
Genesys Voice Platform 8.1

CCXML

Reference Manual

The information contained herein is proprietary and confidential and cannot be disclosed or duplicated
without the prior written consent of Genesys Telecommunications Laboratories, Inc.

Copyright © 2008–2012 Genesys Telecommunications Laboratories, Inc. All rights reserved.

About Genesys
Genesys is the world's leading provider of customer service and contact center software - with more than 4,000
customers in 80 countries. Drawing on its more than 20 years of customer service innovation and experience,
Genesys is uniquely positioned to help companies bring their people, insights and customer channels together to
effectively drive today's customer conversation. Genesys software directs more than 100 million interactions every day,
maximizing the value of customer engagement and differentiating the experience by driving personalization and multi-
channel customer service - and extending customer service across the enterprise to optimize processes and the
performance of customer-facing employees. Go to www.genesyslab.com for more information.

Each product has its own documentation for online viewing at the Genesys Technical Support website or on the
Documentation Library DVD, which is available from Genesys upon request. For more information, contact your sales
representative.

Notice
Although reasonable effort is made to ensure that the information in this document is complete and accurate at the
time of release, Genesys Telecommunications Laboratories, Inc., cannot assume responsibility for any existing errors.
Changes and/or corrections to the information contained in this document may be incorporated in future versions.

Your Responsibility for Your System’s Security
You are responsible for the security of your system. Product administration to prevent unauthorized use is your
responsibility. Your system administrator should read all documents provided with this product to fully understand the
features available that reduce your risk of incurring charges for unlicensed use of Genesys products.

Trademarks
Genesys and the Genesys logo are registered trademarks of Genesys Telecommunications Laboratories, Inc. All other
company names and logos may be trademarks or registered trademarks of their respective holders. © 2012 Genesys
Telecommunications Laboratories, Inc. All rights reserved.

The Crystal monospace font is used by permission of Software Renovation Corporation,
www.SoftwareRenovation.com.

Technical Support from VARs
If you have purchased support from a value-added reseller (VAR), please contact the VAR for technical support.

Technical Support from Genesys
If you have purchased support directly from Genesys, please contact Genesys Technical Support. Before contacting
technical support, please refer to the Genesys Care Program Guide for complete contact information and
procedures.

Ordering and Licensing Information
Complete information on ordering and licensing Genesys products can be found in the Genesys Licensing Guide.

Released by

Genesys Telecommunications Laboratories, Inc. www.genesyslab.com

Document Version: 81gvp_ref_ccxml_12-2012_v8.1.601.00

http://www.genesyslab.com
http://genesyslab.com/support/contact
http://www.genesyslab.com
http://genesyslab.com/support/dl/retrieve/default.asp?item=B3BFC6DABE22B62AAE32A6D31E6396E3&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A1D12650&view=item

CCXML—Reference Manual 3

Table of Contents
Preface ... 7

About GVP... 7
Intended Audience... 8
Making Comments on This Document .. 8
Contacting Genesys Technical Support... 8
Document Change History .. 9

Chapter 1 Overview.. 11

Introducing Call Control Platform... 11

Chapter 2 Features... 13

Dialing into the Call Control Platform... 13
Calling to the Default CCXML Page ... 13
Starting a non-Default CCXML Page.. 14
Using Resource Manager to Map CCXML Applications 14

Inbound Connections... 15
Passing URI Parameters to CCXML Applications 15
Call Parameters Accessible in CCXML Applications 15
183 Session Progressing Response... 15
Rejecting Incoming Connections .. 16
Disconnecting Calls .. 16

Connection Signals.. 17
Receiving DTMF Digits Through SIP INFO .. 17
Receiving Other Events Through SIP INFO 17

Outbound Connections.. 18
Specifying Custom SIP Headers Through Hints................................. 18
Mapping SIP Responses to CCXML Connection Events 19
Disconnecting Progressing Call .. 19

Call Redirection ... 20
Redirecting an Incoming Call.. 20
Redirecting a Connected Call ... 20

Call Merge ... 20
Dialogs... 22

Preparing Dialogs ... 22

Table of Contents

4 Genesys Voice Platform 8.1

Passing Dialog Results Back to CCXML .. 23
Dialog User Event... 23
Dialog-Initiated Blind Transfer... 24
Dialog-Initiated Supervised Transfer... 25
Dialog-Initiated Bridge Transfer .. 25
MSML Dialogs .. 25
VoiceXML Session Variables .. 27

Conferences .. 27
Implicit Transcoding and Conferencing ... 28

Implicit Transcoding .. 28
Implicit Conferencing .. 29

Device Profile Configuration .. 30
Inbound Connections.. 31
Outbound Connections ... 31
Limitations... 31

Chapter 3 Event I/O Processor ... 33

Session Variable.. 33
Receiving Events... 34
Sending Events ... 36
Creating Sessions ... 37

Error Handling... 39
Example of Sending Events via HTTP .. 41

Appendix A CCXML Specification Support Notes.. 43

Current Support ... 43
xmlns Attribute .. 43
http-equiv Attribute.. 43
<metadata>... 43
UTF Character set .. 44
<fetch>.. 44
prepareddialogid Attribute... 44
Repeated Parameter Names .. 44
<move>... 44
<join> and <unjoin> .. 44
dialog.disconnect Event.. 45
User Event .. 45
AAI Feature... 45
URI Parameters .. 45
HTTPS and Session Cookies ... 45
<createccxml> .. 45
Moving a Connection or Dialog... 45

CCXML—Reference Manual 5

Table of Contents

<createcall> .. 46
dialogid Property... 46

Appendix B Early Media.. 47

Background ... 47
Announcement Example ... 47
Remarks .. 48

Appendix C MSML Specification.. 51

Core Package.. 51
<msml> ... 51
<send>.. 51
<result>... 52
<event>... 52

Dialog Core Package... 52
<dialogstart> ... 52
<dialogend> .. 53
<send>.. 53
<exit> .. 53
<disconnect> .. 53
<dialogprepare>.. 54

Dialog Base Package .. 54
<play> ... 54
<dtmfgen>... 55
<record> ... 55
<collect> ... 56

Dialog Call Progress Analysis Package .. 57
<cpd>.. 57

Example... 60

Supplements Related Documentation Resources ... 65

Document Conventions .. 68

Index ... 71

Table of Contents

6 Genesys Voice Platform 8.1

CCXML—Reference Manual 7

Preface
Welcome to the Genesys Voice Platform 8.1 CCXML Reference Manual. This
document provides information about developing call control applications with
Call Control Extensible Markup Language (CCXML) on the Genesys Voice
Platform (GVP).

This document is valid only for the 8.1 release(s) of this product.

This preface contains the following sections:
 About GVP, page 7
 Intended Audience, page 8
 Making Comments on This Document, page 8
 Contacting Genesys Technical Support, page 8
 Document Change History, page 9

For information about related resources and about the conventions that are
used in this document, see the supplementary material starting on page 65.

About GVP
GVP is a group of software components that constitute a robust, carrier-grade
voice processing platform. GVP unifies voice and web technologies to provide
a complete solution for customer self-service or assisted service.

In the Voice Platform Solution (VPS), GVP 8.1 is fully integrated with the
Genesys Management Framework. GVP uses the Genesys Administrator, the
standard Genesys configuration and management graphical user interface
(GUI), to configure, tune, activate, and manage GVP processes and GVP voice
and call control applications. GVP interacts with other Genesys components,
and it can be deployed in conjunction with other solutions, such as Enterprise

Note: For versions of this document created for other releases of this
product, visit the Genesys Technical Support website, or request the
Documentation Library DVD, which you can order by e-mail from
Genesys Order Management at orderman@genesyslab.com.

mailto:orderman@genesyslab.com

8 Genesys Voice Platform 8.1

Preface Intended Audience

Routing Solution (ERS), Network Routing Solution (NRS), and
Network-based Contact Solution (NbCS).

Intended Audience
This document is primarily intended for users who will be developing call
control applications with Call Control Extensible Markup Language
(CCXML). It has been written with the assumption that you have a basic
understanding of:

• Computer-telephony integration (CTI) concepts, processes, terminology,
and applications

• Network design and operation

• Your own network configurations

You should also be familiar with HTML, XML, CCXML, and VoiceXML
concepts.

Making Comments on This Document
If you especially like or dislike anything about this document, feel free to
e-mail your comments to Techpubs.webadmin@genesyslab.com.

You can comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this document.
Please limit your comments to the scope of this document only and to the way
in which the information is presented. Contact your Genesys Account
Representative or Genesys Technical Support if you have suggestions about
the product itself.

When you send us comments, you grant Genesys a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

Contacting Genesys Technical Support
If you have purchased support directly from Genesys, please contact Genesys
Technical Support.

Before contacting technical support, please refer to the Genesys Care
Program Guide.

mailto:techpubs.webadmin@genesyslab.com
http://genesyslab.com/support/contact/
http://genesyslab.com/support/contact/
http://genesyslab.com/support/dl/retrieve/default.asp?item=B3BFC6DABE22B62AAE32A6D31E6396E3&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=B3BFC6DABE22B62AAE32A6D31E6396E3&view=item

CCXML—Reference Manual 9

Preface Document Change History

Document Change History
This section lists topics that are new or that have changed significantly since
the first release of this document.

GVP 8.1.6 • Defined the “Intended Audience” on page 8.

• Modified the section “CCXML Example” on page 61.

GVP 8.1.4 • Information about HTTPS support has been added to Chapter 3.

GVP 8.1.2 • Information about MSML Dialogs has been added to Chapter 3.

• Information about creating a new CCXML session or sending the event to
an existing session has been added to Chapter 3.

• Information about <dialogprepare> was added to Appendix A.

• A new appendix, “MSML Specification”, was added to the manual.

10 Genesys Voice Platform 8.1

Preface Document Change History

CCXML—Reference Manual 11

Chapter

1 Overview
This chapter describes the Genesys Voice Platform (GVP) Call Control
Platform (CCP). It contains the following section:
 Introducing Call Control Platform, page 11

Introducing Call Control Platform
The Call Control Platform (CCP) component of Genesys Voice Platform
(GVP) provides a Call Control Extensible Markup Language (CCXML)
interpreter that integrates with existing GVP infrastructure such as the Media
Control Platform (MCP) and the Resource Manager (RM). The underlying
network protocol for the CCP is SIP, which means that the CCP is also
interoperable with other conferencing servers or dialog servers.

Although GVP has traditionally provided extended call control capabilities
through Voice Extensible Markup Language (VoiceXML), the development of
CCXML provides a standard, xml-based language for scripting call control
logic. Like VoiceXML, CCXML is independent of the environment in which it
operates, and can run in environments ranging from Voice over IP (VoIP)
based softswitch products to integrated residential gateways that manage a
single telephone call. Genesys therefore recommends that new call control
applications use CCXML.

The CCP currently follows the W3C Voice Browser Call Control: CCXML
Version 1.0, W3C Working Draft 29 June 2005.

12 Genesys Voice Platform 8.1

Chapter 1: Overview Introducing Call Control Platform

CCXML—Reference Manual 13

Chapter

2 Features
This chapter discusses the features of the Call Control Platform. It contains the
following sections:
 Dialing into the Call Control Platform, page 13
 Inbound Connections, page 15
 Connection Signals, page 17
 Outbound Connections, page 18
 Call Redirection, page 20
 Call Merge, page 20
 Dialogs, page 22
 Conferences, page 27
 Implicit Transcoding and Conferencing, page 28
 Device Profile Configuration, page 30

Dialing into the Call Control Platform
The Call Control Platform (CCP) accepts incoming SIP connections on port
5068 by default. You can change the port number by adjusting the
configuration variable sip.transport.x to modify the port number used by the
CCP for receiving incoming connections.

Calling to the Default CCXML Page

By default, all incoming connections will start a new CCXML session with a
default URI.

For Windows, the default page is located at C:\Program Files\GCTI\gvp\VP
Call Control Platform 8.1.

14 Genesys Voice Platform 8.1

Chapter 2: Features Dialing into the Call Control Platform

For Linux, the default page is located at
/opt/genesys/gvp/VP_Call_Control_Platform_8.1/CCP_81/config/default.ccx

ml.

The default application rejects all inbound connections. You can change the
location of the default page by adjusting the configuration parameter
ccpccxml.default_uri.

Starting a non-Default CCXML Page

To start a different page with an incoming connection, the CCP follows the
netann convention (currently http://www.ietf.org/rfc/rfc4240.txt). The
request URI of the incoming request must follow this format:
sip:ccxml@callcontrolplatform.genesyslab.com;ccxml=http://www.genesysla

b.com/page.ccxml

where:

1. The userpart of the Request URI must be ccxml and it is case-sensitive.

2. callcontrolplatform.genesyslab.com is the host or IP address of the CCP.

3. The Request URI must contain a ccxml URI parameter (case-sensitive) and
the value is the CCXML page to be started. Other URI parameters can be
included and the ordering does not matter. These additional parameters are
passed to the CCP, and may be consumed by the CCP, or passed to the
application server referred to by the Request URI.

Using Resource Manager to Map CCXML Applications

The Genesys Voice Platform (GVP) Resource Manager (RM), which acts as a
SIP proxy, can be used to map CCXML applications by translating the SIP
request URI to the netann format described in the preceding sub-section.

Here is an example:

The RM translates sip:1234@10.0.0.123 into:
sip:ccxml@10.0.0.124:5068;ccxml=file:///usr/local/ccp-ccxml/config/
default.ccxml

where

• 10.0.0.123 is the RM address.

• 10.0.0.124 is the CCP address.

Note: For information about configuring Resource Manager, see the
Genesys Voice Platform 8.1 User’s Guide.

CCXML—Reference Manual 15

Chapter 2: Features Inbound Connections

Inbound Connections
This section describes the Call Control Platform features for inbound
connections.

Passing URI Parameters to CCXML Applications

When fetching the initial CCXML page, the CCP adds parameters to the initial
URL. These URL parameters are found in the incoming SIP Request URI
parameters.

For example, a SIP Request URI looks like this:
sip:ccxml@ccxmlplatform.genesyslab.com:5068;ccxml=http://www.genesyslab.com/page.ccxml;

hello=world

The initial URL fetch will be:
GET http://www.genesyslab.com/page.ccxml?hello=world

Call Parameters Accessible in CCXML Applications

Call parameters (or SIP headers) can be made accessible in the CCXML
application through the session object. Table 1 shows the connection properties
available through the session object.

183 Session Progressing Response

The CCP sends a 100 Trying response immediately upon receiving an INVITE
request. The CCP sends a 200 OK response when the CCXML application

Table 1: Connection Properties

Connection Properties (Shown via Session
Variable)

Description

session.connections[connectionid].local To: header

session.connections[connectionid].remote From: header

session.connections[connectionid].protocol.name sip

session.connections[connectionid].protocol.version 2.0

session.connections[connectionid].protocol.sip.callid Call-ID header

session.connections[connectionid].protocol.sip.requesturi Request URI

session.connections[connectionid].protocol.sip.from From: header

session.connections[connectionid].protocol.sip.to To: header

16 Genesys Voice Platform 8.1

Chapter 2: Features Inbound Connections

executes the <accept> tag. By default, the 183 Session Progressing response
message is not sent.

Setting ccpccxml.sip.send_progressing configuration parameter to 1 instructs
the CCP to send 183 Session Progressing along with 200 OK when the
<accept> tag is executed on an inbound connection.

A CCXML application can request that the CCP send 183 Session
Progressing with a <send> tag. Here is an example:

<send target=”connectionid”
targettype=”’x-connection’”data=”’connection.progressing’”/>

Rejecting Incoming Connections

Rejecting an incoming connection with the <reject> tag will cause the CCP to
respond with a 480 Temporarily Unavailable response. Using the reason
attribute in the <reject> tag will enable the use of the Reason header in the 400
Bad Request response. The header will contain the following:

Reason: SIP; cause=480; text=”content of the reason attribute”

The exact SIP response code used to reject a call can be specified in the hints
attribute of the <reject> tag. The responseCode property of the hints object
specifies the response code that should be used, as shown below.

 <var name="hints" expr="new Object()"/>
 <assign name="hints.responseCode" expr="'400'"/>
. . .
<reject . . . hints="hints"/>

The default reject SIP code is configurable throughout the CCP and will be
used if the hints attribute is not specified. The parameter
mediacontroller.defaultrejectcode is the platform-wide configuration
parameter for the default reject code.

Disconnecting Calls

When a connection is connected, executing the <disconnect> tag sends a BYE
message on the connection to terminate the call. This applies to both inbound
and outbound connections.

Using the reason attribute in the <disconnect> tag enables the use of the Reason
header in the BYE message. The header will contain the following:

Reason: SIP; cause=200; text=”content of the reason attribute”

CCXML—Reference Manual 17

Chapter 2: Features Connection Signals

Connection Signals
When a SIP INFO message is received on a connection, the CCP raises a
connection.signal event. There will be two properties set in the info property:

• event.info.contenttype—the value of Content-Type header of the SIP
INFO message

• event.info.content—the content of the SIP INFO message

Receiving DTMF Digits Through SIP INFO

When a SIP INFO message has a Content-Type of application/dtmf-relay, it
implies that it is a DTMF digit. The connection.signal event will also contain
the event.info.dtmf property that provides the DTMF digit(s).

Receiving Other Events Through SIP INFO

Other events are stored as text into event.info.contenttype and
event.info.content. The SIP INFO message body is stored in
event.info.content property, whereas the value of the SIP Content-Type
header is stored in event.info.contenttype. Event content can be parsed using
ECMAScript, as shown in the example below:

INFO sip:101@10.33.2.53;user=phone SIP/2.0
Via: SIP/2.0/UDP 10.33.2.53;branch=z9hG4bKac5906
Max-Forwards: 70
From: "anonymous" <sip:anonymous@anonymous.invalid>;tag=1c25298
To: <sip:101@10.33.2.53;user=phone>
Call-ID: 11923@10.33.2.53
CSeq: 1 INVITE
Contact: <sip:100@10.33.2.53>
X-Detect: Response=CPT,FAX
Content-Type: application/x-detect
Content-Length: xxx

Type = CPT
Subtype = reorder

 <transition event="connection.signal" name="evt">
 <if cond="evt.info.contenttype.toString() ==
'application/x-detect'">
 <script>
 <![CDATA[
 var mystring = evt.info.content.split("\r\n");
 var myType1 = mystring[0].split("=");
 var myType2 = mystring[1].split("=");
]]>

18 Genesys Voice Platform 8.1

Chapter 2: Features Outbound Connections

 </script>
 <log expr="myType1[0] + '[' + myType1[1] + ']'"/>
 <log expr="myType2[0] + '[' + myType2[1] + ']'"/>
 <else/>

 <log expr="'Unwanted Event'"/>
 </if>
 <exit/>
 </transition>

The log will display: Type[CPT], and Subtype[reorder].

Outbound Connections
When making an outbound connection, provide the SIP URI in the dest
attribute of the <createcall> tag. The CCP uses the given SIP URI to send an
INVITE request. The SIP Request is sent directly to the destination.

Specifying Custom SIP Headers Through Hints

Custom SIP headers can be sent in an initial outgoing INVITE through the hints
attribute of the <createcall> tag. The value of the hints attribute must be an
ECMAScript object containing a subobject with the name headers. The
headers ECMAScript object can then contain a name/value list of custom SIP
header names and the corresponding values:

<var name="myhint" expr="new Object()"/>
 <assign name="myhint.protocol" expr="new Object()"/>
 <assign name="myhint.protocol.sip" expr="new Object()"/>
 <assign name="myhint.protocol.sip.headers" expr="new Object()"/>
 <assign name="myhint.protocol.sip.headers['X-Detect']" expr="'Request=CPT, FAX'"/
. . .
 <createcall . . . hints="myhint" . . . />

The header name/value specified through the hints will be filtered through an
allowed list of custom SIP headers defined by the configuration variable
mediacontroller.sip.allowedunknownheaders, which is a space delimited list
of permitted custom header names.

If the header name specified in the hint has a matching header name in the
configuration parameter, the first matching header name from the
configuration parameter will be sent out as a custom header name with the
value specified from the hint. Header names and values with no matching
header name in the configuration parameter will not be sent out.

Note: If the mediacontroller.sip.allowedunknownheaders is set to "*", all
unknown headers will be sent out. Also, it should be noted that
mediacontroller.sip.allowedunknownheaders="* X-Detect" will not
work; only "*" will work in this case.

CCXML—Reference Manual 19

Chapter 2: Features Outbound Connections

For example, if the mediacontroller.sip.allowedunknownheaders configuration
parameter has the value of X-Detect X-other when <createcall> is called with
the preceding hint example, the custom header X-Detect: Request=CPT,FAX
will be added to the initial INVITE.

Table 2 lists some examples of the mapping between hint header names and
custom header names sent out in the INVITE message:

Similarly, custom SIP headers in SIP responses that result in a
connection.progressing or connection.connected event (see “Mapping SIP
Responses to CCXML Connection Events”, below) will be available to the
CCXML application if the SIP headers are configured in the
mediacontroller.sip.allowedunknownheaders configuration parameter.

The custom SIP headers can be obtained from the CCXML application as
follows:
session.connections[evt.connectionid].protocol.sip.headers['x-channel']

where x-channel is the SIP header name mentioned above.

Mapping SIP Responses to CCXML Connection Events

All 1xx responses except 100 received from the outgoing connection result in a
connection.progressing event.

When a 2xx response is received, a connection.connected event is thrown.

When a non-2xx final response (300–699) response is received, a
connection.failed event is thrown.

Disconnecting Progressing Call

When the <disconnect> tag is used on an outbound progressing call, the CCP
sends a CANCEL message on the outgoing call to terminate it.

Table 2: Mapping Examples

Header name
in hint

ccpccxml.sip.allowedunkno
wnheaders

Header name in SIP
INVITE

X-Detect X-Detect X-Channel X-Detect

CPA A-CPA CPA B-CPA CPA

CPA CPA A-CPA B-CPA CPA

CPA X-Detect X-Channel Not sent

Note: When the mediacontroller.sip.allowedunknownheaders parameter is
changed, the CCP must be restarted to get the latest parameter
changes.

20 Genesys Voice Platform 8.1

Chapter 2: Features Call Redirection

Call Redirection
This section describes the Call Control Platform features for call redirection.

Redirecting an Incoming Call

Using the <redirect> tag on an incoming call (in the ALERTING state) redirects
the call. The CCP sends a 302 Moved Temporarily response. The dest attribute
of the <redirect> tag translates to the Contact header in the 302 response.

Redirecting a Connected Call

Using the <redirect> tag on a connected call (this applies to both inbound and
outbound calls) redirects the call with a REFER message. The dest attribute of
the <redirect> tag translates to the Refer-To header in the REFER message.
After the CCP receives a NOTIFY message with a 200 OK message, the call is
considered redirected and the connection will be released. The CCXML
application will receive a connection.redirected event.

If the redirection fails for any reason, the call receives an error.connection
event.

Call Merge
Two connections can merge at the network level (bridging the calls at the
switch) when both of them are in a CONNECTED state. The CCP uses the REFER
message with Replaces as the mechanism to initiate a call merge feature at the
switch. For example:

Assume the first call was connected with:

INVITE sip:hi@10.0.0.1 SIP/2.0
Via: SIP/2.0/UDP
From: sip:bye@10.0.0.2
To: sip:hi@10.0.0.1
Max-Forwards: 70
CSeq: 1 INVITE
Call-ID: DC9D0D00-F5CD-6037-C2A2-6BDBE04CC38E
Contact: sip:bye@10.0.0.2:5060
Content-Length: 147
Content-Type: application/sdp

Assume the second call was connected with:

INVITE sip:hello@10.0.0.1 SIP/2.0
Via: SIP/2.0/UDP
From: sip:world@10.0.0.3
To: sip:hello@10.0.0.1
Max-Forwards: 70

CCXML—Reference Manual 21

Chapter 2: Features Call Merge

CSeq: 1 INVITE
Call-ID: DC9D0D00-F5CD-6037-C2A2-6BDBE04CC123
Contact: sip:world@10.0.0.3:5060
Content-Length: 147
Content-Type: application/sdp

Table 3 describes the Merge SIP call flow.

Table 3: Merge SIP Call Flow

Event Direction Message

<merge> REFER sip:bye@10.0.0.2 SIP/2.0

Via: SIP/2.0/UDP 10.0.0.1:5060

From: sip:hi@10.0.0.1

To: sip:bye@10.0.0.2

Cseq: 2 REFER

Call-ID: DC9D0D00-F5CD-6037-C2A2-6BDBE04CC38E

Refer-To:
world@10.0.0.3;Replaces=DC9D0D00-F5CD-6037-C2A2-6BDB
E04CC123

 SIP/2.0 202 Accepted

…

Cseq: 2 REFER

connection.merged NOTIFY sip:bye@10.0.0.2 SIP/2.0

…

Cseq: 3 NOTIFY

Event: refer

Content-Type: message/sipfrag;version=2.0

Content-Length: 14

SIP/2.0 200 OK

 SIP/2.0 200 OK

…

Cseq: 3 NOTIFY

…

 BYE sip:bye@10.0.0.2 SIP/2.0

…

Call-ID: DC9D0D00-F5CD-6037-C2A2-6BDBE04CC38E

…

22 Genesys Voice Platform 8.1

Chapter 2: Features Dialogs

Dialogs
This section describes the dialogs that the Call Control Platform supports.

Preparing Dialogs

The <dialogprepare> or <dialogstart> tags create a new dialog; the CCP
initiates a new SIP dialog to the dialog server. The CCP sends an INVITE
message to the Resource Manager (configurable with the
mediacontroller.sipproxy parameter) with the following netann request URI:

sip:dialog@sipproxy.genesyslab.com;voicexml=http%3F//www.genesyslab.com/page.vxml

Where sipproxy.genesyslab.com is the value of the configuration parameter
mediacontroller.sipproxy.

Using <dialogprepare> to prepare a dialog will send a connectionless SDP to
the dialog server to let the dialog server (Media Control Platform [MCP] in this
case) prepare the dialog without starting the audio. When the INVITE
transaction is ACKed, the dialog is fetched and loaded on the MCP, and then is
essentially on hold.

 BYE sip:world@10.0.0.3 SIP/2.0

…

Call-ID: DC9D0D00-F5CD-6037-C2A2-6BDBE04CC123

…

 SIP/2.0 200 OK

…

Call-ID: DC9D0D00-F5CD-6037-C2A2-6BDBE04CC38E

…

 SIP/2.0 200 OK

…

Call-ID: DC9D0D00-F5CD-6037-C2A2-6BDBE04CC123

…

Table 3: Merge SIP Call Flow (Continued)

Event Direction Message

Note: If the CCXML application has a <merge> tag followed immediately by
a <disconnect> tag in the same transition, the platform will issue only
one connection.merged event and one connection.disconnected event
instead of two connection.merged events on both of the connections.

CCXML—Reference Manual 23

Chapter 2: Features Dialogs

A connectionless SDP represents an SDP content that would put the MCP on
hold. The SDP content will depend on the device profile configuration of the
dialog server.

Passing Dialog Results Back to CCXML

VoiceXML pages can return results back to the CCP by adding content to the
BYE message. The VoiceXML page can use the namelist attribute in the <exit>
tag to send dialog results back to the CCXML application.

Here is an example in which the VoiceXML application ends the call with
<exit namelist="hello a"/>:

The MCP sends BYE to the CCP:

BYE sip:10.0.0.1:5060 SIP/2.0

Via: SIP/2.0/UDP 10.0.0.3

Via: SIP/2.0/UDP 10.0.0.2:5060

From: sip:genesyslab@10.0.0.2

To: sip:10.0.0.1:5060

Max-Forwards: 69

CSeq: 1 BYE

Call-ID: DC9D0D00-F5CD-6037-C2A2-6BDBE04CC38E

Content-Length: 16

Content-Type: application/text

hello=world

a=b

The dialog.exit event contains:

values.hello = 'world'

values.a = 'b'

namelist='hello a'

The dialog.disconnect event is not currently supported by the CCP. When a
VoiceXML application exits, dialog.exit will be thrown.

Dialog User Event

The VoiceXML dialog may send a user event to the CCXML application by
using the <send namelist="name type uri"/> tag. Here is an example of the
VoiceXML <send> block:

<var name="name" expr="'transfer'"/>
<var name="type" expr="'bridge'"/>
<var name="uri" expr="'1111@205.150.90.19'"/>
<gvp:send namelist="name type uri"/>

24 Genesys Voice Platform 8.1

Chapter 2: Features Dialogs

The CCXML session receives the following:

15:02:04.416 Int 51030 F9187A00-E558-44C6-61AE-FFA9A066180C-FF326086-ECB5 dlg_event
7|dialog.user.transfer|DD92E8B2-51AD-4F3F-8C8D-40AFA169EA9B|values.name="transfer";v
alues.type="bridge";values.uri="1111@205.150.90.19

This raises a dialog.user.transfer event to the CCXML application that owns
the dialog. The event itself contains the following properties:
• event$.values.name=transfer

• event$.values.type=bridge

• event$.values.uri=1111@205.150.90.19

Dialog-Initiated Blind Transfer

To initiate a dialog-initiated blind transfer, the VoiceXML application must call
<transfer destexpr="number_to_call" bridge="false"

type="unsupervised">.

The following sequence of events occurs:

1. The MCP sends a REFER message on the SIP dialog.

2. The CCXML application receives a dialog.transfer event. The type
attribute is blind and the uri attribute is the destexpr in the <transfer> tag.

3. The CCXML application executes <redirect> to move the call specified in
the dialog.transfer event.

4. If redirection is successful, the CCXML application sends
telephone.disconnect.transfer event to the dialog.

5. The CCP sends NOTIFY (200 OK) to report the result of the transfer.

6. If redirection fails, the CCXML application sends error.transfer.noroute
event to the dialog.

7. The CCP sends NOTIFY (500 Server Internal Error) to report a transfer
failure.

8. The VoiceXML application receives a telephone.disconnect.transfer
event to end the transfer and the VoiceXML page. The result is recorded in
the metrics file of the MCP.

Note: The event$ is a generic name for CCXML events, and in the
preceding example, it is dialog.user.transfer.

The contenttype attribute is not supported by the <send> tag if the
namelist is used.

Note: When the inbound call is made through SIP Server, a dialog-initiated
blind transfer will only work if the SIP Server has the appropriate DN
trunk group set up and enabled to do refer transfer. This is set up by
setting the 'refer-enabled=true' on the SIP Server.

CCXML—Reference Manual 25

Chapter 2: Features Dialogs

Dialog-Initiated Supervised Transfer

A dialog-initiated supervised transfer is application driven in both the MCP
and CCP. The MCP sends a SIP REFER message to the CCP when the
VoiceXML <transfer> is invoked for a supervised transfer. The CCP will
throw a dialog.transfer event to the application with the type attribute of the
event set to blind.

Dialog-Initiated Bridge Transfer

A dialog-initiated bridge transfer is application driven from both the MCP and
CCP perspective. Within the VoiceXML application, you can use the <send>
tag (translating to SIP INFO) to inform the CCP of a bridge transfer request.

The CCP application can be written according to the W3C Voice Browser Call
Control: CCXML Version 1.0, W3C Working Draft 29 June 2005, Appendix D
for bridge transfer.

MSML Dialogs

MSML allows CCXML applications to have additional control over the media
operations beyond what VoiceXML can offer. For example, the customer can
create a MSML script that performs CPA, and then, based on the CPA result, it
can choose to either start the VoiceXML dialog or play a prerecorded prompt.

Genesys CCXML supports MSML dialogs (the dialog packages include
Dialog Core, Dialog Base, and Dialog CPA) by extending the CCXML
specification. CCMXL does not support the MSML Conference Core package.
For the list of supported tags, see Appendix C on page 51.

When <dialogstart> is used without <dialogprepare>, you must set the type
attribute to application/vnd.radisys.msml+xml. In this case, the src attribute
content is ignored. You can specify the MSML body inline as follows:

The developer should include the attribute xmlns as shown below so that you
can inline MSML markups in the CCXML document.

<dialogstart src="." type="application/vnd.radisys.msml+xml" connectionid="..."
xmlns="urn:ietf:params:xml:ns:msml">

 <msml>

Note: The type attribute is always populated to blind whether the request
from the VoiceXML is for blind transfer or supervised transfer. The
CCP application developer should write the application according to
either blind or supervised transfer.

Note: For <dialogprepare>, the same rules for <dialogstart> applies on
type, src, and the inline MSML body. The inline MSML body
should not contain the <?xml> tag.

26 Genesys Voice Platform 8.1

Chapter 2: Features Dialogs

 <dialogstart type="'application/moml+xml'">
 <play>
 <audio uri="'http://example.com/dictionary.vox'"/>
 </play>
 </dialogstart>
 </msml>
</dialogstart>

Alternatively, you can use <dialogprepare> before a <dialogstart>. If you use
<dialogprepare>, the type, src attributes, and the inline MSML body are
required by the <dialogprepare> tag and must not be repeated in the
<dialogstart> tag. The MSML information will be sent with the initial INVITE
generated by the <dialogprepare> with an on-hold SDP.

<dialogprepare src="." type="application/vnd.radisys.msml+xml"
connectionid="connectionid" xmlns="urn:ietf:params:xml:ns:msml">

 <msml>
 <dialogstart type="'application/moml+xml'">
 <play>
 <audio uri="'http://example.com/dictionary.vox'"/>
 </play>
 </dialogstart>
 </msml>
</dialogprepare>
.
.
.
<dialogstart prepareddialogid="dialogid"/>

Where connectionid and dialogid are generated by CCXML.

Example of the initial INVITE for an MSML dialog

INVITE sip:dialog@genesyslab.example.com;
moml=cid:14864099865376@genesyslab.example.com SIP/2.0

 ...

Content-Type: multipart/mixed; boundary=boundary

 --boundary

Content-Type: application/sdp

SDP BODY

--boundary

Content-Id: <14864099865376@genesyslab.example.com>

Content-Type: application/vnd.radisys.msml+xml

The resulting MSML body from the preceding example should look like this:
<?xml version="1.0"?>
<msml>
 <dialogstart type="'application/moml+xml'">
 <play>

CCXML—Reference Manual 27

Chapter 2: Features Conferences

 <audio uri="'http://example.com/dictionary.vox'"/>
 </play>
 </dialogstart>
</msml>

Note that CCP/CCXML does not modify the MSML markups in any way other
than placing the XML header at the top.
--boundary--

Once the dialog is started, Media Server can send MSML information using
SIP INFO messages.
INFO sip:dialog@genesyslab.example.com SIP/2.0

...

Content-Type: application/vnd.radisys.msml+xml
<?xml version="1.0"?>
<msml>
 <event name="msml.dialog.exit" id="conn:1234/dialog:1234"/>
</msml>

The MSML body is available through the dialog.user.msml event’s
info.content attribute, with info.contenttype =
"application/vnd.radisys.msml+xml"

The info.content will look like the following:
<?xml version="1.0"?>
<msml>
 <event name="msml.dialog.exit" id="conn:1234/dialog:1234"/>
</msml>

VoiceXML Session Variables

The MCP does not support session.connection.ccxml VoiceXML session
variables, as mentioned in Appendix D of the CCXML specification.

Conferences
When a CCXML application joins to a conference, the CCP sends an INVITE
message to the RM with a specially formatted netann Request URI:

sip:conf=ABCD1234@10.0.0.1;confinstid=ABCD1234;confreserve=3;confmaxsize=3

where

• conf, confinstid are cluster-wide unique conference identifiers

• confreserve is the number of conference participants to reserve for this
conference

• confmaxsize is the maximum size of this conference

The sum of the reservedtalkers and reservedlisteners attribute in the
<createconference> tag represents the number of conference participants to

28 Genesys Voice Platform 8.1

Chapter 2: Features Implicit Transcoding and Conferencing

reserve for this conference. The default value can be set using the
configuration parameter mediacontroller.conference.defaultreserve.

The maximum size of the conference is equal to confreserve by default. This
value can be set in the hints attribute of the <createconference> tag; it is the
maxsize property of the hints object.

In a clustered environment where multiple conference servers are available, the
CCP relies on GVP RM to forward the requests for the same instance of a
conference to the same conference server. This is a feature of the RM.

Implicit Transcoding and Conferencing
The Resource Manager can be configured with bridging server information, to
handle CCXML operations that require implicitly connecting endpoints to a
media server.

There are two cases in which a bridging server may be used internally by
the CCP:

1. Audio-transcoding between endpoints which do not share common codecs

2. Multiple sessions listening to a single media stream through the use of an
RTP splitter/proxy or an implicit conference

The CCP determines whether implicit transcoding or conferencing is required
upon evaluation of the CCXML application. The connection of the endpoints
to the bridging server will be transparent to the CCXML application.

Implicit Transcoding

When a CCXML session specifies a join between two endpoints that do not
share any common audio codecs, the CCP uses the bridging server internally to
transcode the media between the endpoints (see Figure 1 on page 29).

Note: The <createconference> tag proceeds successfully even if the cluster
has no conferences available or no conference servers can serve the
requested conference size. A <join> operation may fail due to the
preceding reasons and returns error.conference.join event.

Note: The MCP can be used as a bridging server.

CCXML—Reference Manual 29

Chapter 2: Features Implicit Transcoding and Conferencing

Figure 1: Implicit Transcoding

Implicit Conferencing

A CCXML session can specify multiple joins to a single endpoint so that it is
required to split its output and send to multiple destinations. If the sender does
not support splitting its output to send to multiple destinations concurrently, the

SIP Endpoint
(supporting u-law)

SIP Endpoint
(supporting a-law)

Call Control Platform

Resource Manager

Media Control Platform
(bridging server)

SIP SIP

RTP RTP

Genesys Voice
Platform

SIP

SIP

Note: If call legs are being joined implicitly with the <createcall> tag, and
the call legs do not provide their codec capabilities either in the initial
INVITE to CCP or in the 200 OK response to the initial INVITE sent by
CCP, the CCP will not use the transcoding feature even if a
transcoding server has been defined in the
mediacontroller.bridge_server option. This is because the CCP
requires knowledge of the codec capabilities of each call leg before
creating bridges so that it can determine whether a bridging server is
needed.

The workaround is to connect each call leg separately and join them
together after they are in the connected state.

30 Genesys Voice Platform 8.1

Chapter 2: Features Device Profile Configuration

CCP internally uses the Bridging Server to do the RTP media splitting as
shown in Figure 2.

Figure 2: Implicit Conferencing

The bridging server can be accessed directly from the CCP or via the RM as
shown in the diagram below. The mediacontroller.bridge_server
configuration parameter is used to specify the location of the bridging server. If
the bridging server is to be accessed via the RM, the location of the RM should
be specified in the mediacontroller.bridge_server configuration parameter.

The MCP can be configured to act as a bridging server.

Device Profile Configuration
The CCP provides a set of device profiles that reflect Genesys’ current
knowledge regarding the behavior of various devices that interact with the
platform. For additional information about the configuring device profiles, see
the Genesys Voice Platform 8.1 User’s Guide.

SIP Endpoint
(receiver 1)

SIP Endpoint
(receiver 2)

Call Control Platform

Resource Manager

Media Control Platform
(bridging server)

SIP SIP

RTP RTP

Genesys Voice
Platform

SIP

SIP

SIP Endpoint
(sender)

SIP

CCXML—Reference Manual 31

Chapter 2: Features Device Profile Configuration

Inbound Connections

The CCP provides regular expression matching for incoming connections in
order to select the most appropriate Device Profile for these connections.

The CCP will try to match the SIP User-Agent header from the incoming SIP
INVITE to the SIP Header Name property value that is defined in the Device
Profile with the highest precedence first. If there is a match, the matching
Device Profile will be assigned to the connection and the CCP will use the
Device Profile parameters to determine the correct behavior.

If there is no match with the SIP Header Name property value, the CCP will try
to match the SIP User-Agent header to the Device Profile with the next
precedence. If there are no matches with any preset Device Profile, the Default
Inbound Device Profile will be used for the connection.

Outbound Connections

The device profiles of outbound connections, dialogs, and conferences can be
specified in CCXML hints. The value of the device profile hint should be the
same value as the Device Profile Name from the Device Profile configuration.
The example below illustrates the use of hints for an outbound connection.
Similarly, the same hint can be used for <dialogprepare>, <dialogstart>, and
<createconference>. If the hint is already passed in <dialogprepare>, the
subsequent <dialogstart> should not reconfigure the device profile hint.

<var name="myhint" expr="new Object()"/>
<assign name="myhint.deviceprofile" expr="'GVP MCP'"/>
. . .
<createcall . . . hints="myhint"/>

Limitations

The CCP supports up to 100 conference participants in a conference.

Forward join to a conference that is running on an MCP will not join properly.
Avoid this limitation by always using duplex join to join a conference.

In the Offer-Answer case, an incoming connection cannot be joined to two
outbound connections if the alerting connection is accepted in a later transition
than the joins. Avoid this limitation by accepting the alerting connection in the
same transition as the joins or in an earlier transition.

Note: The timeout value for <createcall> may not work correctly if the
value is less than 32 seconds. If the destination does not respond at all
(for example, a device is down), the timeout will not occur until after
the 32 second period of INVITE re-transmission (as dictated by
RFC3261) has passed.

32 Genesys Voice Platform 8.1

Chapter 2: Features Device Profile Configuration

If an existing media loop is completely reversed in the same transition, some
media might be missed at some endpoints.

For example, initially A->B->C->A

The CCXML application contains multiple joins to reverse the initial bridges
to A<-B<-C<-A.

Avoid this by unjoining the bridges in separate transitions.

The options-support Device Profile parameter should be set to false when the
CCP is used in conjunction with Resource Manager (RM) or a SIP Proxy. If
the CCP is directly connected to SIP User Agents, the options-support feature
can be used to query the SIP capabilities of the devices.

If the Default Conference device profile is not configured or
<createconference> refers to the device profile that is invalid,
error.conference.create will be thrown. The error.conference.create event
in this case will not contain the conferenceid since the <createconference>
operation was aborted prematurely.

CCXML—Reference Manual 33

Chapter

3 Event I/O Processor
The Call Control Platform (CCP) supports three event processors:
• basichttp

• createsession
• platform

The basichttp and createsession event I/O processors use the HTTP protocol
and are based on the W3C Voice Browser Call Control: CCXML Version 1.0,
W3C Working Draft 29 June 2005. The platform event I/O processor is a
Genesys extension.

The following sections describe the features supported by CCP:
 Session Variable, page 33
 Receiving Events, page 34
 Sending Events, page 36
 Creating Sessions, page 37
 Example of Sending Events via HTTP, page 41

Session Variable
The session variable session.ioprocessors is an associative array and contains
a list of external event I/O access URIs, which are available to the current
session. The array is associative and each key in the array is the type of the
event I/O processor. Currently, this array has only two items:
• session.ioprocessors["basichttp"]

• session.ioprocessors["createsession"]

34 Genesys Voice Platform 8.1

Chapter 3: Event I/O Processor Receiving Events

Receiving Events
An external HTTP client may make an HTTP POST request to the CCXML
platform. The URI that accepts the request is exposed as specified in the
preceding session.ioprocessors["basichttp"] session variable. The HTTP
request is analyzed by the basichttp event I/O processor, resulting in:

• An event being injected into an active CCXML session, or

• No action being taken (an error occurred, or operation not permitted, for
example)

The basichttp event I/O processor then reports its result to the external client
in the response for the originating HTTP request.

HTTP POST request parameters (within an application/x-www-form-urlencoded
body) are used to specify the information that is to be injected into the session.
In particular, the parameters shown in Table 4 have special meanings:

When an event is successfully thrown inside the target session, the
evensourcetype property of the event object is set to basichttp and the
eventide property contains a unique event id (generated by the basichttp event
I/O processor) for the event. When provided in the HTTP request as
parameters; eventsourcetype or eventid parameters are ignored.

Other parameters provided in the HTTP request are treated as the event
payload. Payload parameter names must be valid ECMAScript variable names.
Qualified parameter names (for example, x.y.z) are nested inside parent
parameters (for example, y and its parent x). Reserved and payload parameter
values must be valid ECMAScript expressions.

The CCP replies to the HTTP request with one of the HTTP response codes
shown in Table 5 on page 35.

Table 4: HTTP Request Parameters

HTTP Parameter
Name

Meaning

sessionid This is the ID of the session destined to receive the event.
This parameter is required.

eventname This is the name of the event to be received by the
CCXML session. This parameter is required. Valid event
names consist of alphanumeric characters and periods
only. The first character of an event name must be a letter.

eventsource This value specifies a URI to which events may be sent
(that is, it may be used as the value of the target attribute
in a <send> element). This parameter is optional and can
be in any form.

CCXML—Reference Manual 35

Chapter 3: Event I/O Processor Receiving Events

Table 6 describes the event attributes of an event that was successfully
received via HTTP request:

HTTPS Support

The following GVP configuration parameters must be used:

• ccxmli.ssl must be True.

• ccxmli.ssl.recv.cert_file sets the path and the filename of the SSL
certificate to be used for createsession and BasicHTTP.

• ccxmli.ssl.recv.private_key_file sets the path and the filename of the
SSL key to be used for createsession and BasicHTTP.

• ccxmli.ssl.recv.password sets the password associated with the certificate
and key pair. Required only if the key file is password protected.

Table 5: HTTP Response Codes

Response Code Condition

204 The sessionid parameter matches an existing CCXML
session ID, and the event name and payload parameters
are valid.

400 One or more parameters has an invalid name or value or
there are conflicts (for example, both x and x.y defined).

403 Failure occurs due to other reasons (for example, the
session ID does not match an existing CCXML session
ID, or the matched session is terminating).

Table 6: Event Attributes

Attribute Name Description

name The value of the name parameter.

eventid A unique string identifier for the event generated by
the CCP.

eventsource The value of the eventsource parameter if provided;
otherwise this event attribute is undefined.

eventsourcetype Always has the value basichttp.

<param-name> For each param-name=value appearing in parameter name
in the HTTP request, the parameter param-name appears as
a property (or a nested property) in the event object. Its
value is set to value.

36 Genesys Voice Platform 8.1

Chapter 3: Event I/O Processor Sending Events

• ccxmli.ssl.recv.protocol_type must be set to the following appropriate
value for SSL or TLS:
 SSLv3, SSLV2 or SSLv23
 TLSv1 or an empty string that defaults to TLS

• For SSLv2 and SSLv3, ccpccxml.fips_enabled must be False.

Sending Events
The CCXML session may send an event to an external entity by using the
<send> tag, as described in Section 9.2.3 of the CCXML specification. Inline
content for <send> is not currently supported; only the namelist attribute is
supported.

For an example of how a web application can send an event to a specific
CCXML session, see the W3C Voice Browser Call Control: CCXML Version
1.0, W3C Working Draft 29 June 2005, Appendix K - Basic HTTP Event I/O
Processor, specifically, K.2 and K.3, which contains the information and the
example.

Table 7 describes how the various attributes of <send> map to the HTTP
request:

Note: The HTTPS protocols SSLv2, SSLv3, and TLSv1 will also work
when the protocol type is set to SSLv23.

Table 7: <send> Attributes

Attribute Name Meaning

targettype If this attribute is set to basichttp, the message will be
routed to the HTTP I/O Processor.

Note: When the <send> element is executed with this
attribute, the target CCXML session must belong to the
same tenant (sender and receiver tenant IDs matches).
Otherwise, error.send.failed is thrown with a reason
property of Tenant ID mismatch.

target This is the HTTP URL to which a POST request will
be made.

name (or data) This is an ECMAScript expression evaluating to the event
name. This attribute is required for sending to the
basichttp event I/O processor. This will become the value
of the name parameter of the HTTP request.

xmlns This attribute is not supported, because the current
platform does not support the sending of inline content.

CCXML—Reference Manual 37

Chapter 3: Event I/O Processor Creating Sessions

The basichttp event I/O processor interprets the HTTP response codes in the
following way as shown in Table 8:

Creating Sessions
An external entity can initiate a new CCXML session using HTTP POST via the
createsession event I/O processor (as per the W3C Voice Browser Call
Control: CCXML Version 1.0, W3C Working Draft 29 June 2005).

The access path of the URI used by the createsession I/O event processor is
configurable and defaults to /ccxml/createsession. For example, if the CCP
hostname is server.example.com (and the default HTTP port 80 is used), the
URI for the event I/O processor is
http://server.example.com/ccxml/createsession. This URI is exposed as
specified in the preceding session.ioprocessors["createsession"] session
variable.

The form url-encoded parameters in the body of the HTTP POST request
determine the parameters for session creation. The uri parameter determines
the initial URI of the initial CCXML page for the new session. The optional
eventsource parameter indicates a URI to which events can be returned using
the basichttp event I/O processor.

The eventsource value is exposed to the session as a property of the
session.values session variable (that is, session.values.eventsource). The
remaining parameters are used to create additional properties of the

namelist This is an optional parameter, and if it is defined, its
variable names and values are mapped to HTTP
parameters.

hints timeout

Table 8: Response Codes

Response Code Interpretation

2xx The <send> was successfully accepted by the HTTP server
and a send.successful event is posted to the session
issuing the <send>.

Any other HTTP
response code

The <send> was not accepted by the HTTP server and a
error.send.failed event is posted to the session issuing
the <send>.

Table 7: <send> Attributes (Continued)

Attribute Name Meaning

38 Genesys Voice Platform 8.1

Chapter 3: Event I/O Processor Creating Sessions

session.values object. All parameter values are treated as strings. The
property names may be qualified to specify subobjects.

Multiple parameter values (for example, var=val1&var=val2) are not supported
and result in a 400 HTTP response.

The type property of the session.values must be set to createsession. If this
property is specified in the request body parameters, the specified value is
ignored.

If method, postbody, timeout, maxage and/or maxstale parameters are
specified, they have the same effect as the equivalent request URI parameters
in SIP-initiated session creation.

If the create session request can be completed successfully, then a 200 HTTP
response code replies to the request. The response body is an
application/x-www-form-urlencoded name-value pair list in which the
session.id parameter specifies the id of the newly created session.

The gvp-tenant-id parameter is a new parameter for creating sessions. The
parameter value is in the format, [Tenant-name].IVR-name. For example,
[Customer1]. Profile1 specifies the IVR Profile named Profile1 under the
tenant named Customer1. Profiles that are created under the Environment
tenant (which is the root tenant), use the tenant named Environment, for
example, [Environment]. Profile1.

Creating a new CCXML session or sending the event to an existing session

The following configuration parameters control the address:
• Ccxmli.createsession.recv.path = “/ccxml/createsession”

• Ccxmli.createsession.recv.port = “4892”

• Ccxmli.basichttp.recv.path = “/ccxml/basichttp”

• Ccxmli.basichttp.recv.port = “4892”

The following example shows how a web page can create a CCXML session in
the GVP platform. If you want to send an event to an existing session, use
/ccxml/basichttp instead, with the parameter sessionid containing the real ID
of that session.

<link rel="stylesheet" type="text/css" href="test.css"/>

<form action="http://138.120.84.95:4892/ccxml/createsession" method="post">
 <div>
 <label for="uri">uri</label>
 <input type="text" name="uri" id="sessionid"

value="file:///c:/testpages/external_simpledialog.ccxml"/>
 </div>
 <div>
 <label for="eventsource">eventsource</label>
 <input type="text" name="eventsource" id="eventsource" value="SOURCE"/>
 </div>
 <div>
 <label for="eventsourcetype">eventsourcetype</label>

CCXML—Reference Manual 39

Chapter 3: Event I/O Processor Creating Sessions

 <input type="text" name="eventsourcetype" id="eventsourcetype"
value="createsession"/>

 </div>
 <div>
 <label for="method">method</label>
 <input type="text" name="method" id="method" value="get"/>
 </div>
 <div>
 <label for="timeout">timeout</label>
 <input type="text" name="timeout" id="timeout" value="30s"/>
 </div>
 <div>
 <label for="maxage">maxage</label>
 <input type="text" name="maxage" id="maxage" value="60"/>
 </div>
 <div>
 <label for="maxstale">maxstale</label>
 <input type="text" name="maxstale" id="maxstale" value="30"/>
 </div>
 <div>
 <label for="postbody">postbody</label>
 <input type="text" name="postbody" id="postbody" value="n1=v1&n2=v2"/>
 </div>
 <div>
 <label for="name1">name1</label>
 <input type="text" name="name1" id="name1" value="value1"/>
 </div>
 <div>
 <label for="name2">name2</label>
 <input type="text" name="name2" id="name2" value="value2"/>
 </div>
 <div>
 <label for="complex.name3">complex.name3</label>
 <input type="text" name="complex.name3" id="complex.name3" value="value3"/>
 </div>
 <div>
 <label for="gvp-tenant-id ">gvp-tenant-id</label>
 <input type="text" name="gvp-tenant-id" id="gvp-tenant-id"

value="CCXMLSimpleDialogLoad"/>
 </div>
 <div id="submit">
 <input type="submit"/>
 </div>
</form>

Error Handling

If the event properties are not valid, a 400 response is given to the request.
Event properties can be considered invalid if, for example, they are not valid

40 Genesys Voice Platform 8.1

Chapter 3: Event I/O Processor Creating Sessions

ECMAScript variable names, or if multiple values are specified or are
conflicting (for example, obj1 and obj1.x are both given a value).

If a fetch timeout is specified in the createsession POST parameters and the
timeout expires before the initial CCXML fetch completes, a 408 response is
returned to the createsession request.

If the fetch or compilation or initialization of the initial CCXML page URI that
is specified by the uri POST parameter of a createsession request fails for any
reason, a 403 response is returned to the request.

If one of the scripts statically referenced by the CCXML page that is specified
by the uri POST parameter of a createsession request cannot be fetched or
compiled for any reason, a 403 response is returned to the request.

If the fetch of one of the scripts statically referenced by the page that is
specified by the uri POST parameter of a createsession request times out, a 408
response is returned to the request.

For this example, assume that the value of the session variable
session.ioprocessors["basichttp"] is http://ccxml.genesyslab.com/ccxml/
basichttp. When the following HTTP request is made to this platform:

POST http://ccxml.genesyslab.com/ccxml/basichttp?sessionid=ccxmlsession1&
eventname=basichttp.myevent&eventsource=http://www.example.org/
ccxmlext&
agent=agent12&site=Orlando HTTP/1.0
. . .[other HTTP headers]. . .
. . .[other HTTP headers]. . .

If ccxmlsession1 (value of the sessionid parameter in the preceding HTTP
request) matches the session ID of an existing CCXML session, an event with
the name basichttp.myevent is triggered in the session ccxmlsession1. It may
be handled as follows:

<transition state="'dialogActive'" event="basichttp.*" name="evt">
 <log expr="'Received event'" />
 <log expr="'name=' + evt.name" />
 <log expr="'sourcetype=' + evt.eventsourcetype" />
 <log expr="'source=' + evt.eventsource" />
 <log expr="'agent=' + evt.agent" />
 <log expr="'site=' + evt.site" />
</transition>

where:

• evt.name would have the value basichttp.myevent

• evt.eventsourcetype would have the value basichttp

• evt.eventsource would have the value http://www.example.org/ccxmlext

• evt.agent would have the value agent12

• evt.site would have the value orlando

Additionally, the CCP responds with a 204 HTTP response code:
HTTP/1.0 204 No Data

CCXML—Reference Manual 41

Chapter 3: Event I/O Processor Example of Sending Events via HTTP

Example of Sending Events via HTTP
Consider the following CCXML code snippet in the CCXML session with
session ID ccxmlsession2:

<script>
 var agent='agent21';
 var site='miami';
</script>
<send target="'http://travel.genesyslab.com/travelagent'" data="'myevent'"
targettype="'basichttp'" namelist="agent site"/>

With this CCXML snippet, the following HTTP GET request is made:
GET http://travel.genesyslab.com/travalagent?sessionid=ccxmlsession2&
eventname=myevent&agent=agent21&site=miami HTTP/1.0
CRLF

42 Genesys Voice Platform 8.1

Chapter 3: Event I/O Processor Example of Sending Events via HTTP

CCXML—Reference Manual 43

Appendix

A CCXML Specification
Support Notes
This appendix describes the GVP support for CCXML features. The Call
Control Platform currently follows the W3C Voice Browser Call Control:
CCXML Version 1.0, W3C Working Draft 29 June 2005.

This chapter contains the following section:
 Current Support, page 43

Current Support

xmlns Attribute

The xmlns attribute in <ccxml> element is not supported. Additional
namespaces specified in the <ccxml> tag are ignored.

The xmlns attribute for the <send> tag is not supported. Therefore, the inline
content for <send> is currently not supported; only the namelist attribute is
supported.

http-equiv Attribute

The http-equiv attribute in the <meta> element is not supported and is ignored.

<metadata>

The <metadata> tag is not supported and is ignored.

44 Genesys Voice Platform 8.1

Appendix A: CCXML Specification Support Notes Current Support

UTF Character set

The CCP does not support ECMAScript scripts or CCXML pages that are
authored using the UTF-16 character set.

The CCP does not support the compiling and processing of ECMAScript pages
using the UTF-8 character encoding.

<fetch>

If the fetch of the URI specified by the next attribute of <fetch> fails for any
reason, the error.fetch event is thrown. If the URI has a scheme of http: the
reason property of the event will read: Fetch failed: <error code> <reason
phrase> where <error code> is the HTTP error code and <reason phrase> is
the HTTP reason phrase in the response.

prepareddialogid Attribute

From the W3 specification; if the prepareddialogid attribute is specified and a
connectionid or conferenceid attribute was specified on the prior
<dialogprepare> element, specifying a different connectionid or conferenceid
on the <dialogstart> element will result in the throwing of an
error.dialog.notstarted event.

Repeated Parameter Names

The W3C specification states that parameter names may not be repeated
within a request. A request with repeated parameter names is considered to be
invalid, and should be rejected by the basichttp event I/O processor. Repeated
parameter names in an HTTP request to I/O processors currently does not
result in a 400 response.

<move>

Conference allocation and the CCXML <move> tag do not work across multiple
machines.

<join> and <unjoin>

CCXML applications can use <join> and <unjoin> at any time, except in the
case of dialogs, where <join> and <unjoin> can only be used on dialogs that
have been started.

The CCP does not support an early join for an outbound call that is being
joined to a conference.

CCXML—Reference Manual 45

Appendix A: CCXML Specification Support Notes Current Support

dialog.disconnect Event

The dialog.disconnect event is currently not supported by the CCP.

User Event

The user event from a VoiceXML dialog cannot be a multi-level object; only
simple name-value pairs are supported.

AAI Feature

CCXML does not support the AAI feature; AAI data passed into the CCP with
an incoming Request URI cannot be accessed at an application level.

CCXML does not support emitting AAI in the CDR.

URI Parameters

The CCP platform does not allow for a default set of initial URI parameters to
be configured.

HTTPS and Session Cookies

HTTPS and session cookies are not supported by the HTTP server interface of
the CCP.

<createccxml>

The <createccxml> parameters attribute passed into the created session are not
supported. The attribute contains a namelist of CCXML parameters that will be
created as properties of the session.values session variable in the new session.
For example, if the parameters attribute has a value of foo.bar test, the
values of those variables will be assigned to the session.values.foo.bar and
session.values.test variables in the new session.

If a CCXML session that was created by another session using <createccxml>
exits for any reason other than executing <exit> (for example, it does not catch
an error.* event), queuing ccxml.exit to the parent session is not supported.

Moving a Connection or Dialog

The CCP does not support moving a connection or dialog to a session on a
different physical platform.

46 Genesys Voice Platform 8.1

Appendix A: CCXML Specification Support Notes Current Support

<createcall>

Referencing a dialog that has been prepared but not started in the joinid
attribute of <createcall> always results in an error, and thus an
error.conference.join event is not supported.

If call legs are being joined implicitly with the <createcall> tag, and the call
legs do not provide their codec capabilities either in the initial INVITE to CCP
or in the 200 OK response to the initial INVITE sent by CCP, the CCP will not
use the transcoding feature even if a transcoding server has been defined in the
mediacontroller.bridge_server option. This is because the CCP requires
knowledge of the codec capabilities of each call leg before creating bridges so
that it can determine whether a bridging server is needed.

The workaround is to connect each call leg separately and join them together
after they are in the connected state.

dialogid Property

If the connection is bridged to two or more dialogs, then the dialogid property
contains the ID of the dialog that is sending media to the connection. If none of
the dialogs are sending media to the connection, the property containing the ID
of any one of the bridged dialogs is not supported.

CCXML—Reference Manual 47

Appendix

B Early Media
This appendix describes Early Media and how GVP supports it. It contains the
following sections:
 Background, page 47
 Announcement Example, page 47
 Remarks, page 48

Background
Early Media is the concept of delivering a media stream prior to a call being
answered.

In terms of SIP, after a call is in the progress of being setup after an INVITE
message, media is transmitted prior to the 200 OK response being generated.

Early Media has many uses, for example:

• Delivery of inband call progress messages, such as announcements.

• Customized ringing tones.

• Ability to avoid media clipping—Media clipping occurs when the user
believes that the media session has already been established and begins
speaking, but the establishment process has not finished yet, and thus leads
to the loss of the first few syllables/words. Early Media helps to avoid such
an issue by establishing the media path early.

Announcement Example
<?xml version="1.0" encoding="UTF-8"?>
<ccxml xmlns="http://www.w3.org/2002/09/ccxml" version="1.0">
 <!-- Create our ccxml level vars -->
 <var name="in_connectionid" expr="''" />
 <var name="dialogid" expr="''" />

48 Genesys Voice Platform 8.1

Appendix B: Early Media Remarks

 <var name="timer" expr="''"/>
 <!-- Set our initial state -->
 <var name="currentstate" expr="'state1'" />
 <eventprocessor statevariable="currentstate">
 <!-- Deal with the incoming call -->
 <transition state="state1" event="connection.alerting" name="evt">
 <assign name="in_connectionid" expr="evt.connectionid" />
 <dialogprepare
 src="'file:///usr/local/phoneweb/samples/helloaudio.vxml'"
 dialogid="dialogid"
 connectionid="in_connectionid"/>
 <assign name="currentstate" expr="'state2'"/>
 </transition>
 <transition state="state2" event="dialog.prepared" name="evt">
 <log expr="'Dialog has been prepared'"/>
 <dialogstart prepareddialogid="dialogid"/>
 </transition>
 <transition state="state2" event="send.successful" name="evt">
 <log expr="'send successful'"/>
 </transition>
 <transition state="state2" event="dialog.started" name="evt">
 <log expr="'Dialog has started'"/>
 <send target="in_connectionid" targettype="'x-connection'"

data="'connection.progressing'"/>
 </transition>
 <transition state="state2" event="dialog.exit" name="evt">
 <log expr="'Dialog has terminated; accepting connection'"/>
 <accept connectionid="in_connectionid" />
 <assign name="currentstate" expr="'state3'"/>
 </transition>
 <transition event="connection.disconnected" name="evt">
 <exit/>
 </transition>
 </eventprocessor>
</ccxml>

Remarks
The preceding section is an example of CCXML in which a dialog
(helloaudio.vxml, a simple VoiceXML page that plays only an audio clip) is
established for an incoming call. The call is not accepted until the dialog
finishes (that is, helloaudio.vxml finishes playing the audio file and
terminates), and the call accepting action is handled by the dialog.exit event.

The key logic in this application is the line:

 <send target="in_connectionid" targettype="'x-connection'"
data="'connection.progressing'"/>

CCXML—Reference Manual 49

Appendix B: Early Media Remarks

When this is sent to a connection that is in the alerting state, it triggers the CCP
to send a 183 Session Progress message to the call originating side, with a
valid SDP component so that a media path can be successfully established.
Because the dialog was prepared with connectionid set to in_connectionid,
this allows the media path to be established.

This simple example illustrates how to write an application so that it makes use
of the Early Media capability. Advanced CCXML users can modify the
preceding to simulate a ringback tone application by doing the following:

1. Use the <createcall> tag to create an outbound call.

2. Replace the simple helloaudio.vxml with a more sophisticated VoiceXML
application, such as one that repeats an audio clip until it is interrupted.

3. Terminate the dialog when the outbound call is connected.

4. Connect the inbound call and then join the two calls together using <join>
or <merge> (whichever is appropriate).

Note: The use of <createcall>, <join>, <merge> and other CCXML
elements is outside the scope of this appendix.

50 Genesys Voice Platform 8.1

Appendix B: Early Media Remarks

CCXML—Reference Manual 51

Appendix

C MSML Specification
This appendix describes the GVP support for MSML features (RFC 5707). The
standard MSML attributes are listed in this appendix, but the descriptions are
not provided. These descriptions can be found in the specification at
http://tools.ietf.org/rfc/rfc5707.txt.

CCXML only supports a subset of the full MSML specification in
<dialogstart/dialogprepare>. Specifically, CCXML supports Dialog Core,
Dialog Base, and Dialog CPA packages only.

This appendix contains the following sections:
 Core Package, page 51
 Dialog Core Package, page 52
 Dialog Base Package, page 54
 Dialog Call Progress Analysis Package, page 57
 Example, page 60

Core Package

<msml>

Attributes
version

<send>

Attributes
event

52 Genesys Voice Platform 8.1

Appendix C: MSML Specification Dialog Core Package

target—The target must be part of the MSML session associated with the
request, following the syntax:

conn:connID/dialog:dialogID[/primitive[.primitiveID]]
valuelist

mark

<result>

Attributes
response

mark

<event>

Attributes
name

id

Child Elements
<name>

No attributes.
<value>

No attributes

Dialog Core Package

<dialogstart>

Attributes
target

src

type

name

mark

gvp:confrole—The valid values are:

regular (default)—Customer call leg receives audio from the mixer, and
video from the agent/student call leg (or from the file in a Push Video
scenario)

agent/student—Agent or student call leg receives audio from the mixer,
and video from the regular call leg (or from the file in a Push Video
scenario)

CCXML—Reference Manual 53

Appendix C: MSML Specification Dialog Core Package

coach—Supervisor call leg in a Whisper Coaching scenario receives audio
from the mixer, and the same video stream as the agent/student leg.

monitor—Supervisor or recording device call leg in a Silent Call
Monitoring scenario receives audio from the mixer, and the same video
stream as the agent/student leg.

push—Media playback device call leg does not receive any media;
incoming audio stream is pushed to the mixer, and video stream is pushed
to a regular or customer call leg.

push-all—Media playback device call leg provides audio to the mixer, and
video stream to all call legs in the conference call.

Child Elements

See “Dialog Base Package” on page 54 for details about these elements.
<play>

<dtmfgen>

<record>

<collect>

<cpd>

<dialogend>

Attributes
id

mark

<send>

Attributes
event

target

<exit>

Attributes
namelist

<disconnect>

Attributes
namelist

54 Genesys Voice Platform 8.1

Appendix C: MSML Specification Dialog Base Package

<dialogprepare>

The <dialogprepare> element is supported as an extension of the MSML
dialog core package. It is equivalent to the <dialogstart> element except that
the dialog does not start until the start event is received. When a start event
is sent to the preparing dialog, the dialog will be joined to its target and starts
execution. The <dialogprepare> element is only supported for VoiceXML
dialogs.

Dialog Base Package

<play>

Attributes
id

iterate

maxtime—This is supported in a single prompt or multiple prompts with iterate
equal to 1.

barge (optional)—Defaults to false.

cleardb (optional)—Defaults to false.

offset—This is supported in a single prompt only, with iterate equal to 1.

gvp:precheck (optional)—The valid values are true or false; defaults to
false. When this attribute is set to true and the audio or video prompt file is
not found, GVP replies with file not found. When this attribute is set to
false, there is no pre-check of the availability of the files. If the file cannot be
found at prompt play time, the play element will end and the play.end shadow
variable sets to error.

Events
terminate

Shadow Variables
play.amt

play.end—The possible values are:
play.complete

play.complete.barge

play.terminated

play.timelimit

play.error

play.killsession

play.unknown

Child Elements
<audio>

CCXML—Reference Manual 55

Appendix C: MSML Specification Dialog Base Package

Attributes
uri

format

iterate

<video>

Attributes
uri

format

iterate

<playexit>

No Attributes.

<dtmfgen>

Attributes
id

digits

dur

interval

Events
terminate

Shadow Variables

dtmfgen[.id-if-specified].end—The possible values are:

dtmfgen.complete

dtmfgen.terminated

dtmfgen.error

dtmfgen.killsession

dtmfgen.unknown

Child Elements
<dtmfgenexit>

No Attributes.

Child Elements
<send>

<record>

Attributes
id

dest

format

profile

56 Genesys Voice Platform 8.1

Appendix C: MSML Specification Dialog Base Package

level

maxtime

prespeech

postspeech

termkey

Events
terminate

Shadow Variables
record.len

record.end—The possible values are:
record.failed.prespeech

record.complete.maxlength

record.complete.postspeech

record.complete.termkey

record.complete.sizelimit

record.error

record.terminated

record.killsession

record.complete.unknown

record.recordid

record.size

Child Elements
<play>

<recordexit>

No Attributes.

<collect>

Attributes
id

cleardb

iterate

Events
terminate

Shadow Variables
dtmf.digits

dtmf.len

dtmf.last

dtmf.end

Child Elements
<play>

CCXML—Reference Manual 57

Appendix C: MSML Specification Dialog Call Progress Analysis Package

<pattern>

Attributes

digits—The supported format is max=n where n is a decimal number
specifying the number of digits to collect.

format—The only supported value is moml+digits.
iterate

Child Elements
<send>

<dtmfexit>

No Attributes

Child Elements
<send>

Dialog Call Progress Analysis Package

<cpd>

The CPD primitive supports three states of detection, and one non-detection
state.

• preconnect—Detects pre-connect events.

• postconnect—Detects post-connect events.

• beepdetect—Detects answering machine beep.

• buffer—Does not detect events, but buffers a configurable amount of
audio to be used after transitioning to a postconnect state.

Events can be sent to the CPD primitive to change the detection state. The
CPD primitive automatically changes from the postconnect state to the
beepdetect state if it detects an answering machine while in the postconnect
state. The CPD primitive completes when it detects one of the following
terminating results:
• cpd.sit.nocircuit

• cpd.sit.reorder

• cpd.sit.operationintercept

• cpd.sit.cacantcircuit

• cpd.sit.custom1 (2,3,4)

• cpd.busy

• cpd.human

• cpd.fax

• cpd.beep

The primitive will execute <cpddetect> (if present), and then execute
<cpdexit>.

58 Genesys Voice Platform 8.1

Appendix C: MSML Specification Dialog Call Progress Analysis Package

Attributes

beeptimeout (optional)—Defines the amount of time, in seconds, for CPD to
timeout in the beepdetect state. When the timeout elapses, the child element,
<beeptimeout>, is executed. This timeout only applies when the primitive is in
the beepdetect state; this timeout is implicitly cancelled when the state
changes to another state. When this attribute is not set, beeptimeout defaults to
the [msml].cpd.beeptimeout configuration parameter.

connectnosignal (optional)—The valid value is true or false (default). When
set to true, and in the preconnect state, the CPD element automatically
transitions to the postconnect state when a call is determined to be connected.
Otherwise, the CPD element remains in the preconnect state until told
otherwise, or the preconnecttimeout event occurs.

id—When sending an event to the CPD element, use the following address:
cpd[.id=if-specified].

initial(optional)—Defines the initial detection state. The valid values are:

Preconnect (default)

Postconnect

Beepdetect

postconnectpref (optional)—Defines how postconnect CPD detection
prioritizes which results are detected. The valid values are:

default (default)—AM detection is performed as configured by default.

machine—AM detection is performed with the highest probability of
answering machine detection.

no_machine—When SIT tones and FAX have not been detected, the
connected call is considered answered by a live voice.

voice—AM detection will be performed with the highest probability of
live voice detection.

postconnecttimeout (optional)—Defines the amount of time, in seconds, for
CPD to timeout in the postconnect state. When the timeout elapses, the child
element <cpdsilence> is executed. This timeout only applies when the
primitive is in the postconnect state; the timeout is implicitly cancelled when
the state changes to another state. If this attribute is not set, it defaults to the
[msml].cpd.postconnecttimeout configuration parameter.

record (optional)—Defines whether received media during CPA is recorded.
The valid values are:

true—recording will take place

false (default)—recording will not take place

Recordings will be recorded to the directory provided as the value of the
[msml].cpd.record.basepath configuration parameter. The format type and file
extension will be determined by the value of the [msml].cpd.record.fileext
configuration parameter. The name of the recording will be generated at
random.

CCXML—Reference Manual 59

Appendix C: MSML Specification Dialog Call Progress Analysis Package

Events

beepdetection—Sets the CPD primitive states to beep detection.

postconnect—Sets the CPD primitive state to postconnect.

terminate—Terminates the <cpd> element.

Shadow Variables

cpd[.id-if-specified].result—String value that specifies the result of CPD.
The possible values are:

cpd.sit.nocircuit

cpd.sit.reoder

cpd.sit.operatorintercept

cpd.sit.vacantcircuit

cpd.sit.custom1

cpd.sit.custom2

cpd.sit.custom3

cpd.sit.custom4

cpd.busy

cpd.connect

cpd.human

cpd.fax

cpd.machine

cpd.beep

cpd.preconnect_timeout

cpd.silence

cpd.beeptimeout

cpd[.id-if-specified].result—String value that specifies the reason for
terminating the <cpd> element. The possible values are:

cpd.terminated

cpd.completed

cpd.failed

cpd.recordfailed

cpd[.id-if-specified].recfile—Contains the path to the CPA recording. If
there is no recording, the value is undefined.

Child Elements

<beeptimeout>—Executed when the beeptimeout is elapsed, meaning CPD did
not detect any answering machine beep within the timeout period. The
primitive is completed after this element and executes the <cpdexit> element.

No Attributes

<cpddetect>—Executed when a call progress event is detected.

No Attributes

60 Genesys Voice Platform 8.1

Appendix C: MSML Specification Example

<cpdexit>—Invoked when the CPD is completed or is terminated as a result of
receiving the terminate event.

No Attributes

<cpdsilence>—Executed when the postconnect timeout is elapsed, meaning
that there is silence on the media stream. The primitive is completed after this
element and executes the <cpdexit> element.

No Attributes

<cpdtimeout>—Executed when the preconnect timeout is elapsed. The
primitive is completed after this element and executes the <cpdexit> element.

No Attributes

Example
The following example initiates the CPD detection at the preconnect state,
with a five second timeout period.

<?xml version="1.0" encoding="UTF-8"?>

<msml version="1.1">

<dialogstart target="conn:xxxx" name="cpd" type="application/moml+xml">

<cpd initial="preconnect" preconnecttimeout="5s">

 <cpdtimeout>

<send target="source" event="done" namelist="cpd.recfile cpd.end cpd.result"/>

</cpdtimeout>

</cpd>

</dialogstart>

</msml>

If no media activity was detected during the preconnect state, after five
seconds, the CPD completes and sends an event with shadow variables. The
actual result should appear as the following, in info.content for the
dialog.user.msml event:

<?xml version="1.0"?>
<msml version="1.1">
 <event name="msml.dialog.exit" id="conn:xxx/dialog:yyy">
 <name>cpd.recfile</name>
 <value>undefined</value>
 <name>cpd.end</name>
 <value>cpd.completed</value>
 <name>cpd.result</name>
 </value>cpd.preconnect_timeout</value>
 </event>
</msml>

CCXML—Reference Manual 61

Appendix C: MSML Specification Example

CCXML Example

<?xml version="1.0" encoding="UTF-8"?>
<ccxml xmlns="http://www.w3.org/2002/09/ccxml" version="1.0">

 <!-- Test: SIM_7b: testing dialog.user.msml -->

 <var name="in_connectionid" expr="''" />
 <var name="dialogid" expr="''" />
 <var name="currentstate" expr="'state1'" />
 <var name="mediatypes" expr="'audio'" />
 <script src ="cpd.js"/>
 <eventprocessor statevariable="currentstate">
 <!-- Deal with the incoming call -->
 <transition state="state1" event="connection.alerting" name="evt">
 <assign name="in_connectionid" expr="evt.connectionid" />
 <accept connectionid="in_connectionid" />
 <assign name="currentstate" expr="'state2'"/>
 </transition>
 <transition state="state2" event="connection.connected" name="evt">
 <assign name="currentstate" expr="'state3'"/>

 <dialogprepare
src="'.'"
type="'application/vnd.radisys.msml+xml'"
dialogid="dialogid" connectionid="in_connectionid"
xmlns="urn:ietf:params:xml:ns:msml">
<msml version="1.1">
<dialogstart name="cpd" type="application/moml+xml">
<cpd initial="preconnect" preconnecttimeout="5s">
<cpdtimeout>
<send target="source" event="done" namelist="cpd.recfile cpd.end
cpd.result"/>
</cpdtimeout>
</cpd>
</dialogstart>
</msml>

 </dialogprepare>
 </transition>
 <transition state="state3" event="dialog.prepared">
 <assign name="currentstate" expr="'state4'"/>
 <dialogstart prepareddialogid="dialogid" connectionid="in_connectionid"/>
 </transition>
 <transition state="state4" event="dialog.started">
 <assign name="currentstate" expr="'state5'"/>
 </transition>

<transition state="state5" event="dialog.user.msml">
<log expr="' content:' + event$.info.content"/>
 <if cond="event$.info.contenttype == 'application/vnd.radisys.msml+xml'">

<script>
var cpdresult = parseCPD(event$.info.content);
</script>

62 Genesys Voice Platform 8.1

Appendix C: MSML Specification Example

<log expr="'#PASSED#'"/>
<log expr="'result : cpd.recfile:'"/> <log expr="cpdresult.recfile"/>
<log expr ="'cpd.end:'"/> <log expr="cpdresult.end"/>
<log expr ="'cpd.result:'"/> <log expr="cpdresult.result"/>
<exit/>

 <else/>
 <log expr="'#FAIL# Incorrent contenttype:' + event$.info.contentype"/>
 </if>

</transition>
 <transition state="state5" event="dialog.exit" name="evt">
 <assign name="currentstate" expr="'state6'"/>
 <exit/>
 </transition>
 <transition event="fetch.done">
 </transition>
 <transition event="ccxml.loaded">
 </transition>
 <transition event="*">
 <log expr="'#FAILED# SIM_7b'"/>
 <exit/>
 </transition>
 </eventprocessor>
</ccxml>

A line of code early in the above example (<script src ="cpd.js"/>) refers to
the Javascript file cpd.js (see below), which performs a single function:
parsing the cpd file.

cpd.js

function parseCPD(cpdstring)
{

var result = new Object();
result.error = 0;
var nameOpen = 6;
var valueOpen = 7;

if(cpdstring.indexOf("<?xml")!=0)
{
 result.error = 1;
 return result;
}
var end, begin;
end = cpdstring.indexOf("?>");
if(end <= 0)
{

result.error = 2;
return result;

}
begin = cpdstring.indexOf("<msml");
if(begin < 0 || begin < end)

CCXML—Reference Manual 63

Appendix C: MSML Specification Example

{
result.error = 3;
return result;

}
end = cpdstring.substring(begin).indexOf("</msml>");
if(end < 0 || end < begin)
{

result.error = 4;
return result;

}
begin = cpdstring.substring(begin).indexOf("<event");
if(begin < 0 || begin > end)
{

result.error = 5;
return result;

}
end = cpdstring.substring(begin).indexOf("</event>");
if(end < 0)
{

result.error = 6;
return result;

}
var beginpair = cpdstring.substring(begin).indexOf("<name");
if(beginpair < 0 || beginpair > end)
{
result.error = 7;

return result;
}
var namevalue=cpdstring.substring(begin+beginpair,end+begin);
result.name = namevalue;

var pairs = namevalue.split("</value>");
if (pairs.length <= 0)
{

result.error = 8;
return result;

}
for (var i=0; i<pairs.length; i++)

 {
begin = pairs[i].indexOf("<name>");
end = pairs[i].indexOf("</name>");
if(end <0)
{

result.error = pairs[i];
return result;

}
if(begin <0)
{

result.error = i+11;
return result;

}

64 Genesys Voice Platform 8.1

Appendix C: MSML Specification Example

if(end < begin)
{

result.error = i+12;
return result;

}
var name = pairs[i].substring(begin+nameOpen,end);
begin = pairs[i].indexOf("<value>");
if (begin < 0 || begin < end)
{

result.error = i+13;
return result;

}
var value = pairs[i].substring(begin+valueOpen);

if(name == "cpd.recfile")
result.recfile = value.toString();

else if (name=="cpd.end")
result.end = value.toString();

else if (name=="cpd.result")
result.result = value.toString();

else
result.error = "wrong cpd Element";

}
result.error = "0";

 return result;
}

CCXML—Reference Manual 65

Supplements

Related Documentation
Resources
The following resources provide additional information that is relevant to this
software. Consult these additional resources as necessary.

Management Framework

• Framework 8.1 Deployment Guide, which provides information about
configuring, installing, starting, and stopping Framework components.

• Framework 8.1 Genesys Administrator Deployment Guide, which provides
information about installing and configuring Genesys Administrator.

• Framework 8.1 Genesys Administrator Help, which provides information
about configuring and provisioning contact center objects by using the
Genesys Administrator.

• Framework 8.1 Configuration Options Reference Manual, which provides
descriptions of the configuration options for Framework components.

SIP Server

• Framework 8.1 SIP Server Deployment Guide, which provides information
about configuring and installing SIP Server.

Genesys Voice Platform

• Genesys Voice Platform 8.1 Deployment Guide, which provides
information about installing and configuring Genesys Voice Platform
(GVP).

• Genesys Voice Platform 8.1 User’s Guide, which provides information
about configuring, provisioning, and monitoring GVP and its components.

• Genesys Voice Platform 8.1 Troubleshooting Guide, which provides
troubleshooting methodology, basic troubleshooting information, and
troubleshooting tools.

66 Genesys Voice Platform 8.1

Related Documentation Resources

• Genesys Voice Platform 8.1 SNMP and MIB Reference, which provides
information about all of the Simple Network Management Protocol
(SNMP) Management Information Bases (MIBs) and traps for GVP,
including descriptions and user actions.

• Genesys Voice Platform 8.1 Genesys VoiceXML 2.1 Reference Help, which
provides information about developing Voice Extensible Markup
Language (VoiceXML) applications. It presents VoiceXML concepts, and
provides examples that focus on the GVP Next Generation Interpreter
(NGI) implementation of VoiceXML.

• Genesys Voice Platform 8.1 Legacy Genesys VoiceXML 2.1 Reference
Manual, which describes the VoiceXML 2.1 language as implemented by
the Legacy GVP Interpreter (GVPi) in GVP 7.6 and earlier, and which is
now supported in the GVP 8.1 release.

• Genesys Voice Platform 8.1 Application Migration Guide, which provides
detailed information about the application modifications that are required
to use legacy GVP 7.6 voice and call-control applications in GVP 8.1.

• Genesys Voice Platform 8.1 Configuration Options Reference, which
replicates the metadata available in the Genesys provisioning GUI, to
provide information about all the GVP configuration options, including
descriptions, syntax, valid values, and default values.

• Genesys Voice Platform 8.1 Metrics Reference, which provides
information about all the GVP metrics (VoiceXML and CCXML
application event logs), including descriptions, format, logging level,
source component, and metric ID.

Voice Platform Solution

• Voice Platform Solution 8.1 Integration Guide, which provides information
about integrating GVP, SIP Server, and, if applicable, IVR Server.

Composer Voice

• Composer 8.1 Deployment Guide, which provides installation and
configuration instructions for Composer.

• Composer 8.1 Help, which provides online information about using
Composer, an Integrated Development Environment used to develop
applications for GVP and Universal Routing.

Open Standards

• W3C Voice Extensible Markup Language (VoiceXML) 2.1, W3C
Recommendation 19 June 2007, which is the World Wide Web Consortium
(W3C) VoiceXML specification that GVP NGI supports.

CCXML—Reference Manual 67

Related Documentation Resources

• W3C Voice Extensible Markup Language (VoiceXML) 2.0, W3C
Recommendation 16 March 2004, which is the W3C VoiceXML
specification that GVP supports.

• W3C Speech Synthesis Markup Language (SSML) Version 1.0,
Recommendation 7 September 2004, which is the W3C SSML
specification that GVP supports.

• W3C Voice Browser Call Control: CCXML Version 1.0, W3C Working
Draft 29 June 2005, which is the W3C CCXML specification that GVP
supports.

• W3C Semantic Interpretation for Speech Recognition (SISR) Version 1.0,
W3C Recommendation 5 April 2007, which is the W3C SISR specification
that GVP supports.

• W3C Speech Recognition Grammar Specification (SRGS) Version 1.0,
W3C Recommendation 16 March 2004, which is the W3C SRGS
specification that GVP supports.

Genesys

• Genesys Technical Publications Glossary, which ships on the Genesys
Documentation Library DVD and which provides a comprehensive list of
the Genesys and computer-telephony integration (CTI) terminology and
acronyms used in this document.

• Genesys Migration Guide, which ships on the Genesys Documentation
Library DVD, and which provides documented migration strategies for
Genesys product releases. Contact Genesys Technical Support for more
information.

• Release Notes and Product Advisories for this product, which are available
on the Genesys Technical Support website at
http://genesyslab.com/support.

Information about supported hardware and third-party software is available on
the Genesys Technical Support website in the following documents:

• Genesys Supported Operating Environment Reference Manual

• Genesys Supported Media Interfaces Reference Manual

For additional system-wide planning tools and information, see the
release-specific listings of System Level Documents on the Genesys Technical
Support website, accessible from the system level documents by release tab
in the Knowledge Base Browse Documents Section.

Genesys product documentation is available on the:

• Genesys Technical Support website at http://genesyslab.com/support.

• Genesys Documentation Library DVD, which you can order by e-mail
from Genesys Order Management at orderman@genesyslab.com.

http://genesyslab.com/support
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A3D92054&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=A9CB309AF4DEB8127C5640A3C32445A7&view=item
http://genesyslab.com/support/dl/browse/Default.asp?view=list&list=mrno-cnti&grby=epms;0&publ=11,39&nflt=publ&show=tabl&epms=1&mask=83&indx=141&ctgr=30,23,27,31,683,736,1097,1241,1311,1321
http://genesyslab.com/support
mailto:orderman@genesyslab.com

68 Genesys Voice Platform 8.1

Document Conventions

Document Conventions
This document uses certain stylistic and typographical conventions—
introduced here—that serve as shorthands for particular kinds of information.

Document Version Number

A version number appears at the bottom of the inside front cover of this
document. Version numbers change as new information is added to this
document. Here is a sample version number:

80fr_ref_06-2008_v8.0.001.00

You will need this number when you are talking with Genesys Technical
Support about this product.

Screen Captures Used in This Document

Screen captures from the product graphical user interface (GUI), as used in this
document, may sometimes contain minor spelling, capitalization, or
grammatical errors. The text accompanying and explaining the screen captures
corrects such errors except when such a correction would prevent you from
installing, configuring, or successfully using the product. For example, if the
name of an option contains a usage error, the name would be presented exactly
as it appears in the product GUI; the error would not be corrected in any
accompanying text.

Type Styles

Table 9 describes and illustrates the type conventions that are used in this
document.

Table 9: Type Styles

Type Style Used For Examples

Italic • Document titles

• Emphasis

• Definitions of (or first references to)
unfamiliar terms

• Mathematical variables

Also used to indicate placeholder text within
code samples or commands, in the special case
where angle brackets are a required part of the
syntax (see the note about angle brackets on
page 69).

Please consult the Genesys Migration
Guide for more information.

Do not use this value for this option.

A customary and usual practice is one
that is widely accepted and used within a
particular industry or profession.

The formula, x +1 = 7
where x stands for . . .

CCXML—Reference Manual 69

Document Conventions

Monospace
font

(Looks like
teletype or
typewriter
text)

All programming identifiers and GUI
elements. This convention includes:

• The names of directories, files, folders,
configuration objects, paths, scripts, dialog
boxes, options, fields, text and list boxes,
operational modes, all buttons (including
radio buttons), check boxes, commands,
tabs, CTI events, and error messages.

• The values of options.

• Logical arguments and command syntax.

• Code samples.

Also used for any text that users must
manually enter during a configuration or
installation procedure, or on a command line.

Select the Show variables on screen
check box.

In the Operand text box, enter your
formula.

Click OK to exit the Properties dialog
box.

T-Server distributes the error messages in
EventError events.

If you select true for the
inbound-bsns-calls option, all
established inbound calls on a local agent
are considered business calls.

Enter exit on the command line.

Square
brackets ([])

A particular parameter or value that is optional
within a logical argument, a command, or
some programming syntax. That is, the
presence of the parameter or value is not
required to resolve the argument, command, or
block of code. The user decides whether to
include this optional information.

smcp_server -host [/flags]

Angle
brackets
(< >)

A placeholder for a value that the user must
specify. This might be a DN or a port number
specific to your enterprise.

Note: In some cases, angle brackets are
required characters in code syntax (for
example, in XML schemas). In these cases,
italic text is used for placeholder values.

smcp_server -host <confighost>

Table 9: Type Styles (Continued)

Type Style Used For Examples

70 Genesys Voice Platform 8.1

Document Conventions

CCXML—Reference Manual 71

Index

Symbols
[] (square brackets). 69
< > (angle brackets) 69

Numerics
100 trying. 15
183 session progressing 15

A
AAI feature support. 45
angle brackets 69
attribute, xmlns 43
attributes

events . 35
http-equiv 43
send . 36

audience, for document 8

B
blind transfer, dialog initiated 24
brackets

angle. . 69
square . 69

bridge transfer, dialog initiated 25
bridging server 28

C
calling ccxml pages 13
calls

disconnecting 16
merging 20
parameters 15
redirecting 20
redirecting connected 20

redirecting incoming 20
ccxml applications

call parameters accessible 15
mapping. 14
passing URI parameters 15

ccxml connection events, mapping SIP
responses19

ccxml pages
calling . 13
starting 14

codes, response37
commenting on this document 8
conferences 27
conferencing, implicit 28, 29
connected calls, redirecting 20
connection

outbound 18
properties 15
signals 17

conventions
in document 68
type styles. 68

core package 51
createcall support 46
createccxml support45
creating sessions 37
custom SIP headers18

D
device profiles 30

inbound connections 31
limitations 31
outbound connections 31

dialog base package. 54
dialog core package52
dialog CPA package57
dialog.disconnect event support45
dialogid property support 46
dialogs . .22

initiated blind transfer 24

Index

72 Genesys Voice Platform 8.1

initiated bridge transfer 25
initiated supervised transfer 25
passing results 23
preparing 22
user event 23

disconnecting
calls . 16
progressing calls 19

document
audience. 8
change history 9
conventions 68
errors, commenting on 8
version number 68

DTMF digits, receiving 17

E
early media 47
event

attributes. 35
processor 33

events, receiving17, 34
events, sending 36

F
fetch support 44
font styles

italic . 68
monospace 69

H
HTTP request parameters 34
HTTP response codes 35
http-equiv attribute support. 43
HTTPS . 35
HTTPS support. 45

I
implicit conferencing 28, 29
implicit transcoding 28
inbound connections 15
incoming

redirecting calls 20
rejecting connections 16

intended audience 8
italics . 68

J
join support 44

M
mapping

ccxml applications 14
SIP responses 19

merge SIP call flow 21
merging calls. 20
metadata support 43
monospace font 69
move support 44
moving a connection. 45
moving a dialog 45
MSML specification 51

O
outbound connections18
overview . 11

P
parameter names, repeated44
passing

dialog results 23
URI parameters 15

prepareddialogid attribute support44
preparing dialogs 22
progressing calls, disconnecting. 19

R
receiving

DTMF digits 17
events 17, 34

redirecting
calls . 20
connected calls 20
incoming calls 20

rejecting incoming connections 16
request parameters, HTTP 34
response codes 37
response codes, HTTP 35

S
send attributes36
sending events. 36
session

object . 15

Index

CCXML—Reference Manual 73

variables 33
variables, voicexml 27

session cookies support 45
sessions, creating 37
signals, connection 17
SIP headers

mapping 19
specifying custom 18

SIP INFO
receiving DTMF digits 17
receiving events 17

SIP responses, mapping 19
square brackets 69
starting ccxml pages 14
supervised transfer, dialog initiated 25

T
transcoding, implicit 28
transfers

dialog initiated blind 24
dialog initiated bridge 25
dialog initiated supervised 25

type styles
conventions 68
italic . 68
monospace 69

typographical styles 68

U
unjoin support 44
URI parameter support 45
URI parameters 15
user event support 45
user event, dialog 23
UTF-16 character set support 44

V
variables

session 33
voicexml session 27

version numbering, document 68
voicexml session variables 27

X
xmlns attribute support 43

Index

74 Genesys Voice Platform 8.1

	CCXML
	Table of Contents
	Preface
	About GVP
	Intended Audience
	Making Comments on This Document
	Contacting Genesys Technical Support
	Document Change History

	Overview
	Introducing Call Control Platform

	Features
	Dialing into the Call Control Platform
	Calling to the Default CCXML Page
	Starting a non-Default CCXML Page
	Using Resource Manager to Map CCXML Applications

	Inbound Connections
	Passing URI Parameters to CCXML Applications
	Call Parameters Accessible in CCXML Applications
	183 Session Progressing Response
	Rejecting Incoming Connections
	Disconnecting Calls

	Connection Signals
	Receiving DTMF Digits Through SIP INFO
	Receiving Other Events Through SIP INFO

	Outbound Connections
	Specifying Custom SIP Headers Through Hints
	Mapping SIP Responses to CCXML Connection Events
	Disconnecting Progressing Call

	Call Redirection
	Redirecting an Incoming Call
	Redirecting a Connected Call

	Call Merge
	Dialogs
	Preparing Dialogs
	Passing Dialog Results Back to CCXML
	Dialog User Event
	Dialog-Initiated Blind Transfer
	Dialog-Initiated Supervised Transfer
	Dialog-Initiated Bridge Transfer
	MSML Dialogs
	VoiceXML Session Variables

	Conferences
	Implicit Transcoding and Conferencing
	Implicit Transcoding
	Implicit Conferencing

	Device Profile Configuration
	Inbound Connections
	Outbound Connections
	Limitations

	Event I/O Processor
	Session Variable
	Receiving Events
	Sending Events
	Creating Sessions
	Error Handling

	Example of Sending Events via HTTP

	CCXML Specification Support Notes
	Current Support
	xmlns Attribute
	http-equiv Attribute
	<metadata>
	UTF Character set
	<fetch>
	prepareddialogid Attribute
	Repeated Parameter Names
	<move>
	<join> and <unjoin>
	dialog.disconnect Event
	User Event
	AAI Feature
	URI Parameters
	HTTPS and Session Cookies
	<createccxml>
	Moving a Connection or Dialog
	<createcall>
	dialogid Property

	Early Media
	Background
	Announcement Example
	Remarks

	MSML Specification
	Core Package
	<msml>
	<send>
	<result>
	<event>

	Dialog Core Package
	<dialogstart>
	<dialogend>
	<send>
	<exit>
	<disconnect>
	<dialogprepare>

	Dialog Base Package
	<play>
	<dtmfgen>
	<record>
	<collect>

	Dialog Call Progress Analysis Package
	<cpd>

	Example

	Related Documentation Resources
	Document Conventions
	Index

