Phone/
Gateway

Media
Platform

RTP

SIP

 RTSP

Chapter 8: Other Features 8.3 RTSP URI Support

114 VoiceGenie 7.2.2

8.3.3 Generate Media Files for RTSP Server

Video files such as 3GP or Quicktime files may have to be encoded with ‘Hint
Track’ in order to work with the RTSP server.

 Software such as QuickTime Pro will be able to generate video files with
‘Hint Track’.

 The Media Platfrom can record 3GP files with ‘Hint Track’ by enabling
the Call Manager Configuration parameter
mpc.mediamgr.recordrtphinttrack. For more information on this
parameter, please refer to the VoiceGenie 7.2 Media Platform System
Reference Guide.

Most Audio files should work with the RTSP server without requiring ‘Hint
Track’. For an accurate list of supported file containers and media codecs,
please refer to the documentation of the respective RTSP server.

Note that the media files must be encoded with audio and video codecs
supported by the Media Platform. Please refer to the VoiceGenie 7.2 Media
Platform System Reference Guide for the list of supported audio and video
codecs.

8.3.4 VCR Control

VCR control is supported with RTSP URI using the VoiceGenie audio control
extensions. Two type of VCR control is supported depending on the Media
Platform’s configuration and the RTSP server’s capabilities.

VCR native mode is implemented using internally buffered data in the Media
Platform. It is used to provide limited VCR control support for RTSP prompts
when the RTSP server does not support RTSP PAUSE or the RTSP PLAY
range parameter. The limitations of the VCR native mode are mentioned in
the Known Limitations section below.

VCR enhanced mode provides much improved user experience by making use
of the RTSP PAUSE and RTSP PLAY range parameter. When the Media
Platform detects a VCR command, it calculates the desired media offset and
checks whether the request can be fulfilled by the internal buffer. If the
internal buffer does not contain the requested data, it stops the RTSP stream
using the RTSP PAUSE command, and issues a new RTSP PLAY command
with the range parameter that specifies the desired start offset. As a result, the
media data available for VCR control is no longer limited by the internal
buffer size. VCR enhanced mode is the default VCR mode.

Chapter 8: Other Features 8.3 RTSP URI Support

Media Platform — User’s Guide 115

To use the VCR enhanced mode, the RTSP server must support both RTSP
PAUSE and RTSP PLAY range parameter. Otherwise VCR native mode will
be used.

The default RTSP server capability can be specified using the Call Manager
Configuration parameters rtsp.mediamgr.pause and rtsp.mediamgr.playrange.
The capabilities can be enabled or disabled by setting the parameters to 1 or 0
respectively. For detailed description of the parameters, please refer to the
VoiceGenie 7.2 Media Platform System Reference Guide.

The RTSP server capability can also be specified on a per-session basis. The
URI parameters vg-rtspserver-pause and vg-rtspserver-playrange can be
specified in the RTSP URI. The capabilities can be enabled or disabled by
setting the parameters to 1 or 0 respectively

For instance, the following RTSP URI specifies that RTSP PLAY range is not
supported, as a result native VCR will be used.

rtsp://139.48.28.3/welcome.3gp;vg-rtspserver-pause=1;
vg-rtspserver-playrange=0

8.3.5 Known Limitations

 Using VCR native mode, users can only skip back to the beginning of the
data buffered in the Media Platform. In addition, skipping back to the
previous prompt is not allowed.

 Using VCR native mode, users will experience delay when trying to skip
forward.

 When the Media Platform failed to play an RTSP prompt due to error
returned from the RTSP server, the Legacy Interpreter will throw an
error.internal event, and will not continue with the rest of the prompts.
The Next Generation Interpreter will continue to play the rest of the
prompts.

Media Platform — User’s Guide 117

This section describes how the system does logging, metrics, and tracing, and
how data collection can be manipulated. Also discussed is the real-time call
monitor, and explanations for the health string entries retrievable via the CLC
and SMC.

9.1 Metrics and Logging/Billing

9.1.1 General Metrics

Metrics data is currently written to file(s) on the platform. The file
pw_billingfile is obsolete and removed from the system since release 6.4. All
the billing information is now incorporated into pw_metricsfile under
/usr/local/phoneweb/logs (linux) or ($INSTALLROOT)\mp\logs (windows)
directory.

This data can be migrated off the platform for archival, or processed to
generate unified Call Detail Records (CDRs). The current version of the
VoiceGenie platform can migrate these records to an offboard MySQL
database where it can be accessed later to create CDRs.

Each record has the following fields:

Field Contents

Timestamp Timestamp structured as yyyy-mm-dd/hh:mm:ss.mmm.
Time is 24 hour, based on the platform timezone.

Record Type Always METRIC

Session ID Globally unique session identifer.

Chapter

9 Operations

Chapter 9: Operations 9.1 Metrics and Logging/Billing

118 VoiceGenie 7.2.2

Field Contents

Operation incall_initiated, incall_begin, incall_end,
incall_reject, bridge_initiated, bridge_begin,
bridge_reject, call_initiated, call_begin,
call_end, call_reject, outcall_requested,
outcall_initiated, outcall_begin, outcall_end,
outcall_reject, transfer_initiated,
transfer_connected, transfer_result,
call_reference

Operation Data Data specific to the record

The session identifier can be used to assemble all information related to a
specific telephone call, or ‘session’.

The first phrase of the metrics ID corresponds to the type of the entry. The
second phrase of the metrics ID is either requested for requested, initiated
for initiated, begin for begin, reject for reject, or end for end. The exception is
the transfer_result entry that corresponds to a transfer request for
transferring or redirecting a call off the platform. A begin or end entry
corresponds to a call connect or disconnect event.

If you have a begin, then you will have an end only, not a reject; and with a
reject you will not have a begin or end. But in all cases, initiated will be
logged prior to begin or reject. For outcall entry, requested entry exists even
before initiated to specify a stage where outbound trunk is not selected yet.

For details for each Metrics Entries, please refer to the VoiceGenie 7.2 Media
Platform System Reference Guide.

Note: the session ID for transfer_result is always the parent ID

9.1.2 Metrics for Transfer

Metrics behavior for transfer depends on the transfer style (see Call Transfer
for details) to which the transfer method belongs.

Transfer Style Method

One-leg hkf, refer, inband

Join h450join, referjoin

Bridge Bridge, mediaredirect

The following table shows how metrics is logged for each transfer style:

Chapter 9: Operations 9.2 Alarms in Media Platform

Media Platform — User’s Guide 119

Style Accepted Rejected

One-leg transfer_initiated

(transfer_connected)*

transfer_result

* Only for whisper transfer

transfer_initiated

transfer_result

Join transfer_initiated

bridge_initiated

(bridge_begin)*

transfer_result

bridge_end

* May not be logged for type=“blind”

transfer_initiated

bridge_initiated

transfer_result

bridge_reject

Bridge bridge_initiated

bridge_begin

bridge_end

bridge_initiated

bridge_reject

Please see VoiceGenie 7.2 Media Platform System Reference Guide to get
detailed information about the metric entries.

9.2 Alarms in Media Platform
The VoiceGenie 7.2 Media Platform can be configured to logs alarms and
potential problems into the system log, with six levels of severity: CRTI
(critical), EROR (error), WARN (warning), NOTE (notice), INFO (information) and
DEBUG.

When an unexpected behavior occurs when running the VoiceGenie 7.2 Media
Platform, it is recommended to first check if there is any alarm through SMC’s
Alarm Browser (please see the next 2 sections).

Please see VoiceGenie 7.2 Media Platform System Reference Guide to get
detailed information about the definitions, impacts, potential causes as well as
recommended actions for all possible alarms of various Media Platform
components.

9.2.1 Syslog

If the SYSLOG sink is enabled alarms and logs can be sent to the system log.
Under Linux and Solaris the logs are sent to Syslog, which is a deamon
process that listens for data on port 514. All data received is written to a log
file, by default this file is found at /usr/local/phoneweb/logs/pw_logfile.

Chapter 9: Operations 9.2 Alarms in Media Platform

120 VoiceGenie 7.2.2

Under Windows the logs are sent to the Application Log in Event Viewer,
which can be accessed under the Administrative Tools section of the Control
Panel.

Note: On Linux and Solaris Syslog writes logs to the
/usr/local/phoneweb/logs/pw_logfile file, if this file is deleted the
Syslog needs to be restarted to recreate this file. To start, stop or restart
Syslog you must be the root user. To become the root user log in to the
system and type in su, then enter the root password when prompted.

Then, to start the Syslog, issue the following command:

/etc/init.d/syslogd start

Then, to stop the Syslog, issue the following command:

/etc/init.d/syslogd stop

Then, to restart the Syslog, issue the following command:

 /etc/init.d/syslogd restart

9.2.2 Alarm Browser

The Alarm Browser allows users to view all detailed logging and alarming
data that is logged into the database. This includes any alarms (i.e. Critical,
Error, Warning), any general logs (Notice, Info, Debug) and call metrics
information. The Alarm Browser can be accessed via the SMC interface. The
following is a screenshot of the Alarm Browser:

Chapter 9: Operations 9.2 Alarms in Media Platform

Media Platform — User’s Guide 121

Users can search the logs using the various search criteria. The search criteria
include the cluster or server from where the log was created, the type of log
(i.e. Critial, Error, Warning, Notice, Info, Debug or Metric), the Log ID of the
log or by text in the info field. Note that this page can be set to be refreshed if
desired. In general this is a good place to check for alarms and for system and
service impacting conditions.

The color of the row in the results table signifies the severity of the logged
event. The events are color coded by severity as follows:

Color Severity

 Critical

 Error

 Warning

 Notice

 Information

 Debug

 Metrics

Chapter 9: Operations 9.3 Health Status

122 VoiceGenie 7.2.2

Also, each event has a timestamp for time at which the event occurred, the
type (i.e. severity), the associated callID if one exists, the Log ID of the log
(this value is a hexadecimal value), the source IP of the log, the source
component of the log and the information text. Please consult Appendix A of
the VoiceGenie 7.2 OA&M Framework User’s Guide for a better
understanding of the Log ID field.

9.3 Health Status

9.3.1 Overview

Users can retrieve real time health status of the Media Platform by:

1. Using the health command of CLC

2. Checking the Status Monitor of SMC

CLC health command

By simply issuing a health command, the CLC will return a summary of the
health status of all Media Platform components. Here is a snapshot:

Chapter 9: Operations 9.3 Health Status

Media Platform — User’s Guide 123

To view the health information for a particular component, issue the
command:
health <service>

e.g. health callmgr

In general most of the components have a time stamp of when they were last
started. Details for the health string content for each individual Media Platform
components will be discussed in the following sections. For further
information regarding CLC, please refer to:

VoiceGenie 7.2 OA&M Framework – CLC User’s Guide

SMC Status Monitor

The Status Monitor can be accessed under the Monitoring tab of SMC. Here is
a snapshot:

Chapter 9: Operations 9.3 Health Status

124 VoiceGenie 7.2.2

It shows the overall call status of the Media Platform. Further information for
each of the components can be accessed by clicking on the respective square
of the service, close to the bottom of the page.

For example, this is what a user would get by clicking on the square associated
with the Call Manager:

Chapter 9: Operations 9.3 Health Status

Media Platform — User’s Guide 125

The information displayed is the same as what can be achieved via the CLC
health command, except that the Status Monitor shows additional information
such as CPU Usage and Memory Usage.

For further information regarding SMC, as well as other functions of the
Status Monitor, please refer to:

VoiceGenie 7.2 OA&M Framework – SMC User’s Guide

9.3.2 Call Manager

Here is a snapshot of the health string output of the call manager:

 Status – shows the current operation status of the Call Manager, which
can be one of: ONLINE, SUSPENDED or OFFLINE

Chapter 9: Operations 9.3 Health Status

126 VoiceGenie 7.2.2

 Session – shows the number of call sessions in the Call Manager. Current
indicates the number of currently active session; Peak indicates the
maximum number of concurrent sessions thus far since the Call Manager
has started; and Total indicates the total number of all calls. Note that
these figures are the sum of the respective figures from all individual line
managers.

Note: The Current session count reflects the number of logical call
objects currently exist in the system. For efficiency, disconnected
call objects are purged periodically. Hence, even if a call is
disconnected and the channel is freed for the next call, the call
object may still not undestroyed yet until the purge and this may
cause slight inaccuracy to the Current session count.

 VXMLi Attempted Connection – shows the number of connection attempts
the Legacy Interpreter(s) has/have made.

 VXMLi Enabled – shows the number of enabled Legacy Interpreter
instances. VoiceGenie 7.2 Media Platform is capable of supporting more
than one Legacy Interpreter instances at a time.

 VRM Engines – shows the TTS/ASR Voice/Speech resources that are
accessible by the Call Manager.

 All line managers have a Calls entry which shows information call
information in terms of inbound and outbound calls. For the meanings of
Current, Peak and Total please refer to the definition of the Session entry
above.

9.3.2.1 VoIP Line Managers

Here are the snapshots of the health string outputs of the SIP and H.323 line
managers:

The integer on the right hand side of the VoIP Protocol (SIP or H.323)
indicates the port number on which the Call Manager is using for
sending/receiving calls.

The SIP line manager can be configured to register with a SIP Registrar, using
the parameter sip.registration; similarly, the H.323 line manager can be
configured to register with a H.323 Gatekeeper using the parameter
h323.ras.registrationinfo. The health string entries Registrar(s) and
Gatekeeper show such status.

Chapter 9: Operations 9.3 Health Status

Media Platform — User’s Guide 127

9.3.3 Legacy Interpreter (VXMLi)

Here is a snapshot of the health string output of the Legacy Interpreter:

 Started – indicates the date and time when the vxmli process was started

 Sessions –
 Current <number of current running/active sessions> (<peak

number of concurrent active sessions>)
 Total <Total number of sessions>

9.3.4 Fetching Module/Web Proxy (iproxy)

Here is a snapshot of the health string output of the Web Proxy:

 Started – indicates the date and time when the iproxy process was started

 Sessions –
 Active <Number of currently active sessions that have active

clients> (<Peak number of concurrent active sections>)
 Open <Number of currently open sessions, whether they are active

and inactive> (<Peak number of concurrent open sessions)
 Total <Total number of sessions>

 Cache –
 Size <Size of the shared memory cache being used in Mbytes>

(<Peak size of the shared memory cache concurrently being used
in Mbytes>)

 Limit <Limit of the shared memory cache in Mbytes, obtained from
configuration parameter iproxy.cache_max_size>

 Max age <Maximum age for data cached in the fetching module in
seconds, obtained from configuration parameter
iproxy.cache_max_age>

 Errors <Total number of failed fetches>

Chapter 9: Operations 9.4 Preventive Maintenance

128 VoiceGenie 7.2.2

 Fetches –
 Active <Number of currently active fetches initiated by the

fetching module to the HTTP proxy/server> (<Peak number of
concurrent active fetches initiated by the fetching module to
the HTTP proxy/server>) / <Maximum number of concurrent active
fetches allowed to be initiated by the fetching module to the
HTTP proxy/server, obtained from configuration parameter
iproxy.max_connections >

 Cached <Number of entries currently in the fetching module’s

cache> (<Peak number of cached entries>)
 Total <Total number of fetches initiated by the fetching module

to the HTTP proxy/server> + <Total number of fetches to retrieve
files from local machine or remote machines>

 Size <Total data size obtained from fetches initiated by the
fetching module to the HTTP proxy/server> + <Total data size
obtained from fetches to retrieve files from local machine or
remote machines>

 Requests –
 Queued <Number of currently pending requests received from

clients> (<Peak size of the pending request queue>)

 Open <Number of currently opened requests received from clients,

including active requests and pending requests> (<Peak number of
concurrently opened requests received from cliens, including
active requests and pending requests>)

 Total <Total number of HTTP requests received from clients.
Please note that not every request received from a client will
initiate a fetch to the HTTP server/proxy. If a fresh response
is cached, the cached response will be sent back to the client.>
+ <Total number of requests received from clients to retrieve
file from local machine or remote machines. Please note that if
a client requests a file that is in the cache, the Fetching
Module will return the cached file to the client>

 Size <Total data size sent to clients upon HTTP requests> +
<Total file size sent to clients>

9.4 Preventive Maintenance
There are a number of performance and stability related recommendations that
are relevant when deploying the VoiceGenie platform in various
configurations. This section provides a summary of these recommendations.
Failure to follow these recommendations may lead to performance or stability
issues.

Chapter 9: Operations 9.4 Preventive Maintenance

Media Platform — User’s Guide 129

 Turn all VoiceGenie tracing off

VoiceGenie tracing is only intended to be used to resolve platform issues
when so instructed by VoiceGenie technical support. Disabling of tracing
will reduce the overall load on the system and the system will be less
likely to experience problems.

This can be achieved by setting the parameter cmp.trace_flag to false via
SMC for each and every VoiceGenie components. It can also be done via
the CLC tracelevel command.

For details please refer to the “Enabling or Disabling Tracing/Debugging”
section of the VoiceGenie 7.2 OA&M Framework User’s Guide, and the
“General Component Operation Commands” section of the VoiceGenie 7.2
OA&M Framework – CLC User’s Guide.

 Ensure the savetmpfiles property is turned off when not needed for
debugging purposes.

This property saves all intermediate files related to VoiceXML page
processing, and can provide useful information for debugging of a
complex application. Note this property can be set in any location in an
application. To ensure this is turned off, please check the application root
document (defaults.vxml for Legacy Interpreter, defaults-ng.vxml for
Next Generation Interpreter), as well as each page in the application. If
you are using savetmpfiles, be sure to periodically purge the (VoiceGenie
Software install root)/tmp directory.

 Turn off redundant logging of audio sent to an ASR engine.

It is often possible (depending upon the ASR engine) to capture utterances
at more than one place in the system. For example, in the BBN ASR
engine, both the VoiceGenie ASR client, and the Hark ASR client
component can capture utterances. To turn off utterance captures, set the
com.voicegenie.saveutterance property to false, or simply remove the
property from your application.

 Enable syslog rotation

If the syslog rotation is off, the messages file may become large. It then
becomes more costly for the OS to seek to the end of the file and there is
more load on the system.

 Do not delete any of the pre-created directories

A number of directories are created after the Media Platform installation
(such as logs, tmp, config, audio, utterance, etc.). These directories are
crucial for proper operations of the system. Please do not destroy or
rename any of these directories.

Media Platform 131

This appendix will describe various aspects of the Burke Draft
(http://tools.ietf.org/id/draft-burke-vxml-02.txt) and whether or not the feature
is supported by the VoiceGenie 7.2 Media Platform with the Next-Generation
VoiceXML Interpreter.

The Burke Draft describes a SIP interface to VoiceXML media services.
Sections relevant to this appendix include section 2 VoiceXML Session
Establishment and Termination, section 3 Media Support, section 3 Returning
Data to the Application Server, section 5 Outbound Calling, and section 6 Call
Transfer.

A.1 Support
This section of the appendix will describe each section of the Burke Draft and
the current support status.

Req
ID

Burke
Draft
Section

Requirement Current
Support

Notes

1 2.1 The parameters voicexml, maxage,
maxstale, method, postbody as per
[RFC4240].

SUPPORTED

Appendix

A Burke Draft Support

Appendix A: Burke Draft Support A.1 Support

132 VoiceGenie 7.2.2

Req
ID

Burke
Draft
Section

Requirement Current
Support

Notes

2 2.1 The parameter “timeout” for the initial
fetch of the URI.

The parameter “gvp.defaultsvxml” which
allows a user to select which
defaults.vxml page to use.

Note: Not explicitly defined in Burke
Draft, but used in a similar fashion.

SUPPORTED The “timeout”
parameter sets the
timeout for requesting
the URI, and will
override a default
value.

The
“gvp.defaultsvxml”
parameter set the
defaults.vxml page. It
can only be used in
conjunction with a
“voicexml” parameter.

3 2.1 Incorrectly formed requests rejected with
4xx class response.

NOT
SUPPORTED

To continue support of
non-Burke Draft
formatted requests.

4 2.1 Repeated init-parameters rejected with
400 Bad Request response.

SUPPORTED

5 2.1 URL-Encoding of parameters. SUPPORTED

6 2.2 Upon receipt of INVITE, a provisional
response, 100 Trying, will be sent,
followed by a 200 OK once the document
is fetched. After the ACK is received, the
application will begin executing.

SUPPORTED

7 2.2 Optimization: Execute the application up
to point of the first VoiceXML waiting
state or prompt flush before sending 200
OK response.

NOT
SUPPORTED

This feature is not
currently supported.

8 2.2 Request-URI does not conform to the
Burke Draft, return 400 Bad Request

NOT
SUPPORTED

To continue support of
non-Burke Draft
formatted requests.

9 2.2 voicexml parameter not provided and
default page not configured, return 400
Bad Request and 399 with human
readable error message.

NOT
SUPPORTED

To continue support of
non-Burke Draft
formatted requests.

10 2.2 If the VoiceXML document cannot be
fetched or parsed, return 500 Internal
Error.

SUPPORTED Requires that
vxmli.default.alternate
_uri is not set in the
call manager
configuration.

Appendix A: Burke Draft Support A.1 Support

Media Platform 133

Req
ID

Burke
Draft
Section

Requirement Current
Support

Notes

11 2.2 Include a Warning header with a 3-digit
code of 399 and human readble error
message in the message generated in item
2.2.5.

SUPPORTED

12 2.2 When an INVITE request exceeds the
MTU of the underlying network, a
transport mechanism appropriate to larger
messages (such as TCP) will be used.

SUPPORTED

13 2.3 Upon starting a media-less Dialog –
INVITE without media; 200 OK with
offered media; ACK with Media but
media port(s) set to 0 OR INVITE with
SDP containing no media lines followed
by regular INVITE / 200 / ACK flow –
the VoiceXML page is not executed until
a re-INVITE with port information is
sent.

SUPPORTED

14 2.3 Once a VoiceXML application is running,
a re-INVITE that disables media stream
(i.e. sets the port to 0) will not affect the
executing application (timers still
running).

SUPPORTED

15 2.4 Support for the variable
session.connection.local.uri as described
in the Burke Draft.

SUPPORTED

16 2.4 Support for the variable
session.connection.remote.uri as
described in the Burke Draft.

SUPPORTED

17 2.4 Support for the
session.connection.redirect variable as
described in the Burke Draft.

SUPPORTED

18 2.4 Support for evaluating the variable
session.connection.protocol.name to “sip”

SUPPORTED

19 2.4 Support for evaluating the variable
session.connection.protocol.version to
“2.0”

SUPPORTED

Appendix A: Burke Draft Support A.1 Support

134 VoiceGenie 7.2.2

Req
ID

Burke
Draft
Section

Requirement Current
Support

Notes

20 2.4 Support for the
session.connection.protocol.sip.headers
variable as described in the Burke Draft.

SUPPORTED Set
sip.in.invite.headers =
*, and add
session.connection.
protocol.sip.headers|
Sip.Invite|6 to
vxmli.session_vars in
the Call Manager
configuration.

21 2.4 Using the variable
session.connection.protocol.sip.requesturi
as an associative array formed from the
URI parameters as described in the Burke
Draft.

SUPPORTED

22 2.4 Support for the session.connection.aai
variable as described in the Burke Draft.

SUPPORTED

23 2.4 Support for the session.connection.ccxml
as described in the Burke Draft.

SUPPORTED

24 2.4 Using
session.connection.protocol.sip.media as
an array where each array element is an
object with the properties outlined in
items 2.4.10.1 to 2.4.10.3.

Note: This parameter will be updated as
the media values involved in the session
change.

SUPPORTED

25 2.4 Array element property: type SUPPORTED

26 2.4 Array element property: direction SUPPORTED

27 2.4 Array element property: format for each
payload type on the m-line

SUPPORTED

28 2.5 Upon receipt of a BYE, a 200 OK is sent
as a response and a
‘connection.disconnect.hangup’ event is
thrown

SUPPORTED

29 2.5 If a Reason header [RFC3326] is present
in the BYE Request, the value of the
Reason header is provided verbatim via
the ‘_message’ variable.

SUPPORTED Set
sip.in.bye.head
ers = Reason in
the Call Manager
configuration.

Appendix A: Burke Draft Support A.1 Support

Media Platform 135

Req
ID

Burke
Draft
Section

Requirement Current
Support

Notes

30 2.5 Termination of a session by issuing a
BYE request due to encountering a
<disconnect>, <exit>, the application
running to completion, or due to
unhandled errors within the application.

SUPPORTED

31 3.1 Offer/answer mechanism of [RFC3264] SUPPORTED

32 3.2 Early media support with a 183 Session
Progress response

PARTIALLY
SUPPORTED

The media connections
will be established
when a 183 Session
Progress message is
sent, but early media
will not be played. To
perform this operation,
set sip.sendalert = 2.

33 3.2 Matched SDP payload in final 200 OK
response if SDP information sent in 183
Session Progress response

SUPPORTED

34 3.3 Allow the media session to be modified
via a re-INVITE.

SUPPORTED

35 3.4 Support for G.711 mu-law and A-law
support with payload type 0 and 8.

SUPPORTED Set mpc.codec = pcmu
pcma

36 3.4 Support for other audio codecs and
payload formats.

SUPPORTED Set mpc.codec as
specified for various
codecs.

37 3.4 Support for H.263 Baseline. SUPPORTED Set mpc.codec = h263

38 3.4 Support for AMR-NB audio. SUPPORTED Set mpc.codec = amr

39 3.4 Support for MPEG-4 video. NOT
SUPPORTED

This format is not
currently supported.

40 3.4 Support for MPEG-4 AAC audio. NOT
SUPPORTED

This format is not
currently supported..

41 3.4 Support for other video codecs and
payload formats.

SUPPORTED

42 3.5 Support for DTMF events [RFC2833]. SUPPORTED

Appendix A: Burke Draft Support A.1 Support

136 VoiceGenie 7.2.2

Req
ID

Burke
Draft
Section

Requirement Current
Support

Notes

43 3.5 Other means for DTMF detections (ie,
inband DTMF detections)

NOT
SUPPORTED

Inband DTMF
detection is not
supported with this
release. Future
releases may have this
feature.

44 4.2 Support encoding of the expr / namelist
data in the message body of the BYE
request sent from the VoiceXML Media
Server as a result of encountering the
<exit> or <disconnect> element.

SUPPORTED

45 4.2 Including the expr / namelist data in
response to BYE request.

NOT
SUPPORTED

This feature is not
currently supported.

46 4.2 Sending a 100 Trying provisional
response to the BYE request as per
[RFC4320].

NOT
SUPPORTED

Since item 4.2.2 is not
supported, the response
time of the response
will not slow enough to
warrant this
requirement.

47 4.2 __reason=exit in BYE request initiated
due to the <exit /> tag.

SUPPORTED

48 4.2 __exit=<value> when expr paramter is
used in <exit /> tag. i.e. <exit
expr=”<value>”>

SUPPORTED

49 4.2 If namelist parameter is used, support
encoding the values as per Requirement
44.

SUPPORTED Set
sip.bye.content
type =
application/x-
www-form-
urlencoded;char
set=utf-8 .

50 5.1 Support for third party call control
mechanisms as displayed in section 2.6.2
of the Burke Draft.

SUPPORTED

51 5.2 On receipt of the REFER request,a
provision 100 Trying response, followed
by a 202 Accepted response once the page
has been fetched and parsed correctly,
following by an output INVITE.

NOT
SUPPORTED

Appendix A: Burke Draft Support A.1 Support

Media Platform 137

Req
ID

Burke
Draft
Section

Requirement Current
Support

Notes

52 6.1 Blind transfer initiated using the REFER
message [RFC3515] on the original SIP
dialog, with Refer-To header containing
the URI as specified via the ‘dest’ or
‘destexpr’ in the <transfer> tag.

SUPPORTED Set
sip.defaultblin
dxfer = REFER

53 6.1 If event accept,
connection.disconnect.transfer event will
be thrown.

SUPPORTED

54 6.1 Use of [RFC4488] to suppress implicit
subscription associated with REFER
message.

NOT
SUPPORTED

Not a requirement of
this platform.

55 6.1 REFER response a non-2xx response
mapping to the events listed in
Requirement 56 to 59.

SUPPORTED

56 6.1 404 Not Found =
error.connection.baddestination

SUPPORTED

57 6.1 405 Method Not Allowed =
error.unsupported.transfer.blind

SUPPORTED

58 6.1 503 Service Unavailable =
error.connection.noresource

SUPPORTED

59 6.1 (No reponse) = network_busy SUPPORTED

60 6.1 (Other 3xx/4xx/5xx/6xx) = unknown SUPPORTED

61 6.1 Appending aai / aaiexpr to Refer-To URI
as a parameter named “aai”. Reserved
characters are URL-encoded.

SUPPORTED

62 6.2 Appending aai / aaiexpr to Request-URI
as a parameter named “aai”. Reserved
characters are URL-encoded.

SUPPORTED

63 6.2 Support for playing the audio specified in
the transferaudio attribute.

SUPPORTED

64 6.2 Early media from Callee to Caller if
transferaudio attribute is omitted.

PARTIALLY
SUPPORTED

The “connectwhen”
attribute will define
when the two media
streams should be
bridged.

65 6.2 Setting the <transfer>’s form attribute to
noanswer after issuing a CANCEL when
the connecttimeout expires.

SUPPORTED

Appendix A: Burke Draft Support A.1 Support

138 VoiceGenie 7.2.2

Req
ID

Burke
Draft
Section

Requirement Current
Support

Notes

66 6.2 INVITE response a non-2xx response
mapping to the events listed in
Requirement 67 to 73.

SUPPORTED

67 6.2 404 Not Found =
error.connection.baddestination

SUPPORTED

68 6.2 405 Method Not Allowed =
error.unsupported.transfer.bridge

SUPPORTED

69 6.2 408 Request Timeout = noanswer SUPPORTED

70 6.2 486 Busy Here = busy

(480 Temporarily Unavailable)

SUPPORTED

71 6.2 503 Service Unavailable =
error.connection.noresource

SUPPORTED

72 6.2 (No reponse) = network_busy SUPPORTED

73 6.2 (Other 3xx/4xx/5xx/6xx) = unknown NOT
SUPPORTED

Refer to VoiceGenie
7.2 Media Platform
System Reference
Guide for specific
platform behavior.

74 6.2 “Listening” for speech or DTMF hotword
results in a near-end disconnect for User
Agent 2.

SUPPORTED

75 6.2 Call duration exeeds maximum duration
specified in the maxtime attribute results
in a near-end disconnect for User Agent
2.

SUPPORTED

76 6.2 If User Agent 2 disconnects, the
<transfer>’s form item variable receives
the value far_end_disconnect and
connection.disconnect.transfer is thrown.

SUPPORTED

77 6.3 Same as Requirement 57 but substitute
error.unsupported.transfer.consultation
for error.unsupported.transfer.blind.

SUPPORTED

78 6.3 Support consultation transfer similar to
what is illustrated in the diagram in
section 6.3 of the Burke Draft.

SUPPORTED Set
sip.defaultconsultxfer
= REFERJOIN

Appendix A: Burke Draft Support A.1 Support

Media Platform 139

Req
ID

Burke
Draft
Section

Requirement Current
Support

Notes

79 6.3 Support throwing
connection.disconnect.transfer event upon
receipt of 200 OK to NOTIFY request.

SUPPORTED

80 6.3 A non-2xx response to the NOTIFY
request sets the associated VoiceXML
input item variable to ‘unknown’.

NOT
SUPPORTED

Refer to VoiceGenie
7.2 Media Platform
System Reference
Guide for specific
platform behavior.

Media Platform 141

Revision Theory

Version Date Change Summary Author/Editor

Draft July 5th, 2004 Initial release Ates Goral/Anthony Lam

0.9 August 3rd, 2004 Second Draft David Lee

1.0 Nov 25th, 2004 Updates for 6.4.2 Anthony Lam

1.1 March 10th, 2005 Updates for VoiceGenie 7 Andrew Ho

1.2 April 13th, 2005 Final Revision for VoiceGenie 7 Andrew Ho

1.2.1 July 21st, 2005 PR 14031A David Lee

1.3 August 23rd, 2005 Updated reference to signalvar Andrew Ng

1.4 August 16th, 2006 Updated for Release 7.1 Andrew Ho /Anthony Lam

1.5 October 16th, 2007 Updated for Release 7.2 Andrew Ng

1.6 April, 3rd, 2009 Updated for ER 221656841 Lin Chen

1.7 June 4th, 2009 Updated for ER211055448,
ER173363157

Lin Chen

1.8 July 22nd, 2009 ER230976089 Lin Chen

1.9 September 16th, 2009 Updated for ER 226426477 Lin Chen

2.0 October 1st, 2009 Updated for ER 236969648 Lin Chen

	Introduction
	1.1 Terminology
	1.2 Document Structure
	1.3 Further Information
	1.3.1 VoiceGenie Documents
	1.3.2 Third Party Documents
	1.3.3 Genesys Web Sites
	1.3.4 Third Party Web Sites
	1.3.5 Related Standards and Specifications

	VoiceGenie 7.2 System Overview
	2.1 The Media Platform
	2.1.1 Call Manager
	2.1.2 The VoiceXML Interpreter
	2.1.3 The Fetching Module

	2.2 Speech Resource Manager (SRM)
	2.3 Operation, Administration and Management (OA&M)
	2.4 Other VoiceGenie Components
	2.4.1 SIP Proxy
	2.4.2 CTI Connectors
	2.4.3 Call Control XML (CCXML) Platform

	Running Applications on the Media Platform
	3.1 Application Provisioning (DNIS – URL Mapping)
	3.1.1 Choosing Defaults for Each Application
	3.1.2 Multiple Default Settings

	3.2 VoiceXML Applications and the VoiceXML Interpreters
	3.2.1 URL Reference Syntax Supported by the VoiceXML Interpreter
	3.2.2 Communicating with the Legacy Interpreter via CLC
	3.2.3 Limitations

	3.3 Conferencing
	3.3.1 Conferencing via SIP Interface
	3.3.2 Conferencing via VXML Interface

	3.4 Application Count Service (Partition Definition)
	3.4.1 Activate PortCount CMAPI application
	3.4.2 Associate PortCount application with partition name in DNIS-URL mapping
	3.4.3 Define Partition
	3.4.4 Alarms and Metrics

	3.5 HTTP/HTTPS Support
	3.6 Caching in VoiceGenie 7.2 Media Platform
	3.6.1 Caching Architecture
	3.6.2 Web Proxy caching
	3.6.3 Caching policies
	3.6.4 How to use maxage and maxstale attributes
	3.6.5 Determination of an Expiry Time
	3.6.6 Squid Caching Proxy

	Network Interfaces
	4.1 SIP
	4.1.1 Standards
	4.1.2 SIP Call Connection Mechanisms
	4.1.3 Interoperability
	4.1.4 SIP INFO support
	4.1.5 SIP customizable headers and parameters
	4.1.6 Codec Negotiation
	4.1.7 Enabling SIP TCP Support
	4.1.8 Burke Draft Support
	4.1.9 Limitations

	4.2 H.323
	4.2.1 Standards
	4.2.2 Architectures
	4.2.3 Interoperability
	4.2.4 Codec Negotiation
	4.2.5 Limitations

	4.3 RTP Support
	4.3.1 Standards
	4.3.2 General Usage
	4.3.3 DTMF

	4.4 Multiple Line Managers

	Call Control
	5.1 Incoming Call
	5.2 Outgoing Call

	Call Control
	5.2.1 Dialing Rules
	5.2.2 Destination Format (VoIP)
	5.3 Call Routing in VoIP
	5.3.1 IP/PSTN gateway
	5.3.2 SIP Proxies/Registrars
	5.3.3 H.323 Gatekeeper

	Call Transfer
	6.1 General Information
	6.2 Transfer Framework
	6.2.1 Type and Method
	6.2.2 Backward Compatibility with VoiceXML 2.0

	6.3 VoIP Transfer
	6.4 Whisper Transfer
	6.5 CTI Call Release

	Video Support
	7.1 Overview
	7.2 Video Deployment Architectures
	7.3 Supported Protocols and Specifications
	7.4 VoiceXML Feature Support
	7.5 Advanced VoiceGenie Feature Support
	7.5.1 VCR Controls
	7.5.2 Advanced Barge-in Features
	7.5.3 Conferencing
	7.5.4 Full Call Recording
	7.5.5 Media Redirect Transfer
	7.5.6 SIP/NETANN Access

	7.6 Known Issues and Limitations

	Other Features
	8.1 Remote Dial
	8.1.1 Overview
	8.1.2 System Requirements
	8.1.3 Socket API
	8.1.4 Telnet/Socket Interface
	8.1.5 How to Make a Call
	8.1.6 Known Issues

	8.2 Full Call Recording
	8.2.1 Overview
	8.2.2 Enabling/disabling Full Call Recording
	8.2.3 Gain control
	8.2.4 Known limitations

	8.3 RTSP URI Support
	8.3.1 Overview
	8.3.2 RTSP Deployment Architecture
	8.3.3 Generate Media Files for RTSP Server
	8.3.4 VCR Control
	8.3.5 Known Limitations

	Operations
	9.1 Metrics and Logging/Billing
	9.1.1 General Metrics
	9.1.2 Metrics for Transfer

	9.2 Alarms in Media Platform
	9.2.1 Syslog
	9.2.2 Alarm Browser

	9.3 Health Status
	9.3.1 Overview
	9.3.2 Call Manager
	9.3.3 Legacy Interpreter (VXMLi)
	9.3.4 Fetching Module/Web Proxy (iproxy)

	9.4 Preventive Maintenance

	Burke Draft Support
	A.1 Support

