
IVR SDK 8.5 C

Developer’s Guide

The information contained herein is proprietary and confidential and cannot be disclosed or duplicated
without the prior written consent of Genesys Telecommunications Laboratories, Inc.

Copyright © 2000–2014 Genesys Telecommunications Laboratories, Inc. All rights reserved.

About Genesys
Genesys is the world's leading provider of customer service and contact center software—with more than 4,000
customers in 80 countries. Drawing on its more than 20 years of customer service innovation and experience,
Genesys is uniquely positioned to help companies bring their people, insights and customer channels together to
effectively drive today’s customer conversation. Genesys software directs more than 100 million interactions every day,
maximizing the value of customer engagement and differentiating the experience by driving personalization and multi-
channel customer service—and extending customer service across the enterprise to optimize processes and the
performance of customer-facing employees. Go to www.genesys.com for more information.

Each product has its own documentation for online viewing at the Genesys Documentation website or on the
Documentation Library DVD, which is available from Genesys upon request. For more information, contact your sales
representative.

Notice
Although reasonable effort is made to ensure that the information in this document is complete and accurate at the
time of release, Genesys Telecommunications Laboratories, Inc., cannot assume responsibility for any existing errors.
Changes and/or corrections to the information contained in this document may be incorporated in future versions.

Your Responsibility for Your System’s Security
You are responsible for the security of your system. Product administration to prevent unauthorized use is your
responsibility. Your system administrator should read all documents provided with this product to fully understand the
features available that reduce your risk of incurring charges for unlicensed use of Genesys products.

Trademarks
Genesys and the Genesys logo are registered trademarks of Genesys Telecommunications Laboratories, Inc. All other
company names and logos may be trademarks or registered trademarks of their respective holders.

The Crystal monospace font is used by permission of Software Renovation Corporation,
www.SoftwareRenovation.com.

Technical Support from VARs
If you have purchased support from a value-added reseller (VAR), please contact the VAR for technical support.

Customer Care from Genesys
If you have purchased support directly from Genesys, please contact Genesys Customer Care. Before contacting
Customer Care, please refer to the Genesys Care Program Guide for complete contact information and procedures.

Ordering and Licensing Information
Complete information on ordering and licensing Genesys products can be found in the Genesys Licensing Guide.

Released by

Genesys Telecommunications Laboratories, Inc. www.genesys.com

Document Version: 85sdk_dev_ivr-c_06-2014_v8.5.001.00

http://www.genesys.com
http://genesys.com/customer-care
http://docs.genesys.com/wiki/index.php/Special:Repository/8genesys-care.pdf?id=405c9e42-2731-4288-8818-f3a40b12d807
http://docs.genesys.com/wiki/index.php/Special:Repository/80g_licensing.pdf?id=a95e98ad-c306-4294-9aa5-a605c3beee92
http://www.genesys.com

Developer’s Guide 3

Table of Contents
Preface ... 7

About IVR SDK C .. 7
New In Release 8.5 ... 8
Intended Audience... 8
Usage Guidelines .. 9
Making Comments on This Document .. 10
Contacting Genesys Customer Care... 11
Document Change History .. 11

Chapter 1 How it Works... 13

Overview.. 13
Architecture ... 13

IVR Driver ... 14
IVR Library (I-Library) ... 14
IVR Server .. 15

Development Requirements .. 16
Deployment and Configuration .. 16

Sockets, Ports, Channels, and DNs.. 17
T-Server Information ... 17

Miscellaneous Issues .. 17
Response Processing... 17
Load Sharing .. 18
Connectivity to IVR Server.. 18
Configuration .. 19
API Processing ... 19
Diagnostics ... 19

Chapter 2 Code Example One: Hello IVR World.. 21

Overview.. 21
A Simple Call Examined.. 22

Header File Data... 22
The Start() Function .. 23
The MakeSimpleCall() Function ... 25

Table of Contents

4 IVR SDK 8.5 C

Requests and Replies ... 27
Request Functions.. 28
The ilGetReply() Function... 29

Chapter 3 Code Examples: Basic Functionality.. 31

Overview.. 31
Get Version Information... 32
Telephony .. 33
User Data .. 34
Initiate Routing... 35

Chapter 4 Extended Functionality .. 39

Configuration Data... 39
Logging.. 41

I-Library Log Files ... 41
The ivr library.ini File ... 42
Setting Log Levels .. 42

DTD Versions .. 43
Call State Model .. 44
KeepAlive Processing.. 45
Processing API Requests.. 46
Processing Response Messages .. 47
Error Codes ... 48
Escape Character Translation ... 50
Routing .. 51

Normal Route.. 51
Default with No Destination Address or Nodes................................... 52

Outbound Dialing... 52
Connections and Load Sharing ... 53

IVR Servers and Load Sharing ... 53
IVR Servers and High Availability (Hot Standby) 54
Connecting to IVR Server ... 54
Connection Problems ... 55
Connecting to IVR Server After Startup .. 56
Handling IVR Server Disconnects... 56
Processing Calls ... 56
Flow Control.. 57

Chapter 5 IVR API at a Glance .. 59

Groups of IVR API Functions .. 59
IVR API Descriptions ... 62

Developer’s Guide 5

Table of Contents

Appendix 7.0 Operating Mode .. 85

Overview.. 85
Configuration ... 86
Initiation ... 86
Opening the IVR Server Connection ... 86
Agent Control... 87
IVR Annex Options .. 88

AgentControl Section.. 88

Supplements Related Documentation Resources ... 91

Document Conventions .. 93

Index ... 95

Table of Contents

6 IVR SDK 8.5 C

Developer’s Guide 7

Preface
Welcome to the IVR SDK 8.5 C Developer’s Guide. This guide introduces you
to the concepts, terminology, and procedures relevant to the Genesys IVR SDK
C, the tool for building drivers that allow your IVR (Interactive Voice
Response Unit) to communicate with the Genesys IVR Server.

This document is valid only for the 8.5 release of this product.

This preface contains the following sections:
 About IVR SDK C, page 7
 New In Release 8.5, page 8
 Intended Audience, page 8
 Usage Guidelines, page 9
 Making Comments on This Document, page 10
 Contacting Genesys Customer Care, page 11
 Document Change History, page 11

For information about related resources and about the conventions that are
used in this document, see the supplementary material starting on page 91.

About IVR SDK C
In brief, this guide includes the following information:

• Definitions of an IVR driver, IVR Server, and IVR Library (I-Library)

• An explanation of the request and reply convention, with examples

• Library initialization and IVR Server connection

• How to work with version, telephony, and user data functions

• A digest of the IVR API

• How configuration data is used to direct processing

Note: For versions of this document created for other releases of this
product, visit the Genesys Documentation website, or request the
Documentation Library DVD, which you can order by e-mail from
Genesys Order Management at orderman@genesys.com.

mailto:orderman@genesys.com

8 IVR SDK 8.5 C

Preface New In Release 8.5

• Log files and setting log levels

• The DTD level and new features

• IVR Servers and load sharing

• The call state model

• XML escape characters

• The I-Library KeepAlive processing

• How response messages are processed

• The I-Library error codes for API request

• XML routing examples

• The 7.0 operation mode

• How I-Library handles outbound calls

New In Release 8.5
The following changes have been implemented in release 8.5:

• Support for new operating systems. Refer to the Genesys Supported
Operating Environment Reference Guide for details.

Intended Audience
This document is primarily intended for C programmers who must create an
IVR driver to be integrated with a specific IVR system. It has been written
with the assumption that you have a basic understanding of:

• Computer-telephony integration (CTI) concepts, processes, terminology,
and applications

• Network design and operation

• Your own network configurations

You should also be familiar with:

• Genesys Framework architecture and functions

• Genesys IVR Server.

• Your IVR system.

• C programming language and the use of third-party libraries.

http://docs.genesys.com/MoreDocs/Genesys_Supported_Operating_Environment_Reference_Guide
http://docs.genesys.com/MoreDocs/Genesys_Supported_Operating_Environment_Reference_Guide

Developer’s Guide 9

Preface Usage Guidelines

Usage Guidelines
The Genesys developer materials outlined in this document are intended to be
used for the following purposes:

• Creation of contact center agent desktop applications associated with
Genesys software implementations.

• Server-side integration between Genesys software and third-party
software.

• Creation of a specialized client application specific to customer needs.

The Genesys software functions available for development are clearly
documented. No undocumented functionality is to be utilized without the
express written consent of Genesys.

The following Use Conditions apply in all cases for developers employing the
Genesys developer materials outlined in this document:

1. Possession of interface documentation does not imply a right to use by a
third party. Genesys conditions for use, as outlined below or in the Genesys
Developer Program Guide, must be met.

2. This interface shall not be used unless the developer is a member in good
standing of the Genesys Interacts program or has a valid Master Software
License and Services Agreement with Genesys.

3. A developer shall not be entitled to use any licenses granted hereunder
unless the developer’s organization has met or obtained all prerequisite
licensing and software as set out by Genesys.

4. A developer shall not be entitled to use any licenses granted hereunder if
the developer’s organization is delinquent in any payments or amounts
owed to Genesys.

5. A developer shall not use the Genesys developer materials outlined in this
document for any general application development purposes that are not
associated with the above-mentioned intended purposes for the use of the
Genesys developer materials outlined in this document.

6. A developer shall disclose the developer materials outlined in this
document only to those employees who have a direct need to create, debug,
and/or test one or more participant-specific objects and/or software files
that access, communicate, or interoperate with the Genesys API.

7. The developed works and Genesys software running in conjunction with
one another (hereinafter referred to together as the “integrated solutions”)
should not compromise data integrity. For example, if both the Genesys
software and the integrated solutions can modify the same data, then
modifications by either product must not circumvent the other product’s
data integrity rules. In addition, the integration should not cause duplicate

10 IVR SDK 8.5 C

Preface Making Comments on This Document

copies of data to exist in both participant and Genesys databases, unless it
can be assured that data modifications propagate all copies within the time
required by typical users.

8. The integrated solutions shall not compromise data or application security,
access, or visibility restrictions that are enforced by either the Genesys
software or the developed works.

9. The integrated solutions shall conform to design and implementation
guidelines and restrictions described in the Genesys Developer Program
Guide and Genesys software documentation. For example:

a. The integration must use only published interfaces to access Genesys
data.

b. The integration shall not modify data in Genesys database tables
directly using SQL.

c. The integration shall not introduce database triggers or stored
procedures that operate on Genesys database tables.

Any schema extension to Genesys database tables must be carried out using
Genesys Developer software through documented methods and features.

The Genesys developer materials outlined in this document are not intended to
be used for the creation of any product with functionality comparable to any
Genesys products, including products similar or substantially similar to current
Genesys general-availability, beta, and announced products.

Any attempt to use the Genesys developer materials outlined in this document
or any Genesys Developer software contrary to this clause shall be deemed a
material breach with immediate termination of this addendum, and Genesys
shall be entitled to seek to protect its interests, including but not limited to,
preliminary and permanent injunctive relief, as well as money damages.

Making Comments on This Document
If you especially like or dislike anything about this document, feel free to
e-mail your comments to Techpubs.webadmin@genesys.com

You can comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this document.
Please limit your comments to the scope of this document only and to the way
in which the information is presented. Contact your Genesys Account
Representative or Genesys Customer Care if you have suggestions about the
product itself.

When you send us comments, you grant Genesys a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

mailto:techpubs.webadmin@genesys.com

Developer’s Guide 11

Preface Contacting Genesys Customer Care

Contacting Genesys Customer Care
If you have purchased support directly from Genesys, please contact Genesys
Customer Care.

Before contacting Customer Care, please refer to the Genesys Care Program
Guide for complete contact information and procedures.

Document Change History
This is the first release of the IVR SDK 8.5 C Developer’s Guide. In the future,
this section will list topics that are new or that have changed significantly since
the first release of this document.

http://genesys.com/customer-care
http://genesys.com/customer-care
http://docs.genesys.com/wiki/index.php/Special:Repository/8genesys-care.pdf?id=405c9e42-2731-4288-8818-f3a40b12d807
http://docs.genesys.com/wiki/index.php/Special:Repository/8genesys-care.pdf?id=405c9e42-2731-4288-8818-f3a40b12d807

12 IVR SDK 8.5 C

Preface Document Change History

Developer’s Guide 13

Chapter

1 How it Works
This chapter introduces essential concepts for developing an IVR (Interactive
Voice Response) driver that uses the Genesys IVR Library (I-Library). This
chapter has these sections:
 Overview, page 13
 Architecture, page 13
 Development Requirements, page 16
 Deployment and Configuration, page 16
 Miscellaneous Issues, page 17

Overview
An IVR driver provides an interface between an IVR system and the Genesys
I-Library, which communicates with Genesys IVR Server.

Use standard C programming development tools to create an IVR driver that
uses the API of the Genesys I-Library.

The names of configuration objects must match those stored in the Genesys
Configuration Layer.

Architecture
An IVR system is a combination of software and hardware that provides
interactive voice response functionality.

You can purchase an IVR driver software program from Genesys or develop it
yourself, using the Genesys IVR SDK. Once in place, the IVR driver provides
a brokering function between the IVR system and the Genesys I-Library.

14 IVR SDK 8.5 C

Chapter 1: How it Works Architecture

The IVR Library (I-Library) software, in turn, provides the functionality that
an IVR driver uses to communicate with a Genesys IVR Server on a given
Local Area Network (LAN).

Communication between your driver and your IVR system is defined by your
IVR vendor. Communication between your driver and the I-Library is within
the same process space. Communication between the I-Library and the IVR
Server is through TCP/IP sockets.

IVR Driver

You can design an IVR driver as three layers, one that interfaces with an IVR
system, one that interfaces with the I-Library, and a middle layer (pad layer)
that implements logic glue and any other functionality unrelated to the two
interfaces.

The IVR system, typically through means of a script, communicates with the
IVR driver, passing in requests for behavior and receiving data. This document
does not discuss that interface. For that information, consult the documentation
for your particular IVR system.

The IVR driver uses the I-Library API to pass IVR system requests to the IVR
Server and a T-Server. This interface is the focus of this book.

IVR Library (I-Library)

The I-Library API interface comprises about 40 functions that can be grouped
into the following categories:

• Initialization and deinitialization functions

• Connection and disconnection functions

• Basic utility functions

• Telephony functions

• Telephony

• Udata (User Data)

• Routing

• Statistics

Most functionality is implemented as a set of request functions that provide
data through the use of a reply function. See Chapter 2, “Code Example One:
Hello IVR World,” page 21, for a complete explanation of making requests and
getting replies. See Chapter 5, “IVR API at a Glance,” page 59, for a digest of
the API functions. See the online HTML API Reference in the documentation
directory on the product CD for the most complete descriptions of the API. See
the interface.h header file for types, enums, and defined constants.

Developer’s Guide 15

Chapter 1: How it Works Architecture

IVR Server

The IVR SDK offers two interfaces for working with IVR Server, one for
incoming C-based I-Library requests and the other for incoming XML-based
requests.

Note: Even with C-based requests, the I-Library uses an XML interface that
presents XML to the IVR Server. See Figure 1.

Figure 1: Genesys IVR Architecture

The I-Library handles requests for activity in an order-processing layer. Each
request is stored as an order, with a unique order ID.

The driver uses request functions to pass in requests for data or some activity.
The I-Library passes back the order ID for the request. The driver must use a
reply function that specifies a particular order ID to get the results of a
previous request. An order is valid for the duration of the call.

An IVR Server may service multiple clients, maintaining session information
for each with respect to a session name passed in by the client. Each IVR
system has to be configured separately with its own set of configuration
parameters. The IVR driver must use this exact session name to control the
particular IVR system.

There are multiple modes of operation for IVRs, each having a distinct impact
on how you develop your driver. See the IVR Interface Option 8.5 IVR Server
System Administrator’s Guide for details about in-front, behind, and network
modes of operation.

C
IVR

Driver

XML
IVR

Driver

XML
XML

Parser

IVR Library
(C wrapper for

XML)

IVR

T-Server

Configuration
Server

Stat Server

IVR Server

16 IVR SDK 8.5 C

Chapter 1: How it Works Development Requirements

Development Requirements
To develop your own IVR driver, you must have a C compiler and an IVR with
its development environment.

The Genesys IVR SDK provides you with the I-Library and its API, as
represented in the interface.h header file, along with this Developer’s Guide
and the HTML API reference.

The I-Library files are as follows:

• On Windows: ilib_SDK_MD.dll and ilib_SDK_MD.lib

• On Solaris, Linux, and AIX: libilib_SDK_32.so

Deployment and Configuration
Your driver and the I-Library will be linked together in 6.5 operating mode and
so will be on the same host.

Typically the IVR system software components are also loaded on the same
host.

The IVR Servers and Genesys T-Servers are typically loaded on some other
hosts on the same LAN.

The Genesys Configuration Layer stores common names and data for your
driver as well as the IVR Server and T-Server with which your driver works.
Be sure that the names your driver uses exactly match the names stored by the
Configuration Layer, which are case sensitive.

The IVR driver must gather and pass in:

• The name of the IVR object in the Configuration Layer that contains the
configuration data IVR Server needs to use for this driver. This IVR object
name is also referred to as a driver name.

• The host name of the IVR Server.

• The TCP/IP port number that the IVR Server is using, the value for the
gli-server-address option.

The IVR Server gathers the following information from the Configuration
Layer:

• Resources assigned to each IVR system (port numbers and their
associations with DNs).

• Log file parameters (the name of the file, its maximum length, number of
backup copies, type of information, and so on).

Developer’s Guide 17

Chapter 1: How it Works Miscellaneous Issues

Sockets, Ports, Channels, and DNs

The IVR Server is configured with a list of DNs and channels that correspond
to a particular IVR. (See the IVR Interface Option 8.5 IVR Server System
Administrator’s Guide for more information.) The IVR Server associates the
IVR channel numbers to the actual DNs. The association between channels and
DNs is defined in the configuration source. Channels are treated as ports,
specified as ilPort values.

Regardless of the number of ports in use, for a given IVR driver and IVR
Server pair, there is only one socket connection between them. This socket is
used to handle all the requests and events related to the activity on the IVR
which flow through this IVR driver and I-Library.

Note: There is no need to open and close this socket with each request. In
fact, the I-Library will prevent the driver from doing so. Once the
driver starts, there is no way for it to ask the I-Library to disconnect
from all IVR Servers with which it is communicating, and then restart
communications with them.

T-Server Information

The IVR Server gets information from the T-Server interface in the form of
events. A given incoming event replaces the previous event, and the IVR
Server returns the latest event it has received to the IVR driver.

Miscellaneous Issues
For those IVRs that are designed to directly communicate with IVR Server
using XML, there are certain functions and procedures that are included in the
C SDK and may need to be duplicated.

Response Processing

The C SDK function interprets all messages that are received from IVR Server,
and updates the request ID on a port-by-port basis. In order to achieve this, the
following functionality is available:

• Interpreting all messages from IVR Server including format error
checking.

• Correlating each message to the request that caused it.

• Formulating the appropriate response data for each message.

• Monitoring the TCP/IP socket to IVR Server for messages received.

• Handling error conditions from IVR Server.

18 IVR SDK 8.5 C

Chapter 1: How it Works Miscellaneous Issues

• Handling post call requests such as the GetCallInfo last event.

• Maintaining the data until it is requested.

• Recognizing the duration of the call with which the data is associated, and
expiring the data when appropriate.

• Tracking the state of the call to minimize traffic on the socket to IVR
Server including routing sequences.

• Maintaining the last error that occurred on each port.

Load Sharing

Multiple IVR Servers can be used to handle call volume or for backup
purposes. In order to achieve this, the following functionality is available:

• Associating all requests for a particular call with the IVR Server to which
the NewCall was sent.

• Monitoring the TCP/IP socket to each IVR Server for connectivity.

• Balancing the call load between the load sharing IVR Servers using a
modulo algorithm.

For detailed information about load sharing see Chapter 4, “Extended
Functionality,” on page 39.

Connectivity to IVR Server

A TCP/IP socket communicates with each IVR Server that is used for call
processing. In order to maintain this socket, the following functionality is
available:

• Tracking and processing every successful login response to each login
request.

• Handling any error conditions that occur for each login response.

• Monitoring for delays due to network inconsistencies or Wide Area
Network (WAN) architecture.

• Tracking and processing messages split over TCP/IP packets.

• Tracking each socket, and reconnecting it if a disconnect occurs.

• Communicating with each IVR Server based on its Document Type
Definition (DTD) level.

• KeepAlive integrity must be maintained. See “KeepAlive Processing” on
page 45.

For details information about connectivity see Chapter 4, “Extended
Functionality,” on page 39.

Developer’s Guide 19

Chapter 1: How it Works Miscellaneous Issues

Configuration

A level of variability is required in order to adjust processing so that it
conforms to the network environment and user preferences—including the
ability to dynamically change these preferences. In order to provide the
necessary level of variability, several configuration parameters need to be
duplicated; and this duplicate information must be maintained for the duration
of the process. All configuration data in Configuration Layer is available for
this purpose. See “Configuration Data” on page 39 for more details.

API Processing

Before you send a request to IVR Server, you need to do the following:

• Translate escape characters to conform to XML parser rules. For example,
use & instead of &. See “Escape Character Translation” on page 50.

• Ensure that you have a working socket connection.

• Format user data strings correctly. These strings represent key-value pairs
that are required by the UDataAddKD and UDataAddList APIs. Formatting the
strings correctly ensures that I-Library can create the correct XML
message to send to IVR Server. For example, ilSRqUDataAddKDList(0,
1,”*employee*smith*location*texas*”) contains a properly formatted user
data string.

• Provide consistent call ID so that IVR Server can track call progress.

For more information about API processing see, “Processing API Requests” on
page 46.

Diagnostics

In order to provide diagnostic information when customers perceive problems
during call processing, configure your environment as follows:

• Create and update log files using configuration data supplied by the user.

• Provide sufficient diagnostic data in the logs to track individual calls and
requests, socket traffic, error conditions, and date and time.

• Prevent sensitive data, such as user information, from appearing in log
files; by configuring logging parameters appropriately.

• Prevent repetitive data, such as failed login events when the IVR Server is
in standby mode, from appearing in the log files by configuring logging
parameters.

20 IVR SDK 8.5 C

Chapter 1: How it Works Miscellaneous Issues

Developer’s Guide 21

Chapter

2 Code Example One: Hello
IVR World
This chapter introduces the I-Library functions that implement the most
essential functionality of an IVR driver. This chapter has these sections:
 Overview, page 21
 A Simple Call Examined, page 22
 Requests and Replies, page 27

The example code in this chapter is not tested. Its purpose is to show the order
in which to make calls to the I-Library functions and to provide a structure for
discussion. Treat it as pseudocode that looks a lot like C.

The most important feature of the I-Library is its use of requests and replies.
Generally, your driver uses a request function to take an action and follows that
with a call to a reply function to get related data.

Overview
This chapter has two major sections, one that presents partial sample code for a
very small IVR driver and one that discusses the request/reply communications
convention a driver uses to communicate with the I-Library.

An IVR driver must first initialize the I-Library, and then make contact with an
IVR Server. After these tasks are done, the driver can perform other tasks.

For each call, the driver should notify an IVR Server of the beginning of the
call, then perform necessary tasks, then notify the IVR Server that the call has
ended.

Tasks that are related to a call include transferring and conferencing/merging
as well as working with user data, routing strategies, statistics, and more.

Many of the IVR API functions that perform tasks are implemented as requests
that allow the IVR Server to do the task and prepare a reply. For each request,

22 IVR SDK 8.5 C

Chapter 2: Code Example One: Hello IVR World A Simple Call Examined

the I-Library creates a request ID. The driver typically should follow a request
with a call to a GetReply function that retrieves data pertinent to the request ID.

A Simple Call Examined
The following code examples begin by revealing some of the constants and
types defined in the supplied header file, interface.h. This section then
presents two functions: Start() and MakeSimpleCall().

The (untested) code examples in this section could be integrated with some
main() function that brings in data. The examples are presented below in three
subsections:

• Header File Data

• The Start() Function

• The MakeSimpleCall() Function

These sections provide a structure for the discussion by isolating related
functionality.

Header File Data

The IVR SDK ships a header file, interface.h, that has definitions for
various common types, such as CPSTR (pointer to a constant string), ULONG
(unsigned long), and the IVR SDK–specific constants, types, and function
declarations. (In the interface.h header file is a set of DOxygen comments
that generate the HTML API reference pages.)

The header file features (commented out) in this section are just those that are
needed for the sample Start() and MakeSimpleCall() functions presented in
this chapter.

Code Fragment

#include "interface.h"
/* from the header file:

typedef const char *CPSTR;
typedef unsigned long ULONG;

typedef ULONG ilPORT;
typedef ULONG ilRQ;
#define ilRQ_ERR 0
#define ilRQ_ANY 0
typedef long ilRET;
#define ilRET_OK 0L
#define ilRET_ERROR -1L

Developer’s Guide 23

Chapter 2: Code Example One: Hello IVR World A Simple Call Examined

// Inform IVR-Server of start/end of call processing:
ilRQ ilSRqNoteCallStart(ilRQ RqID,ilPORT Port,

CPSTR psCallID,CPSTR psDNIS,CPSTR psANI,
CPSTR psTagCDT); // last 4 args optional

ilRQ ilSRqNoteCallEnd(ilRQ RqID,ilPORT Port);
*/

#define MAX_PACKET_SIZE 16384
char szResp[MAX_PACKET_SIZE]; /* global string buffer */
typedef enum
{ ilPT_CHAN_NUM, ilPT_DN } ilPORT_TYPE;
int Start(void);
void MakeSimpleCall(ilPort);

// called from Start()

Notice the definition of the szResp[] string buffer. The purpose of this global
buffer is to store reply data, as discussed in the section “Requests and Replies”
on page 27 later in this chapter.

The Start() Function

The Start() function isolates initiation and connection issues. Initiation sets
the I-Library for communication with your IVR driver. Connection directs the
I-Library to connect to a specified IVR Server.

Code Fragment

/* ... Here we go... --------------------------------*/
int Start(void)
{

static char* pIServerHost="EnterpriseIS";
static char* pIVR="me"; /* name of this IVR

in the Configuration Layer*/
static char* pIVRversion="3.51"; /* driver version */
ilPort nPort=110; /* must match config data */
ULONG ulTimeoutMS=5000 /* in milliseconds */
ULONG ulNetWatchTime = 0L;

if (! ilInitiate(pIVR)
{

puts("ERROR! Cannot initialize");
return(-2);

}

if (! ilSetVersion(pIVRversion))
{

puts("Error! Cannot set version");
return(-1);

}

24 IVR SDK 8.5 C

Chapter 2: Code Example One: Hello IVR World A Simple Call Examined

printf("Connecting to port %d\n",nPort);
if(! ilConnectionOpen(pIServerHost,nPort,ulTimeoutMS))
{

printf("ERROR! Cannot open connection to server!\n");
return(-3);

}

MakeSimpleCall(nPort); /* <--- this makes a call */
printf("Done. Goodbye!\n");
return 0;

} /* end of Start() */

Initiation

The Start() function must call the ilInitiate() function and pass in the name
of the IVR (as specified in the Configuration Layer) to initialize the I-Library
for its use.

The IVR Server maintains a list of the channels and corresponding DNs for
every IVR. For the IVR Server to properly track the requests it receives, it
must associate a given connection with a set of DNs or channels. It does this by
using the name of the IVR set in the Configuration Layer as the name of the
connection. In this way, all messages from a given network connection through
the IVR Server are automatically associated with the particular IVR driver and
the IVR system that driver represents.

The IVR Server uses the IVR name to reference other configuration
information as well.

The Start() function calls the ilSetVersion() function and passes its version
number to the I-Library.

Opening the IVR Server Connection

The Start() function calls the ilConnectionOpen() function to direct the
I-Library to open a connection to the IVR Server (this is not done
automatically). The I-Library passes the IVR name to the IVR Server. Upon
connection, the IVR Server sends a list of configuration parameters (from the
IVR object’s Annex tab in the Configuration Layer) to the I-Library. The
I-Library transparently handles these setup parameters with no action required
by the IVR driver. (The user can change these configuration parameters later,
though any changes do not take effect until driver restart.) For example, this
technique controls log file options. The connection to the IVR Server is
automatically closed when the driver exits from the I-Libary.

Developer’s Guide 25

Chapter 2: Code Example One: Hello IVR World A Simple Call Examined

Set Reply Latency

The ilSetTimeout() function takes a single unsigned long argument that
specifies a time limit in milliseconds. The purpose is to allow the
ilGetReply() and ilGetRequest() functions one or more cycles, balancing
latency against improved chances to get a reply.

An argument that has a value of zero specifies exactly one complete cycle for
the reply function. This value of zero means that the reply function decides
immediately if the requested data is available, there is no delay to allow the
data to be received during this reply cycle. Higher values allow repeated
polling to improve chances of success.

The timeout value should be small because the ilGetReply() and
ilGetRequest() functions, if no response has been received from IVR Server,
will wait for the time specified before returning. During that time, the I-Library
will continue to check for messages received from the IVR Server.

The MakeSimpleCall() Function

The MakeSimpleCall() function isolates the use of notification functions and
introduces the convention of making a request and getting a reply.

T-Server Notification

The MakeSimpleCall() function uses the notification functions to notify the
IVR Server about call processing by the IVR. The ilSRqNoteCallStart()
function tells the IVR Server to signal the T-Server that call processing has
started. The ilSRqNoteCallEnd() function signals that call processing has
completed.

Notification Functions

ilRQ ilSRqNoteCallStart(ilRQ RqID,ilPORT Port,
CPSTR psCallID,
CPSTR psDNIS,
CPSTR psANI,
CPSTR psTagCDT);

ilRQ ilSRqNoteCallEnd(ilRQ RqID,ilPORT Port);

After the NotifyCallStart, the driver should ensure that the IVR Server is
ready to process further telephony requests. To ensure that your driver is ready,
take the following steps:

1. After issuing the NotifyCallStart, issue a GetReply call for this request.

2. Issue a GetCallStatus call on the line.

3. Verify that your application receives the value eCallStatusEstablished.

26 IVR SDK 8.5 C

Chapter 2: Code Example One: Hello IVR World A Simple Call Examined

4. If it does not, continue to issue the GetCallStatus until it does, using a
reasonable delay to allow the IVR Server to respond to the NoteCallStart
request. If, after a reasonable period of time, the correct response has still
not been received, issue a NoteCallEnd, and abandon the call since an error
has occurred.

Making a Request

The notification functions are designed to request a reply. The notification
functions return a request identifier to be used by a subsequent call to the
ilGetReply() function. If that value is ilRQ_ERR or less, the function has failed,
and a call to the ilGetReply() function will not be useful. See the section
“Requests and Replies” on page 27 later in this chapter.

Getting a Reply

If the notification call succeeds, the IVR driver calls the ilGetReply()
function, passing in the ilRQ value returned by the ilSRqNoteCallStart()
function along with a pointer to the szResp string buffer and the size of that
buffer. If the I-Library returns an ilRET value less than ilRET_OK, then the IVR
driver must handle the error. In that case the MakeSimpleCall() function
retrieves an error message string from the szResp[] string buffer.

Get Reply Function

ilRET ilGetReply(ilRQ RqID,PSTR psRep,int iRepLen);

The MakeSimpleCall() function notifies an IVR Server when a call begins and
ends.

In the case of a virtual T-Server that does not work with a switch, the
notification functions simply tell the virtual T-Server that a call has started.

Code Fragment

static void MakeSimpleCall(ilPort nPortA)
{

ilRQ ilRq;

printf("Starting call on channel %d\n",nPortA);
ilRq=ilSRqNoteCallStart(ilRQ_ANY,nPortA);
if(ilRq==ilRQ_ERR)
{

printf("Error making request\n");
return FALSE;

}

Developer’s Guide 27

Chapter 2: Code Example One: Hello IVR World Requests and Replies

if(ilGetReply(ilRq,szResp,sizeof(szResp))<ilRET_OK)
{

printf("Error notifying I-Server of call start\n");
printf("Error Message: %s\n",szResp);
return;

}
printf("Call is started\n");

sleep(2); /* <--- THE CALL */

/* call complete */
printf("Ending call\n");
ilRq=ilSRqNoteCallEnd(ilRQ_ANY,nPortA);
if(ilRq==ilRQ_ERR)
{

printf("Error making request\n");
return FALSE;

}
if(ilGetReply(ilRq,szResp,sizeof(szResp))<ilRET_OK)
{

printf("Error notifying I-Server of call end\n");
printf("Error Message: %s\n",szResp);
return;

}
printf("Call is ended\n");
return;

} /* end of MakeSimpleCall() */

Making a Call

A two-second sleep in the example code represents call activity. Normally at
this spot your driver would call several telephony functions.

Terminating

The MakeSimpleCall() function calls the ilSRqNoteCallEnd() function to
notify the IVR Server that call activity has ceased, tests the return value, and
gets reply data stored in the szResp string buffer (which overwrites the
previous data).

Requests and Replies
The primary communications between your driver and the I-Library is
implemented through requests and replies. You make a call to a request
function, capture its return, then pass that return value to the ilGetReply()
function, which writes data into a string buffer your driver maintains.

28 IVR SDK 8.5 C

Chapter 2: Code Example One: Hello IVR World Requests and Replies

Requests and replies from the IVR Server are asynchronous, in that most
replies do not immediately follow the request—other requests and replies are
mixed in the data stream. It is good practice to follow a request with a call to
the ilGetReply() function.

Request Functions

The IVR API provides two main types of functions, those that perform an
action and those that perform an action and also make a request for an
asynchronous reply. The prefix in the name of a function identifies the group
of functions to which it belongs.

Functions that begin with the letters il (without the letters SRq) are those that
perform an action without requesting a reply. Functions of this group usually
do not generate a network message (request) to the IVR Server. The il
functions are used to control the behavior of the I-Library and return either a
BOOL result or an ilRET value.

Functions that begin with the letters ilSRq are those that take action and make a
request for a reply. A request function makes an order and then generates and
sends a special network message (request) to the IVR Server.

Order Term

When an ilSRq function is called, the I-Library creates an order, saves it, and
sends a request message to the IVR Server. Orders provide a placeholder for
tracking asynchronous requests and replies.

An order links a request and its associated reply. When a reply comes to the
I-Library from IVR Server, the I-Library searches for the matched order to
complete the previously sent request.

The order only lasts for the duration of the call on the port where it was
originally requested. When that call ends, the order is discarded.

The design of the I-Library is such that it removes order numbers and any
associated information structures when the ilGetReply() succeeds and the
information is returned to the IVR driver. If, for some reason, the ilGetReply()
function fails or is not correctly called by the IVR driver, the order is still
removed at the end of the call.

Request IDs and Ports

Request functions pass in a first argument that is an ilRQ value, a second
argument that is an ilPort value, and possibly additional arguments,
depending on the purpose of the function.

Every request function must have a unique ilRQ request number associated
with it. Your driver may either specify a particular number in the function call
or allow the I-Library to assign the number (recommended).

Developer’s Guide 29

Chapter 2: Code Example One: Hello IVR World Requests and Replies

If your driver specifies a particular ilRQ value, the driver must manage its
validity and prevent contention with any ilRQ values the I-Library creates.

If the request function succeeds, it will return the ilRQ value you passed in.

If you pass in ilRQ_ANY as the first argument in a request function, the
I-Library will create and return a unique ilRQ request ID and manage
contention possibilities. (Because this number is a long integer, sequential
requests have little risk of reusing a given number while the previously
matched request number is still active.)

The ilPort value specifies a particular call associated with the port. The IVR
driver must specify the IVR port number (as configured for the IVR in the IVR
section of Resources in the Configuration Layer) to assure that the IVR Server
can correlate the requests and responses for a particular call.

If a driver specifies a port that is not configured for that named IVR
connection, then the IVR Server returns an error for all requests made with that
port number.

Request Return Values

If a request function succeeds, it returns an ilRQ value that is a request ID. This
request ID should be used in a subsequent call to the ilGetReply() function.
Generally request functions should pass in an ilRQ_ANY and capture the return
to pass in with the next ilGetReply() function call.

If a request function fails, it returns an ilRQ_ERR value. Your driver should test
for this return value and handle any errors appropriately, according to the
particular request function.

The ilGetReply() Function

Immediately after calling a request function, your driver should call the
ilGetReply() function to retrieve response information for the request.

Input Arguments

The ilGetReply() function takes three arguments. The first is a request ID for
an existing order, the second is a pointer to a string buffer that your driver

Note: The ilRQ value must be in the range 1 to FFFFFE, hexadecimal.

Note: While a request ID might be reused after the reply to the original
request with that ID has been received, it is not valid to have two
outstanding requests for the same call using the same request ID.

30 IVR SDK 8.5 C

Chapter 2: Code Example One: Hello IVR World Requests and Replies

maintains for storing replies, and the third is the size of the string buffer in
bytes.

The request ID is a return value from a request function.

The ilGetReply() function writes a string to your reply buffer, depending on
the nature of the request that matches the request ID.

Return Values

The ilGetReply() function returns an ilRET value. If the return value is
ilRET_OK or greater, then the ilGetReply() function has succeeded. If the
return value is less than ilRET_OK, the ilGetReply() has failed. You may want
to set up a switch statement to test the possible causes of errors, which are
defined in the interface.h header file.

Code Fragment

#define ilRET_OK 0L
/* or any positive value */

#define ilRET_ERROR -1L
#define ilRET_LIB_NOTREADY -3L
#define ilRET_CONN_CLOSED -5L
#define ilRET_BAD_ARGS -7L
#define ilRET_FUNC_UNSUPPORTED -9L
#define ilRET_TIMEOUT -11L

/* Order still be in progress */
#define ilRET_REQ_EXPIRED -12L

/* There is no request with specified number
or it has been expired */

#define ilRET_NO_REQUESTS -13L
/* There is no request in the queue for processing.

(Generated by ilGetReplyAny()) */
#define ilRET_BAD_CONN_NAME -15L

/* The connection name is bad */
#define ilRET_REQ_FAILURE -1000L

/* Reply from requested service contains failure code */

If the failure is ilRET_TIMEOUT, using the same request ID, you can attempt the
ilGetReply() function again. The timeout indicates that no reply has been
received from the IVR Server. It would be appropriate to limit the amount of
time that is allowed to wait for a response in case an error has occurred and no
response will be returned.

Developer’s Guide 31

Chapter

3 Code Examples: Basic
Functionality
This chapter introduces IVR Library (I-Library) functions for version
information, telephony, and handling user data. This chapter has these sections:
 Overview, page 31
 Get Version Information, page 32
 Telephony, page 33
 User Data, page 34
 Initiate Routing, page 35

On the Genesys Documentation Library CD you can find a file named
IVRexample.c that exercises many of the I-Library functions. In Chapter 5 of
this document, you can find a digest of the API functions. In the
documentation directory on the IVR SDK product CD you can find the most
extensive documentation for the API in HTML format.

Overview
This chapter introduces four common functionalities that drivers implement:

• Getting Version Information: For informational purposes only, your driver
can identify that it has connected to a compatible I-Library and IVR
Server. Use the version functions to do this.

• Process Telephony Functionality: For IVRs in behind mode only, use the
telephony call-processing functions on active calls.

• Manipulate User Data: The I-Library has a set of functions that enable your
driver to manage user data.

• Initiate Routing: The I-Library allows you to initiate routing-sequence
logic.

32 IVR SDK 8.5 C

Chapter 3: Code Examples: Basic Functionality Get Version Information

Get Version Information
The IVR API provides functions for working with given versions of the
I-Library, the IVR Server, and your IVR driver.

Use the ilSetVersion() function to pass a string representation of your
driver’s version to the I-Library, as shown in the Start() function in “The
Start() Function” on page 23. The ability to get the version of this IVR driver
from the I-Library is pro forma because this IVR driver should be able to
access its own information.

The ilGetVersion() function takes no arguments and returns a string
representation of the I-Library version.

The ilSRqVersion() function directs the I-Library to create a reply string that
represents the version of one of three components: this IVR driver, the current
I-Library, and the active IVR Server.

The ilSRqVersion() function takes three arguments, an ilRQ value, a port
value, and a string that identifies the component for which a version is wanted.
If the third argument is a null pointer or a single blank space, the ilSRqVersion
assumes a default request for the version of the current I-Library.

To get the data, the driver must subsequently call the ilGetReply() function
and then access the driver’s reply buffer.

Code Fragment

ilRq=ilSRqVersion(ilRQ_ANY,nPortNULL,NULL);
/* The third argument is seen as a null pointer to

a string, which indicates the default, the version
of the I-library. */

if(ilRq==ilRQ_ERR)
{

printf("Error making request for driver version\n");
return;

}
if(ilGetReply(ilRq,szResp,sizeof(szResp))<ilRET_OK)
{

printf(
"Error in getting version of library\n");

return;
}
printf("Library Version: %s\n",szResp);

ilRq=ilSRqVersion(ilRQ_ANY,nPortNULL,pIVR);
/*<-- pIVR is the IVR name, so a

successful call will generate a reply that
specifies the version of this driver. */

Developer’s Guide 33

Chapter 3: Code Examples: Basic Functionality Telephony

if(ilGetReply(ilRq,szResp,sizeof(szResp))<ilRET_OK)
{ /* handle error */ }
printf("Driver Version: %s\n",szResp);

ilRq=ilSRqVersion(ilRQ_ANY,nPortNULL,"I-Server");
/*<-- any string other than " " or the IVR name */

if(ilRq==ilRQ_ERR)
{ /* handle error */ }
if(ilGetReply(ilRq,szResp,sizeof(szResp))<ilRET_OK)
{ /* handle error */ }
printf("I-Server Version: %s\n",szResp);

Telephony
The I-Library provides several telephony functions, including functions for
transferring calls and performing merge operations. These functions apply only
to IVRs deployed in behind mode.

Before you use the telephony functions, you must initiate the I-Library and
make a connection to the IVR Server, as shown in Chapter 2, “Code Example
One: Hello IVR World,” on page 21.

The following simple example shows the use of the ilSRqCallInit() and the
ilSRqCallComplete() functions, which begin and terminate a call to a
particular DN specified by the psDstDN string pointer. While the call is in
progress, your driver may perform other call-handling activities.

Code Fragment

ilRq = ilSRqCallInit(ilRQ_ANY,Port,psDstDN);
if (ilRq == ilRQ_ERR)
{ ; } /* handle the error */
if (ilGetReply(ilRq, Port, szResp,

sizeof(szResp))<ilRET_OK)
{ ; } /* handle the error */

/* perform other call handling activity */

ilRq = ilSRqCallComplete(ilRQ_ANY,Port);
if (ilRQ == ilRQ_ERR)
{ ; } /* handle the error */
/* call ilGetReply() as usual */

The IVRexample.c file exercises most of the I-Library’s telephony functions.

34 IVR SDK 8.5 C

Chapter 3: Code Examples: Basic Functionality User Data

User Data
User data is stored as a single ASCII string in the form of:

DelimiterKeyDelimiterDataDelimiter...

where the delimiter is a single character that is defined by virtue of the fact that
it is the first character in the string, keys occupy the even-numbered fields
(assuming zero-based fields), and data occupy the odd-numbered fields.

Here is an example of a set of keys and data:
%inquiry%problem%agent%nancy drew%status%researching this

where the field delimiter is the % character. The key, inquiry, has a companion
value, problem, whose meaning is that the nature of an inquiry is a problem;
the agent is nancy drew; and the current status is that she is researching this.

There are several ilSRq request functions that enable you to work with
key-data (key-value) pairs (also known as user data). You can add or delete a
key-data pair, add a list of key-data pairs, or delete all key-data pairs for a
particular call interaction. See the IVRexample.c file for extensive examples.

In the following code snippet, the ilSRqUDataAddKD() function creates a new
key, Name, with a value of Dotty. The subsequent code tests to see if the
function failed, and if so, prints an error indication and returns it. If the add
function succeeds, then the driver calls the get reply function and, if that fails,
captures an error message in the szResp string buffer.

Code Fragment AddKD

ilRq=ilSRqUDataAddKD(ilRQ_ANY,Port,"Name","Dotty");
if(ilRq==ilRQ_ERR)
{

printf("Error making request\n");
return;

}
if(ilGetReply(ilRq,szResp,sizeof(szResp))<ilRET_OK)
{

printf("Error in attaching data\n");
printf("Error Message: %s\n",szResp);
return;

}

To get a value for a known key, use the ilSRqUDataGetKD() function and then
use the ilGetReply() function to direct the I-Library to put the value in the
szResp string buffer.

Developer’s Guide 35

Chapter 3: Code Examples: Basic Functionality Initiate Routing

Code Fragment GetKD

ilRq=ilSRqUDataGetKD(ilRQ_ANY,Port,"Name");
if(ilRq==ilRQ_ERR)
{ /* handle error */ }
if(ilGetReply(ilRq,szResp,sizeof(szResp))<ilRET_OK)
{ /* handle error */ }
printf("Name: %s\n",FindRespStart(szResp));

You can delete a key-data pair, delete all key-data pairs, or add a set of
key-data pairs.

Code Fragment DelKD

ilRq=ilSRqUDataDelKD(ilRQ_ANY,Port,"Name");

ilRq = ilSRqUDataDelAll(ilRQ_ANY,Port);

pcTheList = "&Name&Lion&Address&456 Yellow Brick Rd."
ilRq=ilSRqUDataAddList(RqID_ANY,Port,pcTheList);

To delete a key-data pair, use the ilSRqUDataDelKD() function and pass in
ilRQ_ANY, the port for the call, and the key (a string pointer). (Capture error
messages in the szResp buffer by calling the ilGetReply() function.)

To delete the entire set of key-data pairs for a particular call, use the
ilSRqUDataDelAll() function.

To add a set of key-data pairs, first build a single string with your choice of a
field delimiter character, and then use the ilSRqDataAddList() function and
pass in a pointer to that string.

Initiate Routing
The I-Library offers functionality for you to implement routing-sequence logic.
Before you use the routing functionality, you must initiate the I-Library and
make a connection to the IVR Server, as shown in Chapter 2, “Code Example
One: Hello IVR World,” on page 21.

The following simple code fragment outlines the use of the ilSRqRouteStart()
function, which initiates the routing of a call to a particular route point DN
specified by the DN number, as in:

ilRQRouteStart = ilSRqRouteStart(ilRQ_ANY,Port,"7000");

Code Fragment RouteStart

/* For information on each of the following, see the interface.h:

Port = type ilPORT with the port of IVR channel
ilRQRouteStart = type ilRQ - returned Request ID for Route Start

36 IVR SDK 8.5 C

Chapter 3: Code Examples: Basic Functionality Initiate Routing

psRouteStartRep = type PSTR - pointer to buffer - preallocated - in which GetReply
returns its result

iRepLen = type int - length of above buffer
ilGetReplyRet = type ilRet - returned from GetReply indicating result of request
ilRQGetRequest = type ilRQ - returned Request ID for GetRequest - used in SendReply
ilSendReplyRet = type ilRet - returned from SendReply indicating result of request
bResult = type BOOL - set true if treatment was success - else false
psReply = type CPSTR - pointer to buffer with result of treatment - if return

is required

ilRQ_ANY - generate the request ID

nlrepeat = a number if type int to indicate strategy still active
*/

ilRQRouteStart = ilSRqRouteStart(ilRQ_ANY,Port,"7000");
/* route sequence start on route dn -
note that the port variable, in this
case “7000,” must contain the actual
port value */

if (ilRQRouteStart > 0) /* make sure Route Start worked */
{

nlrepeat = 1;
while(nlrepeat == 1)
{

ilGetReplyRet = ilGetReply(ilRQRouteStart,psRouteStartRep,iRepLen);
/* check reply for Route Start */

if(ilGetReplyRet == ilRET_TIMEOUT)
/* timeout means that the routing
strategy is still active */

{
ilRQGetRequest = ilGetRequest(Port,psRep,iRepLen);

/* retrieve the next treatment - if one
exists - treatment details in the return
buffer */

if(ilRQGetRequest>0) /* make sure Get Request worked before*/
{ /*processing the returned treatment

processing by application to apply
treatment */

ilSendReplyRet = ilSendReply(ilRQGetRequest,bResult, psReply);
/* send treatment result to URS */

}
}

Developer’s Guide 37

Chapter 3: Code Examples: Basic Functionality Initiate Routing

else nlrepeat = 0; /* The GetReply function returned
something other than timing out - this
implies the strategy has ended - and a
RouteResponse has been processed by the
library - the route destination - if it
exists in the RouteResponse - will be
returned in psRouteStartRep */

}
} else /* RouteStart failed */

38 IVR SDK 8.5 C

Chapter 3: Code Examples: Basic Functionality Initiate Routing

Developer’s Guide 39

Chapter

4 Extended Functionality
This chapter introduces extended functionality, including, logging, KeepAlive
processing, outbound dialing, load sharing, and routing. It has these sections:
 Configuration Data, page 39
 Logging, page 41
 DTD Versions, page 43
 Call State Model, page 44
 KeepAlive Processing, page 45
 Processing API Requests, page 46
 Processing Response Messages, page 47
 Error Codes, page 48
 Escape Character Translation, page 50
 Routing, page 51
 Outbound Dialing, page 52
 Connections and Load Sharing, page 53

Configuration Data
I-Library uses configuration data to determine how to direct processing. For
example, there are options for interfacing with IVR Servers and for modifying
log content. I-Library has several levels of configuration.

• Internal defaults—These are used if no options are configured.

• ivrlibrary.ini—At startup, if this file exists in the directory where
I-Library is executing, any options configured here take effect and
over-ride the internal defaults.

• Configuration Layer options—When the options configured in the
Configuration Layer are received, they take effect and over-ride the .ini
file options.

40 IVR SDK 8.5 C

Chapter 4: Extended Functionality Configuration Data

I-Library retrieves the configuration options through the Configuration Server.
At startup, I-Library attempts to connect to Configuration Server. If I-Library
cannot connect, it exits. If a disconnection occurs after successfully connecting
to Configuration Server, I-Library will attempt to reconnect to Configuration
Server. Until the connection to configuration server is restored, I-Library will
continue to process telephony APIs although dynamic configuration updates
will not be available.

Table 1 explains which options you can set, where you can set them, and what
their default values are. The “Driver Application” column applies only to “7.0
Mode.” The “Data Transport” column applies only to “6.5 Mode.”

Table 1: Configuration Options

Configuration Item Driver
Application

IVR Object
DataTransport
Section

ivrlibrary.ini Default Value

ivr_server_interface section

load_sharing_servers yes yes n/a

time_recon_is yes yes yes 2000ms

socket_activity_timer yes yes 20000ms

load_sharing_iservers_
client_ports

yes n/a

load_sharing_iservers_
client_hosts

yes false

cfg-server-response yes false

getreply_with_location yes false

iserver_mode_
hotstandby

yes false

compat65 yes yes

log section

verbose yes all

all yes n/a

log_content section

log_print_level yes yes yes xml

log_file_name yes yes con

Developer’s Guide 41

Chapter 4: Extended Functionality Logging

Logging

I-Library Log Files

Under normal operation, I-Library receives its log file name from the
Configuration Layer; therefore, no log file will be created until that
information is received. However, a log file name and the level of logging can
be configured in the ivrlibrary.ini file. In this way, in the event of startup
problems, the .ini file can provide information about processing during that
startup.

log_file_backup_amount yes 0

log_file_size yes 0

log_print_date yes yes yes

log_print_hb yes yes no

log_print_name yes yes yes

log_print_recv yes yes yes

log_print_send yes yes yes

log_print_time yes yes yes

log_print_time_ms yes yes yes

log_print_timeouts yes yes no

log_print_udata yes yes no

log_print_login_requests yes yes yes

log_print_driver_selector yes yes 0

dtd_version yes 4.0

Table 1: Configuration Options (Continued)

Configuration Item Driver
Application

IVR Object
DataTransport
Section

ivrlibrary.ini Default Value

Note: I-Library log files are subject to change at any time and should not be
considered a defined interface.

42 IVR SDK 8.5 C

Chapter 4: Extended Functionality Logging

If an invalid path is defined when configuring logging, I-Library will detect it
and stop execution.

The ivr library.ini File

Use the ivrlibrary.ini file to provide initial values for certain I-Library
options. However, these values can be overridden if the Configuration Layer
provides different values after its connection to I-Library. Table 1 on page 40
shows which options can be used in the .ini file. The format of the data in this
file is important. To view the proper format see the sample file that was sent
with I-Library.

Setting Log Levels

There are three levels of logging that will be used in most environments. Under
normal conditions, it is recommended that you set the level of logging to xml.
This will provide all messages flowing into and out of I-Library, including the
XML messages being sent between I-Library and IVR Server. This is a
minimum level of logging that you need in order to be able to diagnose any
problems.

You can make the level of logging more detailed by using either debug or
detail level. The debug level of logging will include all of the xml-level data,
and it will also provide information about various I-Library internal tables and
the basic flow.

The detail level of logging will include all of the debug-level data, and it will
as provide more detail about the logic flow and the status of all sockets. This
dramatically increases the amount of data that is logged, because messages are
logged each time I-Library checks the socket to IVR Server to determine
whether there are any messages waiting to be read and processed. I-Library
checks the socket every 10 milliseconds (ms). Table 2 describes the available
log levels.

Table 2: Log Levels

Log Level Description

none I-Library will use what was configured in the verbose
option of the Log section.

flow I-Library will log all messages flowing to and from the
driver application, and to and from the IVR Server.

xml I-Library will log all messages defined by flow, as well
as all XML messages flowing to and from IVR Server.

Developer’s Guide 43

Chapter 4: Extended Functionality DTD Versions

DTD Versions
The Document Type Definition (DTD) version is used in the XML message to
define which versions of messages the sender of the XML is using. The DTD
version will change if an existing message format is changed. There are three
versions of the DTD defined for the communication between IVR Server and
I-Library. Table 3 describes which release levels of I-Library and IVR Server
support each DTD version. A login to IVR Server is first attempted using DTD
version 4.0, if that is rejected, an attempt is made with version 3.0, and then
finally with 2.0. Once IVR Library selects a DTD version, if you change the
DTD version you must stop and re-start the IVR Library for those changes to
take effect. Load Sharing IVR Servers must be at the same DTD version.

If the DTD version is configured as 2.0 in the ivrlibrary.ini file, I-Library
will first attempt to connect using 2.0. This should be successful in any

debug I-Library will log all messages defined by xml, as well as
information about internal I-Library tables and basic
program logic.

detail I-Library will log all messages defined by debug, as well
as information about socket activity and detailed program
logic.

Table 2: Log Levels (Continued)

Log Level Description

Table 3: Supported DTD Versions

I-Library /IVR Server
Release

DTD 2.0 DTD 3.0 DTD 4.0

6.5 Yes No No

7.0 Yes Yes No

7.1 Yes Yes No

7.2 Yes Yes Yes

7.5 Yes Yes Yes

8.0 Yes Yes Yes

8.1 Yes Yes Yes

8.5 Yes Yes Yes

44 IVR SDK 8.5 C

Chapter 4: Extended Functionality Call State Model

environment, because both the 6.5 and 7.x releases of IVR Server can use DTD
version 2.0. Nevertheless, in an environment that uses only 7.x IVR Servers,
there is no reason to use 2.0.

Table 4 describes the new features that are provided in each DTD version after
2.0.

Call State Model
A call state model is kept for each call that is tracked by the port it is on. It is
used to determine whether a request will succeed if it is sent to the IVR Server.
If the request would fail, an error is returned to the application, and the request
is not sent to the IVR Server. In general, the call state is set based on messages
received from the IVR Server—for example, a CallStatus message with Call
Established will set the call state to established. The call state is based on the
definitions in the IVR SDK 8.5 XML Developer’s Guide.

In addition, route requests are tracked to ensure that only one route request on
a port is active at any one time. If a second route request is received before the
first is done, the second one will be rejected. The same is true for CDT_Init
processing.

Table 5 describes the defined call states for I-Library.

Table 4: New Features of DTD

DTD Version Feature

3.0 I-Library can retrieve First Home Location by using
GetCallInfo.

4.0 I-Library can control agent login, and so on.

Table 5: Call States for I-Library

Call State Enum Description

eCallStatusUnknown The call state is unknown. This usually indicates
there is no call on the port.

eCallStatusDialingMakeCall A make call is in progress, but it has not yet been
answered.

eCallStatusBusyMakeCall A make call was made to a busy number.

eCallStatusRinging A call has been made, and the called party’s
phone is ringing.

eCallStatusHeld A call is on hold.

Developer’s Guide 45

Chapter 4: Extended Functionality KeepAlive Processing

KeepAlive Processing
As described in the GDI specification, I-Library provides a KeepAlive
methodology. A configurable parameter, socket_activity_timer, is provided in
the Configuration Layer to control the I-Library KeepAlive processing

The default value for socket_activity_timer is 20 (seconds).

A value of 0 (zero) disables KeepAlive processing.

The range of valid values is =>1000 (ms).

If the value is greater than 0, KeepAlive processing is enabled. This means that
I-Library will use the socket_activity_timer value to determine whether a
KeepAlive message should be sent to IVR Server. I-Library will sleep for the
value of socket_activity_timer, and then determine whether any messages
have been received from IVR Server.

• If at least one message has been received at the time of the check, I-Library
will sleep again for the same amount of time.

• If no messages have been received, I-Library will send a KeepAlive
message to IVR Server. I-Library will sleep again for the same amount of
time, and then check again whether at least one message has been received
from IVR Server. If the socket is connected, IVR Server will respond to
this message with a KeepAlive response message, and I-Library will know
that the socket is connected.

eCallStatusBusy A call was made to a busy number.

eCallStatusDialing A call is being dialed.

eCallStatusEstablished A call has been connected to the called party.

eCallStatusRetrieved A previous consult call has been retrieved.

eCallStatusConfPartyDel A party that was brought into a conference call
has been deleted from the call.

eCallStatusConfPartyAdd A party has been added to the call.

eCallStatusXferComplete A call has been transferred.

eCallStatusReleased A call has ended.

eCallStatusNoChange Internal state used by I-Library. This would
never be returned to the application.

Table 5: Call States for I-Library (Continued)

Call State Enum Description

46 IVR SDK 8.5 C

Chapter 4: Extended Functionality Processing API Requests

If I-Library has sent a KeepAlive message to IVR Server and, after sleeping for
the value of socket_activity_timer, there is still no message, I-Library will
sleep one more time, and then check again. This is to meet the criteria in the
GDI specifications. Do not assume that the socket is disconnected until no
messages have been received after three times the configured amount of time.
If, after sleeping this third time, no messages have been received from IVR
Server, I-Library assumes that the socket is disconnected and, if necessary,
starts the reconnect thread.

Processing API Requests
The API request is received from an application, which may be a Genesys
driver. The APIs that begin with il receive an immediate reply. Those which
begin with ilSRq must wait for a response from IVR Server before they receive
a reply. The one exception to this is the ilSRqGetCallInfo request, which in
certain circumstances, can respond without waiting for a response from IVR
Server.

API processing proceeds as follows:

1. The first step in processing any API is to ensure that the library has been
initialized. The library is initialized by the API call ilInitiate, which
specifies which IVR resource will be used during the processing of calls.

The only API that can be sent before ilInitiate is ilGetVersion.

2. The next step is to make sure that there is at least one IVR Server logged in
to, ready to receive requests and respond to them.

There are several APIs that may be issued before this —for example,
ilGetTimeout, ilLocalPrn, ilPrnError, ilSetLogHeader, ilSetTimeout, and
ilSetVersionNumber, which are processed without checking for IVR Server
connectivity.

3. Next, for some APIs, the call state for the port on which the request is
made is checked, to determine whether the request will succeed. If not, the
call is rejected.

Each API with string input parameters is checked, to ensure that there are
no null strings. If a null string is found, for most APIs, an error condition is
returned, and the API is not processed. There are some APIs, such as
ilInitiate, that will exit with a null string pointer, because continuing
does not make any sense. If the API exits, a log file named
I-Library_exit.log is created in the directory where the driver is running.
The file contains information pertaining to the reason for the exit.

Developer’s Guide 47

Chapter 4: Extended Functionality Processing Response Messages

Chapter 5, “IVR API at a Glance,” on page 59 contains detailed information
about the APIs that are supported, and the XML message (if any) that they
send to IVR Server.

Processing Response Messages
The response message is usually a result of a previous request that an
application made to I-Library. When a response message is received, I-Library
must determine which request was responsible for it, and what data must be
saved in anticipation of an ilGetReply looking for the data that it contains or
represents.

Not all response messages result in a request ID being updated. The CallStatus
message, for instance, indicates that a call state has changed. It is used to
update the call state on the port on which the message is reporting. There are
also CallStatus messages that indicate that an error has occurred. These will
be described in the section dealing with IVR Server communications (see
page 56).

For all other response messages, an attempt will be made to update the request
ID that was created during processing of the API that precipitated this response
message. I-Library maintains a request ID table, containing an entry for each
API that it receives. This is the repository for the data that the response
message contains. Some response messages contain the request ID of the API
request that precipitated it. If the request ID is present in the response message,
that request ID is updated with the information in the response message.

Response message processing proceeds as follows:

1. The first step in the processing of a response message is to determine its
message type. This is done based on the Document Type Definition
(DTD), which describes the XML format being used. The message type is
always included in the message. Obviously, if a new type of message is
developed, it must be added to this list, and new methods must be
developed to extract its information.

2. After the message type is known, for those response messages which do
not contain request IDs, the message must be linked to the request that
precipitated it. Each entry in the request ID table contains the type of XML
request message generated by the API. Because each response message—

Note: The driver application must insure that API calls are synchronized;
that is, after an API is issued, no other is issued until the previous call
returns. If this sequence is not followed, the results are indeterminate.
This warning is for those who may have a multi-threaded application
which is making unsynchronized calls to the SDK.

48 IVR SDK 8.5 C

Chapter 4: Extended Functionality Error Codes

with the exception of a CallStatus response message—is generated by
only one type of request, linking the message to the request involves
locating the request ID that contains the appropriate request message.

Finding the Appropriate Request Message

Remember that there might be multiple outstanding requests for each call, and
that these requests might have generated the same request message. Therefore,
the appropriate request message for this response message is the earliest one in
the table, because responses will usually be returned in the order in which they
were requested.

1. In order to find the earliest request containing the appropriate request
message, the XML call ID is extracted from the response message. It
contains a numeric call ID that was created and sent in the request
message. I-Library maintains a table of active numeric call IDs. Each entry
contains the port on which the call was received. The numeric call ID,
therefore, is used to find the port with which this message is associated. If
the call on the port with which this call ID is associated has ended, the call
ID entry is reset. This becomes important when a response message for a
call is received after a call has ended. The reset entry indicates that the
response message is no longer of use, and that it can therefore be
discarded.

2. After the port number is found, it is used to obtain the information in the
I-Library port table that has an entry for each active port. Included in each
entry is the list of request IDs associated with the call on that port.
I-Library can now search each request ID entry in the request ID table, to
find the earliest request message associated with this response message.
The appropriate information in this response message is then saved in the
request ID table entry, and this entry is marked as having been updated.
The information is retained until the call is ended.

Error Codes
I-Library issues error codes for API requests attempting to indicate whether or
not the request succeeded. Table 6 on page 49 identifies each error code, its
value, and its meaning.

Developer’s Guide 49

Chapter 4: Extended Functionality Error Codes

Table 6: Error Codes

Error Code Error
Value

Error Meaning Error Correction

ilRQ_ERR 0 This request ID value is returned on the
API call if it failed. The API will never
return a negative number and any
positive number is a valid request ID. In
order to determine why the API failed,
either look in the log file or issue an
ilGetLastError.

ilRET_OK 0 The API request was accepted by
I-Library, with no errors found.

N/A

ilRET_ERROR -1 This is a general error that does not fit
into any other categories—for example:

• A program exception occurred.

• A request was made, but the call state
was incompatible.

• A route request was received, but
there was already a route in progress.

• An ilLocalPrnSelector was
received, but no 1s was configured in
the Configuration Layer to enable a
message to be printed.

Review the previous
messages in the log file,
and make corrections as
appropriate.

ilRET_LIB_NOTREADY -3 The API request was sent before the
ilInitiate API.

Send ilInitiate as the
first API.

ilRET_CONN_CLOSED -5 The API request was sent when there
were no IVR Servers that I-Library was
logged in to.

Start an IVR Server that
I-Library is configured to
connect to.

ilRET_BAD_ARGS -7 The API request had at least one bad
argument.

Correct the argument
that is in error.

ilRET_FUNC_UNSUPPORTED -9 ilInitiate was issued, and I-Library is
already initialized.

Do not send ilInitiate
more that once.

ilRET_TIMEOUT -11 The GetReply or GetRequest API
request found no response from IVR
Server for the specified request ID.

Resend the request,
giving the IVR Server
sufficient time to
respond.

50 IVR SDK 8.5 C

Chapter 4: Extended Functionality Escape Character Translation

Escape Character Translation
XML has certain special characters that are used in the parsing of messages.
I-Library must translate these characters to escape characters before sending
them in an XML message. Likewise, when an XML message is received from
IVR Server, any escape characters in the message must be converted to their
special characters before sending them back to the application. Table 7 defines
the special characters and their escape equivalents.

ilRET_REQ_EXPIRED -12 The GetReply or GetRequest API
request, which specifies which request
ID to respond to, did not find it in the list
of request IDs. This is either:

• An invalid request ID.

• A request ID that has already been
responded to in a previous request.

• A request ID from a call that has
ended.

Do not use the request
ID any longer.

ilRET_NO_REQUESTS -13 For a GetReplyAny API request, there is
no request ID with response data from
IVR Server.

Try again later.

ilRET_BAD_CONN_NAME -15 Not used. N/A

ilRET_REQ_FAILURE -1000 Indicated that one of the following
occurred:

• For a response message, the XML
format was incorrect.

• A CallError response message was
received for a previous API request.

• For a GetCallInfo response, the type
of data requested was unknown.

Check the log for more
information about which
problem has occurred.

Table 6: Error Codes (Continued)

Error Code Error
Value

Error Meaning Error Correction

Table 7: Escape Characters

Escape Character Converted Value

< <

> >

Developer’s Guide 51

Chapter 4: Extended Functionality Routing

Note: This translation to escape characters in messages being sent to IVR
Server occurs only for user data.

Routing

I-Library will format a GetReply response for the various types of responses
that can be received at the end of a route sequence. This section lists some of
the types of route responses that I-Library expects, and the value that
subsequent GetReply will return for each one. The value that GetReply returns
is historical, and it is kept the same across releases in order to be consistent
with what applications are expecting.

Normal Route

<?xml version='1.0' encoding='ISO-8859-1'?>
<!DOCTYPE GctiMsg SYSTEM 'IServer.dtd'>
<GctiMsg>

<CallId>IVRÿ1ÿ2</CallId>
<RouteResponse RouteType='Normal'>

<Dest>7777</Dest>
<ExtnsEx>

<Node Name='CUSTOMER_ID' Type='Str' Val='Resources'/>
<Node Name='DN' Type='Str' Val='7777'/>
<Node Name='NVQ' Type='Int' Val='1'/>
<Node Name='SWITCH' Type='Str' Val='Virtual Switch'/>
<Node Name='TARGET' Type='Str' Val='7777_Virtual

Switch@.RP'/>
</ExtnsEx>

</RouteResponse>
</GctiMsg>

& &

“ "

‘ '

\t 	

\r 

\n

Table 7: Escape Characters (Continued)

Escape Character Converted Value

52 IVR SDK 8.5 C

Chapter 4: Extended Functionality Outbound Dialing

The getReply should return 7777@’Virtual Switch’ if configured to return the
switch name

Default with No Destination Address or Nodes

This is a default route response XML message with no default destination.
<?xml version='1.0' encoding='iso-8859-1'?>
<!DOCTYPE GctiMsg SYSTEM 'IServer.dtd' >
<GctiMsg>

<CallId> SILÿ1000ÿ2 </CallId>
<RouteResponse RouteType='Default' />

</GctiMsg>}

The GetReply request should return RouteType Default.

Outbound Dialing
I-Library has the ability to handle outbound calls. I-Library will communicate
with both IVR Server and the driver/application, to ensure that call progress
messages are flowing correctly between them.

1. At startup, I-Library will determine whether the configuration parameter
dial_out_dns is populated with values indicating that I-Library should
register with IVR Server in order to receive information about outbound
calls.

If the configuration indicates that it should, I-Library will send a
DialOutRegistry XML message to IVR Server. IVR Server will respond
with a DialOutRegistryResp XML message, indicating whether or not the
registration process has been successful.

2. After successful registration has occurred, IVR Server will send any
outbound call requests to I-Library, using the DialOut XML message.
I-Library will accumulate these outbound call requests, waiting for the
driver/application to request them.

3. When the driver uses the ilSRqGetDialOutData API to request a call,
I-Library will return a request ID for the next call on its queue. The driver
will use this request ID in an ilGetReply API, to request the information
about the call that it needs in order to process it.

4. When the driver has successfully initiated the call, it will inform I-Library
by using the ilSRqDialOutDataInit API, indicating which port the call was
made on. I-Library will respond to this request with a request ID, and it
will send the call information to IVR Server, using the DialOutInit XML
message. IVR Server will respond with a CallStatus XML message with a
status of Dialing. The driver will issue an ilGetReply API to determine
whether the call initiation was communicated successfully.

Developer’s Guide 53

Chapter 4: Extended Functionality Connections and Load Sharing

5. When the driver has determined that the call has been established, it will
use the ilCallEstablished API to inform I-Library. I-Library will respond
with a request ID, and it will send a CallStatus XML message to IVR
Server, with a status of Established. IVR Server will respond with two
CallStaus XML messages, one with status Ringing, and the next with
status Established.

6. The driver will now repeat this cycle by issuing another
ilSRqGetDialOutData API to get the next call on the queue.

Results of the Request

When the driver requests the next call in the I-Library queue, but there are
none remaining, I-Library responds with a request ID of 0 (zero).

If the driver issues the ilSRqDialOutDataInit API, and I-Library sends the
DialOutInit XML message to IVR Server, but it fails because the port that the
driver used was invalid or the call timer expired, IVR Server will send a
CallStatus XML message, with a feature not supported indication.

If a dialing error occurs when the driver attempts to make the call, the driver
should send the ilDialOutError API to I-Library, indicating the type of error
that occurred: NotSupported, NoTrunks, or MiscError.

If the call fails, the driver should send a ilFailure API, indicating the type of
error that occurred: Busy, NoAnswer, or ConnectFailed.

Connections and Load Sharing

IVR Servers and Load Sharing

I-Library will attempt to communicate with the IVR Servers that the user has
configured.

In “6.5 Mode,” the ilConnectionOpen() API call from the driver identifies the
IVR Server to which a login request is sent. The login response might identify
other IVR Servers to which a login request should be sent.

In “7.0 Mode,” the ilConnectionOpenConfigServer() API call causes I-Library
to read the configuration data from the configuration server that is retrieving
the list of load sharing IVR Servers. Attempts will be made to log in to all of
these IVR Servers. See for more details regarding this mode.

In “6.5 Mode,” the primary IVR Server is the one that is configured in the Data
Transport option of the IVR object. The other IVR Servers use the primary
server's configuration. There is no difference in operation between the primary
IVR Server and the others. Any configured IVR Servers can be started first,
and the others, when started, will operate satisfactorily.

54 IVR SDK 8.5 C

Chapter 4: Extended Functionality Connections and Load Sharing

In “6.5 Mode,” the ilConnectionOpen() API identifies a single socket. If this
primary IVR Server cannot be logged into, the I-Library will continue to
attempt to log in to it. After the timeout that the IVR Driver specifies, the
I-Library will send back a return code of false. Most drivers will not attempt
to send any further APIs at this point. The Data Transport section information
would not be available, and therefore no other IVR Servers will be known
about to log in to.

In “7.0 Mode,” the configuration data identifies all of the IVR Servers to be
logged in to. I-Library will attempt to log into all of them, and if none can be
logged in to, it will return a return code of false.

If there are multiple IVR Servers configured, an algorithm is used to select an
IVR Server to which to send each call. The algorithm is simply to divide the
port that the call is on by the number of IVR Servers available to process the
call, then the remainder is used to select which IVR Server to use for the call.

For example, if there is a call on port 7 and there are three IVR Servers
available to process the call, the IVR Server that is in position 1 in the list of
IVR Servers would be chosen to send the call to (7/3 yields a remainder of 1).
This call would continue to be sent to this IVR Server until the call on this port
ends. At that point, the algorithm would be used again to determine which IVR
Server to send the new call on this port to. This must be done in case the list of
IVR Servers changes.

If any socket becomes unavailable, either because it is down or because has
been taken off the socket list, the call in progress on that socket will have any
API requests rejected. When a new call comes in on that port, the algorithm for
selecting the socket to use will select another available socket.

IVR Servers and High Availability (Hot Standby)

An alternative to load sharing the IVR Servers is to configure the IVR Servers
in high availability Hot Standby mode. When configured in this mode, one of
the Servers will be considered the primary and will process calls. The other
server, the backup, will maintain the same state as the primary in order to be
available to immediately take over if the primary fails.

I-Library, if configured to communicate to the IVR Servers in this mode, will
login to each IVR Server and from then on will send API requests to both
servers and will expect only one response. I-Library will consider the IVR
Server which sent the last response to be the primary. If I-Library detects that a
server is no longer communicating, it will attempt to reconnect to it and will
continue to send API requests to the server that is communicating.

Connecting to IVR Server

After obtaining sufficient configuration data, I-Library will attempt to connect,
via a socket, to the IVR Server specified in the defined configuration. As
I-Library attempts to connect to IVR Server, it makes use of two particular

Developer’s Guide 55

Chapter 4: Extended Functionality Connections and Load Sharing

configuration options, time_recon_is, and the timeout specified in the
ilConnectionOpen() or ilConnectionOpenConfigServer() function.

The timeout value is the maximum amount of time that I-Library will take
before responding to the application regarding the connection to IVR Server.

• If I-Library is able to successfully log in to IVR Server, a positive or true
response will be returned on the ilConnectionOpen() or
ilConnectionOpenConfigServer() function as soon as the login is
successful.

• If I-Library is unable to successfully log in to IVR Server within the
amount of time specified in the timeout value, a negative or false
response will be returned. I-Library will actually continue to attempt to log
in to IVR Server after sending the negative response, and it allows the
application to attempt another ilConnectionOpen() or
ilConnectionOpenConfigServer() function call. Only the timeout value
will be honored for subsequent calls.

The time_recon_is value is the amount of time that I-Library will wait between
attempts to connect and log in to IVR Server. So, for example, if I-Library
attempts to log in to IVR Server, and the attempt fails because the socket is not
available because IVR Server is not running, I-Library will wait the amount of
time specified by time_recon_is before making another attempt to log in to
IVR Server.

It is recommended that you set the time_recon_is value to 2000 ms, and that
the timeout specified on the ilConnectionOpen() or
ilConnectionOpenConfigServer() function be 60000 ms—or greater, if the IVR
Server has a significant number of DNs to register. Experience has shown that,
with an IVR Server registering in the range of 1000 DNs, the timeout value
needs to be greater than 60000 ms.

While I-Library is attempting to log in to IVR Server, I-Library will log
progress messages into the configured log file.

The connection to I-Server may be made secure by configuration. Refer to the
details in the IVR Interface Option 8.5 IVR Server System Administrator's
Guide

Connection Problems

There are several conditions that can cause I-Library to be unable to connect to
IVR Server.

• The most obvious is that the IVR Server is not running. I-Library will
continue to attempt to log in to IVR Server until the process is stopped.
This is the case whether a single IVR Server or multiple IVR Servers are
configured. If multiple IVR Servers are configured, I-Library will treat
them separately when attempting to log in to each one. If one IVR Server is

56 IVR SDK 8.5 C

Chapter 4: Extended Functionality Connections and Load Sharing

running, and I-Library successfully logs in to it, and the other IVR Server
is not running, I-Library will continue to attempt to connect to the IVR
Server that is not running.

• Network delays can cause problems when I-Library is attempting to log in
to IVR Server. Experience has shown that if I-Library and IVR Server are
in different physical locations, a simple ping can take as long as 300 to 400
ms. In this situation, it takes time for the socket to inform I-Library that it
is available to write to, and therefore I-Library is designed to allow up to
1000 ms before determining that the socket is unusable, closing it, and
attempting to create a new socket. If your network is this slow, you will be
able to have I-Library log in to IVR Server; however, your call handling
volumes might be substantially degraded.

• Network delays can also cause delays in the connection of the socket from
I-Library and IVR Server resulting in an in progress messages from
TCP/IP. I-Library is designed to attempt 10 retries on the socket before
determining that the socket is unusable, closing it, and creating a new one.
In this situation one retry is usually sufficient in order to have a successful
connect.

Connecting to IVR Server After Startup

If IVR Server stops running after having been connected to I-Library, I-Library
will recognize that IVR Server is no longer connected and take steps to
reconnect to it. I-Library will attempt to connect and log into IVR Server using
the same design as when it initially connected. The problems that are
experienced, therefore, are the same as when initially connecting.

Handling IVR Server Disconnects

After I-Library and IVR Server are successfully communicating,
communications between the two can be interrupted by network problems or
by IVR Server exiting. When either of these happens, I-Library is designed to
attempt to reconnect to IVR Server forever.

Processing Calls

Communications to IVR Server Is Interrupted

When I-Library detects that IVR Server is no longer communicating, it begins
an analysis to determine which ports were using that IVR Server and, for each
of those ports, whether there are any request IDs still in-progress—that is, no
response has yet been received from IVR Server. Each of those request IDs is
deleted from the request ID table. The effect of this is to return
ilRET_REQ_EXPIRED to an ilGetReply that is issued for that request ID. Because
the IVR Server is no longer available to process request messages, any APIs

Developer’s Guide 57

Chapter 4: Extended Functionality Connections and Load Sharing

issued for the ports that were using that IVR Server will be responded to with
ilRQ_ERR, and the last error will be set to ilRET_CONN_CLOSED. If a new call is
started on this port, and there are other IVR Servers available, the call will be
switched to another available IVR Server.

Communications to IVR Server Is Restored

If I-Library is able to reconnect to the IVR Server, any APIs using the call ID
that was being used when communications with the IVR Server were disrupted
will still be sent to the IVR Server. At this point, two possible responses from
IVR Server can occur:

• If the communications disruption was due to a network problem, and IVR
Server still has the call model available for the calls that were in progress
when the miscommunications occurred, IVR Server will respond to the
request, and I-Library will handle it.

• If the communications disruption was due to IVR Server exiting, IVR
Server will no longer have the call model available, and it will respond to
the request with a CallError message, with an explanation of NoSuchCall.
When I-Library processes this message, the state of the call on the port on
which this request was made will be set to eCallStatusReleased. The effect
of this is that any APIs except ilSRqGetCallInfo and ilSRqNotifyCallEnd
will be returned with ilRQ_ERR, and the last error will be set to
ilRET_ERROR. Both the ilSRqGetCallInfo and ilSRqNotifyCallEnd APIs will
be given valid request IDs and processed appropriately, because they are
always allowed to be sent after a call has a call state of
eCallStatusReleased.

Flow Control

I-Library responds to Flow Control XML messages from IVR Server in the
following way:

When Load Sharing

• If a Flow Control XML message is received from IVR Server indicating
that the flow control is on, I-Library will not send any NewCall or agent
control messages to that IVR Server. I-Library will continue to send any
XML messages that are part of an existing call to the IVR Server to which
the NewCall message had already been sent. All other XML messages will
be sent to other IVR Servers.

• If a Flow Control XML message is received from IVR Server indicating
that the flow control is off, I-Library will start to send XML messages to
that IVR Server. Any calls that are already in existence will continue to the

58 IVR SDK 8.5 C

Chapter 4: Extended Functionality Connections and Load Sharing

IVR Server to which their NewCall message had been sent. That IVR
Server will be available for selection for any incoming NewCall and agent
control messages.

When Not Load Sharing

• If a Flow Control XML message is received from IVR Server, indicating
that the flow control is on, I-Library will be able to send only those XML
messages that are part of an existing call that has already sent NewCall
message to that IVR Server. All other API requests will receive a negative
response.

• If a Flow Control XML message is received from IVR Server, indicating
that the flow control is off, I-Library will start sending all API requests, as
well as any agent control messages, to that IVR Server.

Developer’s Guide 59

Chapter

5 IVR API at a Glance
This chapter presents a condensed view of the IVR API and contains these
sections:
 Groups of IVR API Functions, page 59
 IVR API Descriptions, page 62

The information for these functions is abbreviated. The functions themselves
are presented in prototype form. For more information see the interface.h
header file or the HTML API reference that is shipped with the IVR SDK C
software.

Groups of IVR API Functions
IVR API functions can be grouped into functional categories.

Library Initialization and Reset Functions (page 62)

BOOL ilInitiate(CPSTR);
BOOL ilDeinitiate(void);

Opening and Closing Connections
to IVR Server Functions (page 62)

BOOL ilConnectionOpen(CPSTR, SOCKET_PORT, ULONG);
BOOL ilConnectionOpenConfigServer(CPSTR, SOCKET_PORT, CPSTR,

ULONG);
BOOL ilConnectionOpenConfigServer80(CPSTR, SOCKET_PORT,

SOCKET_PORT, CPSTR, SOCKET_PORT, CPSTR, ULONG;
BOOL ilConnectionClose(void);

60 IVR SDK 8.5 C

Chapter 5: IVR API at a Glance Groups of IVR API Functions

Network Socket Force
for IVR Server Connection Functions (page 64)

ilRET ilWatch(ULONG);

Get Reply to Previous Request Functions (page 65)

ilRET ilGetReply(ilRQ, PSTR, int);
ilRET ilGetReplyAny(ilRQ*, PSTR, int);

Notification Functions—Call Start/End (page 66)

ilRQ ilSRqNoteCallStart(ilRQ, ilPORT, CPSTR, CPSTR, CPSTR, CPSTR);
ilRQ ilSRqNoteCallEnd(ilRQ, ilPORT);

Telephony Functions—Requests (page 67)

ilRQ ilSRqCallInit(ilRQ, ilPORT, CPSTR);
ilRQ ilSRqCallComplete(ilRQ, ilPORT);
ilRQ ilSRqCallConference(ilRQ, ilPORT, CPSTR);
ilRQ ilSRqCallTransfer(ilRQ, ilPORT, CPSTR);
ilRQ ilSRqCallConsultInit(ilRQ, ilPORT, CPSTR);
ilRQ ilSRqCallConsultComplete(ilRQ, ilPORT);
ilRQ ilSRqCallConsultConference(ilRQ, ilPORT);
ilRQ ilSRqCallConsultTransfer(ilRQ, ilPORT);
ilRQ ilSRqCallTransferKVList(ilRQ, ilPORT, CPSTR, CPSTR);

User Data–Processing Functions (page 70)

ilRQ ilSRqUDataAddKD(ilRQ, ilPORT, CPSTR, CPSTR);
ilRQ ilSRqUDataAddList(ilRQ, ilPORT, CPSTR);
ilRQ ilSRqUDataGetKD(ilRQ, ilPORT, CPSTR);
ilRQ ilSRqUDataDelKD(ilRQ, ilPORT, CPSTR);
ilRQ ilSRqUDataDelAll(ilRQ, ilPORT);
ilRQ ilSRqUDataGetAll(ilRQ, ilPORT);

CTI Object–Information Functions (page 73)

ilRQ ilSRqGetCallInfo(ilRQ, ilPORT, ilCI_TYPE);

Call Data–Transfer Functions (page 74)

ilRQ ilSRqCDT_Init(ilRQ, ilPORT, CPSTR, CPSTR, CPSTR, CPSTR);
ilRQ ilSRqCDT_Cancel(ilRQ, ilPORT);

Developer’s Guide 61

Chapter 5: IVR API at a Glance Groups of IVR API Functions

General–Purpose Functions (page 75)

ilRQ ilSRqVersion(ilRQ, ilPORT, CPSTR);
BOOL ilSetVersionNumber(CPSTR);
CPSTR ilGetVersion(void);
int ilGetCallStatus(ilPORT Port);
ilRET ilGetProcessingState(void);
ilRQ ilSRqToLog(ilRQ, ilPORT, CPSTR, CPSTR);
BOOL ilSetLogHeader(CPSTR);
BOOL ilSetTimeout(ULONG);
ULONG ilGetTimeout(void);

Utility Functions (page 77)

long ilGetLastError(ilERR_TYPE);
Long ilGetLastPortError(iLPORT, ilERR_TYPE);
ilRET ilLocalPrn(ilRQ, ilPORT, CPSTR,...);
ilRET ilLocalPrnSelector(ilRQ, ilPORT, CPSTR,...);
CPSTR ilPrnError(long);
CPSTR ilGetParmValue(CPSTR, int);

Routing-Related Functions (page 80)

ilRQ ilSRqRouteGet(ilRQ, ilPORT, CPSTR);
ilRQ ilSRqRouteDone(ilRQ, ilPORT);
ilRQ ilSRqRouteStart(ilRQ, ilPORT, CPSTR);
ilRQ ilGetRequest(ilPORT, PSTR, int);
ilRET ilSendReply(ilRQ, BOOL, CPSTR);
ilRQ ilSRqRouteAbort(ilRQ, ilPORT);

Statistics-Related Functions (page 82)

ilRQ ilSRqStatPeek(ilRQ, ilPORT, CPSTR);
ilRQ ilSRqStatGet(ilRQ, ilPORT, CPSTR, CPSTR, CPSTR, CPSTR);

Outbound Calling Functions (page 82)

ilRQ ilSRqGetDialOutData();
ilRQ ilSRqDialOutDataInit(ilRQ, ilPORT, ilRQ);
ilRET ilCallEstablished(ilPORT);
ilRET ilDialOutError(ilPORT, ilDIALOUTERR);
ilRET ilFailure(ilPORT, ilFAILURE);

62 IVR SDK 8.5 C

Chapter 5: IVR API at a Glance IVR API Descriptions

IVR API Descriptions
This section briefly describes the purpose of each IVR API function, including
descriptions of arguments. If a function’s return values are obvious, there is no
description.

Library Initialization and Reset Functions

Initiate

BOOL ilInitiate(CPSTR);

The ilInitiate() function must be called before any other function in the
library. As an argument, it takes the configuration name of the IVR driver. The
ilInitiate() function returns the value false if there is a problem with the
library and your driver should abort.

Deinitiate

BOOL ilDeinitiate(void);

The ilDeinitiate() function is a noop, and exists only for backward
compatibility. Genesys recommends that you not call it in your code.

Opening and Closing Connections to
IVR Server Functions

ConnectionOpen

BOOL ilConnectionOpen(CPSTR, SOCKET_PORT, ULONG);

The ilConnectionOpen() function opens a connection and logs in to IVR.
Server in “6.5 Mode.” The 6.5 versions of the library operate in “6.5 Mode.” It
then reads the configuration data that IVR Server sends in the response to the
login request, and logs in to all IVR Servers that are configured as
load-sharing. It also uses the configuration data to configure I-Library tables
and processing options. As arguments, ilConnectionOpen() takes the name of
the machine that hosts the IVR Server, the port number on which the IVR
Server is listening, and the maximum number of milliseconds allowed to
establish the connection. It returns the value false if I-Library cannot
successfully log in to the IVR Server within the timeout value, or if the timeout
value is negative. The function returns the value true if a connection to the
IVR Server succeeds and handshakes are valid.

If the host parameter is null, or if the host is unknown, it will cause I-Library to
exit.

Developer’s Guide 63

Chapter 5: IVR API at a Glance IVR API Descriptions

The XML message generated for this API is LoginReq.

ConnectionOpenConfigServer

BOOL ilConnectionOpenConfigServer(CPSTR,SOCKET_PORT,CPSTR,ULONG);

The ConnectionOpenConfigServer() function operates in “7.0 Mode,” which
incorporates new features such as dynamic configuration updates and
centralized logging. “7.0 Mode” is not available on UnixWare platforms. It
opens a connection to the Genesys Configuration Server in order to access the
configuration data defined in the Driver Application, and it logs in to IVR
Servers defined in the load-sharing option. It ignores the configuration data
that IVR Server sends in the response to the login request. It uses the
configuration data to configure I-Library tables and processing options. As
arguments, ilConnectionOpenConfigServer() takes the name of the machine
that hosts the Configuration Server, the port number on which the
Configuration Server is listening, the name of the Application object that
refers to the driver, and the maximum number of milliseconds allowed to
establish the connection.

Note: The timeout value is saved and used as a timer whenever a connection
to IVR Server is lost and must be re-opened. When attempting to
re-connect to IVR Server, I-Library will use the time_recon_is value as
a timer, to determine how often should attempt to log in to IVR Server.
If the time specified by the timeout expires, I-Library will close and
re-open the socket and then continue to attempt to log in to IVR Server.

The function exits if I-Library cannot successfully log into the Configuration
Server. It returns the value false if I-Library cannot successfully log into the
IVR Server within the timeout value or if the timeout value is negative. The
function returns the value true, if a connection to the IVR Server succeeds and
handshakes are valid.

If the host parameter is null, or if the host is unknown, I-Library exits.

The XML message generated for this API is LoginReq.

ConnectionOpenConfigServer80

Bool ilConnectionOpenConfigServer80(CPSTR, SOCKET_PORT,
SOCKET_PORT, CPSTR, SOCKET_PORT, CPSTR, ULONG);

Note: The timeout value is saved and used as a timer whenever a connection
to IVR Server is lost and must be re-opened. When attempting to
re-connect to IVR Server, I-Library will use the time_recon_is value
as a timer, to determine how often it should attempt to log into IVR
Server. If the time specified by the timeout expires, I-Library will
close and re-open the socket, and then continue to attempt to log in to
IVR Server.

64 IVR SDK 8.5 C

Chapter 5: IVR API at a Glance IVR API Descriptions

The ConnectionOpenConfigServer80 function operates just as the
ConnectionOpenConfigServer function but with additional capabilities.

The first three parameters identify the Configuration Server to be connected to
in order to start processing. The next two parameters need to be present if a
backup or secondary Configuration Server is to be used. The last two
parameters are the application name and the timeout value.

The first three parameters are the host, port, and client side port of the
Configuration Server. You may leave the client side port as 0 (zero) if you do
not want to specify a client side port.

If you want to indicate a backup Configuration Server, you may use the next
two parameters to do so. As with the first two, they are the host and port of the
backup Configuration Server.

It is only necessary to use this function if you want either a client side port
defined for the Configuration Server or you want to provide a backup
Configuration Server to use in the case that the primary Configuration Server
is not available.

When I-Library does connect to a Configuration Server, it will ask that
Configuration Server if it is configured.

ConnectionClose

BOOL ilConnectionClose(void);

The ilConnectionClose() function is a noop, and exists only for backward
compatibility. All connections to IVR Servers are closed when the I-Library
exits. Genesys recommends that you not call ilConnectionClose() in your
code.

Network Socket Force for IVR Server
Connection Function

Watch

ilRET ilWatch(ULONG);

The ilWatch() function ensures that I-Library has the opportunity to:

• Process replies to API messages

• Ensure that all sockets connected to the IVR Server are fully operational

• Ensure that the Configuration Server is fully operational

• Process keep-alive messages as necessary

The parameter is the minimum time in milliseconds that the application waits
to expire before ilWatch returns. It may be 0 (zero), indicating a return as soon
as all processing is completed.

The receipt of the ilWatch will not be logged unless the wait time is greater
than 10 milliseconds.

Developer’s Guide 65

Chapter 5: IVR API at a Glance IVR API Descriptions

The ilWatch is only necessary if call activity is low. During times when APIs
are being sent to I-Library, the ilWatch function is initiated internally. If there
is limited call activity, ilWatch should be used as often as the application
wants:

• Socket connectivity to be checked.

• Keep-alive requests from IVR Server(s) to be responded to.

Get Reply to Previous Request Functions

GetReply

ilRET ilGetReply(ilRQ, PSTR, int);

The ilGetReply() function retrieves reply data for a previous ilSRq function
request. If the data is not available at the time of the call, it will wait up to the
value specified in the last ilSetTimeout. If the ilSetTimeout value is 0 (zero), it
will return immediately, without waiting for data. It will check for returned
data during that time every 10 ms, until the ilSetTimeout value is reached. A
number of bytes of the reply data string, as specified by size, are copied into
buffer. If the size is smaller than the buffer size, the buffer is padded with
zeroes; otherwise, it is not padded, and the buffer is not null terminated. As
arguments, ilGetReply() takes a ilRQ value captured from the return of the
previous ilSRq*() function, a pointer to a string buffer, and an integer that
specifies the size of the string buffer, in bytes.

Return values include:

• 1 if the data is available in the buffer.

• ilRET_BAD_ARGS if the ilrq is 0.

• ilRET_TIMEOUT if the ilSetTimeout value was exceeded before data became
available.

• ilRET_REQ_EXPIRED if the ilrq is no longer an active request ID.

Note: A request ID goes inactive when a ilGetReply is issued for it and the
data is available or when the call on which it was active ends.

For most APIs, the response buffer will contain the string OK. There are
exceptions; however, these are described in those APIs that cause a different
response string.

GetReplyAny

ilRET ilGetReplyAny(ilRQ*, PSTR, int);

The ilGetReplyAny() function retrieves whatever is the current reply in the
order stack, and writes the ilRQ number for that reply in the location specified
by the first argument, which is a pointer to an ilRQ variable. Subsequent

66 IVR SDK 8.5 C

Chapter 5: IVR API at a Glance IVR API Descriptions

arguments are pointers to a string buffer that will contain the text of the reply
and the length of the buffer, in bytes.

Return values include:

• 1 if the data is available in the buffer.

• ilRET_NO_REQUESTS if there are no request IDs in the queue.

Notification Functions—Call Start/End

SRqNoteCallStart

ilRQ ilSRqNoteCallStart(ilRQ, ilPORT, CPSTR, CPSTR, CPSTR, CPSTR);

The ilSRqNoteCallStart() function notifies the IVR Server that a new call
resides on a particular IVR resource that is specified by the Port argument. The
IVR script should call this function before it calls any other telephony requests
for the particular IVR channel (except for the ilCallInit() function, which
performs the equivalent function). As arguments, ilSRqNoteCallStart() takes
an RqID value (ilRQ_ANY), and an IVR port where the call resides. It can take
four additional optional arguments: a string representation of a call ID that
specifies a virtual call ID (PBX ID, switch ID), a string representation of a
DNIS, a string representation of an ANI, and a string representation of a tag to
be used for supporting the Call Data–Transfer (CDT) protocol. The I-Library
checks both the call ID and the tag for CDT in order to ensure they are not null
pointers, even though these two arguments are not used in the XML message
that is sent to the IVR Server.

Return value include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response immediately for this API. In order to
determine whether the port is ready for further telephone activity,
ilGetCallStatus can be used to determine when a CallStatus ringing or
CallStatus established message has been received.

The XML message generated by this API is NewCall.

SRqNoteCallEnd

ilRQ ilSRqNoteCallEnd(ilRQ, ilPORT);

The ilSRqNoteCallEnd() function notifies the IVR Server when call activity on
a particular port has completed. In the IVR-behind-the-switch configuration,
the IVR Server will request that the associated T-Server release the call. As
arguments, ilSRqNoteCallEnd() takes an ilRQ value (ilRQ_ANY), and the IVR
port where the call resides.

Developer’s Guide 67

Chapter 5: IVR API at a Glance IVR API Descriptions

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response immediately for this API.

The XML message generated by this API is EndCall.

Telephony Functions—Requests

Note: The Telephony functions apply only to IVRs deployed in
behind-the-switch mode.

SRqCallInit

ilRQ ilSRqCallInit(ilRQ, ilPORT, CPSTR);

The ilSRqCallInit() function initiates a new call from the IVR port to a
destination DN. As arguments, it takes an ilRQ value (ilRQ_ANY), the IVR port
where the call resides, and a string representation of a DN (the directory
number of the party to be dialed).

Note: This function will not work for the off-site switch option (IVR in-
front-of-the-switch). If this function is used, the ilSRqNoteCallStart
function should not be used for this same call.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a CallStatus
Established message.

The XML message generated by this API is MakeCall.

SRqCallComplete

ilRQ ilSRqCallComplete(ilRQ, ilPORT);

The ilSRqCallComplete() function releases a call that is associated with the
specified IVR port. It is equivalent to the ilSRqNoteCallEnd() function. As
arguments, it takes an ilRQ value (ilRQ_ANY), and the IVR port where the call
resides.

68 IVR SDK 8.5 C

Chapter 5: IVR API at a Glance IVR API Descriptions

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response immediately for this API.

The XML message generated by this API is EndCall.

SRqCallConference

ilRQ ilSRqCallConference(ilRQ, ilPORT, CPSTR);

The ilSRqCallConference() function makes a new conference call. As
arguments, it takes an ilRQ value (ilRQ_ANY), the IVR port where the call
resides, and a string representation of the destination DN for a new party.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a CallStatus
ConfPartyAdd message.

The XML message generated by this API is OneStepConf.

SRqCallTransfer

ilRQ ilSRqCallTransfer(ilRQ, ilPORT, CPSTR);

The ilSRqCallTransfer() function completes a call transfer, causing the call
on the specified port parameter to be released from both the original and
consultation call. As arguments, it takes an ilRQ value (ilRQ_ANY), the IVR port
where the call resides, and a string representation of the destination DN for a
new party.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a CallStatus
XferComplete message.
The XML message generated by this API is OneStepXfer.

SRqCallTransferKVList

ilRQ ilSRqCallTransferKVList(ilRQ, ilPORT, CPSTR, CPSTR);

Developer’s Guide 69

Chapter 5: IVR API at a Glance IVR API Descriptions

The ilSRqCallTransferKVList() function does all that the ilSRqCallTransfer()
function does and in addition enables the caller to also pass user data during
the same function call. The last CPSTR variable is treated as a key-value pair
list. The first character is considered to be the delimiter between values for the
rest of the string. The usage rules are the same as for user data.

SRqCallConsultInit

ilRQ ilSRqCallConsultInit(ilRQ, ilPORT, CPSTR);

The ilSRqCallConsultInit() function places an existing call on hold, and
originates a consultation call. As arguments, it takes an ilRQ value (ilRQ_ANY),
the IVR port where the call resides, and a string representation of the
destination DN for a new party.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a CallStatus
Dialing message.

The XML message generated by this API is InitConf.

SRqCallConsultComplete

ilRQ ilSRqCallConsultComplete(ilRQ, ilPORT);

The ilSRqCallConsultComplete() function releases a previously initiated
consult call. As arguments, it takes an ilRQ value (ilRQ_ANY) and the IVR port
where the call resides.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a CallStatus
Retrieved message.

The XML message generated by this API is RetrieveCall.

SRqCallConsultConference

ilRQ ilSRqCallConsultConference(ilRQ, ilPORT);

The ilSRqCallConsultConference() function merges the original call and a
consultation call into a conference call. As arguments, it takes an ilRQ value
(ilRQ_ANY), and the IVR port where the consultation call resides.

70 IVR SDK 8.5 C

Chapter 5: IVR API at a Glance IVR API Descriptions

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a CallStatus
Retrieved message.

The XML message generated by this API is CompleteConf.

SRqCallConsultTransfer

ilRQ ilSRqCallConsultTransfer(ilRQ, ilPORT);

The ilSRqCallConsultTransfer() function completes a call transfer. This
causes the specified IVR port to be released from both the original and
consultation calls. Parties participating in the original and consultation calls
that reside on this port are merged into one call. As arguments, this function
takes an ilRQ value (ilRQ_ANY), and the IVR port where the consultation call
resides.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a CallStatus
XferComplete message.

The XML message generated by this API is CompleteXfer.

User Data-Processing Functions

SRqUDataAddKD

ilRQ ilSRqUDataAddKD(ilRQ, ilPORT, CPSTR, CPSTR);

The ilSRqUDataAddKD() function attaches one user key-data combination to the
active call that resides on the IVR port. There are certain restrictions on the
data. The key cannot be a null string (“ ”). Any single character cannot be less
than 0x20, except for \t, \r, and \n. There are also restrictions on the size of the
key and data. User data strings may contain XML escape characters. Care is
taken when translating these strings so that large strings do not cause
performance impacts. See the IVR Server System Administrator’s Guide for
more information about this. As arguments, it takes an ilRQ value (ilRQ_ANY),
the IVR port where the call resides, a string for the key, and a string for the
data.

Developer’s Guide 71

Chapter 5: IVR API at a Glance IVR API Descriptions

Return value include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if the key is null. ilRET_BAD_ARGS is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a UDataResp
message.

The XML message generated by this API is UDataSet.

SRqUDataAddList

ilRQ ilSRqUDataAddList(ilRQ, ilPORT, CPSTR);

The ilSRqUDataAddList() function adds a list of key-data pairs to the call that
is residing on the specified IVR channel. The same restrictions that apply to
the data for SRqUDataAddKD also apply to this API. The list must be structured
with a delimiter between each key and value—for
example,:key:data:key2:data2:. If the list contains a null character string in a
position where a key is expected, that data will be skipped and the next string
will be considered a key. As arguments, it takes an ilRQ value (ilRQ_ANY), the
IVR port where the call resides, and a string that stores an ordered list.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if any key is null. ilRET_BAD_ARGS is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful

ilGetReply will return a positive response after I-Library receives a UDataResp
message.

The XML message generated by this API is UDataSet.

SRqUDataGetKD

ilRQ ilSRqUDataGetKD(ilRQ, ilPORT, CPSTR);

The ilSRqUDataGetKD() function requests the value of either the key that is
specified, or a colon-separated list of key-value pairs that is specified by the
colon-separated list of keys. As arguments, it takes an ilRQ value (ilRQ_ANY),
the IVR port where the call resides, and a string that stores either the key, or a
colon-separated list of keys.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

72 IVR SDK 8.5 C

Chapter 5: IVR API at a Glance IVR API Descriptions

• ilRQ_ERR if the key is null, or if it contains a semi-colon. ilRET_BAD_ARGS is
displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a UDataResp
message. The get reply buffer will contain the data for the specified key or
keys.

The XML message generated by this API is UDataGet.

SRqUDataGetAll

ilRQ ilSRqUDataGetAll(ilRQ, ilPORT);

The ilSRqUDataGetAll() function requests all the currently known key-value
pairs. As arguments, it takes an ilRQ value (ilRQ_ANY), and the IVR port where
the call resides.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if the key is null, or if it contains a semi-colon. ilRET_BAD_ARGS is
displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a UDataResp
message. The get reply buffer will contain a null delimited string of key-value
pairs.

The XML message generated by this API is UDataGetAll.

SRqUDataDelKD

ilRQ ilSRqUDataDelKD(ilRQ, ilPORT, CPSTR);

The ilSRqUDataDelKD() function requests the deletion of the key-data pair that
is specified by the key. As arguments, it takes an ilRQ value (ilRQ_ANY), the
IVR port where the call resides, and a string that stores the key.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a UDataResp
message.

The XML message generated by this API is UDataDel.

Developer’s Guide 73

Chapter 5: IVR API at a Glance IVR API Descriptions

SRqUDataDelAll

ilRQ ilSRqUDataDelAll(ilRQ, ilPORT);

The ilSRqUDataDelAll() function requests the deletion of all user data attached
to the call that is associated with the specified IVR port. As arguments, it takes
an ilRQ value (ilRQ_ANY), and the IVR port where the call resides.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a UDataResp
message.

The XML message generated by this API is UDataDel.

CTI Object–Information Functions

SRqGetCallInfo

ilRQ ilSRqGetCallInfo(ilRQ, ilPORT, ilCI_TYPE);

The ilSRqGetCallInfo() function requests information about a type of call
data, such as a connection ID or DN. If the call has been started, but at least a
ringing event has not been received from IVR Server, this function will not
send the request to the IVR Server, instead it return a NULL when ilGetReply is
issued. If at least a ringing has been received from IVR Server, the request will
be sent to IVR Server, and ilGetReply will wait for the response from IVR
Server to fill in the response data. If the call ends and a new call has not been
started on this port, and if ilCI_TYPE is set to ilCI_LAST_EVENT_NAME, it will set
the response data for ilGetReply to whatever the last event received from IVR
Server was. To enable an application to receive Not Available rather than NULL
when no data is available from IVR Server, set the compat65 configuration
value must be set to yes. As arguments, it takes an ilRQ value (ilRQ_ANY), the
IVR port where the call resides, and an ilCI_TYPE. See the ilCI_TYPE enums
in the interface.h header file.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if the infoType is invalid. ilRET_BAD_ARGS is displayed in the log
file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response and the GetReply buffer will contain
data as explained above.

74 IVR SDK 8.5 C

Chapter 5: IVR API at a Glance IVR API Descriptions

The XML message generated by this API is CallInfoReq.

Call Data–Transfer Functions

SRqCDT_Init

ilRQ ilSRqCDT_Init(ilRQ, ilPORT, CPSTR, CPSTR, CPSTR, CPSTR);

The ilSRqCDT_Init() function requests an access number or tag to make a Call
Data Transfer (CDT) to a remote destination. Use the ilGetReply() function to
retrieve access number information, an access number (indirect type), or tag
value (depending on the type of CDT) from your driver’s reply buffer. The
CDT types are:

Default Uses the configuration data already defined for multi-site
routing.

Indirect Enables the call to reach the destination DN by means of the
Route Point. (I-Library translates this to Route.)

DirectNT Used for direct dialing to the destination DN. (I-Library
translates this to DirectNotoken.)

DirectTO Used for direct dialing to the destination DN, with a tag going
out from the client—the client generates the tag for CDT.
(I-Library translates this to Direct.)

DirectTI Used for direct dialing to the destination DN, with a tag
coming in that is accessible by the client—CDT generates the
tag. (I-Library translates this to Direct.)

If the IVR application passes a string that is not equal to one of these CDT
types, the string, is sent as-is, to the IVR Server.

As arguments, this function takes an ilRQ value (ilRQ_ANY), the IVR port
where the call resides, a string that specifies the directory number of the party
to be dialed, a string that specifies the name of the remote T-Server that
receives a call and attaches data to it, a string that specifies the type of Call
Data Transfer request, and a string that specifies the tag used to mark a call.
(The tag is currently not used, and it is not passed in the XML message.)

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if any input parameter is invalid. ilRET_BAD_ARGS is displayed in
the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log file.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives an
AccessNumResp message. The GetReply buffer will contain the access number.

The XML message generated by this API is AccessNumGet.

Developer’s Guide 75

Chapter 5: IVR API at a Glance IVR API Descriptions

SRqCDT_Cancel

ilRQ ilSRqCDT_Cancel(ilRQ, ilPORT);

The ilSRqCDT_Cancel() function cancels a previous ilSRqCDT_Init() function
request. As arguments, it takes an ilRQ value (ilRQ_ANY), and the IVR port
where the call resides.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives an
AccessNumResp message.

The XML message generated by this API is AccessNumCancel.

General-Purpose Functions

SRqVersion

ilRQ ilSRqVersion(ilRQ, ilPORT, CPSTR);

The ilSRqVersion() function requests the version number of the I-Library or a
named service. As arguments, it takes an ilRQ value (ilRQ_ANY), the IVR port
where the call resides, and a string that specifies the service. Table 8 shows the
service that is returned for a given CPSTR value.
.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log.

• A positive request ID if successful.

ilGetReply will return a positive response immediately for this API. The
GetReply buffer will contain the requested version.

Table 8: Service Version Returned with ilSRqVersion

CPSTR Value Service Returned

Null or single space Library version

Name of IVR Driver version

All other values I-Server version

76 IVR SDK 8.5 C

Chapter 5: IVR API at a Glance IVR API Descriptions

SetVersionNumber

BOOL ilSetVersionNumber(CPSTR);

The ilSetVersionNumber() function enables you to specify a version for your
IVR driver. Its argument is a string representation of the version number for
this driver.

Return values include:

• false if the version is null.

• false if an exception occurs. ilRET_ERROR is displayed in the log.

GetVersion

CPSTR ilGetVersion(void);

The ilGetVersion() function enables you to retrieve the version of the
I-Library. This will work even before issuing an ilInitiate().

GetCallStatus

int ilGetCallStatus(ilPORT);

The ilGetCallStatus() function returns the current call status on the port that
is represented by the port parameter. The values that can be returned are
defined as the eCallStatus enum in the interface.h file.

GetProcessingState

ilRET ilGetProcessingState(void);

The ilGetProcessingState() function returns the current operating state of the
library. The values that can be returned are defined as the I-LibraryState
enum in the interface.h file.

SRqToLog

ilRQ ilSRqToLog(ilRQ, ilPORT, CPSTR, CPSTR);

The ilSRqToLog() function inserts an information string into the log file of
psService. As arguments, it takes an ilRQ value (ilRQ_ANY), the IVR port
where the call resides, a string that specifies the name of the service that has
the log stream to be used, and a string that is the information to be placed into
the log stream. Table 9 identifies where logged data is written based on the
value of the first CPSTR parameter.

Table 9: Log File To Which Service Data Is Sent with SRqToLog

First CPSTR Value Log File Written To

Name of IVR IVR Server log file

All other values Driver log file

Developer’s Guide 77

Chapter 5: IVR API at a Glance IVR API Descriptions

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log.

• A positive request ID if successful.

ilGetReply will return a positive response immediately for this API.

The XML message generated by this API is LogMsg if the specified service is
for IVR Server.

SetLogHeader

BOOL ilSetLogHeader(CPSTR);

The ilSetLogHeader() function sets a header (product name, Copyright) for
printing into the log file. This function is valid only in “6.5 Mode.” In “7.x
Mode,” it is a noop. As arguments, it takes an ilRQ value (ilRQ_ANY); the IVR
port where the call resides; and a string that can have any number of \n
characters, and that stores the header information for the log file.

It returns false if an exception occurs. ilRET_ERROR is displayed in the log.

SetTimeout

BOOL ilSetTimeout(ULONG);

The ilSetTimeout() function sets the timeout for the next calls of the
ilGetReply() and ilGetRequest() functions. It takes an argument that specifies
the timeout value, in milliseconds.

It returns false if the timeout value is negative.

GetTimeout

ULONG ilGetTimeout(void);

The ilGetTimeout() function gets the current value, in milliseconds, of the
timeout that was previously set by the SetTimeout() function.

Utility Functions

GetLastError

long ilGetLastError(ilERR_TYPE);

The ilGetLastError() function returns the latest error code from the library. It
is valid only before an API request from the following list is done. It also is not
valid for checking the results of response messages from IVR Server; the
ilGetReply API is used for that purpose.

78 IVR SDK 8.5 C

Chapter 5: IVR API at a Glance IVR API Descriptions

The following APIs reset the last error:

Pass in an ilERR_TYPE, either to specify an error number, or to print the error
message to the log. If the input argument is ilET_NUMBER, the return value
matches the error number for the error text. It will return ilRET_ERROR if an
exception occurs.

GetLastPortError

long ilGetLastPortError(ilPORT port, ilERR_TYPE type);

The ilGetLastPortError() function returns the latest error code for the
specified port. It also will print a string corresponding to the error in the log if
type requests it. The error code represents the last error on the latest API
request. It is valid only before an API request of the types listed in
ilGetLastError API is done on that port. It also is not valid for checking the
results of response messages from IVR Server; the ilGetReply API is used for
that purpose. As arguments, it takes the IVR port where the call resides and an
ilERR_TYPE that specifies whether or not to log an error in the log:

• If type = ilET_NUMBER, it will return the last error found.

• If type = ilET_TEXT, it will also log an error in the log that corresponds to
the error found.

It returns ilRET_ERROR if an exception occurs.

LocalPrn

ilRET ilLocalPrn(ilRQ, ilPORT, CPSTR,...);

• ilCallEstablished

• ilDialOutError

• ilFailure

• ilGetReply

• ilGetRequest

• ilInitiate

• ilSendReply

• ilSRqCallComplete

• ilSRqCallConference

• ilSRqCallConsultComplete

• ilSRqCallConsultConference

• ilSRqCallConsultInit

• ilSRqCallConsultTransfer

• ilSRqCallInit

• ilSRqCallTransfer

• ilSRqCDT_Cancel

• ilSRqCDT_Init

• ilSRqDialOutDataInit

• ilSRqGetCallInfo

• ilSRqGetDialOutData

• ilSRqNoteCallEnd

• ilSRqNoteCallStart

• ilSRqRouteAbort

• ilSRqRouteGet

• ilSRqRouteStart

• ilSRqStatGet

• ilSRqStatPeek

• ilSRqToLog

• ilSRqUDataAddKD

• ilSRqUDataAddlist

• ilSRqUDataDelAll

• ilSRqUDataDelKD

• ilSRqUDataGetKD

• ilSRqVersion

Developer’s Guide 79

Chapter 5: IVR API at a Glance IVR API Descriptions

The ilLocalPrn() function prints text directly to the local log. As arguments, it
takes an ilRQ value (ilRQ_ANY), the IVR port where the call resides, and a string
that is a format string that follows the rules for the printf() function, with the
exception that a \n at the end of the string is ignored. Subsequent arguments
match the format specifiers in the format string.

It will return ilRET_ERROR if an exception occurs.

LocalPrnSelector

ilRET ilLocalPrnSelector(selector, ilRQi, lPORT, CPSTR,...);

The ilLocalPrnSelector() function prints directly to the local log based on a
selection variable. Its arguments include selector, which is a string of zeroes
and ones that indicate when the message should be printed. The string is
compared to a string that is specified in the Configuration Layer and indicates
which messages the user wants printed. If the selector string has a 1 in a
position that matches a 1 in a position in the configured value in the
Configuration Layer, the message is printed. As is the case with other
arguments, it takes an ilRQ value (ilRQ_ANY); the IVR port where the call
resides; and psFmt, a format string that follows the rules for the printf()
function. Subsequent arguments match the format specifiers in the format
string.

It will return ilRET_ERROR if an exception occurs.

PrnError

CPSTR ilPrnError(long);

The ilPrnError() function returns a string pointer to the error message that is
associated with an error code received from the ilGetLastError() function. Its
argument is the error code.

It returns ilRQ_ERR, which is a null pointer, if an exception occurs. ilRET_ERROR
is displayed in the log.

If the error number is unknown, it returns Invalid error number as the text.

GetParmValue

CPSTR ilGetParmValue(CPSTR, int);

The ilGetParmValue() function returns the value of the input key. If the value
is a boolean, true or false, the second parameter can be set to 1 and the value
will be translated to true, 1, yes, or on, and false otherwise. If the key is not
found, it returns NULL.

The key must be in a section in the IVRDriver application that is not a “known”
section such as ivr_server_interface, log, log_content, or security.

80 IVR SDK 8.5 C

Chapter 5: IVR API at a Glance IVR API Descriptions

Routing-Related Functions

SRqRouteGet

ilRQ ilSRqRouteGet(ilRQ, ilPORT, CPSTR);

The ilSRqRouteGet() function retrieves the next service (route) from the
Universal Routing Server (URS).

Note: Genesys recommends that you use the RouteStart() function instead
of RouteGet() unless you have a specific need for this functionality
(for instance, retrieving only the Routing Point).

As arguments, ilSRqRouteGet() takes an ilRQ value (ilRQ_ANY); the IVR port
where the call resides; and a string that specifies the Routing Point at which the
router has loaded a valid strategy, with only a next service (that is, a target)
within that strategy.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a RouteResp
message. The GetReply buffer will contain the route target.

The XML message generated by this API is RouteRequest.

SRqRouteDone

ilRQ ilSRqRouteDone(ilRQ, ilPORT);

The ilSRqRouteDone() is a noop and exists only for backward compatibility.
The IVR Server informs URS that the call has been routed (as requested in the
ilSRqRouteGet() function). Genesys recommends that you not call this
function in your code.

SRqRouteStart

ilRQ ilSRqRouteStart(ilRQ, ilPORT, CPSTR);

The ilSRqRouteStart() function indicates to URS that a route sequence for
psRP has started. The IVR Server will return treatments to the application via
the ilGetRequest() function. As arguments, this function takes an ilRQ value
(ilRQ_ANY); the IVR port where the call resides; and a string that specifies the
Routing Point at which the router has loaded a valid strategy.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

Developer’s Guide 81

Chapter 5: IVR API at a Glance IVR API Descriptions

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a RouteResp
message. The GetReply buffer will contain the target route.

The XML message generated by this API is RouteRequest.

GetRequest

ilRQ ilGetRequest(ilPORT, PSTR, int);

The ilGetRequest() function checks for a request (treatment) from URS. It
uses the value set in the last ilSetTimeout() to determine how long to wait if
the treatment has not yet been received. If the ilSetTimeout value is 0 (zero), it
will return immediately, without waiting for data. If no treatment is available
within the timeout period, it returns a timeout error. As arguments, it takes the
IVR port where the call resides, a string that stores the text of the treatment
information, and the size of the buffer, in bytes.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if the call on the port ends or a route response is received while it
is waiting.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log.

• ilTIMEOUT if no treatment is available within the timeout period.

• A positive request ID if successful.

The XML message generated by this API is TreatStatus.

SendReply

ilRET ilSendReply(ilRQ, BOOL, CPSTR);

The ilSendReply() function sends a reply for a previously received treatment
request (URS via IVR Server). As arguments, it takes an ilRQ value
(ilRQ_ANY); the value true to print an OK message to the log, or the value false
to print an error message to the log; and a pointer to the message to be sent as a
reply (the contents depend on the treatment request).

Return values include:

• ilRET_CONN_CLOSED if there is no IVR Server available to process the call.

• ilRET_BAD_ARGS if the rqid is not active.

• ilRET_ERROR if an exception occurs.

• A positive request ID if successful.

The XML message generated by this API is TreatStatus.

82 IVR SDK 8.5 C

Chapter 5: IVR API at a Glance IVR API Descriptions

SRqRouteAbort

ilRQ ilSRqRouteAbort(ilRQ, ilPORT);

The ilSRqRouteAbort() function directs the I-Library to invalidate any future
requests and replies for the Routing Point that is specified by the
ilSRqRouteStart() function. Any events subsequently returned by the IVR
Server are discarded.

Statistics-Related Functions

SRqStatPeek

ilRQ ilSRqStatPeek(ilRQ, ilPORT, CPSTR);

The ilSRqStatPeek() function requests statistics from Stat Server. The
CurrNumberWaitingCalls and ExpectedWaitTime statistics are supported. As
arguments, this function takes an ilRQ value (ilRQ_ANY); the IVR port where
the call resides; and a string that specifies the name of a statistic, as it is stored
in the Configuration Layer.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a StatResp
message. The GetReply buffer will contain the statistic value.

The XML message generated by this API is PeekStatReq.

SRqStatGet

ilRQ ilSRqStatGet(ilRQ, ilPORT, CPSTR, CPSTR, CPSTR, CPSTR);

The ilSRqStatGet() function is provided for compatibility with previous
versions of I-Library. The ilSRqStatPeek() function should be used instead.
Genesys recommends that you not call this function in your code.

Outbound Dialing Functions

SRqGetDialOutData

ilRQ ilSRqGetDialOutData();

The ilSRqGetDialOutData() function requests the next number to be dialed by
the IVR. There are no arguments.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call,
ilRET_CONN_CLOSED is displayed in the log file.

Developer’s Guide 83

Chapter 5: IVR API at a Glance IVR API Descriptions

• ilRQ_ERR if there are no numbers to dial and ilRET_NO_REQUESTS is
displayed in the log.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log.

• A positive request ID if successful.

ilGetReply will return a positive response immediately. The GetReply buffer
will contain:

• DestNum—The number to be dialed.

• OrigNum—The dialing number.

• TimeToAnswer—The amount of time to answer, in seconds.

SRqDialOutDataInit

ilSRqDialOutDataInit(ilRQ ilRq, ilPORT Port, ilRQ RqID_DialOut);

The ilSRqDialOutDataInit() function is equivalent to NotifyCallStart. It
indicates that an outbound call has been made by the IVR, and it is in process.
As arguments, it takes an ilRQ value (ilRQ_ANY), the IVR port where the call
resides, and the request ID of the dial-out data.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log.

• ilRQ_ERR if the dial out data request ID is invalid. ilRET_BAD_ARGS is
displayed in the log.

• A positive request ID if successful.

ilGetReply will return a positive response after I-Library receives a CallStatus
Dialing message.

The XML message generated by this API is DialOutInit.

CallEstablished

ilCallEstablished(ilPORT ilPort);

The ilCallEstablished() function indicates that the outbound call made by the
IVR has been established. As arguments, it takes the IVR port where the call
resides.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log.

• ilRET_OK if successful.

The XML message generated by this API is CallStatusEstablished.

84 IVR SDK 8.5 C

Chapter 5: IVR API at a Glance IVR API Descriptions

DialOutError

ilDialOutError (ilPORT ilPort, ilDIALOUTERR ilDialOutError);

The ilDialOutError() function indicates that a dialing error occurred when the
IVR attempted to make the outbound call. As arguments, it takes the IVR port
where the call resides and the type of error that occurred, NotSupported,
NoTrunks, or MiscError.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log.

• ilRET_OK if successful.

The XML message generated by this API is DialOutError.

Failure

ilFailure(ilPORT ilPort, ilFAILURE ilFailure);

The ilFailure() function indicates that the outbound call made by the IVR
has failed. As arguments, it takes the IVR port where the call resides and the
type of failure that occurred, Busy, NoAnswer, or ConnectFailed.

Return values include:

• ilRQ_ERR if there is no IVR Server available to process the call.
ilRET_CONN_CLOSED is displayed in the log file.

• ilRQ_ERR if an exception occurs. ilRET_ERROR is displayed in the log.

• ilRET_OK if successful.

The XML message generated by this API is Failure.

Developer’s Guide 85

Appendix

7.0 Operating Mode
This appendix explains the 7.0 operating mode. It provides information about
its configuration, initiation, and connections. This chapter contains the
following sections:
 Overview, page 85
 Configuration, page 86
 Initiation, page 86
 Opening the IVR Server Connection, page 86
 Agent Control, page 87
 IVR Annex Options, page 88

Overview
I-Library has another operating mode that has not been available prior to
release 7.2. The operating mode has traditionally been called “7.0 Mode.” This
mode has been available to the Genesys drivers that use the I-Library DLL,
starting with release 7.0. In this mode, the I-Library has the ability to
communicate with several of the Genesys Framework and Management Layer
components such as Configuration Manager and Logging. This provides the
I-Library with additional capabilities, such as dynamic configuration updates,
centralized logging, and agent control to enable an orderly and controlled
shutdown of the I-Library.

Notes: • “7.0 Mode” is not available for the UnixWare version of the
I-Library.

• Local Control Agent (LCA) must be installed, configured and
running for the “7.0 Mode” to function.

86 IVR SDK 8.5 C

Appendix: 7.0 Operating Mode Configuration

Configuration
To enable the I-Library to be operated in “7.0 Mode,” you must configure a
driver application to provide the following additional information to the
I-Library:

• System-level data that controls IVR Server communication.

• Logging data that controls how the Genesys logging libraries will log the
I-Library-generated status information.

Some of this information is similar to what is configured in the IVR Object
when the I-Library operates in “6.5 Mode.” Additional information about how
to configure this driver application is available in the IVR Server System
Administrator’s Guide.

Initiation
Initiation of the I-Library starts out as was explained in the Start() function in
Chapter 2 on page 21, which must still call the ilInitiate() function (see
Chapter 2 on page 21) and pass in the name of the IVR (as specified in the
Configuration Layer) to initialize the I-Library for its use. The IVR Server still
uses the IVR Object to maintain a list of the channels and corresponding DNs
for every IVR, as described previously in Chapter 1 on page 13. In “7.0 Mode,”
however, the configuration parameters (from the IVR object’s Annex tab in the
Configuration Layer) are no longer used by the I-Library. They may be present
or not: this will have no effect on the operation of the I-Library.

Opening the IVR Server Connection
Previously, the Start() function called the ilConnectionOpen() function as
described in Chapter 2 on page 21 to direct the I-Library to open a connection
to the IVR Server whose host and port were identified in ilConnectionOpen().
In “7.0 Mode,” ilConnectionOpenConfigServer() (see Chapter 5 on page 59)
is called by the Start() function. In this case, the host and port are those of the
Genesys Configuration Manager. The I-Library will open a communication
socket to Configuration Manager, and obtain all of the configuration data that
it requires n order to operate successfully, as defined by the user through the
driver application. In addition, the user can choose to operate the I-Library in a
mode in which the I-Library controls agent activity. This provides the
foundation for a controlled shutdown of the I-Library.

The format of the ilConnectionOpenConfigServer() function is:
BOOL ilConnectionOpenConfigServer(CPSTR host, SOCKET_PORT port,
CPSTR appName, ULONG ulTimeoutMS)

Developer’s Guide 87

Appendix: 7.0 Operating Mode Agent Control

The host and port are those of Configuration Manager. The appName is the name
of the Driver Application. The ulTimeoutMS is the same as was used in “6.5
Mode.”

A new API is available, ilConnectionOpenConfigServer80, which provides
both client side port and backup Configuration Server capability.

In order to have the I-Library control agent activity, the annex tab of the IVR
Object must include an AgentControl section that contains the option
LegacyMode (see page 88) with a value of false.

Agent Control
When LegacyMode is set to false, agents will be controlled by the I-Library.
During startup, the I-Library will obtain the list of agents configured in the
Configuration Layer. The IVR object will be used to identify the ports that are
to be evaluated as possible agents. If the AutoLogin section exists on the Annex
tab on a port, and if at least AgentId and Queue information are provided, the
port will be considered to have an agent configured, and the agent will be
added to a list of agents that this I-Library will keep.

When a MonitorInfo XML message with server sub-type is received from
IVR Server indicating that a switch is up, and when a FlowControl XML
message is received from IVR Server, indicating that flow control is off, the
agent activity thread will be started, in order to attempt to move all agents to
their configured states. After all agents are in their configured states, the thread
will end. If at least one agent does not reach its configured state, the thread will
continue to attempt to move that agent. A configurable parameter,
DriverRetryTimeout (see page 89) is used to determine how long to wait
between attempts to move the agent.

Agent activity will be started for any of the following events:

• A MonitorInfo, server sub-type XML message is received from IVR
Server. If the message indicates that the switch is down, all agent states
will be set to unknown. If the message indicates that the switch is up, all
agents will be moved to their configured states.

• An unsolicited MonitorInfo, port sub-type XML message is received
from IVR Server. If the message indicates that the port is disabled, the
agent configured in that port will be disabled.

If a configuration change is made for an agent, agent activity will attempt to
move the agent to its newly configured state:

• If either the agent ID or queue is changed, the agent will be logged out and
moved to its configured state.

• If the SetLoggedIn or SetReady is changed the agent will be logged out and
moved to its new state.

• If workmode or password is changed, the information will be saved, but no
activity will take place on the agent.

88 IVR SDK 8.5 C

Appendix: 7.0 Operating Mode IVR Annex Options

• If the port is disabled, the agent will be logged out and disabled. No further
activity will take place for the agent until it is enabled.

When any of these events are dynamically received, the agent associated with
the event will be added to the list of agents who need to be moved to a new
state. Only the agents in this list will be processed. This will provide the best
performance and minimize the impact to the telephony processing which is in
progress. This is especially important to installations with a significant number
of agents.

If a request to shutdown is received from Solution Control Interface (SCI), all
agents will be logged out. The processing state will be changed as progress
continues:

• ilRET_ACTIVE indicates that normal processing continues.

• ilRET_SHUTDOWN_IN_PROCESS indicates that a shutdown request has been
received, and agents are being logged out.

• ilRET_ALL_AGENTS_LOGGEDOUT indicates that all agents are logged out, and
calls are being monitored.

• ilRET_NO_CALLS_IN_PROGRESS indicates that all agents are logged out, and
there are no calls in progress.

At this point this I-Library will continue to monitor calls and wait for the
process to end.

IVR Annex Options

AgentControl Section

The options in the AgentControl section are used to specify which
AgentControl values IVR Library expects, and what effect they have. Any
values other than the ones described in this section are ignored.

LegacyMode
Default Value: true
Valid Values: true, false
Changes Take Effect: Immediately

Specifies whether IVR Server or IVR Driver controls agent activity for the
IVR ports in the IVR object:

• If set to true, the IVR Sever controls the agent activity for the IVR ports
in the IVR object, according to how those ports are configured.

• If set to false, the IVR Driver controls agent activity (login/logout,
Ready/NotReady status, and so on.) for IVR ports. This enables graceful
shutdown/startup.

Developer’s Guide 89

Appendix: 7.0 Operating Mode IVR Annex Options

DriverReadyWorkMode
Default Value: Manualln
Valid Values: Manualln, Autoln, Unknown
Changes Take Effect: Immediately

Specifies the value that is used for AttributeWorkMode when IVR Server
performs login operations. This value is sent in the AgentReady and
AgentNotReady XML messages to IVR Server. This value is used exclusively in
TAgentReady. If this option is set to ManualIn, when an agent state
independently changes to NotReady, but is configured to be Ready, an
AgentReady message will be sent to IVR Server.

DriverRetryTimeout
Default Value: 30
Valid Values: Any integer
Changes Take Effect: Immediately

Specifies, in seconds, how long the driver waits before trying agent activity on
a particular port, after receiving an error message from IVR Server for a
previous agent control message on that port.

DriverIgnoreReady
Default Value: false
Valid Values: true, false
Changes Take Effect: Immediately

Determines whether IVR Driver attempts to use the SetReady parameter:

• If set to true, IVR Driver ignores the SetReady parameter.

• If set to false, IVR Driver attempts to set agents to the configured
SetReady state.

90 IVR SDK 8.5 C

Appendix: 7.0 Operating Mode IVR Annex Options

Developer’s Guide 91

Supplements

Related Documentation
Resources
The following resources provide additional information that is relevant to this
software. Consult these additional resources as necessary.

IVR Server and IVR Drivers

• IVR Interface Option 8.5 IVR Server System Administrator’s Guide, which
describes/provides information about how to configure, install and operate
IVR Server.

• IVR Interface Option 8.5 IVR Driver System Administrator’s Guides,
which provide information about how to configure, install and operate the
Genesys IVR Driver components.

• IVR SDK 8.x C API reference information, which is in HTML format
(double-click index.html) in the documentation directory on the product
DVD.

• The interface.h header file, which accompanies the IVR SDK product
files in the IVR_SDK directory on the product DVD.

• The IVRexample.c file, on the Genesys documentation DVD, as a
companion to this guide.

• Release Notes and Product Advisories for this product, which are available
on the Genesys Documentation website.

Genesys

• Genesys Technical Publications Glossary, which provides a
comprehensive list of the Genesys and computer-telephony integration
(CTI) terminology and acronyms used in this document.

• Genesys Migration Guide, which provides documented migration
strategies for Genesys product releases. Contact Genesys Customer Care
for more information.

http://docs.genesys.com/Glossary
http://docs.genesys.com/Special:Repository/g_mg.pdf?id=77a54118-1057-43b6-a157-2fabcdfc5b2f
http://docs.genesys.com/

92 IVR SDK 8.5 C

Related Documentation Resources

Information about supported operating systems and third-party software is
available on the Genesys Documentation website in the following documents:

• Genesys Supported Operating Environment Reference Guide

• Genesys Supported Media Interfaces Reference Manual

Consult the following additional resources as necessary:

• Genesys Hardware Sizing Guide, which provides information about
Genesys hardware sizing guidelines for the Genesys 8.x releases.

• Genesys Interoperability Guide, which provides information on the
compatibility of Genesys products with various Configuration Layer
Environments; Interoperability of Reporting Templates and Solutions; and
Gplus Adapters Interoperability.

• Genesys Licensing Guide, which introduces you to the concepts,
terminology, and procedures that are relevant to the Genesys licensing
system.

• Genesys Database Sizing Estimator 8.x Worksheets, which provides a
range of expected database sizes for various Genesys products.

For additional system-wide planning tools and information, see the
release-specific listings of System-Level Documents on the Genesys
Documentation website.

Genesys product documentation is available on the:

• Genesys Customer Care website.

• Genesys Documentation website.

Genesys Documentation Library DVD, which you can order by e-mail from
Genesys Order Management at orderman@genesys.com.

http://docs.genesys.com/MoreDocs/Genesys_Supported_Operating_Environment_Reference_Guide
http://docs.genesys.com/Special:Repository/g_ref_smi.pdf?id=73c96eb2-c7cb-4839-95e5-0c910861e615
http://docs.genesys.com/Special:Repository/g_sizing.pdf?id=5d74b7ce-cffc-43af-ae29-8b53d85c0bb1
http://docs.genesys.com/MoreDocs/Genesys_Interoperability_Guide
http://docs.genesys.com/Special:Repository/80g_licensing.pdf?id=a95e98ad-c306-4294-9aa5-a605c3beee92
http://docs.genesys.com/Special:Repository/8g_DBSizing.xls?id=73a687e2-b762-4030-9962-978b4cbc4bc7
http://docs.genesys.com/Documentation/System
http://docs.genesys.com/
http://docs.genesys.com/
http://genesys.com/customer-care
http://genesys.com/customer-care
http://docs.genesys.com/
http://docs.genesys.com/
mailto:orderman@genesys.com

Developer’s Guide 93

Document Conventions

Document Conventions
This document uses certain stylistic and typographical
conventions—introduced here—that serve as shorthands for particular kinds of
information.

Document Version Number

A version number appears at the bottom of the inside front cover of this
document. Version numbers change as new information is added to this
document. Here is a sample version number:

80fr_ref_06-2008_v8.0.001.00

You will need this number when you are talking with Genesys Customer Care
about this product.

Screen Captures Used in This Document

Screen captures from the product graphical user interface (GUI), as used in this
document, may sometimes contain minor spelling, capitalization, or
grammatical errors. The text accompanying and explaining the screen captures
corrects such errors except when such a correction would prevent you from
installing, configuring, or successfully using the product. For example, if the
name of an option contains a usage error, the name would be presented exactly
as it appears in the product GUI; the error would not be corrected in any
accompanying text.

Type Styles

Table 10 describes and illustrates the type conventions that are used in this
document.

94 IVR SDK 8.5 C

Document Conventions

Table 10: Type Styles

Type Style Used For Examples

Italic • Document titles

• Emphasis

• Definitions of (or first references to)
unfamiliar terms

• Mathematical variables

Also used to indicate placeholder text within
code samples or commands, in the special case
where angle brackets are a required part of the
syntax (see the note about angle brackets on
page 94).

Please consult the Genesys Migration
Guide for more information.

Do not use this value for this option.

A customary and usual practice is one
that is widely accepted and used within a
particular industry or profession.

The formula, x +1 = 7
where x stands for . . .

Monospace
font

(Looks like
teletype or
typewriter
text)

All programming identifiers and GUI
elements. This convention includes:

• The names of directories, files, folders,
configuration objects, paths, scripts, dialog
boxes, options, fields, text and list boxes,
operational modes, all buttons (including
radio buttons), check boxes, commands,
tabs, CTI events, and error messages.

• The values of options.

• Logical arguments and command syntax.

• Code samples.

Also used for any text that users must
manually enter during a configuration or
installation procedure, or on a command line.

Select the Show variables on screen
check box.

In the Operand text box, enter your
formula.

Click OK to exit the Properties dialog
box.

T-Server distributes the error messages in
EventError events.

If you select true for the
inbound-bsns-calls option, all
established inbound calls on a local agent
are considered business calls.

Enter exit on the command line.

Square
brackets ([])

A particular parameter or value that is optional
within a logical argument, a command, or
some programming syntax. That is, the
presence of the parameter or value is not
required to resolve the argument, command, or
block of code. The user decides whether to
include this optional information.

smcp_server -host [/flags]

Angle
brackets
(< >)

A placeholder for a value that the user must
specify. This might be a DN or a port number
specific to your enterprise.

Note: In some cases, angle brackets are
required characters in code syntax (for
example, in XML schemas). In these cases,
italic text is used for placeholder values.

smcp_server -host <confighost>

Developer’s Guide 95

Index

Symbols
[] (square brackets). 94
< > (angle brackets) 94

A
adding a set of key-data pairs 35
angle brackets 94
API request. 46
audience, for document 8

B
brackets

angle. . 94
square . 94

C
call processing 25
call state model. 44
channels 17, 24
commenting on this document 10
configuration 19
configuration data 39
connection 23, 53
conventions

in document 93
type styles 94

D
deleting a key-data pair 35
document

audience. 8
change history 11
conventions 93
errors, commenting on 10

version number 93
driver name 16
DriverIgnoreReady

configuration option 89
DriverReadyWorkMode

configuration option 89
DriverRetryTimeout

configuration option 89
DTD version43

E
error codes. 48
escape characters51

F
font styles

italic . 94
monospace 94

G
Get Version Information

function 32
Getting a Reply 26

H
header files 22

I
ilConnectionOpen() 24
ilGetReply() 25, 27, 29
ilGetRequest()25
ilGetVersion() 32
I-Library log files41

Index

96 IVR SDK 8.5 C

ilPort value 29
ilRQ value 29
ilRQ_ERR 29
ilSetVersion() 32
ilSRqCallComplete() 33
ilSRqCallInit(). 33
ilSRqRouteStart(). 35
ilSRqUDataAddKD() 34
ilSRqVersion() 32
initiation 23
intended audience 8
interface.h 16, 22
italics . 94
IVR driver. 13, 14
IVR driver name 24
IVR Library (I-Library) 14
IVR Library API. 14
IVR Server 15
IVR system13, 14
IVRexample.c 31, 33
ivrlibrary.ini39, 42

K
KeepAlive 45

L
LegacyMode

configuration option 88
load sharing 18, 53
log levels 42

M
Making a Request 26
monospace font 94

O
Open a connection to IVR Server 24
order term 28
outbound calls 52

P
ports .17, 28

R
Reply Latency 25
Request functions 28
Request return values 29

requests and replies27
response message. 47
Routing .51
Routing Initiation35

S
socket connection 17
square brackets 94

T
telephony functions 33
T-Server notification25
type styles

conventions 94
italic . 94
monospace 94

typographical styles 93, 94

U
User data 34

V
version numbering, document93

	Developer’s Guide
	Table of Contents
	Preface
	About IVR SDK C
	New In Release 8.5
	Intended Audience
	Usage Guidelines
	Making Comments on This Document
	Contacting Genesys Customer Care
	Document Change History

	How it Works
	Overview
	Architecture
	IVR Driver
	IVR Library (I-Library)
	IVR Server

	Development Requirements
	Deployment and Configuration
	Sockets, Ports, Channels, and DNs
	T-Server Information

	Miscellaneous Issues
	Response Processing
	Load Sharing
	Connectivity to IVR Server
	Configuration
	API Processing
	Diagnostics

	Code Example One: Hello IVR World
	Overview
	A Simple Call Examined
	Header File Data
	The Start() Function
	The MakeSimpleCall() Function

	Requests and Replies
	Request Functions
	The ilGetReply() Function

	Code Examples: Basic Functionality
	Overview
	Get Version Information
	Telephony
	User Data
	Initiate Routing

	Extended Functionality
	Configuration Data
	Logging
	I-Library Log Files
	The ivr library.ini File
	Setting Log Levels

	DTD Versions
	Call State Model
	KeepAlive Processing
	Processing API Requests
	Processing Response Messages
	Error Codes
	Escape Character Translation
	Routing
	Normal Route
	Default with No Destination Address or Nodes

	Outbound Dialing
	Connections and Load Sharing
	IVR Servers and Load Sharing
	IVR Servers and High Availability (Hot Standby)
	Connecting to IVR Server
	Connection Problems
	Connecting to IVR Server After Startup
	Handling IVR Server Disconnects
	Processing Calls
	Flow Control

	IVR API at a Glance
	Groups of IVR API Functions
	IVR API Descriptions

	7.0 Operating Mode
	Overview
	Configuration
	Initiation
	Opening the IVR Server Connection
	Agent Control
	IVR Annex Options
	AgentControl Section

	Related Documentation Resources
	Document Conventions
	Index

