
Open Media Interaction SDK 7.6

Services

Developer’s Guide

The information contained herein is proprietary and confidential and cannot be disclosed or duplicated
without the prior written consent of Genesys Telecommunications Laboratories, Inc.
Copyright © 2006–2008 Genesys Telecommunications Laboratories, Inc. All rights reserved.

About Genesys
Genesys Telecommunications Laboratories, Inc., a subsidiary of Alcatel-Lucent, is 100% focused on software for call
centers. Genesys recognizes that better interactions drive better business and build company reputations. Customer
service solutions from Genesys deliver on this promise for Global 2000 enterprises, government organizations, and
telecommunications service providers across 80 countries, directing more than 100 million customer interactions every
day. Sophisticated routing and reporting across voice, e-mail, and Web channels ensure that customers are quickly
connected to the best available resource—the first time. Genesys offers solutions for customer service, help desks,
order desks, collections, outbound telesales and service, and workforce management. Visit www.genesyslab.com for
more information.
Each product has its own documentation for online viewing at the Genesys Technical Support website or on the
Documentation Library DVD, which is available from Genesys upon request. For more information, contact your sales
representative.

Notice
Although reasonable effort is made to ensure that the information in this document is complete and accurate at the
time of release, Genesys Telecommunications Laboratories, Inc., cannot assume responsibility for any existing errors.
Changes and/or corrections to the information contained in this document may be incorporated in future versions.

Your Responsibility for Your System’s Security
You are responsible for the security of your system. Product administration to prevent unauthorized use is your
responsibility. Your system administrator should read all documents provided with this product to fully understand the
features available that reduce your risk of incurring charges for unlicensed use of Genesys products.

Trademarks
Genesys, the Genesys logo, and T-Server are registered trademarks of Genesys Telecommunications Laboratories,
Inc. All other trademarks and trade names referred to in this document are the property of other companies. The
Crystal monospace font is used by permission of Software Renovation Corporation, www.SoftwareRenovation.com.

Technical Support from VARs
If you have purchased support from a value-added reseller (VAR), please contact the VAR for technical support.

Technical Support from Genesys
If you have purchased support directly from Genesys, please contact Genesys Technical Support at the following
regional numbers:

Prior to contacting technical support, please refer to the Genesys Technical Support Guide for complete
contact information and procedures.

Ordering and Licensing Information
Complete information on ordering and licensing Genesys products can be found in the Genesys 7 Licensing Guide.

Released by
Genesys Telecommunications Laboratories, Inc. www.genesyslab.com
Document Version: 76sdk_dev_ixn_services-openmedia_03-2008_v7.6.001.00

Region Telephone E-Mail

North and Latin America +888-369-5555 or +506-674-6767 support@genesyslab.com

Europe, Middle East, and Africa +44-(0)-118-974-7002 support@genesyslab.co.uk

Asia Pacific +61-7-3368-6868 support@genesyslab.com.au

Japan +81-3-6361-8950 support@genesyslab.co.jp

http://www.genesyslab.com
http://www.genesyslab.com
mailto:support@genesyslab.com
mailto:support@genesyslab.co.uk
mailto:support@genesyslab.com.au
http://genesyslab.com/support/dl/retrieve/default.asp?item=B3BFC6DABE22B62AAE32A6D31E6396E3&view=item
mailto:support@genesyslab.co.jp
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A1D12650&view=item

Services—Developer’s Guide 3

Table of Contents
Preface ... 7

Intended Audience... 8
Usage Guidelines .. 8
Chapter Summaries... 10
Document Conventions ... 10
Related Resources .. 12
Making Comments on This Document .. 13

Chapter 1 About the Open Media Interaction SDK ... 15

Features Overview .. 15
Components .. 16
Platform Requirements.. 16

Development Platform .. 17
Production Runtime Platform.. 17

Scope of Use... 17
Architecture ... 18

Service-Oriented Architecture... 18
Multithreaded .. 19
Synchronization .. 19
Connectivity .. 19

Chapter 2 Connection.. 21

Generating a Java Proxy... 21
Opening a Session ... 21

Using the C# Proxy to Connect ... 23
Service Factory... 23
XML Configuration File for .NET... 24

Using the Java Proxy to Connect .. 27
Service Factory... 27
XML Configuration File for Java ... 28

Chapter 3 Data Transfer Object .. 33

Introduction.. 33

Table of Contents

4 Open Media Interaction SDK 7.6

DTOs in the Services API.. 33
Dedicated Classes.. 34
Attributes... 34

DTO Handling.. 36
Reading DTOs .. 36
Getting DTOs in Events .. 37

Chapter 4 Events.. 39

Introduction.. 39
Understanding the Event Service .. 40

Events Associated with Services .. 41
Understanding ‘Topics’ Objects... 41

Handling Subscription and Topics ... 43
Creating TopicsService and TopicsEvent.. 44
Subscribing to the Events of a Service ... 46
Handling Subscription Errors .. 49

Getting Events ... 49
Pull Mode.. 49
Push Mode.. 50
Reading DTOs in Events .. 51

Event Notification in Java .. 52
Notification Classes Generation ... 52
Simple Notification Server .. 53

Chapter 5 System Service ... 55

Prerequisites.. 55
More System Essentials .. 55
Configuration Data... 56

Getting Application Information... 56
Getting Business Attributes .. 57

Monitoring Services ... 58

Chapter 6 Queued Interaction Layer .. 61

QIL Prerequisites... 61
More QIL Essentials .. 61
Getting Queue Data... 62
Monitoring Queues .. 63

Starting and Stopping Monitoring.. 63
Managing Queue Events .. 64
Managing Interaction Events .. 65

Services—Developer’s Guide 5

Table of Contents

Chapter 7 Media Interaction Layer ... 67

Prerequisites.. 67
More MIL Essentials .. 68

MIL Service... 68
UCS Service ... 68

Submitting a MIL Interaction.. 69
Managing Interaction Data.. 70

Managing Interactions in UCS... 70
Getting Interaction Data from UCS ... 70
Saving MIL Interactions in UCS.. 71

Managing ESP Callbacks .. 71
Defining an ESP Strategy ... 71
Subscribing to Callback Events .. 72
Managing ESP requests ... 73

Index ... 75

Table of Contents

6 Open Media Interaction SDK 7.6

Services—Developer’s Guide 7

Preface
Welcome to the Open Media Interaction SDK Services Developer’s Guide.
This document introduces you to the concepts, terminology, and procedures
relevant to the Open Media Interaction Service Libraries.
This document provides a high-level overview of Open Media Interaction
SDK Service 7.6 features and functions, together with software-architecture
information and deployment-planning materials.
This document is valid only for the 7.6 release(s) of this product.

Note: For versions of this document created for other releases of this product,
please visit the Genesys Technical Support website, or request the
Documentation Library CD, which you can order by e-mail from
Genesys Order Management at orderman@genesyslab.com.

This preface provides an overview of this document, identifies the primary
audience, introduces document conventions, and lists related reference
information:

Intended Audience, page 8

Usage Guidelines, page 8
Chapter Summaries, page 10
Document Conventions, page 10
Related Resources, page 12

Making Comments on This Document, page 13

The Open Media Interaction SDK (Software Development Kit) is built around
the Media Interaction Layer library, which presents an API for developing
third-party media applications. The library provides connectivity with Genesys
Multi-Channel Routing (MCR) servers, so that your applications can create
and manage Open Media interactions.Workforce Management database, serve
real-time agent states, and provide browser-based functionality.

mailto:orderman@genesyslab.com

8 Open Media Interaction SDK 7.6

Preface Intended Audience

Intended Audience
This guide is primarily intended for developers who are familiar with Simple
Object Access Protocol (SOAP), Hypertext Transfer Protocol (HTTP), and
XML (Extensible Markup Language) technologies. It assumes that you have
a basic understanding of:
• Network design and operation.
• Your own network configurations.
You should also be familiar with these tools:
• XML Schemas
• SOAP (Simple Object Access Protocol)
• WSDL (Web Services Description Language)
Depending on the technology that you choose for client development, you
might require a working knowledge of Java or of some other Web Services
client-side programming language.
You should also be familiar with the Genesys Framework and with Genesys
Multi-Channel Routing (MCR) 7.6 features.

Usage Guidelines
The Genesys developer materials outlined in this document are intended to be
used for the following purposes:
• Creation of contact-center agent desktop applications associated with

Genesys software implementations.
• Server-side integration between Genesys software and third-party

software.
• Creation of a specialized client application specific to customer needs.
The Genesys software functions available for development are clearly
documented. No undocumented functionality is to be utilized without
Genesys’s express written consent.
The following Use Conditions apply in all cases for developers employing the
Genesys developer materials outlined in this document:
1. Possession of interface documentation does not imply a right to use by a

third party. Genesys conditions for use, as outlined below or in the Genesys
Developer Program Guide, must be met.

2. This interface shall not be used unless the developer is a member in good
standing of the Genesys Interacts program or has a valid Master Software
License and Services Agreement with Genesys.

Services—Developer’s Guide 9

Preface Usage Guidelines

3. A developer shall not be entitled to use any licenses granted hereunder
unless the developer’s organization has met or obtained all prerequisite
licensing and software as set out by Genesys.

4. A developer shall not be entitled to use any licenses granted hereunder if
the developer’s organization is delinquent in any payments or amounts
owed to Genesys.

5. A developer shall not use the Genesys developer materials outlined in this
document for any general application development purposes that are not
associated with the above-mentioned intended purposes for the use of the
Genesys developer materials outlined in this document.

6. A developer shall disclose the developer materials outlined in this
document only to those employees who have a direct need to create, debug,
and/or test one or more participant-specific objects and/or software files
that access, communicate, or interoperate with the Genesys API.

7. The developed works and Genesys software running in conjunction with
one another (hereinafter referred to together as the “integrated solutions”)
should not compromise data integrity. For example, if both the Genesys
software and the integrated solutions can modify the same data, then
modifications by either product must not circumvent the other product’s
data integrity rules. In addition, the integration should not cause duplicate
copies of data to exist in both participant and Genesys databases, unless it
can be assured that data modifications propagate all copies within the time
required by typical users.

8. The integrated solutions shall not compromise data or application security,
access, or visibility restrictions that are enforced by either the Genesys
software or the developed works.

9. The integrated solutions shall conform to design and implementation
guidelines and restrictions described in the Genesys Developer Program
Guide and Genesys software documentation. For example:
a. The integration must use only published interfaces to access Genesys

data.
b. The integration shall not modify data in Genesys database tables

directly using SQL.
c. The integration shall not introduce database triggers or stored

procedures that operate on Genesys database tables.
Any schema extension to Genesys database tables must be carried out using
Genesys Developer software through documented methods and features.
The Genesys developer materials outlined in this document are not intended to
be used for the creation of any product with functionality comparable to any
Genesys products, including products similar or substantially similar to
Genesys’s current general-availability, beta, and announced products.
Any attempt to use the Genesys developer materials outlined in this document
or any Genesys Developer software contrary to this clause shall be deemed a

10 Open Media Interaction SDK 7.6

Preface Chapter Summaries

material breach with immediate termination of this addendum, and Genesys
shall be entitled to seek to protect its interests, including but not limited to,
preliminary and permanent injunctive relief, as well as money damages.

Chapter Summaries
In addition to this opening chapter, this document contains the following
chapters:
• Chapter 1, “About the Open Media Interaction SDK,” on page 15.

Introduces the Open Media Interaction SDK and its components, features,
and scope of use.

• Chapter 2, “Connection,” on page 21. Explains how to connect your
application to GIS (the Genesys Interface Server).

• Chapter 3, “Data Transfer Object,” on page 33. Introduces general DTO
concepts.

• Chapter 4, “Events,” on page 39. Introduces the event service.
• Chapter 5, “System Service,” on page 55. Introduces the system service.
• Chapter 6, “Queued Interaction Layer,” on page 61. Introduces the QIL

(Queued Interaction Layer) service.
• Chapter 7, “Media Interaction Layer,” on page 67. Introduces the MIL

(Media Interaction Layer) service.

Document Conventions
This document uses certain stylistic and typographical conventions—
introduced here—that serve as shorthands for particular kinds of information.

Document Version Number

A version number appears at the bottom of the inside front cover of this
document. Version numbers change as new information is added to this
document. Here is a sample version number:
76sdk_dev_ixn_services-openmedia_03-06_7.6.000.01

You will need this number when you are talking with Genesys Technical
Support about this product.

Services—Developer’s Guide 11

Preface Document Conventions

Type Styles

Italic

In this document, italic is used for emphasis, for documents’ titles, for
definitions of (or first references to) unfamiliar terms, and for mathematical
variables.

Examples: • Please consult the Genesys 7 Migration Guide for more information.
• A customary and usual practice is one that is widely accepted and used

within a particular industry or profession.
• Do not use this value for this option.
• The formula, x +1 = 7 where x stands for . . .

Monospace Font

A monospace font, which looks like teletype or typewriter text, is used for
all programming identifiers and GUI elements.
This convention includes the names of directories, files, folders, configuration
objects, paths, scripts, dialog boxes, options, fields, text and list boxes,
operational modes, all buttons (including radio buttons), check boxes,
commands, tabs, CTI events, and error messages; the values of options; logical
arguments and command syntax; and code samples.

Examples: • Select the Show variables on screen check box.
• Click the Summation button.
• In the Properties dialog box, enter the value for the host server in your

environment.
• In the Operand text box, enter your formula.
• Click OK to exit the Properties dialog box.
• The following table presents the complete set of error messages

T-Server® distributes in EventError events.
• If you select true for the inbound-bsns-calls option, all established

inbound calls on a local agent are considered business calls.
Monospace is also used for any text that users must manually enter during a
configuration or installation procedure, or on a command line:

Example: • Enter exit on the command line.

Screen Captures Used in This Document

Screen captures from the product GUI (graphical user interface), as used in this
document, may sometimes contain a minor spelling, capitalization, or
grammatical error. The text accompanying and explaining the screen captures
corrects such errors except when such a correction would prevent you from

12 Open Media Interaction SDK 7.6

Preface Related Resources

installing, configuring, or successfully using the product. For example, if the
name of an option contains a usage error, the name would be presented exactly
as it appears in the product GUI; the error would not be corrected in any
accompanying text.

Square Brackets

Square brackets indicate that a particular parameter or value is optional within
a logical argument, a command, or some programming syntax. That is, the
parameter’s or value’s presence is not required to resolve the argument,
command, or block of code. The user decides whether to include this optional
information. Here is a sample:
smcp_server -host [/flags]

Angle Brackets

Angle brackets indicate a placeholder for a value that the user must specify.
This might be a DN or port number specific to your enterprise. Here is a
sample:
smcp_server -host <confighost>

Related Resources
Consult these additional resources as necessary:
• Interaction SDK 7.6 Genesys Interface Server Deployment Guide, which

provides an overview of the Genesys Interface Server architecture and
technologies and instructions for installing, configuring, starting and
stopping, and uninstalling it.

• Queued Interaction SDK 7.6 Java Developer’s Guide, which describes the
features and capabilities of the QIL library that underlies the Open Media
Interaction Services API.

• Media Interaction SDK 7.6 Java Developer’s Guide, which describes the
features and capabilities of the MIL library that underlies the Open Media
Interaction Services API.

• Open Media Interaction SDK 7.6 Services API Reference, located on the
Genesys documentation CD.

• Genesys Agent Desktop 7.6 .NET Toolkit Developer’s Guide, which
describes similar techniques and product features for developing .NET
applications.

• The Genesys Technical Publications Glossary, which ships on the Genesys
Documentation Library CD and which provides a comprehensive list of the
Genesys and CTI terminology and acronyms used in this document.

Services—Developer’s Guide 13

Preface Making Comments on This Document

• The Genesys 7 Migration Guide, also on the Genesys Documentation
Library CD, which provides a documented migration strategy from
Genesys product releases 5.1 and later to all Genesys 7.x releases. Contact
Genesys Technical Support for additional information.

• The Genesys Technical Publications Glossary, which ships on the Genesys
Documentation Library CD and which provides a comprehensive list of the
Genesys and CTI terminology and acronyms used in this document.

• The Genesys 7 Migration Guide, also on the Genesys Documentation
Library CD, which provides a documented migration strategy from
Genesys product releases 5.1 and later to all Genesys 7.x releases. Contact
Genesys Technical Support for additional information.

• The Release Notes and Product Advisories for this product, which are
available on the Genesys Technical Support website at
http://genesyslab.com/support.

Information on supported hardware and third-party software is available on the
Genesys Technical Support website in the following documents:
• Genesys 7 Supported Operating Systems and Databases
• Genesys 7 Supported Media Interfaces
Genesys product documentation is available on the:
• Genesys Technical Support website at http://genesyslab.com/support.
• Genesys Developer website at http://devzone.genesyslab.com.
• Genesys Documentation Library CD, which you can order by e-mail from

Genesys Order Management at orderman@genesyslab.com.

Making Comments on This Document
If you especially like or dislike anything about this document, please feel free
to e-mail your comments to Techpubs.webadmin@genesyslab.com.
You can comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this document.
Please limit your comments to the information in this document only and to the
way in which the information is presented. Speak to Genesys Technical
Support if you have suggestions about the product itself.
When you send us comments, you grant Genesys a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A3D92054&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=A9CB309AF4DEB8127C5640A3C32445A7&view=item
http://genesyslab.com/support
mailto:orderman@genesyslab.com
mailto:techpubs.webadmin@genesyslab.com
http://genesyslab.com/support
http://devzone.genesyslab.com

14 Open Media Interaction SDK 7.6

Preface Making Comments on This Document

Services—Developer’s Guide 15

Chapter

1 About the Open Media
Interaction SDK
This chapter introduces the Open Media Interaction SDK, its components,
features, and scope of use.
The code snippets in this developer’s guide are in C#, and there are differences
due to the generated proxy and the language. For instance, in the Open Media
Interaction SDK Services API Reference for the .NET Proxy, C# service
interfaces are defined in accordance with the following rule:
I<service_name>Service. In the generic Open Media Interaction SDK 7.6
Services API Reference for the Java Proxy, service interfaces are defined in
accordance with the following rule: <service_name>Service
In this chapter, you will find the following topics:

Features Overview, page 15
Components, page 16
Platform Requirements, page 16
Scope of Use, page 17
Architecture, page 18

Features Overview
The Open Media Interaction SDK lets you build .NET applications to manage
third-party media interactions and to monitor queues in the Genesys
Framework.
The Open Media Interaction SDK presents a simple API for developing
applications that:
• Access configuration information.
• Monitor queue activity.
• Manage third-party media interactions.

16 Open Media Interaction SDK 7.6

Chapter 1: About the Open Media Interaction SDK Components

Your client-side applications use SOAP (Simple Object Access Protocol) or
GSAP (Genesys Service Access Protocol) to communicate, through GIS (the
Genesys Interface Server), to interact with the Genesys Framework. To
develop successful client applications for Open Media Interaction SDK, you
can:
• Use the Microsoft .NET Framework SDK, version 1.1 or 2.0, to create a C#-

 based application.
• Use the Apache AXIS toolkit, version 1.1 or version 1.3, to create stubs for a

 Java-based application.

Components
The Open Media Interaction SDK Services product includes the following
components.
• The Open Media Interaction SDK 7.6 Services API Reference in HTML and

 CHM formats, covering the Open Media Service API.
• This Developer’s Guide, delivered on the documentation CD.
This set of components supports an application that allows you to manage
third-party media interactions and monitor queues. It also provides such
services as getting configuration information, managing UCS (Universal
Contact Server), and so on.
The API is designed to allow development of applications that have specific
requirements for the custom manipulation of particular service features. It is
this assembly that directly communicates with GIS.
The Open Media Interaction SDK API Reference shows that the API
comprises the following packages:
• com.genesyslab.openmedia—Exposes the main classes for connecting to

GIS.
• com.genesyslab.openmedia._event—Exposes classes and interfaces related

to event notification.
• com.genesyslab.openmedia.soa—Exposes open media services and their

related classes.
• com.genesyslab.soa—Exposes additional container classes.

Platform Requirements
The platform requirements for developing your application are a little different
from the platform requirements for your final application in production.

Services—Developer’s Guide 17

Chapter 1: About the Open Media Interaction SDK Scope of Use

Development Platform
For .NET development, you need:
• Microsoft .NET Framework SDK, version 1.1 or version 2.0 (available at

http://msdn.microsoft.com/netframework/).
• Microsoft Visual Studio .NET 2003 or 2005.
For Java development, you need:
• Apache AXIS toolkit, version 1.1 or version 1.3 (available at

http://xml.apache.org/axis/index.html).
• Java Development Kit (JDK), version 1.3, 1.4.x or 1.5.

Production Runtime Platform
For .NET development, you need:
• Microsoft .NET Framework version 1.1 or version 2.0 (available at

http://msdn.microsoft.com/netframework/).
For Java development, you need:
• Apache AXIS toolkit, version 1.1 or version 1.3 (available at

http://xml.apache.org/axis/index.html).
• Java Runtime Environment (JRE), version 1.3, 1.4.x or 1.5.

Scope of Use
The Open Media Interaction SDK’s typical usage scenarios include:
• Getting overall configuration information:

Application information.
Business attributes.

• Managing third-party media interactions:
Creating interactions of third-party media types.
Submitting a third-party interaction to Interaction Server.
Stopping the processing of third-party interactions in Interaction
Server.
Managing callbacks from Interaction Server through ESP (External
Service Protocol).

• Managing third-party interaction data in UCS (Universal Contact Server):
Saving third-party interaction data in UCS.
Updating third-party interaction data in UCS.
Finding third-party interaction data in UCS.

• Managing queues and queued interactions:
Starting the monitoring of a queue.

18 Open Media Interaction SDK 7.6

Chapter 1: About the Open Media Interaction SDK Architecture

Stopping the monitoring of a queue.
Listening for changes to queues—status and interaction activity.
Listening for changes to interactions—status and properties.

• Managing connections to Genesys servers. Connection services involve the
following components and protocols:

Interaction Server.
Configuration Layer.
UCS (Universal Contact Server).
ESP (External Service Protocol) to handle interactions’ callbacks
through the Interaction Server.

Architecture
The Open Media Interaction SDK provides you with a service-oriented API
that enables your application to connect to GIS. Through the services exposed
in this API, you application can send requests to GIS remote services that
manage these requests. GIS manages all connections to the Genesys
Framework and Genesys servers, as shown in Figure 1 on page 18.

Figure 1: Open Media Services Architectural Overview

On the GIS (Genesys Interface Server) side, the exposed services deal with the
Genesys Framework and perform the client-side services’ requests.

Service-Oriented Architecture
The Service-Oriented Architecture (SOA) is a specific type of distributed
system in which features are exposed through services. When you are using the
Open Media Interaction Service APIs, you are dealing with service interfaces

Ixn Server

Configuration
Layer

Universal Contact
Server

Genesys Framework

Genesys Servers

Application based
on Open Media

Services

Genesys Interface
Server

Services—Developer’s Guide 19

Chapter 1: About the Open Media Interaction SDK Architecture

that do not manage anything locally. Each service defines a specific feature of
your distributed system. Data management and actions are performed by GIS
and you are concerned only with the interface descriptions.

Multithreaded
The API is thread-safe and therefore your application can run in multithreaded
environments. In particular, parallel threads can make calls to the same
services’ methods at the same time without blocking.

Synchronization
Your application establishes a link with GIS, exposing the service that
performs your client-application requests. The communication with GIS is
synchronous.

Connectivity
Connections to Genesys servers are maintained by GIS. Your client-side
application can be notified of servers’ statuses—namely, the loss of a
connection.
For further information, refer to the Interaction SDK 7.6 Genesys Interface
Server Deployment Guide.

Framework Compatibility

GIS connects to the Configuration Layer of the Genesys Framework Suite.
This server stores configuration information, such as application parameters, or
objects’ descriptions, such as business attributes and queues.

MCR Compatibility

GIS connects to Genesys Multi-Channel Routing (MCR) and provides full
multimedia support for third-party media and queued interactions.
Connectivity is provided for the following MCR servers:
• MCR Interaction Server—This server manages interaction information

with the Genesys Framework. GIS communicates with Interaction Server
to manage Open Media interactions in queues. Additionally, Interaction
Server can submit requests to the application integrating the library
through External Service Protocol and GIS.

• MCR Universal Contact Server—This server manages contact-related
information. Open media services use the UCS database to store third-
party media interactions.

20 Open Media Interaction SDK 7.6

Chapter 1: About the Open Media Interaction SDK Architecture

Services—Developer’s Guide 21

Chapter

2 Connection
This chapter explains how to connect your application to GIS (the Genesys
Interface Server) with the Open Media Interaction SDK.
To communicate with GIS, your application uses one of the two following
protocol:
• Genesys Service Access Protocol (GSAP)
• Simple Object Access Protocol (SOAP)
In this chapter, you will find the following topics:

Generating a Java Proxy, page 21
Using the C# Proxy to Connect, page 23
Using the Java Proxy to Connect, page 27

Generating a Java Proxy
You can use a toolkit to generate a proxy from the provided WSDL files—for
example, Apache AXIS toolkit version 1.1 or version 1.3 for Java development
(for further information, see:
http://ws.apache.org/axis/java/user-guide.html).
In this case, use the GIS session service to connect your client application and
to set options. Refer to the Statistics SDK Developer’s Guide for further details
about the session service, and see “</configuration>” on page 31 for further
details about available options.

Opening a Session
The first step your Open Media Interaction Service client application must
perform is to open a session in GIS to get a session ID, which must be passed
in the URL of any SOAP requests. As your application creates services, for

22 Open Media Interaction SDK 7.6

Chapter 2: Connection Generating a Java Proxy

each service, specify the ENDPOINT_ADDRESS_PROPERTY and the session ID as
shown in the following code snippet.

/// Creation of a system service using a stub created with
/// Apache Axis toolkit 1.1

import com.genesyslab.www.openmedia.*;

import com.genesyslab.www.openmedia.soa.*;
import com.genesyslab.www.openmedia.soa.openmedia.*;

//Creating a gis session - GIS server location set when

//generating the stub

SessionServiceServiceSoapBindingStub sessionService =

 (SessionServiceServiceSoapBindingStub) new
SessionServiceServiceLocator().getSessionServiceService();

// Time out after a minute

sessionService.setTimeout(60000);

Identity id = new Identity();

id.setPrincipal("example");

id.setCredentials("");

sessionId = sessionService.login(id);

System.out.println("sessionId= " + sessionId);

sessionService._setProperty(
sessionService. ENDPOINT_ADDRESS_PROPERTY,
sessionService._getProperty(

sessionService.ENDPOINT_ADDRESS_PROPERTY)

+ "?GISsessionId=" + sessionId);

SystemServiceSoapBindingStub systemService =
(SystemServiceSoapBindingStub)

new SystemService_ServiceLocator().getSystemService();

systemService.setTimeout(60000);

/// Property used to pass session id in requests

systemService._setProperty(

systemService.ENDPOINT_ADDRESS_PROPERTY,

systemService._getProperty(
systemService.ENDPOINT_ADDRESS_PROPERTY)

+"?GISsessionId=" + sessionId);

// then using systemService service is similar to C#

// getting a DTO

Services—Developer’s Guide 23

Chapter 2: Connection Using the C# Proxy to Connect

KeyValue[] values = systemService.getApplicationInfoDTO();

Using the C# Proxy to Connect
You can use the provided .NET proxy to minimize session management tasks
and to simplify service creation. This proxy corresponds to the
Genesyslab.soa.core.dll and Genesyslab.soa.OpenMedia.dll files,
available on the GIS Product CD.

Service Factory
The com.genesyslab.ail.ServiceFactory class is the entry point of the .NET
proxy. You must create a ServiceFactory object in order to connect. The
connection can be synchonous or asynchronous, according to the method
called:
• ServiceFactory.createServiceFactory()—At creation, the factory

instance tries to connect synchronously to GIS. If the connection fails, it
raises an exception.

• ServiceFactory.asyncCreateServiceFactory()—After the factory creation,
the factory instance tries to connect asynchronously to GIS till connection
succeeds or till the factory is released. To monitor the connection status,
you must specify a IServiceFactoryListener listener at the factory
creation.

When you create the factory (synchronously, or asynchronously), you must
specify parameters to configure your connection:
• You can fill a Hashtable and pass it at the ServiceFactory creation. See

“XML Configuration File for .NET” on page 24 for details about options.
• You can use an XML file to configure your ServiceFactory object; by

default, this file is the openmedia-configuration.xml file.
In your XML configuration file, you must at least specify the
WebServicesFactory mandatory attribute with its corresponding URL. See
“XML Configuration File Example” on page 26. You can also define several
optional attributes attached to this mandatory attribute.

Note: An openmedia-configuration.xml file is available on the GIS product
CD in the tools/ directory.

To access the available services, you create them by calling the
createService() method of your instantiated factory, as shown in the
following code snippet.

IXxxService service = (IXxxService) factory.createService(typeof(IXxxService));

24 Open Media Interaction SDK 7.6

Chapter 2: Connection Using the C# Proxy to Connect

XML Configuration File for .NET
In your XML configuration file, or in the default ail-configuration.xml file,
you must specify for the factory tag one of the following two attributes with
their url option, according to the protocol used to communicate with GIS:
• For GSAP:

PropFactory—The factory name.
url option—The value is prop://[Server address]:[Server port].

• For SOAP:
WebServicesFactory—The factory name.
url option—The value is http://[Server Address]:[Server
Port]/gis.

This context can contain the options defined in the following subsections.

Optional GSAP Attributes

Table 1 presents the GSAP optional attributes available for an XML
configuration file written for the Open Media Interaction Services .NET proxy.

Table 1: Optional GSAP Attributes

Name Type Description

logger string The path to the log file.

logger.level string The level of the ROOT logger.

logger.levels string The levels of the loggers.

initial.connect.timeout string The timeout interval for the first connection to the GSAP
Connector in synchonous mode.

timeout.ack string The timeout interval for acknowledgements from the
server, in milliseconds.

timeout.response string The timeout interval for responses from
the server, in milliseconds.

threads.max.worker string Maximum number of threads in system pool. Should be
greater than 50.

threads.max.io string Maximum number of threads for I/O operations in system
pool. Should be greater than 50.

connector.buffersize.receive string Receive buffer size for the sockets operations, in bytes.
Should be greater than 8000 bytes.

Services—Developer’s Guide 25

Chapter 2: Connection Using the C# Proxy to Connect

XML Optional SOAP Attributes

Table 2 shows all the attributes that you can define for SOAP.

connector.buffersize.send string Send buffer size for the sockets operations, in bytes.
Should be greater than 8000 bytes.

connector.tcpnodelay string Should be true. Do not change this option.

Table 1: Optional GSAP Attributes (Continued)

Name Type Description

Table 2: Optional SOAP Attributes

Name Type Description

UseCookieContainer bool Specifies whether or not the use of cookie
containers is alloed. By default, it is set to false.
You must set it to true to manage http sessions.
This is mandatory for enabling high availability.

BackupUrls string A list of backup URLs to be used in case of
disconnection, separated by commas as shown in
this example:
"[http://[host1][:port1]/gis,http://[host2]
[:port2]/gis]"

Timeout int The timeout interval for an XML web service
client that waits for a synchronous XML web
service request, to complete, in milliseconds. The
default value is 100000 milliseconds.

NbRetriesOnFailure string The maximum number of reconnection attempts
when calling a service method. The default value
is 0.

RetryPeriodOnFailure string The period in milliseconds between two
reconnection attempts.

ThreadPool.MaxWorkerThreads int Indicates the maximum number of worker threads
allowed at runtime. You must increase this number
if your application makes multiple calls to service
method, especially if the calls concern the
IEventService.getEvents method.

26 Open Media Interaction SDK 7.6

Chapter 2: Connection Using the C# Proxy to Connect

XML Configuration File Example

The following is an example of an XML configuration file for a SOAP
connection:

<?xml version="1.0" ?>

gis.asynchronousConnectionInterval int Specifies the time period in seconds (30 seconds
by default) between two connection attempts. This
option is used in case your application connects
asynchonously.

gis.checkSessionInterval int The check session interval, in seconds. A value of
0 means no check.

gis.username string The GIS user name to log in the factory. Refer to
Configuration Layer documentation for details.

gis.password string The GIS password to log in the factory. Refer to
Configuration Layer documentation for details.

gis.tenant string The GIS tenant to use with the factory. Refer to
Configuration Layer documentation for details.

gis.sessionId string The GIS session identity to use with the factory. If
you use this option, do not use gis.username,
gis.password, and gis.tenant.

notification.HTTPport int The notification HTTP port. The default value is 0,
in which case the remote system chooses an open
port on your behalf.

notification.createHTTPchannel bool Specifies whether to create an HTTP channel. The
default value is true.

notification.objectURI string Specifies the remote object Universal Resource
Identifier (URI). By default, the URI is generated
by the WebServiceFactory.

notification.reachableURL string The reachable URI from the server.

service-point-
manager.defaultConnectionLimit

int The service point manager’s connection limit. The
default value is 2.

service-point-
manager.maxServicePointIdleTime

int The service point manager’s maximum idle time.
The default value is 900,000 milliseconds (15
minutes).

Table 2: Optional SOAP Attributes (Continued)

Name Type Description

Services—Developer’s Guide 27

Chapter 2: Connection Using the Java Proxy to Connect

<configuration default-factory="WebServicesFactory"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
<factory name="PropFactory"
classname="com.genesyslab.openmedia.propprotocol.PropFactory"
assembly="OpenmediaServicesPropProtocol">

<option name="Url" type="string" value="prop://[server host]:[server port]"/>
</factory>
<factory name="WebServicesFactory"
classname="com.genesyslab.openmedia.WebServicesFactory"
assembly="Genesyslab.Soa.OpenMedia">

<option name="Url" value="http://frbred0059412:8080/gis"/>
<option name="gis.username" value="default"/>
<option name="gis.password" value="password"/>
<!--
<option name="gis.sessionId" value="1234567"/>
<option name="gis.tenant" value=""/>

<option name="timeout" type="int" value="100000"/>

<option name="gis.checkSessionInterval" type="int" value="900"/>
<option name="notification.HTTPport" type="int" value="0"/>
<option name="notification.createHTTPchannel" type="bool" value="true"/>
<option name="notification.objectURI" value="NotifLoad"/>
<option name="notification.reachableURL"
value="http://[client host]:[client port]"/>

<option name="service-point-manager.defaultConnectionLimit" type="int" value="2"/>
<option name="service-point-manager.maxServicePointIdleTime" type="int"
value="900000"/>
-->

</factory>
</configuration>

Using the Java Proxy to Connect
You can use the provided Java proxy to minimize session management tasks
and to simplify service creation. This proxy is built from the Apache Axis
toolkit version 1.3 and is available in the tools/ directory on the GIS Product
CD. It is composed of the follolwing genesyslab-soa-core-proxy.jar and
genesyslab-soa-open-media.jar files.
This section presents how to connect to GIS, and how to use XML and options
for instantiating this connection.

Service Factory
The com.genesyslab.soa.client.ServiceFactory class is the entry point of the
proxy. You must create a ServiceFactory object in order to connect. The

28 Open Media Interaction SDK 7.6

Chapter 2: Connection Using the Java Proxy to Connect

connection can be synchonous or asynchronous, according to the method
called.
Except the default configuration file name, the process and the method to be
called are identical to those described in “Service Factory” on page 23.

Note: The default XML configuration filename is proxy-configuration.xml.
For further details, see “XML Configuration File for Java” on page 28.

To access the available services, you create them by calling the
createService() method of your instantiated factory, as detailed in page 23.

XML Configuration File for Java
In your XML configuration file, or in the default proxy-configuration.xml file,
you must specify for the factory tag one of the following two attributes with
their url option, according to the protocol used to communicate with GIS:
• SOAP

AilWebServicesFactory—The factory name.
url option—The value is http://[Server Address]:[Server
Port]/soa.

• GSAP
GSAPServiceFactoryImpl—The factory name.
url option—The value is prop://[Server Address]:[Server Port].

XML Optional GSAP Attributes

Table 3 presents GSAP optional attributes available for an XML configuration
file written for the Java proxy.

Table 3: Optional GSAP Attributes

Name rules Description

backupUrl string Backup connection url to be used in case of
disconnection.

connect.interval positive
integer

Interval between connection attempts in async mode
and when reconnecting after connection loss (msec).

connect.timeout positive
integer

The timeout period in milliseconds for the TCP socket
connection.

timeout.ack positive
integer

The timeout period to get an acknowledgement from
the GIS, in milliseconds. If the timeout expires, the
associated request fails.

Services—Developer’s Guide 29

Chapter 2: Connection Using the Java Proxy to Connect

XML Optional SOAP Attributes

Table 4 shows all the attributes that you can define for SOAP protocol.

timeout.response positive
integer

The timeout period to get a response from the server, in
milliseconds. If the timeout expires, the associated
request fails.

connector.buffersize.receive positive
integer

Receive buffer size for the sockets operations, in bytes.
Should be greater than 8000 bytes.

connector.buffersize.send positive
integer

Send buffer size for the sockets operations, in bytes.
Should be greater than 8000 bytes.

connector.tcpnodelay bool Disables the Nagle’s algorithm. Should always be true.
Do not change this option.

Table 3: Optional GSAP Attributes (Continued)

Name rules Description

Table 4: Optional SOAP Attributes

Name Description

Username Username pour basic authentification.

Password Password pour basic authentification.

MaintainSession Indicates whether or not the HTTP session must be
maintained. By default, it is set to false.

DocumentMode Indicates the document mode, false for rpc/encoding,
otherwise true for document/literal.The default value is
false.

NbRetriesOnFailure The maximum number of reconnection attempts when
calling a service method. The default value is 0.

RetryPeriodOnFailure The period in milliseconds between two reconnection
attempts.

Connection.Timeout The timeout interval for an XML web service client that
waits for a synchronous XML web service request to
complete, in milliseconds. The default value is 100000
milliseconds.

gis.asynchronousConnectionInterval Specifies the time period, in seconds (30 seconds by
default), between two connection attempts. This option is
used if your application connects asynchonously.

30 Open Media Interaction SDK 7.6

Chapter 2: Connection Using the Java Proxy to Connect

XML Configuration File Example for the Java Proxy

The following code snippet presents a proxy-configuration.xml file to be used
with the Open Media Interaction Service Proxy Library for Java:

<?xml version="1.0" ?>
<configuration default-factory="AilWebServicesFactory"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
<factory name="AilWebServicesFactory"

classname="com.genesyslab.ail.ws.client.AilWebServicesFactory" >
<option name="Url" value="http://localhost:8080/soa"/>
<option name="gis.username" value="default"/>
<option name="gis.password" value="password"/>
<option name="gis.tenant" value=""/>
<option name="MaintainSession" value="false"/> // maintain http session.

gis.checkSessionInterval The check session interval, in seconds. A value of 0 means
no check.

gis.username The GIS user name to log in the factory. Refer to
Configuration Layer documentation for details.

gis.password The GIS password to log in the factory. Refer to
Configuration Layer documentation for details.

gis.tenant The GIS tenant to use with the factory. Refer to
Configuration Layer documentation for details.

gis.sessionId The GIS session identity to use with the factory. If you use
this option, do not use gis.username, gis.password, and
gis.tenant.

notification.HTTPport The notification HTTP port. The default value is 0, in
which case the remote system chooses an open port on
your behalf.

notification.reachableURL The reachable URI from the server.
http://[client host]:[client port]

http.proxyHost The name for the proxy host.

http.proxyPort The port of the proxy host.

http.proxyUser The username for the proxy host.

http.proxyPassword The password for the proxy host.

Table 4: Optional SOAP Attributes (Continued)

Name Description

Services—Developer’s Guide 31

Chapter 2: Connection Using the Java Proxy to Connect

<option name="DocumentMode" value="false"/>
//By default, document mode is false (for rpc/encoding); if true, document/literal

<option name="Username" value=""/> // username pour basic authentification
<option name="Password" value=""/> // password for basic authentification
<option name="http.proxyHost" value=""/> // proxy host
<option name="http.proxyPort" value=""/> // proxy port
<option name="http.proxyUser" value=""/> // proxy user
<option name="http.proxyPassword" value=""/> // proxy password
<option name="ConnectionTimeout" value="60"/> // timeout request response in s
<option name="gis.asynchronousConnectionInterval" value="30"/>
<option name="gis.checkSessionInterval" value="900"/>
<option name="gis.sessionId" value="1234567"/>
<option name="notification.HTTPport" value="0"/>
<option name="notification.reachableURL" value="http://[client host]:[client port]"/>
 </factory>
</configuration>

32 Open Media Interaction SDK 7.6

Chapter 2: Connection Using the Java Proxy to Connect

Services—Developer’s Guide 33

Chapter

3 Data Transfer Object
This chapter introduces general DTO concepts, in the following sections:

Introduction, page 33
DTOs in the Services API, page 33
DTO Handling, page 36

Introduction
In a client application, a transaction might require multiple server requests to
complete. These requests and their responses require a significant amount of
time to complete the transaction.
To improve the performance of a set of requests, the Open Media Interaction
SDK’s solution is to package all the required data into a Data Transfer Object
(DTO) that can be sent in a single call.
A DTO is a generic container for a key-value list of data associated with
several distinct remote objects. In the list, you specify only the keys that you
are interested in. You use this list to retrieve or modify attributes’ values
according to their properties.

DTOs in the Services API
The Open Media Interaction Service Layer makes use of the DTO Pattern for
services’ attributes that can be retrieved, set, or published. DTOs are involved
in published events, in services’ methods calls, and so on.
DTOs carry key-value attributes of several services. They are handled with
dedicated methods and classes, as presented in the following sections.

34 Open Media Interaction SDK 7.6

Chapter 3: Data Transfer Object DTOs in the Services API

Dedicated Classes
Each service includes classes that gather attributes for DTO handling. These
classes are named *DTO, and each class manages the DTO corresponding to its
name prefix. For example, QILInteractionDTO is a class that manages the DTO
of a QIL interaction.
The attributes list of a DTO is a KeyValue array. The KeyValue class is a very
simple container that has two fields:
• KeyValue.key—the attribute name.
• KeyValue.value—the object corresponding to the attribute value.

Attributes
Each service handles a set of objects, and proposes several domains defining
available attributes to deal with objects’ data.

Note: To determine what the available attributes of a service are, see the
service interface description in the Open Media Interaction SDK 7.6
Services API Reference.

For example, the ISystemService interface is a service that deals with
configuration information. It includes three defined domains:
• application-info defines common data associated with the application in

the Configuration Layer.
• business-attribute describes some Open Media business attributes

available in the Configuration Layer.
• business-attribute-value describes values for Open Media business

attributes available in the Configuration Layer.

Notation

For each service, the domain attributes used in DTO are defined in accord with
the following rule:
domain[[.subdomain]...]:attributeName

For example, the following attributes exist:
• mil-interaction:interactionId

• mil-interaction.ucs:parentId

Warning! When you use an attribute, you must use the complete attribute
name, including the domain and subdomains.

Services—Developer’s Guide 35

Chapter 3: Data Transfer Object DTOs in the Services API

Properties

Table 5 shows the properties that can be defined for an attribute.

Note: To determine an attribute’s properties, see the attribute description in
the service interface definition in the Open Media Interaction SDK 7.6
Services API Reference.

Wildcards

You can use the wildcards defined in Table 6 to access an entire set of
attributes.

Table 5: Attribute Properties

Attribute Properties

read The I*Service attribute is readable and can be
retrieved with a I*Service.get**DTO() method.

read-default The I*Service attribute is likely to be read often, so
it is part of the default attributes.

write The I*Service attribute is writable using a
I*Service.set**DTO() method.

event The attribute can be published via the event service.

event-default The attribute is likely to be published often via the
event service, so it is part of the default attributes.

Table 6: Attribute Wildcards

Wildcards Meaning

* All the attributes of all the domains and
subdomains.

default All the attributes marked as default in all
domains and subdomains.

domain:* All the attributes of this domain.

domain:default All the attributes marked as default in this
domain.

domain.*:* All the attributes of the subdomains.

36 Open Media Interaction SDK 7.6

Chapter 3: Data Transfer Object DTO Handling

DTO Handling
Your application can use DTOs to read and write service attributes. DTOs also
play an essential role in event handling.

Note: Genesys recommends that you avoid the use of wildcards in DTOs
since they cause longer processing times for transactions.

This section shows how to read and set DTO attributes’ values, and introduces
the use of DTOs in events.

Reading DTOs
Reading a DTO consists of reading a list of attributes identified with a read
property in the service domain. You first define the list of attribute names, then
use the appropriate get*DTO() method.
For example, if you want to read the queue:status and queue:isMonitored
attributes for a set of queues, you will use the IQILService.getQueuesDTO()
method. First, you must define an array of the attribute names to be read:

string[] myAttributeNames = new string[]{“queue:status”,
 “queue:isMonitored” };

To retrieve the corresponding attribute values, call the
IQILService.getQueuesDTO() method, as illustrated in the following code
snippet:

/// Defining the list of queues you are interested in:
string[] myQueueIds = new string[]{ “queue0”, “queue1”};

/// Retrieving for each queue the values for attributes
/// defined in mAttributeNames

domain.*:default All the attributes marked as default in the
subdomains.

domain.sub-domain:* All the attributes of this domain.subdomain.

domain.sub-domain:default All the attributes marked as default in this
domain.subdomain.

Table 6: Attribute Wildcards (Continued)

Wildcards Meaning

Services—Developer’s Guide 37

Chapter 3: Data Transfer Object DTO Handling

QueueDTO[] myValues =
myQueueService.getQueuesDTO(myQueueIds, myAttributeNames);

Each returned QueueDTO instance contains a key-value attribute array in the
QueueDTO.data field. The following code snippet displays the attribute values in
the data field of the QueueDTO object.

/// Displaying the ID of the first QueueDTO item returned
System.Console.WriteLine("Queue ID: "+myValues[0].queueId);

/// Displaying attributes’ name and value:
foreach(KeyValue data in myValues[0].data)
{

System.Console.WriteLine("{0}={1}",
 data.key,
 data.value.ToString());

}

The text displayed can be, for instance:
Queue ID: queue0
queue:status=ACTIVE
queue:isMonitored=false

Getting DTOs in Events
Domain attributes that have the event property or the event-default property
are published in events.
To determine which attributes are published by an event, refer to the Open
Media Interaction SDK 7.6 Services API Reference. The available attributes
are listed in the event description (part of the service interface definition).
When you subscribe to events, you specify which attributes must be retrieved.
Then, the incoming events contain the KeyValue array with these attributes and
their current values.
For further information about DTOs and event handling, see Chapter 4,
“Events,” on page 39.

38 Open Media Interaction SDK 7.6

Chapter 3: Data Transfer Object DTO Handling

Services—Developer’s Guide 39

Chapter

4 Events
The event service is the IEventService interface defined in the
com.genesyslab.openmedia.soa namespace. To manage events, your
application must integrate this interface and use classes of the
com.genesyslab.soa._event namespace to deal with it. This chapter is divided
into the following sections:

Introduction, page 39
Understanding the Event Service, page 40
Handling Subscription and Topics, page 43
Getting Events, page 49
Event Notification in Java, page 52

Introduction
Event handling is done through the event service and is based on the
Subscribe/Publish Pattern. To deal with events, your application integrates the
event service, which is in charge of all published events.
To be able to receive events, your application first subscribes to a list of events
by calling the methods of the event service. Then, if your application performs
modifications using the other Open Media services, or if the Genesys
environment changes, the event service receives the corresponding events, as
shown in Figure 2 on page 40.

40 Open Media Interaction SDK 7.6

Chapter 4: Events Understanding the Event Service

Figure 2: The Integrated Event Service After Event Subscription

Figure 2 shows that the event service is dedicated to getting events from GIS
once the application has subscribed to some of them.
Notice that the other Open Media services do not provide any management
related to events. Your application uses these services for performing actions
through GIS on Genesys servers, or for accessing information from all the
servers connected to GIS.
An event is specific to, and propagates a change in some data managed by, a
particular service. This change can occur due to a modification in the Genesys
environment. For example, if the content of a queue changes—that is,
interactions are added or deleted—the event service can get a QueueEvent event
that contains attributes reflecting these content changes.
For each service, the associated event names are listed in the interface
description. For each type of event, you can see the list of available attributes
to retrieve with the received event. You define the attribute to propagate with
the event when your application subscribes.

Understanding the Event Service
The event service has been designed to optimize network activity. Once you
have subscribed to the events of a set of services, you get all the events in a
single request—in either push or pull mode.
The following subsections introduce the main concepts of the event service,
and of the classes of the com.genesyslab.soa._event namespace, that you
should take into account in your application design.

Ixn Server

Configuration
Layer

Universal Contact
Server

Genesys Framework

Genesys Servers

Open Media
Application

IEventService

Other Open
Media services

Genesys Interface
Server

get/set/actions

events

Services—Developer’s Guide 41

Chapter 4: Events Understanding the Event Service

Events Associated with Services
As presented in “Introduction” on page 39, the event service is the only service
integrated into your application that deals directly with events. All the events
are received by the event service.
However, the other services are interfaces for a set of objects. Events can occur
on the objects hidden by a service. Therefore, each service has its own set of
events, which are designed to be appropriate to activity for that service.
To find the list of events for any particular service in the Open Media
Interaction SDK 7.6 Services API Reference, open its service interface. For
example, under com.genesyslab.openmedia.soa, open the IQILService
interface, scroll past its list of attributes (in domain:attribute notation) to find
the available types of events:
• QueueEvent
• InteractionEvent
For each service, the attributes that have an event property are likely to be
published in the service events. Event descriptions in the Open Media
Interaction SDK 7.6 Services API Reference list all the attributes published by
each event.

Understanding ‘Topics’ Objects
To manage events through the event service, you must define “topics” objects
for creating or modifying the event subscription. The IEventService interface
offers a set of features to dynamically remove, add, or modify subscriptions,
according to your application needs.
The “topics” objects describe which event to subscribe or remove for each
service. For each event subscribed, these objects describe which published
attributes to retrieve. The “topics”-related interfaces are the following:
• For subscription: TopicsService, TopicsEvent, and Topic.
• For modifying the subscribed events: TopicsServiceRemove,

TopicsEventRemove, and Topic.
The TopicsService interface lets your application subscribe to the events of a
particular service. Each TopicsService instance associates a set of
TopicsEvent with an Open Media service, as presented in Figure 3.

Figure 3: The TopicsService Class Diagram

TopicsEvent
+eventName
+attributes

TopicsService
-serviceName

+TopicsEvents

1 *

Topic
+key : string(idl)
+value : string(idl)

+triggers filters

1 *

42 Open Media Interaction SDK 7.6

Chapter 4: Events Understanding the Event Service

Your application should subscribe to general TopicsService objects for every
service that your application integrates. The TopicsEvent objects associated
with a TopicsService define each event type you want to subscribe, by using:
• Triggers to define which specific events you want to receive.
• Attribute keys list to retrieve services’ attribute values with the event.

Note: In the TopicsEvent object, you might notice the filters field. This
field is for future releases. You do not need to take it into
consideration.

The following subsections explain these aspects of event handling.

Understanding Triggers

Triggers identify the Genesys object related to an event.
For example, if your application uses the QIL service to monitor queues, your
application can subscribe to QueueEvent. Your application must specify a
trigger, that is, which queue to monitor. For example, your application would
specify queue0 to receive any QueueEvent concerning queue0.
Triggers are values or fields of some published attributes listed in event
descriptions of the Open Media Interaction SDK 7.6 Services API Reference.
An event matches a TopicsEvent if its published attributes match one of the
triggers.
The following sections present the general matching process for triggers and
filters.

Retrieved Events and TopicsEvents

Whatever the type of event received on the server-side application, the
IEventService interface retrieves only Event objects.
The Event class is part of the com.genesyslab.ail.ws._event namespace. Its
attributes include the following:
• eventName—a string specifying the event type.
• serviceName—a string specifying the service name related to the event.
• triggers—a key-value array of the triggers matched by the event.
• attributes—a key-value array of the published attributes propagated with

 the event.
In each description of events in the Open Media Interaction SDK 7.6 Services
API Reference, the published attributes are listed. Only these attributes can be
propagated in the Event.attributes field.
The TopicsEvent class lets your application specify the keys of the published
attributes to retrieve with an Event.

Services—Developer’s Guide 43

Chapter 4: Events Handling Subscription and Topics

Figure 4 illustrates the relationship between the attribute keys of a
TopicsEvent, the published attributes of an event, and the key-value pairs
propagated with an Event object.

Figure 4: TopicsEvent and Event Relationship

As shown in Figure 4, the attribute keys specified in the TopicsEvent
determine which attributes are propagated in the Event object retrieved by the
IEventService from GIS.

Handling Subscription and Topics
According to your requirements, your application must deal with Open Media
service events—for example, to monitor queues and service back ends. Topics
objects give you the opportunity to fine-tune your application during runtime.
This section assumes that you have read “Understanding the Event Service” on
page 40.

QueueEvent –Published Attributes

queue:queueId = queue0

queue:status = ACTIVE

queue:newMonitorStatus = MONITORED

queue:queueChangeReason=MONITORE
D_STATUS_CHANGED
...

Event object retrieved by IEventService

Genesys Interface Server

TopicsEvent : QueueEvent

Triggers:
QUEUE=queue0
QUEUE=queue1

Attributes:
queue:status
queue:newMonitorStatus

DTO

queue:status = ACTIVE
queue:newMonitorStatus = MONITORED

Triggers:
QUEUE=queue0

eventName= « QueueEvent »
ServiceName= « QueueService »

match

to retrieve

44 Open Media Interaction SDK 7.6

Chapter 4: Events Handling Subscription and Topics

This section details how to build topics objects and subscribe to events, how to
modify topics objects so that you can get more or less information with events,
and how to remove topics objects so that you no longer receive the associated
events.
Therefore, this section is divided into the following subsections:
• “Creating TopicsService and TopicsEvent” on page 44.
• “Subscribing to the Events of a Service” on page 46.
• “Handling Subscription Errors” on page 49.

Creating TopicsService and TopicsEvent
As explained in “Understanding ‘Topics’ Objects” on page 41, your
application must create TopicsService and TopicsEvent objects to subscribe to
events.

Creating a TopicsService Object

The TopicsService class associates a specific service with an array of
TopicsEvent to which to subscribe (see Figure 3, “The TopicsService Class
Diagram,” on page 41).
The TopicsService.TopicsEvents array must contain TopicsEvent objects of
events occurring for the TopicsService.serviceName service.
For example, QueueEvent and InteractionEvent might occur for the
QueueService service if interactions and queues change in the Genesys
Framework. They can be specified in the TopicsEvent fields of a
TopicsService object dedicated to the queue service.
The following code snippet defines a TopicsService object for the queue
service. Its TopicsEvent field lets your application subscribe to QueueEvent
only.

/// Creating a TopicsService for the Queue Service
TopicsService myTopicsServices = new TopicsService();
myTopicsServices.serviceName = "QueueService";

/// Creating Topics Events for the Queue Service
TopicsEvent[] myTopicsEvents = new TopicsEvent[1] ;

/// Defining a topic event for QueueEvent
myTopicsEvents[0] = new TopicsEvent() ;
myTopicsEvents[0].eventName = "QueueEvent" ;
/// ...

/// Adding the previous TopicsEvents to the TopicsService object
myTopicsServices.topicsEvents = myTopicsEvents ;

Services—Developer’s Guide 45

Chapter 4: Events Handling Subscription and Topics

Note: Refer to the Open Media Interaction SDK 7.6 Services API Reference
for more information about available events: See the interface
description of a service.

Adding TopicsEvents

For each TopicsService, you must fill in the TopicsService.TopicsEvents
field with TopicsEvent objects that define the events to which to subscribe,
using:
• Triggers to determine which Genesys objects to listen to.
• The list of attributes to retrieve in a DTO when the targeted events occur.
In the previous subsection, the code snippet defines a TopicsService instance
for the queue service. The following code snippet shows how to set triggers to
a TopicsEvent instance, so that your application gets events of type QueueEvent
for two queues named queue0 and queue1.

/// Defining a topic event for QueueEvent
myTopicsEvents[0] = new TopicsEvent() ;
myTopicsEvents[0].eventName = "QueueEvent";

/// Defining triggers for queue0 and queue1
myTopicsEvent.triggers = new Topic[2] ;

/// Specifying the queues to be listened
myTopicsEvent.triggers[0]= new Topic();
myTopicsEvent.triggers[0].key = "QUEUE" ;
myTopicsEvent.triggers[0].value = “queue0”;

/// Specifying the targeted queue
myTopicsEvent.triggers[1]= new Topic();
myTopicsEvent.triggers[1].key = "QUEUE" ;
myTopicsEvent.triggers[1].value = “queue1”;

The above code snippet specifies that any QueueEvent occurring on queue0 or
queue1 is retrieved by the event service.
Now you must specify which attributes to retrieve with these events. The
attributes published within an event have an event property.

Note: For performance reasons, you should retrieve only the event attributes
that your application will use, in order to minimize traffic with GIS and
other Genesys servers.

The following code snippet completes the previous code snippets by setting a
list of attributes to retrieve for QueueEvent events:

46 Open Media Interaction SDK 7.6

Chapter 4: Events Handling Subscription and Topics

/// Setting the key list of attributes to retrieve in
/// QueueEvent events
myTopicsEvent.attributes = new String[] {

"queue:queueChangeReason",
"queue:status"
"queue:newMonitorStatus"} ;

Your application can use wildcards in the TopicsEvent.attributes, as
presented in the following code snippet:

/// Retrieving all the queue attributes
myTopicsEvent.attributes = new String[] {"queue:*"};
/// ...

In the above code snippet, the asterisk wildcard specifies that all attributes in
the queue domain having an event property are propagated. For further
information about wildcards, see page 35.
For further information about the key-value pairs for triggers and published
attributes, refer to the event descriptions in the Open Media Interaction SDK
7.6 Services API Reference.

Subscribing to the Events of a Service
In the previous subsections, code snippets defined a TopicsService instance for
QueueEvent events of the queue service. This section shows how to subscribe
by:
• Creating an IEventService instance.
• Creating a subscriber and subscribing using topics.
• Subscribe to new topics and unsubscribing to topics.

Getting an Event Service Instance

To get an IEventService instance, make a call to the
ServiceFactory.createService() method, as shown here:

IEventService eventservice = (com.genesyslab.openmedia.soa.IEventService)
factory.createService(typeof(com.genesyslab.openmedia.soa.IEventService));

Creating a Subscriber

Creating a subscriber is essential when your application needs to get events
with the event service. You use this subscriber to:
• Initially subscribe your application to a set of events.

Services—Developer’s Guide 47

Chapter 4: Events Handling Subscription and Topics

• Update the list of events to which you subscribed, by subscribing to and
unsubscribing from new topics.

You must use a single subscriber for your application to manage all
subscription-related actions on the event service.
The following code snippet shows how to create a new subscriber for your
application:

/// Creating a Subscriber
SubscriberResult mySubscriber = eventservice.createSubscriber(null,myTopicsServices) ;

Note: Use this SubscriberResult for your further subscribing and
unsubscribing operations. This ensures the use of a single subscriber
for your application.

Further Subscribing

During runtime, your application’s needs for event-propagated data can
change. Your application can define new TopicsService objects and use the
IEventService.subscribeTopics() method to subscribe, as presented in the
following code snippet:

/// Creating the array of new topics
TopicsService[] newTopicsServices = new TopicsService[1] ;
///...
/// Subscribing
eventservice.subscribeTopics(mySubscriber.subscriberId,

newTopicsServices);

Warning! When your application subscribes to a TopicService using a
TopicsEvent with a trigger that has already been subscribed, filters
and attributes are all replaced by the new ones.

Unsubscribing from Topics

Your application may unsubscribe from a TopicsService, or modify
TopicsEvents content, during application runtime to fulfill your application’s
needs. The following subsections detail the corresponding IEventService
features.

Removing All the Topics Events

Your application can remove all the topics events for all the services. Use the
IEventService.unsubscribeAllTopics() method.

48 Open Media Interaction SDK 7.6

Chapter 4: Events Handling Subscription and Topics

The following code snippet unsubscribes from all the topics objects defined for
your application subscriber:

eventservice.unsubscribeAllTopics(mySubscriber.subscriberId);

All the TopicsEvent previously defined with a TopicsService are removed.
Your application no longer receives events.

Removing Specific Topics for a Service

The process of removing a specific topic for a service is similar to the
subscribing process. Instead of subscribing with a TopicsService array, your
application unsubscribes with a TopicsServiceRemove array.
A TopicServiceRemove object is dedicated to a service and includes the
TopicsEventRemove objects that list the removed events for this service. The
removed events are associated with a trigger.
The following code snippet removes the trigger queue0 of the QueueEvent for
the queue service:

/// Defining the trigger
Topic myTriggerToRemove = new Topic();
myTriggerToRemove.key = "QUEUE";
myTriggerToRemove.value = “queue0”;

/// Creating the array of events to remove
TopicsEventRemove[] myTopicsEventToRemove = new TopicsEventRemove[1];
myTopicsEventToRemove[0] = new TopicsEventRemove();

/// Setting the trigger for the Queue
myTopicsEventToRemove[0].eventName = "QueueEvent";
myTopicsEventToRemove[0].triggers = new Topic[1];
myTopicsEventToRemove[0].triggers[0] = new Topic();
myTopicsEventToRemove[0].triggers[0] = myTriggerToRemove;

/// Creating the array of TopicsServiceRemove
TopicsServiceRemove[] myTopicsServiceToRemove = new TopicsServiceRemove[1];

/// Creating a TopicsServiceRemove for the Queue Service
myTopicsServiceToRemove[0] = new TopicsServiceRemove();
myTopicsServiceToRemove[0].serviceName="QueueService";

/// Associating the previous topics to the Queue Service
myTopicsServiceToRemove[0].topicsEventsRemove = myTopicsEventToRemove;

/// Unsubscribing
myEventService.unsubscribeTopics(mySubscriber.subscriberId, myTopicsServiceToRemove);

Services—Developer’s Guide 49

Chapter 4: Events Getting Events

The above code snippet ensures that the subsequent QueueEvents retrieved with
the mySubscriber.subscriberId no longer include events for queue0.

Handling Subscription Errors
When your application subscribes or unsubscribes, the topic objects are
processed sequentially: if an error occurs for one topic, the remaining topics
are processed. The occurred errors are returned in an array of
TopicServiceError objects.

/// subscribing to topics
TopicServiceError[] myTopicsServiceErrors =

eventservice.subscribeTopics(mySubscriber.subscriberId, myTopicsServices);

/// Displaying the topics errors
foreach(TopicServiceError err in myTopicsServiceErrors)
{

System.Console.WriteLine("Subcr. error for event {0}: key = {1}
val = {2}",
err.eventName, err.filter.key,
err.filter.value.ToString());

}

In the above code snippet, the event service processes a subscription and errors
are displayed in the console.

Getting Events
There are two available modes to get events:
• Pull mode—your application retrieves the events.
• Push mode—your application is notified of the events.

Pull Mode
In pull mode, your application must periodically retrieve events; it is not
notified when an event occurs. The server-side application waits for the client-
side application request to deliver the subscribed events.

Retrieving Events

To retrieve events, your application defines topics for the services, then
subscribes to these topics. See “Subscribing to the Events of a Service.”
Once your application has subscribed, it can retrieve events associated with the
SubscriberResult.subscriberId identifier by calling the
IEventService.getEvents() method.

50 Open Media Interaction SDK 7.6

Chapter 4: Events Getting Events

The following code snippet is an example of a getEvents() call:

/// Retrieving the last occurred events
/// timeout in seconds is set to 1
Event[] events = myEventService.getEvents(mySubscriber.subscriberId,

1);

/// Displaying the events
foreach(Event evt in events)
{

System.Console.WriteLine("Occured {0}",evt.ToString());
}

Warning! If you set a non-zero value for the timeout parameter of the
IEventService.getEvents() method, this method does not return
until either events occur or the timeout is reached.

Specifics

In pull mode, the subscriber must be sure to retrieve the events before the
server-side timeout is reached.

Warning! The default timeout is 10 minutes. If no event has been retrieved
within 10 minutes, the subscriber is removed.

Push Mode
In push mode, your application is notified of the occurring events. Your
application must:
1. Implement the notifyEvents() method of a class inheriting the

INotifyService interface.
2. Subscribe to the event service.
Then, during runtime, whenever events occur, the notifyEvents() method is
called and its code is executed.

Using the INotifyService Interface

Your application must create a class inheriting the
com.genesyslab.ail.ws._event.INotifyService class. This inherited class
must implement the INotifyService.notifyEvents() method.
The following code snippet presents a short implementation of an inherited
class with a notifyEvents() method that displays the content of notified
events in the console:

Services—Developer’s Guide 51

Chapter 4: Events Getting Events

public class NotificationImpl :
com.genesyslab.soa._event.INotifyService

{
public void notifyEvents(string subscriberId,

com.genesyslab.ail.ws._event.Event[] events)
{

if (events == null)
{

System.Console.WriteLine("notifyEvents - null \n");
return ;

}
System.Console.WriteLine("notifyEvents getEvents : " +

events.Length + "\n") ;
foreach(Event evt in events)
{

System.Console.WriteLine("Service :"+ evt.serviceName
+ "Event: "+ evt.eventName
+ "timeStamp:"+ evt.timeStamp
+"\n");

}
}

}

Subscribing

Use an instance of your inherited INotifyService class to fill the
notif.notificationEndpoint field.

Notification notif = new Notification();
notif.notificationEndpoint = new NotificationImpl();
/// Notif type for Web services
notif.notificationType=”SOAP_HTTP”;

Then, subscribe with the Notification instance.

SubscriberResult result =
myEventService.createSubscriber(notif,myTopicsServices) ;

Reading DTOs in Events
When your application subscribes to events, it specifies a set of published
attributes to retrieve with the events (see “Creating TopicsService and
TopicsEvent” on page 44).
The attributes can be accessed with the Event.attributes attribute, which is a
KeyValue array. The following code snippet is a pull-mode example:

/// Retrieving the last occurred events
Event[] events = myEventService.getEvents(mySubscriber.subscriberId,

52 Open Media Interaction SDK 7.6

Chapter 4: Events Event Notification in Java

1);
foreach(Event evt in events)
{

KeyValue[] attributes = evt.attributes ;
foreach(KeyValue attr in attributes)
{

System.Console.WriteLine(
“Service: {0}\tKey: {1} value: {1}",
evt.serviceName, attr.key, attr.value) ;

}
}

The above code snippet displays the attribute key-value pairs retrieved with the
events.

Event Notification in Java
This section describes how to use Open Media Interaction Services notification
with Java. Several solutions are available to use unsolicited events in Java with
GIS.
In this section, we use the Apache Axis SOAP toolkit to implement a client-
side notification mechanism in a simple notification server.
This example supposes that we have GIS running on host <GIS_HOST> and port
<GIS_PORT>. All the following subsections are related to this example.

Notification Classes Generation
To generate classes used in notification events, we will use WSDL2java, a tool
provided by Apache Axis. Replace the italicized placeholders when typing the
following command line:

java org.apache.axis.wsdl.WSDL2Java
-o output
--server-side http://<GIS_HOST>:<GIS_PORT>/gis/services/OPENMEDIA_/NotifyService?wsdl

The required classes will be generated in the directory named output. These
classes must be added to your source path. The WSDL2java tool generates a
mapping file that maps the SOAP types to Java classes.
The tool generates the classes for each type from WSDL, using a type-
mapping file (deploy.wsdd). It also generates the following server
implementation class:

com/genesyslab/www/services/openmedia/wsdl/event/NotifyServiceSoapBindingImpl.java

Services—Developer’s Guide 53

Chapter 4: Events Event Notification in Java

This class has a method notifyEvents(String subscriberId, Event[]events),
which is called on each notification event, as shown in the following example:

public void notifyEvents(String subscriberId, Event[] events) throws
java.rmi.RemoteException,
com.genesyslab.www.services.ail.wsdl.event.WServiceException

{
// Put action to process for each event received here

}

Simple Notification Server
This subsection introduces the implementation of a simple notification server
for your client application. To achieve this, you can use a little server provided
by the Axis toolkit and identified as the following class:

org.apache.axis.transport.http.SimpleAxisServer

To provide this class with all the deployment information included in the
deploy.wsdd file, start it as shown in the following code snippet:

org.apache.axis.client.AdminClient adminClient =
new org.apache.axis.client.AdminClient();

String[] argsDeploy = {"deploy.wsdd", "-p", Integer.toString(port)};

adminClient.process(argsDeploy);

Once the server is started, you can browse Notify Service on the client side at:

http://client_host:client_port/axis/services/NotifyService?wsdl

When creating a subscriber in your application for the event service, you must
define the notification location by setting the following fields to:
• notificationEndPoint

http://client_host:client_port/axis/services/NotifyService

• notificationType

SOAP_HTTP

54 Open Media Interaction SDK 7.6

Chapter 4: Events Event Notification in Java

Services—Developer’s Guide 55

Chapter

5 System Service
This chapter explains the ISystemService interface that provides information
about configuration data and connection backends.
This chapter includes the following sections:

Prerequisites, page 55
More System Essentials, page 55
Configuration Data, page 56
Monitoring Services, page 58

Prerequisites
To follow the discussion in this chapter, you will need the Open Media
Interaction SDK 7.6 Services API Reference (which is located in the doc/
subdirectory of your Open Media Interaction SDK Services installation
directory).
Discussion in this chapter also assumes that you read Chapter 2, “Connection,”
on page 21, Chapter 3, “Data Transfer Object,” on page 33, and Chapter 4,
“Events,” on page 39 before starting reading this section.

More System Essentials
This section introduces the system service and the essential information you
need to know to integrate it to your application.

56 Open Media Interaction SDK 7.6

Chapter 5: System Service Configuration Data

The system service provides configuration and system data through the
attribute domains and methods listed in Table 7.

There are two main things you can do with the system service:
• Get configuration data, that is, application information, business

attributes, and business attribute values.
• Monitor connections to Genesys servers.
The following sections detail how to make these steps stand out so that you can
quickly learn to write your own real-world applications.

Configuration Data
After your application has connected GIS, the configuration features of the
system service give you access to the Configuration Layer data for this
application’s tenant, such as:
• Application information.
• Business attributes:

Media types defined in the Media Type section.
Interaction types defined in the Interaction Type section.
Interaction subtypes defined in the Interaction Subtype section.

Getting Application Information
To get application information, you just call the
SystemService.getApplicationInfo() method. It returns an array of key-value
pairs, as shown in the following code snippet:

KeyValue[] applicationinfo =
systemservice.getApplicationInfoDTO(new string[]{"application-info:*"});

Table 7: Domains and Related Methods

Domain ISystemService Methods

application-info getApplicationInfoDTO()

business-attribute

business-attribute-value

getBusinessAttributesDTO()

getMediaTypesDTO()

getInteractionTypesDTO()

getInteractionSubTypesDTO()

service-info getServiceInfos()

Services—Developer’s Guide 57

Chapter 5: System Service Configuration Data

Getting Business Attributes
Business attributes and their values are configuration data available through
the Configuration Layer. Business attributes define metadata for information
concerning MIL and QIL interactions.
There are three types of business attributes that you can use in your open
media application, defined in the BusinessAttributeType class:
• MEDIA_TYPE—Business attribute for media types.
• INTERACTION_TYPE—Business attribute for interaction types.
• INTERACTION_SUBTYPE—Business attribute for interaction subtypes.
A business attribute , available in the following interfaces:
• BusinessAttributeDTO—Metadata for a business attribute’s type.
• BusinessAttributeValueDTO—A value for a business attribute’s type.
The BusinessAttributeDTO interface defines metadata for information
concerning MIL and QIL interactions.
To get a business attribute, use one of the ISystemService methods associated
to the business-attribute domain (see Table 7 on page 56).
Each BusinessAttributeDTO interface contains a set of BusinessAttributeValue
interfaces. Each BusinessAttributeValue describes a value characterized by
the parent BusinessAttribute.
The following code snippet shows how to get Media Types business attributes
and the associated values.

BusinessAttributeDTO businessAttributeDTO = systemservice.getMediaTypesDTO(
new String[]{"business-attribute:displayName"},
new String[]{"business-attribute-value:name","business-attribute-
value:description"});

System.Console.WriteLine(businessAttributeDTO.name +" values are: ");
foreach(BusinessAttributeValueDTO val in businessAttributeDTO.values)
{

String toDisplay = val.name+ ": " ;
foreach(KeyValue pair in val.data)
{

toDisplay += pair.key + "="+ pair.value.ToString()+" ";
}
System.Console.WriteLine(toDisplay);

}

If your application handles QIL and MIL interactions, use business attributes
to get more information about these interactions. In the qil-interaction and
mil-interaction domains respectively of the IQILService and IMILService,
you can notice that interactions are associated with values of business
attributes.

58 Open Media Interaction SDK 7.6

Chapter 5: System Service Monitoring Services

For instance, if for a given QILInteractionDTO, the qil-interaction:mediaType
is fax, you can get a BusinessAttributeDTO object for Media Type, as shown in
the previous code snippet, and then, use it to get the
BusinessAttributeValueDTO object containing data about the fax value.
Refer to the Open Media Interaction SDK Services API Reference for further
details about classes.

Monitoring Services
GIS maintains connections to the Genesys environment. Although you cannot
manage these connections with the open media services, the system service lets
your application access and monitor connections’ status.
In this purpose, service features are available as ServiceInfo objects through
the ISystemService.getServiceInfosDTO() method. Each ServiceInfo instance
associates a ServiceStatus with a ServiceType.
Your application can access several types of services—see ServiceType for
further details:
• CONFIGURATION—Connection to the Configuration Layer.
• INTERACTION_SERVER—Connection to Interaction Server.
• UCS—Connection to Universal Contact Server.
• ESP—Connection to Interaction Server using ESP (External Service

Protocol.)
The following code snippet shows how to retrieve information for all services
of your application.

ServiceInfo[] allServices = systemservice.getServiceInfos();
foreach(ServiceInfo service in allServices)
{

System.Console.WriteLine(service.type.ToString() +" is in status " +
 service.status.ToString());

}

This code snippet can generate the following output:

CONFIGURATION is in status ON
INTERACTION_SERVER is in status ON
ESP is in status OFF
UCS is in status OFF

To monitor services, your application must subscribe to ServiceEvent and
specify which service to monitor. There are four steps to complete:
1. Create a TopicsService for the system service.
2. Create a TopicsEvent for ServiceEvent events.

Services—Developer’s Guide 59

Chapter 5: System Service Monitoring Services

3. Add a trigger for each service to be monitored.
4. Subscribe.
The following code snippet shows how to subscribe to ServiceEvent events for
connections to the Configuration Layer and Interaction Server.

/// 1. Creating a TopicsService for the System Service
TopicsService systemTopicsService = new TopicsService();
systemTopicsService.serviceName = "SystemService";
systemTopicsService.topicsEvents = new TopicsEvent[1] ;

/// 2. Defining a topic event for ServiceEvent
systemTopicsService.topicsEvents[0] = new TopicsEvent() ;
systemTopicsService.topicsEvents[0].eventName = "ServiceEvent" ;
//Setting attributes to retrieve
systemTopicsService.topicsEvents[0].attributes = new string[]{"service-info:info"};

/// 3. Adding triggers
systemTopicsService.topicsEvents[0].triggers = new Topic[2];
systemTopicsService.topicsEvents[0].triggers[0] = new Topic();
systemTopicsService.topicsEvents[0].triggers[0].key = "SERVICE_TYPE";
systemTopicsService.topicsEvents[0].triggers[0].value = "CONFIGURATION";

systemTopicsService.topicsEvents[0].triggers[1] = new Topic();
systemTopicsService.topicsEvents[0].triggers[1].key = "SERVICE_TYPE";
systemTopicsService.topicsEvents[0].triggers[1].value = "INTERACTION_SERVER";

///4. Subscribing with the subscriber ID of the application
TopicsService[] newTopics = new TopicsService[]{systemTopicsService};
eventservice.subscribeTopics(mySubscriber.subscriberId,newTopics);

Then, if any ServiceEvent occurs for the connection of the GIS to
Configuration Layer or Interaction Server, your application will get an Event
object through the event service.
In this Event object, you will get the new status for the connection service who
caused the event.

Event[] events = eventservice.getEvents(mySubscriber.subscriberId,1);
foreach(Event evt in events)
{

if (evt.serviceName == "SystemService" && evt.eventName== "ServiceEvent")
{

foreach (KeyValue att in evt.attributes)
{

//key is always service-info:info
ServiceInfo srv = (ServiceInfo) att.value;
System.Console.WriteLine(att.key+ ": "+ srv.type.ToString + " is in status”

+srv.status.ToString());
}

60 Open Media Interaction SDK 7.6

Chapter 5: System Service Monitoring Services

}
}

Services—Developer’s Guide 61

Chapter

6 Queued Interaction Layer
This chapter explains the QIL (Queued Interaction Layer) service, represented
by the IQILService interface that gets queued information from Genesys
servers through GIS.
This chapter includes the following sections:

QIL Prerequisites, page 61
More QIL Essentials, page 61
Getting Queue Data, page 62
Monitoring Queues, page 63

QIL Prerequisites
To follow the discussion in this chapter, you will need the Open Media
Interaction SDK 7.6 Services API Reference (which is located in the doc/
subdirectory of your Open Media Interaction Services SDK installation
directory).
Discussion in this chapter also assumes that you read Chapter 2, “Connection,”
on page 21, Chapter 3, “Data Transfer Object,” on page 33, and Chapter 4,
“Events,” on page 39 before starting reading this section.

More QIL Essentials
The QIL (Queued Interaction Layer) service lets your applications monitor
queues and get information about queued interactions in the Genesys
Framework.
The IQILService interface provides queued data through the attribute domains
and methods listed in Table 8 on page 62.

62 Open Media Interaction SDK 7.6

Chapter 6: Queued Interaction Layer Getting Queue Data

There are four main things you can do with the QIL service:
• Get queue data.
• Start and stop monitoring a queue.
• Monitor queues.
• Monitor queued interactions.

Note: You can get information about queued interactions only through
events. (See the “QILInteractionDTO” topic in the API Reference.)

The following sections detail how to make these steps stand out so that you can
quickly learn to write your own real-world applications.

Getting Queue Data
The queue domain identifies data you can get for queues through the
IQILService interface.
To get queue data, you can call the IQILService.getQueuesDTO() method,
which returns an array of QueueDTO objects. This array contains a QueueDTO
instance for each specified queue.
If you set the queueIds parameter to null when calling this method, it returns
all the queues available through the IQILService interface.
The following code snippet shows how to make this call:

//Getting all queues with all queue attributes

QueueDTO[] allqueues = qilservice.getQueuesDTO(null,new String[]{“*”});

Within the QueueDTO.queueId strings, you are able to manage monitoring on
queues. See the “Monitoring Queues” section immediately below.

Table 8: Domains and Related Methods

Domain IQILService Methods Events

queue getQueuesDTO()

startQueueMonitoring()

stopQueueMonitoring()

QueueEvent

qil-interaction QueueEvent

InteractionEvent

Services—Developer’s Guide 63

Chapter 6: Queued Interaction Layer Monitoring Queues

Monitoring Queues
Queue monitoring depends on two statuses, available in the queue data:
• queue:status—Indicates whether or not the queue is active. The queue is

active if a strategy is loaded in the queue.
• queue:isMonitored—Indicates whether your application is monitoring the

queue. If the queue is being monitored, you can track content changes and
interaction activity.

The following subsections introduce how to use these statuses to manage
queue monitoring and get events.

Starting and Stopping Monitoring
To monitor a queue, your application must verify that this queue’s status is
ACTIVE. This is possible by getting a QueueDTO containing the queue:status
attribute value for this queue.
Then, if the queue status is ACTIVE, your application must start monitoring this
queue—for instance, queue0—by calling the
IQILService.startQueueMonitoring() method, as shown in this code snippet:

//Getting the status of queue0
QueueDTO[] queues =

qilservice.getQueuesDTO(new string[]{"queue0"},
new string[]{"queue:queueId","queue:status"});

foreach(KeyValue pair in queues[0].data)
{

if(pair.key == "queue:status")
{

QueueStatus status = (QueueStatus) pair.value;
if(status == QueueStatus.ACTIVE)
{

qilservice.startQueueMonitoring("queue0");
}

}
}

If the request is successful, your application can get a QueueEvent event
propagating the MONITORED queue monitoring status. If the queue monitoring
status is MONITORED, your application can track queue content changes and
interaction events, as detailed in the following sections.
It is as simple to stop monitoring a queue as it is to start monitoring it. Call the
the IQILService.stopQueueMonitoring() method, as shown in this code
snippet:

qilservice.stopQueueMonitoring("queue0");

64 Open Media Interaction SDK 7.6

Chapter 6: Queued Interaction Layer Monitoring Queues

Managing Queue Events
When your application subscribes to QueueEvent events for the QILService, it
can get two types of QueueEvent events, which propagate different attributes:
• Monitoring status changed—This event occurs when you start and stop

monitoring a queue, or when a queue modification could have changed the
monitoring status.

• Queue content changed—This event occurs on a MONITORED queue when the
queue content changed, that is, when interactions were added to or
removed from the queue.

Table 9 shows which queue attributes are published with each event.

To monitor a queue, you must track the QueueEvent events for changes in
monitoring status. You can get content changes and interaction events on a
queue only if this queue’s monitoring status is MONITORED.
The following code snippet shows how to subscribe to QueueEvent events, and
how to specify default attributes for getting both monitoring status changes and
content changes on two queues—queue0 and queue1.

/// 1. Creating a TopicsService for the QIL Service
TopicsService queueTopicsService = new TopicsService();
queueTopicsService.serviceName = "QILService";
queueTopicsService.topicsEvents = new TopicsEvent[1] ;

/// 2. Defining a topic event for QueueEvent
queueTopicsService.topicsEvents[0] = new TopicsEvent() ;
queueTopicsService.topicsEvents[0].eventName = "QueueEvent" ;

//Setting attributes to retrieve
queueTopicsService.topicsEvents[0].attributes = new string[]{"default"};

/// 3. Adding triggers
queueTopicsService.topicsEvents[0].triggers = new Topic[2];
queueTopicsService.topicsEvents[0].triggers[0] = new Topic();
queueTopicsService.topicsEvents[0].triggers[0].key = "QUEUE";
queueTopicsService.topicsEvents[0].triggers[0].value = "queue0";

Table 9: QueueEvents and Attributes

QueueEvent Type Attribute to test Associated Attributes

Monitoring status changed queue:queueChanged queue:queueChangeReason

queue:newMonitorStatus

queue:oldMonitorStatus

Queue content changed queue:queueContentChanged queue:queueAddedInteractions

queue:queueRemovedInteractions

Services—Developer’s Guide 65

Chapter 6: Queued Interaction Layer Monitoring Queues

queueTopicsService.topicsEvents[0].triggers[1] = new Topic();
queueTopicsService.topicsEvents[0].triggers[1].key = "QUEUE";
queueTopicsService.topicsEvents[0].triggers[1].value = "queue1";

///4. Subscribing with the subscriber ID of the application
TopicsService[] newTopics = new TopicsService[]{queueTopicsService};
eventservice.subscribeTopics(mySubscriber.subscriberId,newTopics);

Managing Interaction Events
If a queue’s monitoring status is MONITORED, you can get events for interactions
of this queue, that is, InteractionEvent events. These events involve status and
property changes in interactions.
These events let your application access the QILInteractionDTO objects that
contain detailed information about an interaction, described in the
qil-interaction domain of the IQILService. For further details, see the Open
Media Interaction SDK 7.6 Services API Reference.
The following code snippet adds a new topic service for the QIL service,
which lets the subcribing application receive InteractionEvent events, which
occur on interactions of queue0.

/// 1. Creating a new TopicsService for the QIL Service
TopicsService newqueueTopicsService = new TopicsService();
newqueueTopicsService.serviceName = "QILService";
newqueueTopicsService.topicsEvents = new TopicsEvent[1] ;

/// 2. Defining a topic event for InteractionEvent
newqueueTopicsService.topicsEvents[0] = new TopicsEvent() ;
newqueueTopicsService.topicsEvents[0].eventName = "InteractionEvent" ;

//Setting attributes to retrieve
newqueueTopicsService.topicsEvents[0].attributes = new string[]{"default"};

/// 3. Adding triggers
newqueueTopicsService.topicsEvents[0].triggers = new Topic[1];
newqueueTopicsService.topicsEvents[0].triggers[0] = new Topic();
newqueueTopicsService.topicsEvents[0].triggers[0].key = "QUEUE";
newqueueTopicsService.topicsEvents[0].triggers[0].value = "queue0";

///4. Subscribing with the subscriber ID of the application
TopicsService[] newTopics = new TopicsService[]{newqueueTopicsService};
eventservice.subscribeTopics(mySubscriber.subscriberId,newTopics);

66 Open Media Interaction SDK 7.6

Chapter 6: Queued Interaction Layer Monitoring Queues

Services—Developer’s Guide 67

Chapter

7 Media Interaction Layer
This chapter explains the MIL (Media Interaction Layer) service, represented
by the IMILService interface. This service manages third-party media
interactions in Interaction Server through GIS.
This chapter also explains the UCS (Universal Contact Server) service,
represented by the IUCSService interface, which manages third-party media
interactions’ data in UCS through GIS.
This chapter includes the following sections:

Prerequisites, page 67
More MIL Essentials, page 68
Submitting a MIL Interaction, page 69
Managing ESP Callbacks, page 71
Managing Interactions in UCS, page 70

Prerequisites
To follow the discussion in this chapter, you will need the Open Media
Interaction SDK 7.6 Services API Reference (which is located in the doc/
subdirectory of your Open Media Interaction Services installation directory).
Discussion in this chapter also assumes that you have read Chapter 2,
“Connection,” on page 21, Chapter 3, “Data Transfer Object,” on page 33, and
Chapter 4, “Events,” on page 39.
You may need to read to learn more about the business attributes that
characterize third-party media interactions.

68 Open Media Interaction SDK 7.6

Chapter 7: Media Interaction Layer More MIL Essentials

More MIL Essentials
The MIL (Media Interaction Layer) service and the UCS service include all
methods required to manage third-party media interactions (also called MIL
interactions). This section discusses the main features available through the
API.
All interfaces and atomic methods provided with the MIL and UCS services
for handling interactions allow you to build your own interaction workflow
and manage interaction-related information (status, attached data, and so on).
Therefore, when developing your applications, pay attention to synchronizing
interaction data through servers, such as Interaction Server and UCS.

MIL Service
The IMILInteractionService interface provides synchronous methods to
perform requests like the following on MIL interactions handled by Interaction
Server:
• Submit an interaction with its interaction parameters.
• Stop processing interactions.
• Change submitted interactions’ parameters.
• Get callback requests on an interaction you created.

Note: You cannot use the MIL service to manage Genesys multimedia
interactions, that is, interactions of type chat or email.

Your application cannot get events on MIL interactions’ changes (status, data,
and so on.) It can subscribe to CallbackEvent events, provided with ESP
(External Service Protocol) features.
ESP is a Genesys protocol that the MIL service can use on the GIS side to
communicate with Interaction Server. Its purpose is to let Interaction Server
send requests to your application depending on external services defined in
your routing strategies.
For further details about these interfaces, see the Open Media Interaction SDK
7.6 Services API Reference. For details about implementing external services,
refer to your MCR 7.6 and Universal Routing 7.6 documentation. For details
about ESP, see “Managing ESP Callbacks” on page 71 of this guide.

UCS Service
The IUCSService interface provides UCS features that enable your application
to:
• Save MIL interactions before or after their submission.

Services—Developer’s Guide 69

Chapter 7: Media Interaction Layer Submitting a MIL Interaction

• Get, or search for, MIL interactions saved in the UCS database.
• Stop processing, or delete, MIL interactions saved in the UCS database.
When saving a MIL interaction, you should pay attention to its UCS
parameters—see the mil-interaction.ucs domain. For logical reasons, some
parameters are set only once. An example is the
mil-interaction.ucs:CanBeParent, which specifies whether or not the saved
interaction can be a parent interaction of other interactions saved in UCS. For
further details about these interfaces and domains, see the Open Media
Interaction SDK 7.6 Services API Reference.
Genesys recommends that when your application modifies MIL interactions’
data through the IMILService, your application should propagate these
modifications in the UCS database using the IUCSService interface.

Submitting a MIL Interaction
The MIL (Media Interaction Layer) service includes all the required methods
to manage the creation of new MIL interactions, then submit them to the
Genesys Framework and servers. This is, for instance, to submit inbound third-
party media interactions to the Genesys environment.
When submitting a new interaction, your application must specify its main
characteristics, including an interaction ID, as shown in the following code
snippet.

KeyValue[] interactionData = new KeyValue[1];
interactionData[0] = new KeyValue();
interactionData[0].key = “mil-interaction:receivedAt”;
//long date for 03/17/2002 15:58:41
long receivedAt = 126608503795055696;
interactionData[0].value = receivedAt;

MILInteractionDTO result =
milservice.submitInteraction(“interaction0”, “queue0”, “Inbound”,”New”,
“ThirdPartyMedia”, interactionData, false, new String[]{“mil-interaction:*”});

The provided interaction ID must be unique, otherwise Interaction Server will
throw an exception and the submission will fail. If you set the parameter for
saving the submitted interaction in UCS to true, the interaction ID must be less
than or equal to 16 characters long.

70 Open Media Interaction SDK 7.6

Chapter 7: Media Interaction Layer Managing Interactions in UCS

Managing Interaction Data
If your application calls the IMILService.submitInteraction() method, the
interaction data parameter can include two types of interaction parameters,
identified in two distinct domains of the MIL service:
• mil-interaction.is—Parameters for Interaction Server. They are always

submitted with the interaction to Interaction Server.
• mil-interaction.ucs—Parameters for UCS. If the save parameter of the

IMILService.submitInteraction() method is set to true, UCS parameters
are saved in UCS with the interaction.

The mil-interaction:ucs parameters are not submitted to Interaction Server. If
you need both to save and submit some properties, such as attached data, you
must add them both as mil-interaction.is and as mil-interaction.ucs data.
If your application changes interaction properties by calling the
IMILService.changeProperties() method, this call modifies only the properties
corresponding to the mil-interaction.is:properties attribute. It does not
modify the mil-interaction.ucs:properties properties. If you wish to make
these mil-interaction.ucs:properties properties persistent in UCS, modify
this attribute and save the interaction.

Managing Interactions in UCS
This section provides details about MIL interaction management in UCS.

Getting Interaction Data from UCS
When developing your application, you should take into account the cache
mecanism that lets your application get interaction information with the UCS
service by calling the IUCSService.getInteractionsDTO() method.
When requesting interaction information from UCS, the IUCSService service
retrieves part of the interaction data, that is, the information being processed in
a MILInteractionDTO object.
This information corresponds to the values of the following attributes:
mil-interaction.ucs:properties, mil-interaction.ucs:contentBinary,
mil-interaction.ucs:contentBinarySize, and
mil-interaction.ucs:contentMimeType.
Then, even if you modify this interaction by setting new values for writable
attributes, modifications are not available upon the next call to the
IUCSService.getInteractionsDTO() method.
For example, when your application reads the UCS status of this interaction,
that status remains UCSInteractionStatus.UNKNOWN. If you assign a new UCS
status to the interaction, for instance, UCSInteractionStatus.PENDING, this
status is updated in UCS when your application saves the interaction. But, the

Services—Developer’s Guide 71

Chapter 7: Media Interaction Layer Managing ESP Callbacks

next time your application gets a MILInteractionDTO object for this interaction,
the UCS status will be UCSInteractionStatus.UNKNOWN.

Saving MIL Interactions in UCS
When saving a MILInteraction object, you should pay attention to its
mil-interaction.ucs:* attributes. For logical reasons, some of these attributes
are set only once. An example is mil-interaction.ucs:canBeParent, which
specifies whether or not the interaction can be a parent interaction of other
interactions saved in UCS.
For further details about these interfaces, see the Open Media Interaction SDK
7.6 Services API Reference.

Managing ESP Callbacks
ESP callbacks are CallbackEvent events of the IMILService. You can subscribe
to these events, so that when Interaction Server sends a request to your
application through GIS for a particular MIL interaction, your application gets
a CallbackEvent.
In this event, you can get mil-callback:* information, including a reference ID
for the callback request. Within this information, your application can handle
this request. Then, using the MILService methods, you can send an error or
success response to Interaction Server.
To properly handle ESP callbacks, you need to perform the steps detailed in
the following subsections:
• “Defining an ESP Strategy” on page 71
• “Subscribing to Callback Events” on page 72
• “Managing ESP requests” on page 73

Defining an ESP Strategy
A callback request is always associated with an ESP strategy and identified as
an External Service. You can create several types of callback requests and each
of them must correspond to an external service.
To define an ESP strategy, start the Interaction Routing Designer and create an
External Service. In the External Service Property box, specify the fully
qualified name of the service (for example,
com.genesyslab.examples.mil.ServiceName) and the methodName method to call
during the script execution.
In this example, the trigger identifying the callback type in the Open Media
Services would be:
NAME=com.genesyslab.examples.mil.ServiceName.methodName

72 Open Media Interaction SDK 7.6

Chapter 7: Media Interaction Layer Managing ESP Callbacks

You can make use of this callback type to define a ServiceName class handling
this callback type, as for example below:

using com.genesyslab.examples.mil;
public class ServiceName
{

public void methodName(String refId, String milId, KeyValue[]
parameters,KeyValue[] data)

{
//code handling the callback request
//...

}

}

Refer to your MCR 7.6 and Universal Routing 7.6 documentation for details
about implementing external services.

Subscribing to Callback Events
To subscribe to callback events, create TopicsEvents for each callback type
associated with an external servive. In the following code snippet, the
application subscribes to a callback type defined in “Defining an ESP
Strategy” on page 71.

/// Creating a new TopicsService for the MIL Service
TopicsService milTopicsService = new TopicsService();
milTopicsService.serviceName = "MILService";
milTopicsService.topicsEvents = new TopicsEvent[1] ;

/// Defining a topic event for CallbackEvent
milTopicsService.topicsEvents[0] = new TopicsEvent() ;
milTopicsService.topicsEvents[0].eventName = "CallbackEvent" ;

//Setting attributes to retrieve
milTopicsService.topicsEvents[0].attributes =

new string[]{"default"};

/// Adding trigger for the ServiceName callback
milTopicsService.topicsEvents[0].triggers = new Topic[1];
milTopicsService.topicsEvents[0].triggers[0] = new Topic();
milTopicsService.topicsEvents[0].triggers[0].key = "NAME ";
milTopicsService.topicsEvents[0].triggers[0].value =

"com.genesyslab.examples.mil.ServiceName.methodName";

/// Subscribing with the subscriber ID of the application
TopicsService[] newTopics = new TopicsService[]{milTopicsService};
eventservice.subscribeTopics(mySubscriber.subscriberId,newTopics);

Services—Developer’s Guide 73

Chapter 7: Media Interaction Layer Managing ESP Callbacks

Managing ESP requests
If your application gets a CallbackEvent event through the event service, it is
supposed to handle the associated callback request. To handle this request, you
add some source code to perform the request, then to send a response to
Interaction Server by calling a method of the MIL service:
• IMILService.sendFault()—Sends a fault response to Interaction Server.
• IMILService.sendResponse—Sends a successful response, including data,

to Interaction Server.
For example, in the following code snippet, the application creates an instance
of the ServiceName class and call its methodName method to handle the callback
request, then sends a successful response.

Event[] events =
eventservice.getEvents(mySubscriber.subscriberId,1);

foreach(Event evt in events)
{

if(evt.serviceName=="MILService" &&
evt.eventName =="CallbackEvent")

{
//There is a single trigger for this application,
//so we do not check triggers in this example

String referenceID = null;
string milInteractionID = null;
KeyValue[] parameters = null;
KeyValue[] userData = null;

foreach(KeyValue pair in evt.attributes)
{

if(pair.key =="mil-callback:referenceId")
{

referenceID = (string) pair.value;
}
else if(pair.key =="mil-callback:interactionId")
{

///...
}
//...

}
// Managing the request
ServiceName srv = new ServiceName();
srv.methodName(referenceID, milInteractionID,

parameters,userData);

//Send a response to Interaction Server
milservice.sendResponse(referenceID,null,null);

}
//...

74 Open Media Interaction SDK 7.6

Chapter 7: Media Interaction Layer Managing ESP Callbacks

}

Services—Developer’s Guide 75

Index

A
Apache Axis SOAP. 52
application information 56
asyncCreateServiceFactory 23
attributes

domain. 34
notation 34
properties 35
wildcard 35

audience
defining 8

B
business attribute 56
BusinessAttribute. 57

C
C# Proxy 23
callback event 68
chapter summaries

defining 10
commenting on this document 13
configuration 56
connection 58
Create a service with .NET proxy 23, 28
createServiceFactory. 23

D
document

conventions 10
errors, commenting on 13
version number 10

DTO
event. . 37
KeyValue 34
name . 34

read . 36
wildcards 35

E
ESP .68
ESP strategy. 71
Event. .42
event

description 41
EventService

reading DTO 51
remove all TopicsEvents 47
remove specific topics 48
unsubscribe 47

External Service71

F
Features15
Framework19

G
GSAP 21, 24, 28

I
IEventService 39
INotifyService 50
Interaction Server 19, 67
Interaction Subtype 56
Interaction Type 56

J
Java Proxy 21, 27

Index

76 Open Media Interaction SDK 7.6

K
KeyValue 34

M
MCR . 19
Media Type 56
MIL . 67

N
notification with java 52

P
pulling mode

get events 49
specifics 50

pushing mode
subscribe 51

Q
QIL . 61
queue event 64
queue monitor status 63
queue status 63
queued interactions 62

S
service event 58
service features 58
service type 58
ServiceFactory 23
SOAP. 21
subscriber 46

T
TopicsEvent 45
TopicsServices 44
triggers . 42
typographical styles 11

U
UCS .19, 67
Universal Contact Server. 19

V
version numbering

document 10

W
wildcard .35

X
XML configuration file 28
XML Optional Attributes 31

	Table of Contents
	Preface
	Intended Audience
	Usage Guidelines
	Chapter Summaries
	Document Conventions
	Related Resources
	Making Comments on This Document

	About the Open Media Interaction SDK
	Features Overview
	Components
	Platform Requirements
	Development Platform
	Production Runtime Platform

	Scope of Use
	Architecture
	Service-Oriented Architecture
	Multithreaded
	Synchronization
	Connectivity

	Connection
	Generating a Java Proxy
	Opening a Session

	Using the C# Proxy to Connect
	Service Factory
	XML Configuration File for .NET

	Using the Java Proxy to Connect
	Service Factory
	XML Configuration File for Java

	Data Transfer Object
	Introduction
	DTOs in the Services API
	Dedicated Classes
	Attributes

	DTO Handling
	Reading DTOs
	Getting DTOs in Events

	Events
	Introduction
	Understanding the Event Service
	Events Associated with Services
	Understanding ‘Topics’ Objects

	Handling Subscription and Topics
	Creating TopicsService and TopicsEvent
	Subscribing to the Events of a Service
	Handling Subscription Errors

	Getting Events
	Pull Mode
	Push Mode
	Reading DTOs in Events

	Event Notification in Java
	Notification Classes Generation
	Simple Notification Server

	System Service
	Prerequisites
	More System Essentials
	Configuration Data
	Getting Application Information
	Getting Business Attributes

	Monitoring Services

	Queued Interaction Layer
	QIL Prerequisites
	More QIL Essentials
	Getting Queue Data
	Monitoring Queues
	Starting and Stopping Monitoring
	Managing Queue Events
	Managing Interaction Events

	Media Interaction Layer
	Prerequisites
	More MIL Essentials
	MIL Service
	UCS Service

	Submitting a MIL Interaction
	Managing Interaction Data

	Managing Interactions in UCS
	Getting Interaction Data from UCS
	Saving MIL Interactions in UCS

	Managing ESP Callbacks
	Defining an ESP Strategy
	Subscribing to Callback Events
	Managing ESP requests

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

