3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Docker Deployment Guide

High Availability

5/8/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

¢ 1 High Availability
e 1.1 High Availability with Amazon Web Service (AWS)
* 1.2 High Availability with Kubernetes

e 1.3 Container Orchestration with Kubernetes

Docker Deployment Guide

High Availability

High Availability

High Availability with Amazon Web Service (AWS)

Each Genesys product component is ensured high availability by implementing active-active
configuration. If you host the product on public cloud (such as AWS), the container cluster is deployed
within Auto Scaling Group (ASG). This ensures that a minimum number of specified containers run to
serve the traffic.

o B

\
ECS Cluster
 — -
|' ASG]
| |
P Iy TNy N
| Container Container Container |
. |Instance Instance Instance i
! ECS-Agent ECS-Agent ECS-Agent !
| (= |||
| Task |

ASG is also deployed across multiple Availability Zones (AZ) to ensure availability in case of zone
failure.

Docker Deployment Guide 3

High Availability

Container image

Container registry
[Amazon ECR, Docker Hub, seif-hosted regisry)

m A

)

| Container instances I

(
I
I
I
Task definition |
I
I
I
\

Task definition

Service description

70
0

Container instances
- .. — . mmonESome ..
N AZ2_ /
p.
A
AWS regi
L region

Docker Deployment Guide

High Availability

High Availability with Kubernetes

You can deploy a Genesys product in a private cloud or on premise. During such deployment
scenarios, containers are implemented on container orchestration platforms such as Kubernetes.

APl clients etod discovery Sve [d——,
) A
i i '1
l Y I
API ELB
(api_fgdn)
| MasterASG .,
/__.-"‘_,...--"""_ - = o, i \
APl + others |—» atod ol S e ———— APl + others — atod
Master Node 1 \ N Master Node N

\ kubelet and kubelet and J \ kubelet and kubeletand | | J
kube-proxy kube-pro Kube-proxy kube-pro

Worker Node Worker Node Worker Node Worker Node
Availability Zone"\ \ -------- . o L
Workers ASG
svc ELB
{sve_fadn)
Service Clients

Kubernetes clusters enable a higher level of abstraction to deploy and manage a group of containers
that comprise microservices in a cloud-native application. A Kubernetes cluster provides a single
Kubernetes API entry point, cluster-wide resource naming scheme, placement engine and scheduler
for pods, service network routing domain, and authentication and authorization model.

Kubernetes can be deployed in the following scenarios:

e Across multiple availability zones, but within a single cloud provider — Cloud provider services like
storage, load balancers, network routing may interoperate easily.

* In the same geographical region — Network performance will be fast enough to act like a single data
center.

e Across multiple geographical regions — High network cost and poor network performance may be
prohibitive.

e Across multiple cloud providers with incompatible services and limited interoperability — Inter-cluster

Docker Deployment Guide

High Availability

networking will be complex and expensive to set up in an efficient way.

Container Orchestration with Kubernetes

Auto-scaling with Kubernetes

Kubernetes pods can be auto-scaled up or down based on metrics such as CPU and memory
utilization. Kubernetes implements Horizontal Pod Autoscaler (HPA) to achieve auto-scaling. HPA
collects metrics about pods from Heapster. Based on the auto-scaling rule, HPA either increases or
decreases the number of pods through the deployment object created for the Genesys microservice.
The following diagram illustrates the auto-scaling architecture with HPA and Heapster.

Node 1

g

replicas++

g

cAdvisor
Node X

R
Heapster
- collects metrics |
from all nodes

gets
metrics from

Collects metrics from all
containers on the node

Kubernetes Setup with Rancher

Rancher provides an easier process to set up a Kubernetes cluster either on cloud or on premise. It
hides the complex steps involved in setting up the master and worker nodes. Rancher is
recommended for a push button setup of Kubernetes cluster for development and QA purposes.
However, it is not recommended for production use. If you have any queries regarding Rancher,
contact the Genesys Engage Architecture team
(pureengagearchitecture@genesyslab.onmicrosoft.com).

To set up a single node Kubernetes cluster with Rancher, follow these steps:

1. Start Rancher Server by executing the following command.
sudo docker run -d --restart=unless-stopped -p 8080:8080 rancher/server

2. Open the Rancher console using <ip>:8080 on the browser.

Docker Deployment Guide

High Availability

3. On the Default menu, select Manage Environments.
—

Default

Edit "Default”
Addi "™ U7
Manage Environments

4. Click Add Environment.
l) Default~ CA

INFRASTRUCTURE v

supported version

Environments [JGEEEY

Rancher supports grouping resources into multiple environments. Each one gets its own set of services and infrastructure resources, and is owned by one or more users or groups.

For example, you might create separate "dev", "test", and "production” environments to keep things isolated from each other, and give "dev" access to your entire organization but restrict the "production”
environment to a smaller team.
State T Name & Description & Template & Orchestration & Default
AR

A Unhealthy Default No description Cattle Cattle v

5. On the screen displayed, create a new environment by providing a name in the Name field. Then,
select Kubernetes as the orchestration for the new environment.

™F A Defauite STACKSw CATALOGw INFRASTRUCTUREw ADMINw ! APIv

supported version Add a host

Add Environment

Name Description
test
Environment Template
”‘F@‘ :: Y
L 8 %
= 0 Sy
[oo}
Kubernetes

Orchestration: Kubernetes
Framework: Network Services, Healthcheck Service

Networking: Rancher IPsec

This starts setting up Kubernetes.

Docker Deployment Guide

High Availability

[l 7 testv KUBERNETES INFRASTRUCTURE v ADMINv ! APIv

supported version

Setting up Kubernetes..

4% Add at least one host

(O Waiting for a host to be active

(O Creating Kubernetes system stack
(O Starting services

() Waiting for Kubernetes APl

6. Complete the wizard.
7. On the INFRASTRUCTURE menu, select Hosts, and then click Add Host.

W Rancher x [} APEsdnc-ha x
« C | O 10.147.132.10:8880/env/1a8/infra/host *® 0

i Apps confluence info tools att onsp ME

@ Containers

| Storage ¥ Show System - | &
& Secrets

Certificates No hosts or containers yet

Registries

8. Enter the IP of the same host (for single node cluster) or a different host (for multi-node cluster).
Hosts: Add Host

r 3
Custom

[o @

Amazon EC2 DigitalOcean pad<et

Manage available machine drivers

1 Startupa Linux machine somewhere and install a supported version of Docker on it.

2 Make sure any security groups or firewalls allow traffic:
o From and To all other hosts on UDP ports 500 and 4500 (for IPsec networking)

3 Optional: Add labels to be applied to the host.

(D AddLabel

4 Specify the public IP that should be registered for this host. If left empty, Rancher will auto-detect the IP to use. This generally works for machines with
unique public IPs, but will not workif the machine is behind a firewall/NAT o if it is the same machine that is running the rancher/server container.

1111

5 Copy, paste, and run the command below to register the host with Rancher:

Jsudo docker run -e CATTLE AGENT_IP="1.1.1.1" --rm --privileged -v /var/run/docker.sock: /var/run/docker.sock -v /var/lib/rancher:/var/lib/
Irancher rancher/agent:v1.2.10 http://34.244.174.233:8086/v1/scripts/CB716205DFEE26EEDI1B : 151467840000 : 86P8bus33kk8CABDEFGSCrWl

9. Execute the command generated by the wizard on the node to be added.

10. Watch the status of the Kubernetes cluster getting initialized and the services getting started.

11. Navigate to the cluster environment and select CLI. The command line interface that interacts with the

Docker Deployment Guide 8

High Availability

cluster using Kubectl command will be accessible from the browser.

12. To interact with the cluster from a different computer, copy the config file that Rancher generates and
paste it on the ~/.kube/config file. Create the config file if it is not available.

Kubernetes Helm for Package Management

Helm is a package manager for Kubernetes. Helm packages multiple K8s resources into a single
logical deployment unit called Chart. Helm is also a deployment manager for Kubernetes. It helps in:

* Performing repeatable deployments
e Managing (reusing and sharing) dependencies
* Managing multiple configurations

¢ Updating, rolling back, and testing application deployments (releases)
Here are the components of a typical Helm environment:

e Chart - a package; bundle of Kubernetes resources
¢ Release - a chart instance that is loaded into Kubernetes
¢ Repository - a repository of published charts

* Template - a K8s configuration file with Go template

[root@ip-172-30-0-249 testapi-chart]# tree
charts
Chart.yaml
templates

deployment.yaml
_helpers.tpl
NOTES.txt
service.yaml
values.yaml

The Genesys Kubernetes manifests are packaged as Helm charts. The charts are in .tgz format. You
can download the charts from the Helm repository that will be created for each project, and then
install them. The following example illustrates the steps to be followed while installing a chart from
the repository.

1. Download the chart from the git repository using the wget command.

2. Install the chart using the helm install command as shown in the following image.

Docker Deployment Guide 9

High Availability

gws helml# 1s
|

Jws—core—environment-chart-0.1.0.tgz
ws—elasticsearch-chart-0.1.0.tgz
gws—platform-configuration-chart-0.1.0.tgz
jws—platform-ocs—-chart-0.1.0.tgz
gws—-platform-statistics-chart-0.1.0.tgz
gws—-platform-voice-chart-0.1.0.tgz
gws—postgres-chart-0.1.0.tgz
gws—redis-cluster-chart-0.1.0.tgz

[root (nmiitentiesieteils 0ws helm]# helm install gws-core-auth-chart-0.1.0.tgz]j

For detailed information about Helm installation, refer to https://github.com/kubernetes/helm/.

Docker Deployment Guide 10

	Docker Deployment Guide
	High Availability

