
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Blue-Green Deployment Model

Docker Deployment Guide

3/31/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Blue-Green Deployment Model
• 1.1 Overview
• 1.2 The Blue-Green Deployment Process
• 1.3 Sample Blue-Green Deployment on Kubernetes

Docker Deployment Guide 2

Blue-Green Deployment Model

Warning
The following content has been deprecated and is maintained for reference only.

Overview

Typically, deploying a new release replaces the current one. You stop the previous release, and then
replace it with the new release. The problem with this approach is the downtime that occurs from the
moment the previous release is stopped till the new one is fully operational. The Blue-green process
removes the deployment downtime and also reduces the risk that the deployment might introduce.

The Blue-Green Deployment Process

The Blue-Green deployment procedure, when applied to microservices packed as containers, is as
follows.

Important
This example is limited only to microservices and not to the database.

1. When the current release (for example, blue) is running on the server, route all traffic to that release
through a proxy service. Microservices are immutable and deployed as containers.

Blue-Green Deployment Model

Docker Deployment Guide 3

2. When a new release (for example, green) is ready to be deployed, run it in parallel with the current
release. This way, you can test the new release without affecting the users since all the traffic
continues to be sent to the current release.

3. Once the new release works as expected, change the proxy service configuration to redirect the traffic
to the new release. Most of the proxy services will allow the existing requests to complete the
execution using the previous proxy configuration to ensure there is no interruption.

Blue-Green Deployment Model

Docker Deployment Guide 4

4. When all the requests sent to the previous release receive responses, you can remove or stop the
previous version of a service. When you stop the previous version of a service from running, a rollback
in case of a failure of the new release will be the instantaneous action so that you can back up the
previous release.

Sample Blue-Green Deployment on Kubernetes

When blue-green deployments are performed, a new copy of the application (green) is deployed
along with the existing version (blue). The ingress/router to the app is updated to switch to the new
version (green). You must wait for the previous (blue) version to complete the requests sent to it.

Blue-Green Deployment Model

Docker Deployment Guide 5

However, for the most part, traffic to the app changes to the new version, instantly.

Kubernetes does not contain built-in support for blue-green deployments. Currently, the best way to
support deployments is to create new deployment, and then update the service for the application to
point to the new deployment. This section contains a sample blue-green deployment implemented on
a Kubernetes cluster.

The Blue Deployment
A Kubernetes deployment specifies a group of instances of an application. At the back end, it creates
a replicaset that is responsible for keeping the specified number of instances up and running.

You can create your blue deployment by saving the following yaml to a blue.yaml file.

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: nginx-1.10

spec:

replicas: 3

Blue-Green Deployment Model

Docker Deployment Guide 6

template:

metadata:

labels:

name: nginx

version: "1.10"

spec:

containers:

- name: nginx

image: nginx:1.10

ports:

- name: http

containerPort: 80

Create the deployment using the kubectl command:

$ kubectl apply -f blue.yaml

After the deployment, you can provide a way to access the instances of the deployment by creating a
Service. Services are decoupled from deployments, which means that you do not explicitly point a
service at a deployment. Instead, you specify a label selector that is used to list the pods that make
up the service. When using deployments, this is typically set up so that it matches the pods for a
deployment.

In this case, you have two labels, name=nginx and version=1.10. You will set them as the label
selector for the following service. Save this to service.yaml.

apiVersion: v1

kind: Service

metadata:

name: nginx

labels

Blue-Green Deployment Model

Docker Deployment Guide 7

name: nginx

specs:

ports

- name: http

Port: 80

targetPort: 80

selector

name: nginx

version: "1.10"

type: LoadBalancer

Creating the service creates a load balancer that is accessible outside the cluster.

$ kubectl apply -f service.yaml

Blue-Green Deployment Model

Docker Deployment Guide 8

The Green Deployment
For the green deployment, you will perform a new deployment in parallel with the "blue" deployment.
The following service is saved as green.yaml.

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: nginx-1.11

spec:

replicas: 3

template:

metadata:

labels:

name: nginx

version: "1.11"

spec:

containers:

- name: nginx

image: nginx:1.11

ports:

- name: http

containerPort: 80

$ kubectl apply -f green.yaml

Now there are two deployments, but the service still points to the "blue" one.

Blue-Green Deployment Model

Docker Deployment Guide 9

The Cut-Over
To cut over to the "green" deployment, you must update the selector for the service. Edit
service.yaml and then change the selector version to "1.11". This matches the pods on the "green"
deployment.

apiVersion: v1

kind: Service

metadata:

name: nginx

labels:

name: nginx

spec:

ports:

- name: http

port: 80

pargetPort: 80

selector:

Blue-Green Deployment Model

Docker Deployment Guide 10

name: nginx

version: "1.11"

type: LoadBalancer

The following apply command will update the existing nginx service.

$ kubectl apply -f service.yaml

Now the service appears as follows:

Updating the selector for the service is applied immediately. Therefore, you can see that the new
version of nginx will be serving the traffic.

$ EXTERNAL_IP=$(kubectl get svc nginx -o

jsonpath="{.status.loadBalancer.ingress[*].ip}")

$ curl -s http://$EXTERNAL_IP/version | grep nginx

Terminating and Deleting Blue Deployment
The Blue deployment will stop receiving further requests because the service points to the Green
deployment. However, it is necessary that the Blue deployment is terminated gracefully after it
terminates the current serving connections.

This can be done using one of the following methods depending on the scenario:

• Terminate with grace-period
• Use preStop hook

Blue-Green Deployment Model

Docker Deployment Guide 11

Terminate with grace-period can be done by specifying a grace period while deleting the
deployment:

kubectl delete deployment blue --grace-period=120

The grace-period setting can also be specified at the pod spec level as follows:

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: test

spec:

replicas: 1

template:

spec:

containers:

- name: test

image: ...

terminationGracePeriodSeconds: 60

The preStop hook is configured at the container level and allows execution of a custom command
before SIGTERM (signal sent to a running process to end the process) is sent. The termination grace
period countdown starts before invoking the preStop hook and not after the SIGTERM signal is sent.

The following example, shows how to configure a preStop command:

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: nginx/tt>

spec:

Blue-Green Deployment Model

Docker Deployment Guide 12

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx

ports:

- containerPort: 80

lifecycle:

preStop:

exec:

SIGTERM triggers a quick exit; gracefully terminate
instead

command: ["/usr/sbin/nginx","-s","quit"]

Automating
You can automate the blue/green deployment to some extent with scripting. The following script uses
the name of the service, version you want to deploy, and path to the green deployment's yaml file.
Then, it runs through a full blue/green deployment process using kubectl to send a raw JSON as the
output from the API and parsing it with the jq script. It waits for the green deployment to become
ready by inspecting status.conditions on the deployment object before updating the service
definition.

#!/bin/bash

bg-deploy.sh <servicename> <version> <green-deployment.yaml> # Deployment name
should be <service>-<version>

DEPLOYMENTNAME=$1-$2 SERVICE=$1 VERSION=$2 DEPLOYMENTFILE=$3

kubectl apply -f $DEPLOYMENTFILE

Blue-Green Deployment Model

Docker Deployment Guide 13

Wait until the Deployment is ready by checking the MinimumReplicasAvailable
condition. READY=$(kubectl get deploy $DEPLOYMENTNAME -o json | jq
'.status.conditions[] | select(.reason == "MinimumReplicasAvailable") | .status' | tr
-d '"') while [["$READY" != "True"]]; do

READY=$(kubectl get deploy $DEPLOYMENTNAME -o json | jq
'.status.conditions[] | select(.reason ==
"MinimumReplicasAvailable") | .status' | tr -d '"')

sleep 5

done

Update the service selector with the new version kubectl patch svc $SERVICE -p
"{\"spec\":{\"selector\": {\"name\": \"${SERVICE}\", \"version\": \"${VERSION}\"}}}"

echo "Done."

Blue-Green Deployment Model

Docker Deployment Guide 14

	Docker Deployment Guide
	Blue-Green Deployment Model

