
Queued Interaction SDK 7.6

Java

Developer’s Guide

The information contained herein is proprietary and confidential and cannot be disclosed or duplicated
without the prior written consent of Genesys Telecommunications Laboratories, Inc.
Copyright © 2006–2008 Genesys Telecommunications Laboratories, Inc. All rights reserved.

About Genesys
Genesys Telecommunications Laboratories, Inc., a subsidiary of Alcatel-Lucent, is 100% focused on software for call
centers. Genesys recognizes that better interactions drive better business and build company reputations. Customer
service solutions from Genesys deliver on this promise for Global 2000 enterprises, government organizations, and
telecommunications service providers across 80 countries, directing more than 100 million customer interactions every
day. Sophisticated routing and reporting across voice, e-mail, and Web channels ensure that customers are quickly
connected to the best available resource—the first time. Genesys offers solutions for customer service, help desks,
order desks, collections, outbound telesales and service, and workforce management. Visit www.genesyslab.com for
more information.
Each product has its own documentation for online viewing at the Genesys Technical Support website or on the
Documentation Library DVD, which is available from Genesys upon request. For more information, contact your sales
representative.

Notice
Although reasonable effort is made to ensure that the information in this document is complete and accurate at the
time of release, Genesys Telecommunications Laboratories, Inc., cannot assume responsibility for any existing errors.
Changes and/or corrections to the information contained in this document may be incorporated in future versions.

Your Responsibility for Your System’s Security
You are responsible for the security of your system. Product administration to prevent unauthorized use is your
responsibility. Your system administrator should read all documents provided with this product to fully understand the
features available that reduce your risk of incurring charges for unlicensed use of Genesys products.

Trademarks
Genesys, the Genesys logo, and T-Server are registered trademarks of Genesys Telecommunications Laboratories,
Inc. All other trademarks and trade names referred to in this document are the property of other companies. The
Crystal monospace font is used by permission of Software Renovation Corporation, www.SoftwareRenovation.com.

Technical Support from VARs
If you have purchased support from a value-added reseller (VAR), please contact the VAR for technical support.

Technical Support from Genesys
If you have purchased support directly from Genesys, please contact Genesys Technical Support at the following
regional numbers:

Prior to contacting technical support, please refer to the Genesys Technical Support Guide for complete
contact information and procedures.

Ordering and Licensing Information
Complete information on ordering and licensing Genesys products can be found in the Genesys 7 Licensing Guide.

Released by
Genesys Telecommunications Laboratories, Inc. www.genesyslab.com
Document Version: 76sdk_dev_ixn_java-queued_02-2008_v7.6.001.00

Region Telephone E-Mail

North and Latin America +888-369-5555 or +506-674-6767 support@genesyslab.com

Europe, Middle East, and Africa +44-(0)-118-974-7002 support@genesyslab.co.uk

Asia Pacific +61-7-3368-6868 support@genesyslab.com.au

Japan +81-3-6361-8950 support@genesyslab.co.jp

http://www.genesyslab.com
http://www.genesyslab.com
mailto:support@genesyslab.com
mailto:support@genesyslab.co.uk
mailto:support@genesyslab.com.au
http://genesyslab.com/support/dl/retrieve/default.asp?item=B3BFC6DABE22B62AAE32A6D31E6396E3&view=item
mailto:support@genesyslab.co.jp
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A1D12650&view=item

Java—Developer’s Guide 3

Table of Contents
Preface ... 7

Intended Audience... 8
Usage Guidelines .. 8
Chapter Summaries... 10
Document Conventions ... 10
Related Resources.. 12
Making Comments on This Document .. 13

Chapter 1 About the Queued Interaction (Java API)... 15

Overview.. 15
Components .. 15
Scope Of Use .. 16
Architecture ... 16

Interfaces to Core Objects .. 17
Application Development Design.. 17

Connectivity to Other Genesys Components .. 19
Interaction Server ... 19
Configuration Layer .. 19

API Overview... 19
Packages .. 20
Event and Listeners .. 20
What’s Next .. 21

Chapter 2 About the Code Examples... 23

Overview of the Code Examples ... 23
Installing the Code Examples .. 24

Source-Code Examples.. 24
Using the Code Examples .. 25

Introducing the Queued Interaction Code Examples............................... 25
Open Media Commons.. 28

Connection.. 29
Services .. 30

Queued Interaction (Java API) .. 31

Table of Contents

4 Queued Interaction SDK 7.6

QILFactory .. 31
Configuration Data .. 31
Queues ... 32
Ad’Hoc Management .. 33
What’s Next... 34

Chapter 3 Feature Examples... 35

Introduction.. 35
More Application Essentials .. 36
SimpleService.. 37

Implement a Listener .. 37
Connect to Servers ... 37
Set Up the GUI Components .. 37
Register Your Application.. 38
Add Event-Handling Code .. 38
Wrapping Up... 39
About the User Interface... 40

SimpleMonitorQueue... 40
Implement a Listener .. 42
Set up Button Actions ... 42
Register Your Application.. 43
Add Event-Handling Code .. 43
Synchronize the User Interface .. 45
Wrapping up.. 46

SimpleMonitorInteraction... 46
Implement a Listener .. 47
Register Your Application.. 47
Add Event-Handling Code .. 48
Synchronize the User Interface .. 50

SimpleSupervisor .. 51
Implement a Listener .. 52
Set up Button Actions ... 52
Register Your Application.. 53
Add Event-Handling Code .. 53
Wrapping up.. 53

Chapter 4 Alarm Examples.. 55

Introduction.. 55
SimpleQueueAlarm ... 55

Implement a Listener .. 56
Connect to Servers ... 56
Register Your Application.. 56

Java—Developer’s Guide 5

Table of Contents

Add Event-Handling Code .. 56
MultipleAlarm... 57

Implement a Listener .. 59
Connect to Servers ... 59
Register Your Application.. 60
Add Event-Handling Code .. 61
Wrapping up.. 61

Index ... 63

Table of Contents

6 Queued Interaction SDK 7.6

Java—Developer’s Guide 7

Preface
Welcome to the Queued Interaction SDK 7.6 Java Developer’s Guide. This
guide will show you how to develop applications that can monitor Genesys
queues and connections to the Genesys framework and Genesys servers.
This document provides a high-level overview of the features and functions of
Genesys Queued Interaction (Java API) 7.6, together with information about
its architecture and deployment-planning materials. This document is valid
only for the 7.6 release of this product.

Note: For versions of this document created for other releases of this product,
please visit the Genesys Technical Support website, or request the
Documentation Library CD, which you can order by e-mail from
Genesys Order Management at orderman@genesyslab.com.

This preface provides an overview of this document, identifies the primary
audience, introduces document conventions, and lists related reference
information:

Intended Audience, page 8
Usage Guidelines, page 8
Chapter Summaries, page 10
Document Conventions, page 10
Related Resources, page 12
Making Comments on This Document, page 13

The Genesys Queued Interaction SDK (Java API) is built around the Queued
Interaction Layer library, which presents a Java API for developing monitoring
applications.

mailto:orderman@genesyslab.com

8 Queued Interaction SDK 7.6

Preface Intended Audience

Intended Audience
This document, primarily intended for programmers developing Java-based
applications for contact center agents, assumes that you have a basic
understanding of:
• Computer-telephony integration (CTI) concepts, processes, terminology,

and applications.
• Network design and operation.
• Your own network configurations.
You should also be familiar with:
• Java programming.
• Genesys Multimedia 7.6 features.
• Genesys Routing 7.6 features.

Usage Guidelines
The Genesys developer materials outlined in this document are intended to be
used for the following purposes:
• Creation of contact-center agent desktop applications associated with

Genesys software implementations.
• Server-side integration between Genesys software and third-party

software.
• Creation of a specialized client application specific to customer needs.
The Genesys software functions available for development are clearly
documented. No undocumented functionality is to be utilized without
Genesys’s express written consent.
The following Use Conditions apply in all cases for developers employing the
Genesys developer materials outlined in this document:
1. Possession of interface documentation does not imply a right to use by a

third party. Genesys conditions for use, as outlined below or in the Genesys
Developer Program Guide, must be met.

2. This interface shall not be used unless the developer is a member in good
standing of the Genesys Interacts program or has a valid Master Software
License and Services Agreement with Genesys.

3. A developer shall not be entitled to use any licenses granted hereunder
unless the developer’s organization has met or obtained all prerequisite
licensing and software as set out by Genesys.

4. A developer shall not be entitled to use any licenses granted hereunder if
the developer’s organization is delinquent in any payments or amounts
owed to Genesys.

Java—Developer’s Guide 9

Preface Usage Guidelines

5. A developer shall not use the Genesys developer materials outlined in this
document for any general application development purposes that are not
associated with the above-mentioned intended purposes for the use of the
Genesys developer materials outlined in this document.

6. A developer shall disclose the developer materials outlined in this
document only to those employees who have a direct need to create, debug,
and/or test one or more participant-specific objects and/or software files
that access, communicate, or interoperate with the Genesys API.

7. The developed works and Genesys software running in conjunction with
one another (hereinafter referred to together as the “integrated solutions”)
should not compromise data integrity. For example, if both the Genesys
software and the integrated solutions can modify the same data, then
modifications by either product must not circumvent the other product’s
data integrity rules. In addition, the integration should not cause duplicate
copies of data to exist in both participant and Genesys databases, unless it
can be assured that data modifications propagate all copies within the time
required by typical users.

8. The integrated solutions shall not compromise data or application security,
access, or visibility restrictions that are enforced by either the Genesys
software or the developed works.

9. The integrated solutions shall conform to design and implementation
guidelines and restrictions described in the Genesys Developer Program
Guide and Genesys software documentation. For example:
a. The integration must use only published interfaces to access Genesys

data.
b. The integration shall not modify data in Genesys database tables

directly using SQL.
c. The integration shall not introduce database triggers or stored

procedures that operate on Genesys database tables.
Any schema extension to Genesys database tables must be carried out using
Genesys Developer software through documented methods and features.
The Genesys developer materials outlined in this document are not intended to
be used for the creation of any product with functionality comparable to any
Genesys products, including products similar or substantially similar to
Genesys’s current general-availability, beta, and announced products.
Any attempt to use the Genesys developer materials outlined in this document
or any Genesys Developer software contrary to this clause shall be deemed a
material breach with immediate termination of this addendum, and Genesys
shall be entitled to seek to protect its interests, including but not limited to,
preliminary and permanent injunctive relief, as well as money damages.

10 Queued Interaction SDK 7.6

Preface Chapter Summaries

Chapter Summaries
In addition to this preface, this document contains the following chapters:
• Chapter 1, “About the Queued Interaction (Java API),” on page 15.

Introduces the Queued Interaction (Java API), its components, features,
and scope of use.

• Chapter 2, “About the Code Examples,” on page 23. Introduces the code
examples that accompany this developer’s guide.

• Chapter 3, “Feature Examples,” on page 35. Explains SimpleService,
which shows how to display connection services and monitor their status;
SimpleMonitorQueue, which shows how to start and stop monitoring
queues; SimpleMonitorInteraction, which shows how to monitor
interactions; and SimpleSupervisor, which shows how to handle Ad’Hoc
features.

• Chapter 4, “Alarm Examples,” on page 55

Document Conventions
This document uses certain stylistic and typographical conventions—
introduced here—that serve as shorthands for particular kinds of information.

Document Version Number

A version number appears at the bottom of the inside front cover of this
document. Version numbers change as new information is added to this
document. Here is a sample version number:
72fr_ref_09-2005_v7.2.000.00

You will need this number when you are talking with Genesys Technical
Support about this product.

Type Styles

Italic

In this document, italic is used for emphasis, for documents’ titles, for
definitions of (or first references to) unfamiliar terms, and for mathematical
variables.

Examples: • Please consult the Genesys 7 Migration Guide for more information.
• A customary and usual practice is one that is widely accepted and used

within a particular industry or profession.
• Do not use this value for this option.

Java—Developer’s Guide 11

Preface Document Conventions

• The formula, x +1 = 7 where x stands for . . .

Monospace Font

A monospace font, which looks like teletype or typewriter text, is used for
all programming identifiers and GUI elements.
This convention includes the names of directories, files, folders, configuration
objects, paths, scripts, dialog boxes, options, fields, text and list boxes,
operational modes, all buttons (including radio buttons), check boxes,
commands, tabs, CTI events, and error messages; the values of options; logical
arguments and command syntax; and code samples.

Examples: • Select the Show variables on screen check box.
• Click the Summation button.
• In the Properties dialog box, enter the value for the host server in your

environment.
• In the Operand text box, enter your formula.
• Click OK to exit the Properties dialog box.
• The following table presents the complete set of error messages

T-Server® distributes in EventError events.
• If you select true for the inbound-bsns-calls option, all established

inbound calls on a local agent are considered business calls.
Monospace is also used for any text that users must manually enter during a
configuration or installation procedure, or on a command line:

Example: • Enter exit on the command line.

Screen Captures Used in This Document

Screen captures from the product GUI (graphical user interface), as used in this
document, may sometimes contain a minor spelling, capitalization, or
grammatical error. The text accompanying and explaining the screen captures
corrects such errors except when such a correction would prevent you from
installing, configuring, or successfully using the product. For example, if the
name of an option contains a usage error, the name would be presented exactly
as it appears in the product GUI; the error would not be corrected in any
accompanying text.

Square Brackets

Square brackets indicate that a particular parameter or value is optional within
a logical argument, a command, or some programming syntax. That is, the
parameter’s or value’s presence is not required to resolve the argument,
command, or block of code. The user decides whether to include this optional
information. Here is a sample:

12 Queued Interaction SDK 7.6

Preface Related Resources

smcp_server -host [/flags]

Angle Brackets

Angle brackets indicate a placeholder for a value that the user must specify.
This might be a DN or port number specific to your enterprise. Here is a
sample:
smcp_server -host <confighost>

Related Resources
Consult these additional resources as necessary:
• Interaction SDK 7.6 Java Deployment Guide, which is delivered on the

documentation CD and details important configuration data.
• Queued Interaction SDK 7.6 Java API reference, which is located in the

doc/ subdirectory within the product installation directory tree.
• Queued Interaction SDK 7.6 Java Code Examples, which are located in

.zip and .tar.gz archive files on the documentation CD in the
InteractionSDK_examples.java/ directory under the developer directory
tree.

• Open Media Interaction SDK 7.6 Application Blocks Guide, which
presents the application blocks for the Queued Interaction SDK, available
on the product CD.

• The Genesys Technical Publications Glossary, which ships on the Genesys
Documentation Library CD and which provides a comprehensive list of the
Genesys and CTI terminology and acronyms used in this document.

• The Genesys 7 Migration Guide, also on the Genesys Documentation
Library CD, which provides a documented migration strategy from
Genesys product releases 5.1 and later to all Genesys 7.x releases. Contact
Genesys Technical Support for additional information.

• The Release Notes and Product Advisories for this product, which are
available on the Genesys Technical Support website at
http://genesyslab.com/support.

Information on supported hardware and third-party software is available on the
Genesys Technical Support website in the following documents:
• Genesys 7 Supported Operating Systems and Databases
• Genesys 7 Supported Media Interfaces
Genesys product documentation is available on the:
• Genesys Technical Support website at http://genesyslab.com/support.
• Genesys Developer website at http://devzone.genesyslab.com.

http://genesyslab.com/support
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A3D92054&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=A9CB309AF4DEB8127C5640A3C32445A7&view=item
http://genesyslab.com/support
http://devzone.genesyslab.com

Java—Developer’s Guide 13

Preface Making Comments on This Document

• Genesys Documentation Library CD, which you can order by e-mail from
Genesys Order Management at orderman@genesyslab.com.

Making Comments on This Document
If you especially like or dislike anything about this document, please feel free
to e-mail your comments to Techpubs.webadmin@genesyslab.com.
You can comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this document.
Please limit your comments to the information in this document only and to the
way in which the information is presented. Speak to Genesys Technical
Support if you have suggestions about the product itself.
When you send us comments, you grant Genesys a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

mailto:orderman@genesyslab.com
mailto:techpubs.webadmin@genesyslab.com

14 Queued Interaction SDK 7.6

Preface Making Comments on This Document

Java—Developer’s Guide 15

Chapter

1 About the Queued
Interaction (Java API)
This chapter introduces the Queued Interaction SDK, its components, features,
and scope of use. In this chapter you will find the following topics:

Overview, page 15
Components, page 15
Architecture, page 16
Connectivity to Other Genesys Components, page 19
Scope Of Use, page 16
API Overview, page 19

Overview
The Queued Interaction (Java API) lets you build Java applications to monitor
queues available in the Genesys framework.
The Queued Interaction (Java API) 7.6 presents a simple Java API that allows
for access to configuration information and monitoring of queue activity.

Components
The Queued Interaction (Java API) comprises the following:
• The Open Media Commons library, written entirely in the Java

programming language, delivered as a set of .jar files on the product CD.
• The Queued Interaction Layer (QIL) library, also written entirely in Java,

delivered as a set of .jar files on the product CD.
• The Queued Interaction SDK 7.6 Java API Reference, which is an HTML

tree in the docs/ directory of the installed product directory tree.

16 Queued Interaction SDK 7.6

Chapter 1: About the Queued Interaction (Java API) Scope Of Use

• A set of code examples that exercise some important features of the API,
delivered in .zip and .tar.gz format on the documentation CD. For
details, see “About the Code Examples” on page 23.

• Open Media Interaction Application Blocks for Java, available on the
product CD, include application blocks to develop a QIL application. For
further details, refer to the Open Media Interaction SDK 7.2 Application
Blocks Guide.

Scope Of Use
The typical usage scenarios for the Queued Interaction (Java API) include:
• Enabling connections to Genesys servers, using the Open Media Commons

library. Connection services involve the following components:
Interaction Server
Configuration Layer

• Getting overall configuration information:
Queues that have a strategy
Business attributes

• Monitoring:
Start monitoring a queue.
Stop monitoring a queue.
Listen for changes to queues—status and interaction activity.
Listen for changes to interactions—status and properties.

• Ad’Hoc management features:
Manage interactions (pull interactions, place an interaction in a queue,
stop processing an interaction).
Modify interaction properties.
Get interactions through SQL queries.

Architecture
The Queued Interaction (Java API) is part of the 7.6 Open Media Interaction
SDKs. It works with the Open Media Commons library to manage connections
to the Genesys Framework and Genesys servers, as shown in Figure 1.

Java—Developer’s Guide 17

Chapter 1: About the Queued Interaction (Java API) Architecture

Figure 1: Architectural Overview

The QIL (Queued Interaction Layer) (Java API) exposes objects—such as
BusinessAttribute, ServiceInfo, and QILQueue—as interfaces that provide
access to information available through the Configuration Layer and
Interaction Server.
The QIL library core is responsible for maintaining TCP/IP connections to
servers, for maintaining the context, and for consolidating the data. The core
also manages the state of the objects you use in your applications. You can
listen to QIL events, which will notify your application of changes in the state
of these objects.

Interfaces to Core Objects
You do not access the core objects of the Queued Interaction (Java API)
directly. Rather, you get interfaces on them using the QILFactory or another
QIL interface.
Your application uses the QILFactory interface to initialize, establish
connections, and access the internal core factory object. The QILFactory object
is a singleton.
Because of its singleton design, only one instance of the core factory object
exists at runtime. All of the QILFactory interfaces in your application refer to
this single object.

Application Development Design
The QIL library is designed to work across any network that provides TCP/IP
access to Genesys servers.
If you use the Queued Interaction (Java API) to develop a client application—
for example, a stand-alone desktop application—the QIL library runs in the
same JVM as the client application code, GUI, and other related processes.

Ixn Server

Configuration
Layer

Genesys Framework

Genesys Servers

Queued
Application

QIL

18 Queued Interaction SDK 7.6

Chapter 1: About the Queued Interaction (Java API) Architecture

The Java client instantiates the QIL library, which establishes connections to
the Genesys servers, as shown in Figure 2.

Figure 2: Client Architecture Design

If you employ the QIL library to develop a server application, you can use one
of two options:
• The classic server model, in which the application manages network

connections, making itself available on a TCP port.
• The web server model, in which the QIL library is embedded in a web

container such as Tomcat.
If the library is loaded in a web container, a presentation servlet instantiates the
QIL library, which establishes the connections to the Genesys servers, as
shown in Figure 3 on page 18.

Figure 3: Web Server Architecture Design

Java Client

QIL API

Genesys
Servers

Interaction
Server

Configuration
Layer

Agents

Routing

HTML
page

Web
Browser

Web
Server

Servlet
Engine

QIL API

Genesys
Servers

Interaction
Server

Configuration
Layer

Agents

Routing

Java—Developer’s Guide 19

Chapter 1: About the Queued Interaction (Java API) Connectivity to Other Genesys Components

In this model, clients access the web server, which requests pages from the
web container. A presentation servlet requests data from the QIL library to
build a page according to the current states and events.

Connectivity to Other Genesys
Components

Connections to Genesys servers are maintained by the library core. There is a
mechanism through which the Queued Interaction (Java API) user can be
notified of changes in the status of the Genesys servers—namely, the loss of a
connection.

Interaction Server
Interaction Server manages interactions and queues. The QIL library core
monitors Interaction Server to obtain information about queues’ activity, that
is, added and deleted interactions. Additionally, the QIL library core provides
Ad’Hoc Management to manage interactions through Interaction Server.

Configuration Layer
The Genesys Configuration Layer stores configuration information, such as
application parameters; or object descriptions, such as queues, media types,
interaction types, and interaction subtypes.
To run a Queued Interaction (Java API) application, you must define its
application parameters in the Configuration Layer.
The QIL and Open Media Commons libraries provide full integration with
Genesys Configuration Layer objects such as QILQueue, BusinessAttribute,
and BusinessAttributeValue.

API Overview
The Queued Interaction (Java API) presents an interface for working with
queue activity by abstracting Configuration Layer objects and queue event
flow. Your client application design is largely a matter of monitoring the event
flow of various queues and presenting this information to the user. You will do
this by implementing event listeners on objects.
As you receive events that reflect changes in the state of an object, your
application should make method calls accordingly. To ensure good
performance and avoid deadlocks, listeners should only contain the bare
minimum amount of code. Any lengthy processing should be delegated to a
separate thread (see the section “Event and Listeners” on page 20).

20 Queued Interaction SDK 7.6

Chapter 1: About the Queued Interaction (Java API) API Overview

Packages
The Queued Interaction SDK 7.6 Java API Reference (open index.html in the
docs/ subdirectory of the product installation directory tree) shows that the
API comprises the following packages:
• com.genesyslab.omsdk.commons—Exposes the Open Media Commons

classes for connecting to servers, accessing connection service,s and
getting application information.

• com.genesyslab.omsdk.commons.event—Exposes classes and interfaces for
notification of connection-related events.

• com.genesyslab.omsdk.commons.exception—Exposes exceptions thrown by
Open Media Commons API methods.

• com.genesyslab.omsdk.qil—Exposes the main QIL API classes.
• com.genesyslab.omsdk.qil.events—Exposes classes and interfaces for

notification of QIL-related events.
• com.genesyslab.omsdk.qil.exception—Exposes exceptions thrown by

QIL API methods.

Event and Listeners
The QIL library core provides a push model through the Observer design
pattern. For instance, objects such as QILFactory and QILQueue implement this
pattern.
The following sections give you further details about the Observer pattern and
the event-thread implementation that Genesys recommends for QIL.

Event Push Model

This model involves sending an event on an object to a listener, which permits
each object to implement its own set of listeners and methods.
Generally, a listener declares only one method, a handle*Event() method, that
takes an event interface as an inbound parameter. The inbound event interface
is highly dependent on the original interface for which it is intended.

Threads and Listeners

QIL events are time-ordered and should be published in listeners as soon as
they occur, to ensure workflow and information consistency.
In the Open Media Commons library, events occurring for a service cannot
block events of another service.

Java—Developer’s Guide 21

Chapter 1: About the Queued Interaction (Java API) API Overview

If you want to perform a long treatment, or a treatment making calls to QIL
methods, be sure your application implements such code in a separate thread,
as illustrated in the following code snippet:

// Avoid:
public void handleXxxEvent(XxxEvent myEvent){

///...
// my treatment
///...

}

// Prefer:
public void handleXxxEvent(XxxEvent myEvent){

java.lang.Runnable treatEvent = new java.lang.Runnable() {
public void run() {

//...
// my treatment
///...

}
}
java.lang.Thread doTreatment = new java.lang.Thread(treatEvent);
doTreatment.start();

}

The above code snippet shows one example of thread implementation. You
should choose the thread implementation that best fits your application
requirements.

What’s Next
The next chapter goes into greater detail about the examples provided with this
Java API. It provides installation instructions and gives a basic explanation of
the supported features.

22 Queued Interaction SDK 7.6

Chapter 1: About the Queued Interaction (Java API) API Overview

Java—Developer’s Guide 23

Chapter

2 About the Code Examples
This chapter introduces the code examples that accompany this developer’s
guide. It presents essential design considerations and also some of the initial
tasks an application will have to carry out to use the QIL library. This chapter
contains the following sections:

Overview of the Code Examples, page 23
Installing the Code Examples, page 24
Introducing the Queued Interaction Code Examples, page 25
Open Media Commons, page 28
Queued Interaction (Java API), page 31

Overview of the Code Examples
All examples are Java client applications that integrate a specific set of the
features provided with QIL.
• OpenMediaSdkData—reads the MediaSDK.properties file, which contains

connection data.
• OpenMediaSdkGUI—provides a unified graphical user interface for the

examples.
• OpenMediaSdkTableModel—provides a table model for OpenMediaSdkGui.
• SimpleConnector—establishes connections to servers, based on information

contained in OpenMediaSDKData. This example shows you how to connect
to servers, using the Open Media Commons library.

• SimpleService—displays and monitors connections using the Open Media
Commons library.

• SimpleMonitorQueue—extends SimpleService and manages queue
monitoring.

• SimpleMonitorInteraction—extends SimpleService and manages
interaction monitoring for monitored queues.

24 Queued Interaction SDK 7.6

Chapter 2: About the Code Examples Installing the Code Examples

• SimpleSupervisor—extends SimpleService and provides additional ad’ hoc
features.

• SimpleQueueAlarm—monitors a queue and sends an alarm depending on the
number of interactions available in the queue.

• MultipleAlarm—monitors all queues, displays the queues’ activity and
fires alarms according to the number of interactions available in queues.

Installing the Code Examples
In order to develop applications with the Queued Interaction (Java API), you
will need a compiler, such as the one delivered in the Java 2 Standard Edition
(J2SE) SDK. It must conform to release 1.4.2 or 1.5.
In this guide, JDK 1.4.2 from Sun Microsystems was used to compile and run
the code examples.
Before you install and use the examples, install the Queued Interaction SDK
Library. Refer to Interaction SDK 7.6 Java Deployment Guide for further
details.
Then, set the following environment variables:
• Specify all of the Queued Interaction (JAva API).jar files in the CLASSPATH

environment variable.
• Specify the location of the Java Runtime Environment in the JAVA_HOME

environment variable.

Source-Code Examples
The source code for the examples is contained on the Genesys Documentation
CD. When you expand the sdk_exmpl_ixn_java-queued archive file containing
the code examples, you will find the following directory structure:
• The top-level directory contains the following files:

README.html provides instructions for compiling and running the
examples.
compile.sh and compile.bat are shell scripts (for Unix and for
Windows) that, with a little editing, you can use to compile the
examples. They take a single argument, which is the name of the
example you want to compile (without the .java extension).
go.sh and go.bat are shell scripts (for Unix and for Windows) that,
with a little editing, you can use to run the compiled examples. They
take a single argument, which is the name of the compiled class you
want to run.
an OpenMediaSDK.properties file (used by the OpenMediaSdkData
class in OpenMediaSdkData.java).

• Java class files are stored in the classes/ directory as you compile them.

Java—Developer’s Guide 25

Chapter 2: About the Code Examples Introducing the Queued Interaction Code Examples

• Source files are stored in the queued/sdk/java/examples/ directory.
• There is also a doc/ directory containing Javadoc comments for each of the

examples.

Using the Code Examples
The examples are designed to run with the Genesys Configuration Layer and
Interaction Server.
For the examples provided with this document to work, they need valid
configuration data, including connections to servers and configuration objects
such as queues and business attributes (media type, interaction type, subtype,
and so on.)
For configuration details, see the Interaction SDK Java 7.6 Deployment Guide.

Introducing the Queued Interaction Code
Examples

These code examples were designed to be interactive and to isolate API-related
code from presentation-related code as much as possible. This design should
make it easier for you to learn the functionality of the Queued Interaction (Java
API).
In order to isolate the API code, separate classes have been set up to read
properties information and to create the application’s graphical user interface,
as shown in Figure 4 on page 26. As you are learning the API functionality,
you can ignore the OpenMediaSdkData, OpenMediaSDKGUI, and AlarmGUI classes.
In 7.6, code examples include some of the Open Media Interaction Application
Blocks for Java, which present best practices for the Queued Interaction (Java
API) and the Media Interaction (Java API). All the examples are built on top of
the SimpleConnector class that includes the ConnectorQIL application block and
will be explained in the next section.
All the code examples that inherit the SimpleService class are explained in the
next chapter and demonstrate Queued Interaction (Java API) features, such as
monitoring service status, monitoring queues, monitoring interactions, and so
on.
The SimpleQueueAlarm and the MultipleAlarm code examples are additional
examples that show queue alarm scenarii.

26 Queued Interaction SDK 7.6

Chapter 2: About the Code Examples Introducing the Queued Interaction Code Examples

Figure 4: Architectural Overview of the Queued Interaction Examples

Figure 5 shows the user interface for the code examples that inherit
SimpleService. The window title indicates the name of the runned example,
SimpleSupervisor. As you can see, some components of the window have a
light yellow background. This shows you which section of the GUI is active
for the example you are working on.

OMSDKConnector
connector;

SimpleConnector
SimpleService

OpenMediaSdkGui

OpenMediaSdkData

OpenMediaSdk
TableModel

No API-related
code

Gets connection
data

SimpleQueueAlarm

No GUI

SimpleMonitorQueue

SimpleMonitor
Interaction

SimpleSupervisor

MultipleAlarm AlarmGui

Java—Developer’s Guide 27

Chapter 2: About the Code Examples Introducing the Queued Interaction Code Examples

Figure 5: User Interface for Runnable Examples

The Queues and Queues Information panels at the top of the user interface
display queue information available through the SimpleMonitorQueue code
example. The center panel presents the list of interactions if the queue selected
in the Queues list is monitored.
Then, there are two tabbed pane. The main tab shows Services status and
includes controls for the bottom log panel. Radio buttons allow you to control
the display of the event messages that appear in the bottom pane of the user
interface. The examples generate service and queue events. Using the radio
buttons, you can display any of them or none of them. You can also determine
how much information you want displayed for each type of log event.

28 Queued Interaction SDK 7.6

Chapter 2: About the Code Examples Open Media Commons

In order to make the event messages easier to tell apart, they have been
assigned their own colors. For instance, queue status events appear in green, as
shown in Figure 5.
The Monitoring tab provides the user with monitoring and supervisor features
for Ad’Hoc Management. Depending on the code example that you run
(SimpleMonitorQueue, SimpleMonitorInteraction, or SimpleSupervisor)
different buttons are activated.
If you have comments on these examples, please contact Genesys. Information
on how to contact Genesys is provided at the end of the preface, in section
“Making Comments on This Document” on page 13.

Open Media Commons
The Open Media Commons library includes all of the components required to
connect to the Genesys servers. This section discusses the contents of the Open
Media Commons library, including essential API connection features needed
for every application.
The discussion refers to the SimpleConnector.java example in the
sdk_exmpl_ixn_java-queued/queued/sdk/java/examples directory. This
example is not a stand-alone application: the example classes use it to handle
all of its connection-related tasks.
Before running the examples, be sure to edit the OpenMediaSDK.properties file
to specify the correct data in your Configuration Layer (host, port, application
name, and so on.) You will also need to compile the Open Media Interaction
Applications Blocks for Java and the other .java files in addition to compiling
SimpleService.java.
Every application, whether client or server, must use the OMSDKConnector class,
passing correct configuration data arguments. The ConnectorQIL application
block is in charge of this task and returns a reference to the QILFactory.
The remainder of this section focuses mostly on classes and interfaces of the
com.genesyslab.omsdk.commons.* packages.

Java—Developer’s Guide 29

Chapter 2: About the Code Examples Open Media Commons

Connection
Every QIL application must use the OMSDKConnector class to initialize the Open
Media Commons library. To do this, the application must pass in the valid
configuration data.
To make connections possible and start the Open Media Commons library,
your application will need to do two basic things:
• Set initialization parameters.
• Initialize the library.
To set initialization parameters, you need to create and fill in an instance of
InitializationParameters. Before doing that, you must set or obtain the
following minimum configuration data:
• Configuration Layer host name.
• Configuration Layer port.
• Reconnection period.
• Maximum number of reconnection attempts.
In the ConnectorQIL application block, this information is passed on to the
connect() method.

InitializationParameters initParams = new InitializationParameters(
 primaryHost,
 primaryPort,
 backupHost,
 backupPort,
 applicationName,
 reconnectionPeriod,
 reconnectionAttempts);

Then, to properly fill in this object, you need to specify the correct list of
services that your application will use. Therefore, you must get an
InitializationServices instance by calling the static
QILFactory.getInitializationServices() method. The returned object
contains all the services you need and you can add it to your
InitializationParameters object, as shown here:

initParams.addInitializationServices(
 QILFactory.getInitializationServices());
OMSDKConnector.initialize(initParams);

30 Queued Interaction SDK 7.6

Chapter 2: About the Code Examples Open Media Commons

Once you have initialized the Open Media Commons library through the
OMSDKConnector interface, you can initialize the QILFactory singleton.

QILInitializationParameters config = new QILInitializationParameters();
QILFactory.initialize(config);

Now you are ready to use the QIL library.

Services
Connections are represented as services available through the OMSDKConnector
interface. After you have connected, your application uses the features of these
services to monitor the state of these connections and take into account
possible disconnections.

Types of Services

Service features are available for several types of services—see ServiceType
for further details:
• CONFIGURATION—Connection to the Configuration Layer. This connection

lets your application access configuration information.
• INTERACTION_SERVER—Connection to Interaction Server. This connection

lets your application monitor queues.

Service Interfaces

The OMSDKConnector interface is the entry point to the service features:
• It accesses each ServiceInfo instance that associates a ServiceStatus with

a ServiceType.
• It lets your application associate a ServiceListener with a service type, in

order to track status changes, which are propagated in ServiceEvent events.
For further details about interfaces, see the Queued Interaction SDK 7.6 Java
API Reference.
The SimpleService example demonstrates the use of these interfaces. See
“SimpleService” on page 37.

Java—Developer’s Guide 31

Chapter 2: About the Code Examples Queued Interaction (Java API)

Queued Interaction (Java API)
Queued Interaction (Java API) includes all of the components you will use to
monitor queues. This section discusses the main features available through the
API, including the QIL initialization needed for every application.
This section will focus on the classes and interfaces of the
com.genesyslab.omsdk.qil.* packages.

QILFactory
QILFactory is the entry point to Queued Interaction (Java API). You need this
interface to initialize the library so you can access the other QIL interfaces.
Before initializing the QIL library, you must enable connections to servers with
the OMSDKConnector class. See “Connection” on page 29 for further details.
After you have connected, the initialization is straightforward, as shown in this
code snippet.

QILFactory.initialize(new QILInitializationParameters());

Then, you must call the static QILFactory.getQILFactory() method to get a
reference on the QILFactory to access the main QIL interfaces—for instance,
QILQueue and BusinessAttribute.

Configuration Data
After your application has connected, the QIL configuration features give you
access to the Configuration Layer data for this application’s tenant, such as:
• Application information.
• Business attributes:

Media types defined in the Media Type section.
Interaction types defined in the Interaction Type section.
Interaction subtypes defined in the Interaction Subtype section.

Business Attributes

The interfaces related to business attributes defined for the application’s tenant
include:
• BusinessAttribute—Metadata for a business attribute’s type.
• BusinessAttributeValue—A value for a business attribute’s type.

32 Queued Interaction SDK 7.6

Chapter 2: About the Code Examples Queued Interaction (Java API)

The BusinessAttribute interface defines metadata for information concerning
interactions. The QILFactory interface can access three types of business
attributes defined in the BusinessAttributeType class:
• MEDIA_TYPE—Business attribute for media types.
• INTERACTION_TYPE—Business attribute for interaction types.
• INTERACTION_SUBTYPE—Business attribute for interaction subtypes.
To get a business attribute, use a method of your QILFactory—for instance, the
QILFactory.getBusinessAttribute().
Each business attribute contains a set of BusinessAttributeValue interfaces.
Each BusinessAttributeValue describes a value characterized by the parent
BusinessAttribute.
If your application handles interactions, use business attributes to display more
information about these interactions. Each QILInteraction instance contains a
value name for each business attribute type.
You can access the corresponding BusinessAttributeValue (if any) as shown in
the following code snippet:

//Getting the media type name of a QILInteraction interface
ip.addInitializationServices(initSrvForQIL);
String mediaTypeName = myQILInteraction.getMediaType();
BusinessAttribute mediaTypes = QILFactory.getQILFactory().getMediaTypes();
BusinessAttributeValue mediaTypeValue = mediaTypes.getValue(mediaTypeName);

Queues
The main interface for dealing with queues is QILQueue. You can access it from
one of the QILFactory methods.
If the queue monitoring status is QILQueueMonitorStatus.MONITORED, it means
you can get events for interaction activity depending on which listeners you
add to the QILQueue interface:
• QILQueueContentChangedEvent events, provided through the

QILQueueListener, concern interactions added to or deleted from the
QILQueue.

• QILInteractionEvent events, provided through the
QILInteractionListener, concern status and property changes in
interactions.

These events let your application access the QILInteraction objects that
contain detailed information about an interaction. For further details, see the
Queued Interaction SDK 7.6 Java API Reference.
The SimpleMonitorQueue, SimpleMonitorInteraction, SimpleQueueAlarm, and
MultipleAlarm examples demonstrate the concurrent use of QILQueue,
QILQueueListener, and QILInteractionListener interfaces. See Chapter 3 on
page 35 and Chapter 4 on page 55.

Java—Developer’s Guide 33

Chapter 2: About the Code Examples Queued Interaction (Java API)

Ad’Hoc Management
First, to access Ad’Hoc Management features, your application must be in
supervisor mode. Switch to supervisor mode by calling the
QILFactory.changeOperationalMode() method, as shown in the following
code snippet:

try {
mQILFactory.changeOperationalMode(

QILOperationalMode.SUPERVISOR_MODE);
} catch (QILUnsuccessfulModeChangeException e) {

e.printStackTrace();
System.out.println("Cannot change operation mode " + e);

}

By default, QIL is started in reporting mode. To set supervisor mode at
application startup, change the operational mode before you initialize the
factory, as shown here:

QILInitializationParameters config = new
QILInitializationParameters();
config.setOperationalMode(QILOperationalMode.SUPERVISOR_MODE);
QILFactory.initialize(config);

Manage Interactions

To manage interactions, you need an instance of the QILInteractionManager
interface, that you retrieve with a single call to the
QILFactory.getInteractionManager() method, as shown here:

QILInteractionManager interactionManager = mQILFactory.getInteractionManager();

Then, to manage an interaction or modify its properties, your application has to
become its owner. You can either:
• Pull the interaction. In this case, place it into a queue, or leave it if you no

longer need to move it.
• Lock the interaction, process the changes, and unlock the interaction to

make it available for agents.
Refer to the Queued Interaction SDK 7.6 Java API Reference for further
details about the QILInteractionManager interface.

Get Interactions Through SQL Queries

The QILQueue interface provides the synchronous getInteractionsByQuery()
method and the asynchronous asyncGetInteractionsByQuery() method to
retrieve interactions by SQL queries.

34 Queued Interaction SDK 7.6

Chapter 2: About the Code Examples Queued Interaction (Java API)

The following code snippet shows a synchronous SQL query.

QILInteractionQueryBySQL query = new QILInteractionQueryBySQL();
query.setSqlCriteria(new StringBuffer().append

("id = \"").append(myIxnID).append("\"").toString());
QILInteractionList list = queue.getInteractionsByQuery(query,
false);

The returned InteractionList instance contains IDs for the QILInteraction
objects to be retrieved.

Note: The options defined in the Interaction Server limits the maximum
number of returned IDs. Refer to the Multimedia 7.6 Deployment
Guide for further details.

What’s Next
The next chapter will go in further details about the examples provided with
this SDK. It gives an explanation of how to use QIL to listen to connections
and monitor queues.

Java—Developer’s Guide 35

Chapter

3 Feature Examples
This chapter explains four examples, SimpleService.java,
SimpleMonitorQueue.java,SimpleMonitorInteraction.java, and
SimpleSupervisor.java.
This chapter comprises the following sections:

Introduction, page 35
More Application Essentials, page 36
SimpleService, page 37
SimpleMonitorQueue, page 40
SimpleMonitorInteraction, page 46
SimpleSupervisor, page 51

Introduction
To follow the discussion in this chapter, you will need the Queued Interaction
SDK 7.6 Java API Reference, which is located in the doc/ subdirectory under
the Queued Interaction product installation directory, and the source code for
the SimpleService.java, SimpleMonitorQueue.java,
SimpleMonitorInteraction.java, and SimpleSupervisor examples. Refer
to the discussion in Chapter 2,“About the Code Examples” for more
information on how to use the examples.
This set of code examples uses Open Media Interaction Java Application
Blocks, according to the following principles:
• Instantiating the application block to use it as a regular class.
• Using parts of the application block by copying and pasting its source code

into your application.
• Extending the application block to fulfill your needs.
For further details about the application blocks used in these code examples,
refer to the javadoc delivered in the doc/ subdirectory of their source code.

36 Queued Interaction SDK 7.6

Chapter 3: Feature Examples More Application Essentials

More Application Essentials
Now that you have been introduced to the Queued Interaction (Java API), it is
time to outline the steps you will need to take to work with its events and
objects. There are six basic things you will need to do in your QIL
applications:
• Connect to servers. The examples use the SimpleConnector class to do this,

because, as explained earlier, it includes the ConnectorQIL application block:

SimpleConnector connector = new SimpleConnector();

See “Open Media Commons” on page 28 for further details.
• Implement a listener from among those provided by QIL. The examples

use a ServiceListener for listening to service changes and a
QILQueueListener for listening to queues, and a QILInteractionListener for
listening to interactions. Here is how SimpleService implements a
ServiceListener:

public class SimpleService implements ServiceListener {

• Set up the GUI components tied to QIL functions. The examples have a
linkWidgetsToGui() method that does this.

• Add event-handling code to the appropriate QIL event handler. The
examples demonstrate the use of the
ServiceListener.handleServiceEvent() and
QILQueueListener.handleQueueEvent() methods.

• Register your application for events on the object that your listener refers
to. For instance, the SimpleMonitorQueue example uses a QILQueueListener,
so it uses this method call to register with the QILQueue object:

queue.addQueueListener(this);

• Synchronize the user interface with the state of the QIL objects referred to
by your application. The examples have several methods for this, including
setQueueWidgets() and handleQueueSelection().

The examples have been designed to make these steps stand out so that you
can quickly learn to write your own real-world applications. Now it’s time to
see how they are implemented in the SimpleService example.

Java—Developer’s Guide 37

Chapter 3: Feature Examples SimpleService

SimpleService
The SimpleService program provides a GUI-based desktop application that
displays service status and service events in real-time. These tasks use
ServiceEvent and correspond to the Main tab of the user interface presented on
page 27 and shown again in Figure 6.

Figure 6: Select a Trace Level with SimpleService

This section will focus on the API features for working with ServiceEvent
events. Here is how SimpleService carries out the six steps to writing a QIL
application.

Implement a Listener
This is a simple step, which is accomplished in the class declaration:

public class SimpleService implements ServiceListener {

SimpleService uses ServiceListener because it can handle the ServiceEvent
events that this example uses to update the Services table.

Connect to Servers
As explained earlier, the example uses the SimpleConnector class to establish
the all-important connection with the Genesys servers and initialize the
OMSDKConnector. For more information on how this is done, you can refer to
“Open Media Commons” on page 28. For the purposes of this example, here is
all you need to do in the constructor:

SimpleConnector connector = new SimpleConnector();

Set Up the GUI Components
The SimpleService constructor calls the linkWidgetsToGui() method which
uses the connection.qilFactory instance to fill in the Services table.
The method gets a ServiceInfo object for each ServiceType enumerated value
used by this example, that is, ServiceType.CONFIGURATION and

38 Queued Interaction SDK 7.6

Chapter 3: Feature Examples SimpleService

ServiceType.INTERACTION_SERVER. Then it calls the
OpenMediaSdkGui.setService() method to add the service to the table, as
shown in the following code snippet:

// Getting a ServiceInfo interface
// for the Configuration service
ServiceInfo srv = connection.connector.getServiceInfo(ServiceType.CONFIGURATION);

if(srv != null)
sdkGui.setService(srv.getType().toString(), srv.getStatus().toString());

Register Your Application
The next step is to register your application so it can receive the events you
will need to work with the services. You register the listener on each
connection service you need to listen to.
In this case, the example registers for both the interaction and the configuration
services so that the Services table will be updated.
This is done by linkWidgetsToGui() after getting each available service:

try {
//Getting service information
//...
//Registering for this service
//THIS IS AN IMPORTANT STEP:
OMSDKConnector.addServiceListener(this,ServiceType.INTERACTION_SERVER);

} catch (Exception exception) {
 exception.printStackTrace();
}

After registering, if the services change, the QIL library gets a ServiceEvent
object and calls the handleServiceEvent() method implemented in this
example.

Add Event-Handling Code
Classes implementing the ServiceListener interface must include the
handleServiceEvent() method. As Queued Interaction (Java API) is used for
publishing event, you do not implement extended processing directly in this
event handler: You do it in a thread. For more information, see “Threads and
Listeners” on page 20.
SimpleService uses the ServiceEventThread class to process ServiceEvent, as
shown here.

public void handleServiceEvent(ServiceEvent event) {
ServiceEventThread p = new ServiceEventThread(event);
p.start();

Java—Developer’s Guide 39

Chapter 3: Feature Examples SimpleService

}

Processing ServiceEvents is performed in the ServiceEventThread.run()
method. Most of the code in this method is for writing messages to the log
panel at the bottom of the SimpleService user interface. Since SimpleService
only needs to update a line in the Services table when a service event occurs,
all the GUI synchronization is done there:

ServiceInfo service = event.getServiceInfo();
sdkGui.setService(service.getType().toString(),

service.getStatus().toString());

The next example will have more complicated event-handling code, but for
this example, this is all you have to do for your event handlers.

Wrapping Up
If you can master the preceding six steps, you will have the foundation for
writing your own QIL applications. However, there is also some code in the
SimpleService constructor that you might be curious about. In order to make it
easier to understand this example—and the other examples—here is a brief
explanation of how the SimpleService() constructor performs the setup tasks
for the SimpleService object.

Set Example Type

The first statement calls the setExampleType() method, which sets the value of
a field that will tell the GUI which example is being executed.

Connect to QIL and Make Configuration Data Available

Next, a new instance of SimpleConnector is created. This class uses an
OpenMediaSDKData instance to read the configuration data from
OpenMediaSDK.properties and connects to the servers, as described earlier.

connection = new SimpleConnector();

Create and Link to the GUI

At this point, the constructor calls OpenMediaSdkGui, which creates the
graphical user interface. With the GUI components created, it is possible to
link them to actions that affect QIL objects. This is done with a call to the
linkWidgetsToGui() method. As explained above, this method also includes
the statement that registers the application to receive events:
Finally, SimpleService adds its Connection attribute as a WindowListener to the
OpenMediaSdkGui attribute. If the user closes the OpenMediaSdkGui window, this
object calls the windowClosing() method of the connection filed that releases

40 Queued Interaction SDK 7.6

Chapter 3: Feature Examples SimpleMonitorQueue

the QIL library and disconnects by releasing the OMSDKConnector. This is done
when setting properties for the GUI main frame.

sdkGui.mainGuiWindow.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_
CLOSE);
sdkGui.mainGuiWindow.addWindowListener(connection);
sdkGui.mainGuiWindow.pack();
sdkGui.mainGuiWindow.setVisible(true);

About the User Interface
Now that you understand the basics of the SimpleService application, you can
start running it in your environment. As you do so, you will notice that you are
receiving event messages in the log panel at the bottom of the application
window, only when a disconnection occurs. The user interface is designed to
make it easy for you to track these messages by giving each type its own color.
The ServiceEvent messages are blue and errors have red messages.

SimpleMonitorQueue
The SimpleMonitorQueue example extends the SimpleService example. It
activates a GUI panel that displays a list of queues in real-time and lets you
start and stop monitoring these queues. These tasks use
QILQueueMonitorStatusEvent and QILQueueContentChangedEvent events for
which you can select a trace level, as described in Chapter 2, “About the Code
Examples,” on page 21 and shown again in Figure 7.

Java—Developer’s Guide 41

Chapter 3: Feature Examples SimpleMonitorQueue

Figure 7: Simple Monitor Queue

As shown in the above figure, the example lets the user select a queue in the
Queues table and displays the queue’s annex in the Queue Information tree.
Start and Stop buttons update the user interface accordingly with the Monitor
status displayed in the table. Monitor queues are highlighted in light yellow.
As you might expect, the application updates when the application receives a
queue event. Now that you have an idea of what this example does, here is a
description of how it carries out the steps in writing a QIL application.

42 Queued Interaction SDK 7.6

Chapter 3: Feature Examples SimpleMonitorQueue

Implement a Listener
SimpleMonitorQueue is a subclass of SimpleService. Because of this, it already
implements the ServiceListener interface. In order to handle queue events, it
implements the QILQueueListener interface. Here is the class declaration for
SimpleMonitorQueue:

public class SimpleMonitorQueue extends SimpleService implements
QILQueueListener{

Set up Button Actions
Since SimpleMonitorQueue needs to use the SimpleService widgets, the first
thing done by the linkWidgetsToGui() method is call the superclass’s method:

super.linkWidgetsToGui();

Now SimpleMonitorQueue can get queue information to fill in the Queues table.
To do that, it calls the QILFactory.getAllQueues() and adds a line to the table
for each available queue:

Iterator itQueues = QILFactory.getQILFactory().getAllQueues().iterator();
while(itQueues.hasNext())
{

QILQueue queue = (QILQueue) itQueues.next();
sdkGui.setQueue(queue.getID(), queue.getStatus().toString(), queue.isMonitored());
//...

}

Now SimpleMonitorQueue can link to the GUI buttons and add button actions to
them. The code to carry out these actions is handled by methods which are
copied/pasted from application blocks, as shown in these examples for the
Start button:

startButton = sdkGui.startButton;
startButton.setAction(new AbstractAction("Start") {

public void actionPerformed(ActionEvent actionEvent) {
if(selectedQueueName != null)
{

startMonitoring(selectedQueueName);
}

}
});

/// Source from the StartMonitoringQueue Application Block
public void startMonitoring(String queueName) {

try {

Java—Developer’s Guide 43

Chapter 3: Feature Examples SimpleMonitorQueue

QILFactory.getQILFactory().getQueue(queueName).startMonitoring();
} catch (QILUninitializedException __e) {

sdkGui.writeLogMessage("QILFactory is not initialized.+__e.toString(),
OpenMediaSdkGui.errorStyle);

} catch (QILRequestFailedException __e) {
sdkGui.writeLogMessage("Connection to Configuration Server
may be lost. "+__e.toString(), OpenMediaSdkGui.errorStyle);

}
}

Register Your Application
The next step is to register your application so it can receive the events you
will need to work with queues. You register the listener on each queue.
This is done by linkWidgetsToGui() when filling in the Queues table at startup.
This method includes a copy of the GetQueue application block :

/* Source from the GetQueue Application Block, refer to the getAllQueues() method */
try{

Collection queues = QILFactory.getQILFactory().getAllQueues();
queues.iterator();
for (Iterator iterator = queues.iterator(); iterator.hasNext();) {

QILQueue queue = (QILQueue) iterator.next();
sdkGui.setQueue(queue.getID(), queue.isMonitored(),new Integer(0).toString());
ixnPerQueue.put(queue.getID(), new Integer(0));
queue.addQueueListener(this);

}
}
catch (QILRequestFailedException __e)
{

sdkGui.writeLogMessage("Request failed. Connection to Configuration Server may be
lost. "+__e.toString(), OpenMediaSdkGui.errorStyle);

}

After registering, if a queue changes, the QIL library gets a QILQueueEvent
object and calls the handleQueueEvent() method implemented in this example.

Add Event-Handling Code
As Queued Interaction (Java API) is used for publishing events, you do not
implement extended processing directly in this event handler: You do it in a
thread. For more information, see “Threads and Listeners” on page 20.
SimpleMonitorQueue uses the QueueEventThread class to process QILQueueEvent
in the handleQueueEvent() method, as shown here.

public void handleQueueEvent(QILQueueEvent event)
{

44 Queued Interaction SDK 7.6

Chapter 3: Feature Examples SimpleMonitorQueue

QueueEventThread p = new QueueEventThread(event);
p.start();

}

QILQueueEvent events can be cast to QILQueueMonitorStatusEvent or
QILQueueContentChangedEvent, as shown in the MyQILQueueListener
application block. The example synchronizes the GUI by calling the
setQueueWidget() method whenever it receives any
QILQueueMonitorStatusEvent events. It also indicates changes in status by
writing to the log panel, as shown in this code snippet:

/////////////// Source from the MyQILQueueListener Application Block /////////////
public void run()
{

if(event instanceof QILQueueMonitorStatusEvent)
{

//Getting the event
QILQueueMonitorStatusEvent statusEvent = (QILQueueMonitorStatusEvent)event;
QILQueue queue = statusEvent.getQueue();
String queueName = queue.getID();
//Updating GUI
setQueueWidgets(queueName);

//Creating a log message
//...

}

For further details about synchronizing with the user interface, see
“Synchronize the User Interface” on page 45.
Most of this method’s code for handling QILQueueContentChangedEvent events
is for writing messages to the log panel at the bottom of the
SimpleMonitorQueue user interface.
The message built by this method lists all interaction activity in the queue, that
is, all of the interactions that have been added and removed, as shown here:

else if(event instanceof QILQueueContentChangedEvent)
{

QILQueueContentChangedEvent changeEvent = (QILQueueContentChangedEvent)event;
QILQueue queue = changeEvent.getQueue();
String detailedLogMessage = queue.getID().toString();
try{

//Getting Added Interactions
Iterator addedIxns = changeEvent.getAddedInteractions().iterator();
while (addedIxns.hasNext())
{

QILInteraction ixn = (QILInteraction) addedIxns.next();
detailedLogMessage+="\nAdded "+ixn.getID();

}

Java—Developer’s Guide 45

Chapter 3: Feature Examples SimpleMonitorQueue

//Getting Removed Interactions
Iterator deletedIxns = changeEvent.getRemovedInteractions().iterator();
while (deletedIxns.hasNext())
{

QILInteraction ixn = (QILInteraction) deletedIxns.next();
detailedLogMessage+="\nRemoved "+ixn.getID();

}
sdkGui.writeLogMessage(detailedLogMessage,OpenMediaSdkGui.interactionEventStyle);
}catch(Exception __e)
{

sdkGui.writeLogMessage("ContentChange: "+__e.getMessage(),
OpenMediaSdkGui.errorStyle);

}
}

}

Synchronize the User Interface
The example uses the setQueueWidgets() methods to synchronize the user
interface widgets with the queue events received.
This method uses the QILQueue interface methods to update the information
displayed, that is:
• The queue’s status in the Queues table.
• And, if the queue is selected in the Queues table:

The Queue information tree.
The Start and Stop buttons to be enabled or disabled.

Here is the code to enable or disable Start and Stop buttons:

//Updating the Queues table
sdkGui.setQueue(queue.getID(), queue.getStatus().toString(),

queue.isMonitored());
//Updating the Annex tree and the buttons if needed
if(selectedQueue.getID().equals(queue.getID())){

sdkGui.setAnnex(selectedQueue.getAnnex());
if(selectedQueue.getStatus() == QILQueueStatus.ACTIVE)
{

if(selectedQueue.isMonitored()){
startButton.setEnabled(false);
stopButton.setEnabled(true);

} else{
startButton.setEnabled(true);
stopButton.setEnabled(false);

}
}else {

startButton.setEnabled(false);
stopButton.setEnabled(false);

}

46 Queued Interaction SDK 7.6

Chapter 3: Feature Examples SimpleMonitorInteraction

}

Wrapping up
The SimpleMonitorQueue example includes a SelectedQueueListener class that
implements ListSelectionListener. This listener enables you to handle line
selection in a table by calling the valueChanged() method.
SelectQueueListener implements this method and makes a call to the
SimpleMonitorQueue.handleQueueSelection() method. This method
synchronizes the user interface with the current state of the selected queue, as
shown here:

String queueName = sdkGui.getQueueNameAt(selectedRow);
try{

selectedQueue = QILFactory.getQILFactory().getQueue(queueName);
setQueueWidgets(selectedQueue);

}catch(Exception __e){
sdkGui.writeLogMessage(__e.toString(),

OpenMediaSdkGui.errorStyle);
}

At startup, the SimpleMonitorQueue() constructor registers this listener on the
Queues table by calling the OpenMediaSdkGui.activateQueueRowSelection()
method.

public SimpleMonitorQueue(String windowTitle) {
super(windowTitle);
//Register a ListSelectionListener on the Queues table
sdkGui.activateQueueRowSelection(

new SelectedQueueListener(this));
}

SimpleMonitorInteraction
The SimpleMonitorInteraction example extends the SimpleMonitorQueue
example and implements the QILInteractionListener interface. It activates a
GUI panel that displays the interactions of a monitored queue in real-time.
These tasks use QILQueueMonitorStatusEvent, QILQueueContentChangedEvent,
and QILInteractionEvent events to update the interactions’ list for a selected
queue, as shown in Figure 8.

Java—Developer’s Guide 47

Chapter 3: Feature Examples SimpleMonitorInteraction

Figure 8: SimpleMonitorInteraction Panels

As shown in the above figure, the example lets the user select a queue in the
Queues table. If the queue’s Monitored status is True, the Interactions table
updates and displays interaction information for this queue.
As you might expect, the Interactions table updates when the application
receives queue and interaction events. Now that you have an idea of what this
example does, here is a description of how it carries out the steps in writing
this QIL application.

Implement a Listener
SimpleMonitorInteraction is a subclass of SimpleMonitorQueue. Because of
this, it already implements the ServiceListener and the QILQueueListener
interface. In order to handle interaction events, it implements the
QILInteractionListener interface. Here is the class declaration for
SimpleMonitorInteraction:

public class SimpleMonitorInteraction extends SimpleMonitorQueue
implements QILInteractionListener {

Register Your Application
The next step is to register your application so it can receive the events you
will need to work with. The super class SimpleMonitorQueue already registers
the listener on each queue for managing queue events.

48 Queued Interaction SDK 7.6

Chapter 3: Feature Examples SimpleMonitorInteraction

To register the QILInteractionListener handler for the interactions of a queue,
you need to check whether your application is monitoring the queue.
SimpleMonitorInteraction overloads the
QILQueueListener.handleQueueEvent() method, to register and unregister for
interactions on QILQueueMonitorStatusEvent events, as explained in the
following section.

Add Event-Handling Code
Because SimpleMonitorInteraction inherits SimpleMonitorQueue, it already
implements the QILQueueListener.handleQueueEvent() method. However, to
handle interactions’ listener registration and interaction widgets’ updates, it
overloads this method and manages the QILQueueEvent events in the
QueueEventForIxnThread thread.

public void handleQueueEvent(QILQueueEvent event)
{

super.handleQueueEvent(event);
QueueEventForIxnThread p = new QueueEventForIxnThread(event,this);
p.start();

}

SimpleMonitorInteraction takes into account QILQueueMonitorStatusEvent
events to register for interactions, and QILQueueContentChangedEvent events to
update the Interactions table, because they indicate changes in the queue
content—that is, added and removed interactions. The
QueueEventForIxnThread thread uses the MyQILQueueListener application
block to process these queue events, as shown here:

class QueueEventForIxnThread extends Thread
{

QILQueueEvent event;
SimpleMonitorInteraction app;

//..
////// Source from the MyQILQueueListener Application Block /////////////
public void run()
{

if(event instanceof QILQueueMonitorStatusEvent)
{

//Getting the event
QILQueueMonitorStatusEvent statusEvent = (QILQueueMonitorStatusEvent)event;
QILQueue queue = statusEvent.getQueue();
//Updating GUI
if(statusEvent.getNewMonitorStatus() == QILQueueMonitorStatus.MONITORED)
{

queue.addInteractionListener(app);

Java—Developer’s Guide 49

Chapter 3: Feature Examples SimpleMonitorInteraction

}
else if(statusEvent.getNewMonitorStatus() ==

QILQueueMonitorStatus.NOT_MONITORED)
{

queue.removeInteractionListener(app);
sdkGui.clearInteractions(queue.getID());

}
} else if(event instanceof QILQueueContentChangedEvent)
{

QILQueueContentChangedEvent changeEvent = (QILQueueContentChangedEvent)event;
QILQueue queue = changeEvent.getQueue();
setIxnWidgets(queue.getID(), changeEvent.getAddedInteractions(),

changeEvent.getRemovedInteractions());
}

}
}

SimpleMonitorInteraction implements the
QILInteractionListener.handleInteractionEvent() method to update the
Interactions table on QILInteractionStatusChangedEvent and
QILInteractionPropertiesChangedEvent events.
It uses the InteractionEventThread thread to process interaction events, with
respect to the MyQILInteractionListener application block’s guidelines.

class InteractionEventThread extends Thread
{

QILInteractionEvent event;

public InteractionEventThread(QILInteractionEvent _event)
{

event=_event;
}
////Source from the MyQILInteractionListener Application Block /////////////
public void run()
{

QILInteraction interaction = event.getInteraction();
if (event instanceof QILInteractionStatusChangedEvent)
{

QILInteractionStatusChangedEvent eventStatusChanged =
(QILInteractionStatusChangedEvent) event;

QILInteraction ixn = eventStatusChanged.getInteraction();
// Creating a log message
//...
/// updating the table
sdkGui.setIxn(ixn.getQueue().getID(), ixn.getID(),

ixn.getMediaType().toString(),ixn.getType().toString(),
ixn.getSubtype().toString(),eventStatusChanged.getStatus().toString(),
ixn.getProperties());

} else if (event instanceof QILInteractionPropertiesChangedEvent) {

50 Queued Interaction SDK 7.6

Chapter 3: Feature Examples SimpleMonitorInteraction

QILInteractionPropertiesChangedEvent eventPropertiesChanged =
(QILInteractionPropertiesChangedEvent) event;

QILInteraction ixn = eventPropertiesChanged.getInteraction();
///.... write log message
// updating the table
sdkGui.setIxn(ixn.getQueue().getID(),ixn.getID(),

ixn.getMediaType().toString(),ixn.getType().toString(),
ixn.getSubtype().toString(),ixn.getStatus().toString(),
ixn.getProperties());

}
}

}

Synchronize the User Interface
SimpleMonitorInteraction overloads the setQueueWidgets() method to
synchronize the Interactions in queue table with the queue events received.

public void setQueueWidgets(String queueName)
{

super.setQueueWidgets(queueName);
//Updating the Interaction table
if(queueName.equals(selectedQueueName)){

this.sdkGui.switchIxnTable(queueName);
}

}

SimpleMonitorInteraction also includes the setIxnWidgets() method which
adds interactions to or remove interactions from the Interactions in queue
table.

public void setIxnWidgets(String queueName, Collection added, Collection removed){

Iterator addedIxns = added.iterator();
//Getting Added Interactions
while (addedIxns.hasNext())
{

QILInteraction ixn = (QILInteraction) addedIxns.next();
sdkGui.setIxn(queueName,ixn.getID(), ixn.getMediaType().toString(),

ixn.getType().toString(), ixn.getSubtype().toString(),
ixn.getStatus().toString(), ixn.getProperties());

}

//Getting Removed Interactions
Iterator deletedIxns = removed.iterator();
while (deletedIxns.hasNext())
{

QILInteraction ixn = (QILInteraction) deletedIxns.next();
sdkGui.removeIxn(queueName, ixn.getID());

Java—Developer’s Guide 51

Chapter 3: Feature Examples SimpleSupervisor

}
}

SimpleSupervisor
The SimpleSupervisor example extends the SimpleMonitorInteraction
example to provide Ad’Hoc features. When the user selects an interaction,
SimpleSupervisor displays its properties in the tree Properties of the
selected interaction, and enables Ad’Hoc buttons to perform actions such
as Lock, Pull, and Change properties on the selected interaction, as shown in
Figure 9.

Figure 9: SimpleSupervisor Panels

To get more information about the features associated with supervisor buttons,
refer to “Ad’Hoc Management” on page 33.

52 Queued Interaction SDK 7.6

Chapter 3: Feature Examples SimpleSupervisor

Implement a Listener
SimpleSupervisor extends SimpleMonitorInteraction and implements no
additional listener. By inheritance, SimpleSupervisor implements:
• QILServiceListener

• QILQueueListener

• QILInteractionListener

Set up Button Actions
SimpleSupervisor uses the AdHocManagement application block as a regular class
to implement the buttons of the Supervisor panel.
The AdHocManagement application block is declared as a private member of
SimpleSupervisor and it is instantiated in the constructor at the application’s
startup:

AdHocManagement adHocManager;
public SimpleSupervisor(String windowTitle) {

super(windowTitle);
//...
adHocManager = new AdHocManagement() ;
//...

}

Then, the linkWidgetsToGui() method makes call to the AdHocManagement
instance to provide button actions, as shown for the button in the following
code snippet:

lockButton.setAction(new AbstractAction("Lock") {
public void actionPerformed(ActionEvent actionEvent) {

if(selectedInteractionId!=null)
{

try {
adHocManager.lock(selectedQueueName,

selectedInteractionId,"","");
lockButton.setEnabled(false);
unlockButton.setEnabled(true);
pullButton.setEnabled(false);
stopProcessingButton.setEnabled(false);
managing = true;

} catch (QILOperationalModeRestrictionException e) {
sdkGui.writeLogMessage("Lock requested, not authorized: "

+e.getMessage(), OpenMediaSdkGui.errorStyle);
} catch (QILRequestFailedException e) {

sdkGui.writeLogMessage("Lock requested, failed: "
+e.getMessage(), OpenMediaSdkGui.errorStyle);

}
}

Java—Developer’s Guide 53

Chapter 3: Feature Examples SimpleSupervisor

}});

As you can see, you have to implement buttons’ logic to enable and disable
them accordingly.
To get more information about the features associated with supervisor buttons,
refer to “Ad’Hoc Management” on page 33.

Register Your Application
The super class SimpleMonitorQueue and SimpleMonitorInteraction already
register the listener on each queue for managing queue and interaction events.
SimpleSupervisor makes no additional registration.

Add Event-Handling Code
Because SimpleSupervisor inherits SimpleMonitorInteraction, it already
implements the QILQueueListener.handleQueueEvent() and
QILInteractionListener.handleInteractionEvent() methods.
However, to update supervisor widgets on events, it overloads these methods
and implements two threads:
• The RemovedInteractionThread thread, run in the handleQueueEvent()

method, removes interaction properties stored to manage the tree
Properties of the selected interaction on queue content changes’
events.

• The InteractionPropertiesChangedThread thread, run in the
handleInteractionEvent() method, updates the tree Properties of the
selected interaction, on interaction property changes’ events.

Wrapping up
SimpleSupervisor includes a SelectedInteractionListener class that
implements ListSelectionListener. This listener enables you to handle line
selection in a table by calling the valueChanged() method.
SelectedInteractionListener implements this method and makes a call to the
SimpleSupervisor.handleInteractionSelectionAt() method. This method
synchronizes the Supervisor panel and the tree Properties of the selected
interaction, as shown here:

try{
this.selectedInteractionId =

this.sdkGui.getInteractionNameAt(this.selectedQueueName,
selectedRow);

if(this.selectedInteractionId != null)
{

54 Queued Interaction SDK 7.6

Chapter 3: Feature Examples SimpleSupervisor

interactionIDLabel.setText("ID: "+selectedInteractionId);
sdkGui.switchPropertyTree(selectedQueueName,

selectedInteractionId);
}

}catch(Exception __e)
{

sdkGui.writeLogMessage("Interaction selection failed. "
+__e.getMessage(), OpenMediaSdkGui.errorStyle);

}

At startup, the SimpleSupervisor() constructor registers this listener on the
Interactions in queue table by calling an OpenMediaSdkGui method.

public SimpleSupervisor(String windowTitle) {
super(windowTitle);
adHocManager = new AdHocManagement() ;
sdkGui.activateIxnRowSelection(

new SelectedInteractionListener(this));
}

Java—Developer’s Guide 55

Chapter

4 Alarm Examples
This chapter explains two examples, SimpleQueueAlarm.java and
MultipleAlarm.java. These code examples use the Queued Interaction (Java
API) to notify users with queue activity, and to display alarms according to the
queues’ threshold.
This chapter comprises the following sections:

Introduction, page 55
SimpleQueueAlarm, page 55
MultipleAlarm, page 57

Introduction
To follow the discussion in this chapter, you will need the Queued Interaction
SDK 7.6 Java API Reference, which is located in the doc/ subdirectory under
the Queued Interaction (Java API) product installation directory, and the
source code for the SimpleQueueAlarm.java and MultipleAlarm.java
examples. Refer to the discussion in Chapter 2, “About the Code Examples,”
on page 23 for more information on how to use the examples.

SimpleQueueAlarm
The SimpleQueueAlarm example provides a stand-alone application that
connects to Genesys servers and monitors a queue. When a maximum number
of interactions occurs on the monitored queue, this example sends an alarm.
This application has no GUI. So fewer steps are required to make this
application work. This example has been designed to make its functional steps
stand out so that you can quickly learn to write your own real-world

56 Queued Interaction SDK 7.6

Chapter 4: Alarm Examples SimpleQueueAlarm

applications. Now it is time to see how they are implemented in the
SimpleQueueAlarm example.

Implement a Listener
This is a simple step, which is accomplished in the class declaration:

public class SimpleQueueAlarm implements QILQueueListener {

SimpleQueueAlarm uses QILQueueListener because it can handle the
QILQueueContentChangedEvent events that this example uses to monitor the
interactions’ activity in the queue.

Connect to Servers
As explained in the previous chapter, the example uses the SimpleConnector
class to establish the all-important connection with the Genesys servers and
initialize the OMSDKConnector with the ConnectorQIL application block. For
more information on how this is done, you can refer to “Open Media
Commons” on page 28. For the purposes of this example, here is all you need
to do in the constructor:

SimpleConnector connector = new SimpleConnector();

Register Your Application
The next step is to register your application so it can receive the events you
will need to work with this queue. This is done at the application’s startup, in
the SimpleQueueAlarm() constructor. It retrieves the QILQueue instance
associated with the name of the queue to be monitored. Then, it registers as the
listener on this queue. Finally, it starts monitoring the queue, as shown in the
following code snippet:

QILQueue queue = QILFactory.getQILFactory().getQueue(queueName);
queue.addQueueListener(this);
queue.startMonitoring();

After monitoring begins, if the queue changes, the QIL library gets a
QILQueueEvent object and calls the handleQueueEvent() method implemented in
this example.

Add Event-Handling Code
Classes implementing the QILQueueListener interface must include the
handleQueueEvent() method.

Java—Developer’s Guide 57

Chapter 4: Alarm Examples MultipleAlarm

Most of the code in this method handles the alarm that must be sent if the
number of interactions is greater than the alarm value. SimpleQueueAlarm takes
into account QILQueueContentChangedEvent events only, because they indicate
changes in the queue content—that is, added and removed interactions.

QILQueueContentChangedEvent changeEvent = (QILQueueContentChangedEvent)event;
nbInteractions += changeEvent.getAddedInteractions().size()

- changeEvent.getRemovedInteractions().size();

Then it tests whether or not an alarm should be sent, as shown here:

if(nbInteractions > alarm)
System.out.println(createTimeStamp()+ " !!!!!!!! Alarm !!!!!!!!!!!

More than "+alarm+" ixns in queue!");

Note: If you need to perform extended processing when your applications
receive events, do not implement this processing directly in your event
handler—do it in a thread. For more information, see “Threads and
Listeners” on page 20.

MultipleAlarm
The MultipleAlarm code example provides a GUI-based desktop application
that displays queues activity in real-time. For each queue, a process bar
monitors interactions and indicates the queue’s activity according to an
interaction threshold that the user can modify. As shown in Figure 10, the
process bar moves up in the Real-time Activity in Queues list according to its
activity.

58 Queued Interaction SDK 7.6

Chapter 4: Alarm Examples MultipleAlarm

Figure 10: MultipleAlarm at Application’s Startup

Two panels on the right upper corner enable the user to set a new interaction
threshold for all queues or for a particular queue. If a queue reaches the
interaction threshold, an alarm is fired in the log panel.
The Alarm Real-Time Information panel includes two buttons that open dialog
boxes used as history components. The first dialog box lists all the queues for
which alarms were fired, as shown in Figure 11, and the second dialog box
shows queues approaching their interaction threshold.

Java—Developer’s Guide 59

Chapter 4: Alarm Examples MultipleAlarm

Figure 11: Details about Fired Alarms

If the user selects a queue in this list, the panel below displays the current
process bar for this queue and the list of fired alarms.
MultipleAlarm registers for QILQueueEvent events to count interactions in
queues. Then, most of the code example is a matter of updating counters and
displaying this information for the user. To display information, this code
example uses the AlarmGui class which separately manages GUI layouts.

Implement a Listener
This is a simple step, which is accomplished in the class declaration:

public class SimpleQueueAlarm implements QILQueueListener {

As SimpleQueueAlarm, MultipleAlarm uses QILQueueListener because it can
handle the QILQueueContentChangedEvent events that this example uses to
monitor the interactions’ activity in monitored queues.

Connect to Servers
As explained in the previous chapter, the example uses the SimpleConnector
class to establish the all-important connection with the Genesys servers and
initialize the OMSDKConnector with the ConnectorQIL application block. For
more information on how this is done, you can refer to “Open Media
Commons” on page 28. For the purposes of this example, here is all you need
to do in the constructor:

SimpleConnector connector = new SimpleConnector();

60 Queued Interaction SDK 7.6

Chapter 4: Alarm Examples MultipleAlarm

Register Your Application
The next step is to register your application so it can receive the events you
will need to work with queues. This is done at the application’s startup by
calling the linkWidgetsToGui() method in the MultipleAlarm() constructor.
This method uses and extends the source code of the GetQueue application
block to retrieve all the available QILQueue instances, register for their
QILQueueEvent events, then start monitoring them, as shown in the code snippet
below:

public void linkWidgetsToGui()
{

queueInfo= new HashMap();
/* Source from the GetQueue Application Block, refer to the getAllQueues() method */
try{

Collection queues = QILFactory.getQILFactory().getAllQueues();
queues.iterator();
for (Iterator iterator = queues.iterator(); iterator.hasNext();) {

QILQueue queue = (QILQueue) iterator.next();
queueInfo.put (queue.getID(), new Integer[]{new Integer(0), new Integer(20)});
gui.setQueueInfo(queue.getID(), 0,0);
queue.addQueueListener(this);
queue.startMonitoring();

}
}
catch (QILRequestFailedException __e)
{

gui.writeLogMessage("Request failed. Connection to Configuration Server may be
lost. "+__e.toString(), AlarmGui.errorStyle);
}
catch (QILUninitializedException e) {

// Exception thrown if QIL Factory was not initialized
gui.writeLogMessage("Request failed. QILFactory is not initialized.

"+e.toString(), AlarmGui.errorStyle);
}

}

For each queue retrieved, MultipleAlarm stores the queue’s information in the
queueInfo map and displays this information in the GUI by calling the
AlarmGui.setQueueInfo() method.
After monitoring begins, if one of the queues changes, the QIL library creates a
QILQueueEvent object and calls the handleQueueEvent() method implemented in
this example.

Java—Developer’s Guide 61

Chapter 4: Alarm Examples MultipleAlarm

Add Event-Handling Code
As Queued Interaction (Java API) is used for publishing events, you do not
implement extended processing directly in this event handler: You do it in a
thread. For more information, see “Threads and Listeners” on page 18.
MultipleAlarm uses the QueueEventThread class to process ServiceEvent, as
shown here.

public void handleQueueEvent(QILQueueEvent event) {
QueueEventThread p = new QueueEventThread(event);
p.start();

}

Processing QueueEvents is performed in the QueueEventThread.run() method.
This method handles QILQueueContentChangedEvent events to update the
number of interactions in the queue associated with the event and calculates
the queue’s activity according to the queue’s interaction threshold (available in
the queueInfo map), as shown here.

if(event instanceof QILQueueContentChangedEvent)
{

QILQueueContentChangedEvent changeEvent = (QILQueueContentChangedEvent)event;
String queueName = event.getQueue().getID();
Integer[] infoIxns = (Integer[]) queueInfo.get(queueName);
int nbInteractions = infoIxns[0].intValue() +

changeEvent.getAddedInteractions().size()
- changeEvent.getRemovedInteractions().size();

int threshold = infoIxns[1].intValue();
infoIxns[0]= new Integer(nbInteractions);
queueInfo.put(queueName,infoIxns);
int activity = getActivity(queueName);
gui.writeLogMessage(" "+ queueName+ " content changed: "

+ nbInteractions +" ixn(s) "+ " threshold (" + threshold + ")",
AlarmGui.queueEventStyle);
gui.setQueueInfo(queueName, nbInteractions, activity);
if(activity >= 100)

gui.writeLogMessage(" !!! Alarm on "+ queueName+ ": "+ nbInteractions +" ixns for
a threshold of "+threshold +" ixns !!!", AlarmGui.errorStyle);

}

All the GUI synchronization is done there by calling the
AlarmGui.setQueueInfo() method which refreshes all the components with the
tuple (queue name, number of interactions, activity in percents).

Wrapping up
MultipleAlarm implements the ItemListener interface to listen user selection in
the Select a queue combo box. If the user selects a queue, MultipleAlarm gets

62 Queued Interaction SDK 7.6

Chapter 4: Alarm Examples MultipleAlarm

an ItemEvent event through the itemStateChanged() method. This method
retrieves information from the queueInfo map to update the Set up threshold
panel. Then, the user is able to modify the interaction threshold for this queue.

public void itemStateChanged(ItemEvent evt) {
if (evt.getStateChange() == ItemEvent.SELECTED) {

String queueName = (String) evt.getItem();
Integer[] infoIxns = (Integer[]) queueInfo.get(queueName);
int nbInteractions = infoIxns[0].intValue() ;
gui.setSelectedQueueDetails(queueName, nbInteractions,

getActivity(queueName));
this.thresholdField.setText(infoIxns[1].toString());

}
}

MultipleAlarm also includes two ListSelectionListener classes used for
listening to user selection in the dialog boxes providing details about fired
alarms and queues approaching their threshold.
AlarmListSelectionListener and WarningListSelectionListener behave
identically. These listeners enable you to handle line selection in a table by
calling the valueChanged() method. This method retrieves the name of the
selected queue, gets the corresponding information in the queueInfo map, and
finally updates the dialog box by displaying details in the accurate panel.

public void valueChanged(ListSelectionEvent evt) {
// When the user release the mouse button and completes the

selection,
// getValueIsAdjusting() becomes false
if (!evt.getValueIsAdjusting()) {

JList list = (JList)evt.getSource();
// Get all selected items
Object[] selected = list.getSelectedValues();
// Iterate all selected items
for (int i=0; i<selected.length; i++) {

String sel = (String) selected[i];
Integer[] info = (Integer[]) queueInfo.get(sel);
gui.setDetailsAboutSelectedAlarm(sel, info[0].intValue(),

getActivity(sel));
}

}
}

At startup, the MultipleAlarm() constructor creates a listener for each dialog
box, as shown here:

gui.alarmListener = new AlarmListSelectionListener();
gui.warningListener = new WarningListSelectionListener();

Java—Developer’s Guide 63

Index

A
Ad’Hoc Management28, 33, 51
ad’hoc management 19
AdHocManagement application block 52
annex. 41
application block

AdHocManagement 52
ConnectorQIL 36, 56, 59
GetQueue 43, 60
MyQILInteractionListener 49
MyQILQueueListener 44, 48
StartMonitoringQueue 42

Application Blocks 16
architecture

client . 17
server . 18

audience
defining 8

B
Business attribute 31
BusinessAttribute. 31

C
chapter summaries

defining 10
client architecture 17
commenting on this document 13
commons

connection 28, 29
configuration 31

service . 30
connection

OMSDKConnector. 28, 29
connectivity. 19
ConnectorQIL application block 36, 56, 59

D
document

conventions 10
errors, commenting on 13
version number 10

documentation24

E
event listeners20

G
GetQueue application block 43, 60

H
handle-event method 20

I
Interaction Server

service 30
interface

service feature 30

L
lock .33

M
MyQILInteractionListener application block . .49
MyQILQueueListener application block . . 44, 48

Index

64 Queued Interaction SDK 7.6

O
Observer pattern 20
OMSDKConnector28, 29
OpenMediaSdkData 25
OpenMediaSDKGUI 25

P
pull . 33

Q
QIL . 15
QILFactory 31
QILInteractionEvent 32
QILInteractionListener 36
QILQueueContentChangedEvent 32
QILQueueListener 36
queue monitoring status 32

R
release factory 39
reporting mode 33

S
server architecture 18
service

interfaces 30
type

configuration 30
Interaction Server 30

ServiceListener. 36
SimpleConnector.java sample 28
SimpleMonitorQueue.java example 40
SimpleQueueAlarm.java example 46, 55
SimpleService.java example 37
SimpleSupervisor.java example 51
StartMonitoringQueue application block . . . 42
supervisor mode 33

T
TCP/IP . 17
typographical styles 10

U
unlock . 33

V
version numbering

document 10

	Table of Contents
	Preface
	Intended Audience
	Usage Guidelines
	Chapter Summaries
	Document Conventions
	Related Resources
	Making Comments on This Document

	About the Queued Interaction (Java API)
	Overview
	Components
	Scope Of Use
	Architecture
	Interfaces to Core Objects
	Application Development Design

	Connectivity to Other Genesys Components
	Interaction Server
	Configuration Layer

	API Overview
	Packages
	Event and Listeners
	What’s Next

	About the Code Examples
	Overview of the Code Examples
	Installing the Code Examples
	Source-Code Examples
	Using the Code Examples

	Introducing the Queued Interaction Code Examples
	Open Media Commons
	Connection
	Services

	Queued Interaction (Java API)
	QILFactory
	Configuration Data
	Queues
	Ad’Hoc Management
	What’s Next

	Feature Examples
	Introduction
	More Application Essentials
	SimpleService
	Implement a Listener
	Connect to Servers
	Set Up the GUI Components
	Register Your Application
	Add Event-Handling Code
	Wrapping Up
	About the User Interface

	SimpleMonitorQueue
	Implement a Listener
	Set up Button Actions
	Register Your Application
	Add Event-Handling Code
	Synchronize the User Interface
	Wrapping up

	SimpleMonitorInteraction
	Implement a Listener
	Register Your Application
	Add Event-Handling Code
	Synchronize the User Interface

	SimpleSupervisor
	Implement a Listener
	Set up Button Actions
	Register Your Application
	Add Event-Handling Code
	Wrapping up

	Alarm Examples
	Introduction
	SimpleQueueAlarm
	Implement a Listener
	Connect to Servers
	Register Your Application
	Add Event-Handling Code

	MultipleAlarm
	Implement a Listener
	Connect to Servers
	Register Your Application
	Add Event-Handling Code
	Wrapping up

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

