
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Universal Routing 8.1.4

Universal Routing Reference

9/10/2024

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Supplement to the Universal Routing 8.1 Reference Manual 3
New Features 4

Analyze Object 7
Budget-Based Routing 14
Using Agent Skills for Ideal Agent Selection 15
Associating Virtual Queues with Stat Servers 21
New Statistics 22
Hyphens Allowed in Interaction Data Names 23
HTTP Bridge Updates 24
New or Updated Function Descriptions 26
Estimated Waiting Time Improvement and URS Web API 49
IRD Localization 53
Graceful shutdown 55
Support of HTTP Proxies 57

Updates to Existing 8.1.4 Documentation 58
New or Updated IRD Object Descriptions 60
Additional Data Returned by SelectDN 64
New or Updated Function Descriptions 26

URS Functions and Configuration Server 88
New or Updated Option Descriptions 90
HTTP Bridge Updates 24
Other Universal Routing 8.1.x Updates 102
URS REST API Security Considerations and Basic Hardening Steps 107
Evaluation of Skill Expressions 108

Supplement to the Universal Routing 8.1
Reference Manual
This supplement provides descriptions of new features introduced in Universal Routing 8.1.4 as part
of the Continuous Delivery project. This supplement also describes updates to the Universal Routing
8.1 Reference Manual.

• New Features
• Documentation Updates

The complete documentation set for Universal Routing can be found here.

Supplement to the Universal Routing 8.1 Reference Manual

Universal Routing Reference 3

New Features
The following pages contain new features added to Universal Routing added after the last publication
of the Universal Routing 8.1 Reference Manual.

This supplement provides descriptions of new features introduced in Universal Routing 8.1.4 as part
of the Continuous Delivery project. It also contains updates to the Universal Routing 8.1 Reference
Manual.

The current documentation set for Universal Routing can be found here.

New 8.1.4 Features

The following features are described in this supplement:

Released in Version New Feature Date Released
URS 8.1.400.83 Improved EWT Accuracy Dec 03, 2021

URS 8.1.400.81

URS now allows specifying
attributes in XML elements in
SOAP requests. Attributes with
assigned values must be defined
in the Key field in Request
Parameters of a Web Service
object in the IRD strategy. The
first parameter in the Key field is
treated as the element name,
and all the following parameters
separated by a space are treated
as attributes of the element.

August 19, 2021

URS 8.1.400.81

URS now supports Time-based
notifications. When opening
statistics with StatServer, in
addition to the default
ChangesBasedNotification
mode, URS now supports the
TimeBasedNotification mode.
To activate it:

• If the statistic is defined as a
statistic transaction object in
Configuration Layer, specify
the notification interval in
seconds in the notify_mode
property in its Statistic Data
section on the Annex tab.
And use this statistic in the
strategy.

August 19, 2021

New Features

Universal Routing Reference 4

Released in Version New Feature Date Released

• If the statistic is used as a
statistic type defined within
the options of the StatServer
application object, specify the
notification interval in the
NotifyMode parameter
directly in the strategy, in the
following format:

Statistic:<StatisticName>|NotifyMode:<time_interval>

URS 8.1.400.81

When there are a huge number
of VCB calls, URS now records a
standard level log message
indicating the number of agents
blocked for those VCB calls in the
following format:
Std 21012 - Attention! vcb blocking
mode is active: N (where N is the
number of agents locked).

August 19, 2021

URS 8.1.400.78 Multithreading Capability May 18, 2021

URS 8.1.400.78 Timeout to Wait before Sending
Negative Response to Web Client May 18, 2021

URS 8.1.400.75 Optimal Skill Update Mode December 23, 2020

URS 8.1.400.71 Secure Connections Support
Includes SNI September 01, 2020

URS 8.1.400.67 Support for JavaScript February 04, 2020
IRD 8.1.400.39 String Manipulation Functions October 25, 2019

URS 8.1.400.63

The stat/report web method is
extended with a new parameter,
cpu, to provide URS CPU
consumption data, which can be
used for monitoring the health
status of URS applications. For
more information, see Additional
Information on HTTP Report
Method.

September 30, 2019

URS 8.1.400.63

A new value, waited, has been
added to the report_targets
option. If the report_targets
option is set to true or waited,
URS attaches the
RTargetsWaited key into
AttributeUserData of the T-
Server's events. The value of the
new key is a comma separated
list of targets the interaction is
waiting for. This data can be used
by the default routing strategy if
the processing of an interaction

September 30, 2019

New Features

Universal Routing Reference 5

Released in Version New Feature Date Released
fails.

URS 8.1.400.50 Budget-Based Routing June 29, 2018
URS 8.1.400.50 New Statistics June 29, 2018
URS 8.1.400.45 HTTP CONNECT tunneling March 30, 2018
URS 8.1.400.39
IRD 8.1.400.26 Run function October 27, 2017

URS 8.1.400.27 Support of HTTP Proxies for an
"https://" type of request June 20, 2016

IRD 8.1.400.22 IRD Localization April 15, 2016

URS 8.1.400.25 Estimated Wait Time
Improvement Using URS Web API December 18, 2015

URS 8.1.400.24
Look Up Agent Name Media
logged into and DN from Agent
Login ID and by Employee ID

November 24, 2015

URS 8.1.400.23

Support of HTTP Redirections
Escape Sequences Update for
HTTP Bridge
When URS processes multimedia
interactions in a High Availability
deployment, a primary URS
distributes EventDiverted on a
virtual queue if a failover or
switchover occurs.

October 7, 2015

IRD 8.1.400.18 Hyphens Allowed in Interaction
Data Names September 1, 2015

URS 8.1.400.20 Virtual Queues Can be
Associated with Stat Servers June 12, 2015

URS 8.1.400.19
URS 8.1.400.22

Using Agent Skills for Ideal Agent
Selection
Weighted Agent Skills
Enhancement

May 8, 2015
September 25, 2015

IRD 8.1.400.15 Analyze Object March 10, 2015

New Features

Universal Routing Reference 6

Analyze Object
Release 8.1.400.15 of Interaction Routing Designer adds an Analyze object for enhanced content
analysis. The Analyze object, available on IRD's Multimedia group of objects, combines the
functionality of IRD's existing Classify and MultiScreen objects and adds new functionality. The
Analyze object:

• Sorts screening rules into categories.

• Visually presents screening rules under their applicable categories. The category name shows all roots
so screening rules belonging to multiple categories can be selected in the same request.

• Introduces two new attributes in the ESP Request: Service = Analyze and Method =
ClassifyScreenUniversal.

• Allows modified screening of ESP requests with the ability to specify a category/folder containing a
subset of screening rules to screen against.

The example below shows the Financial Services Category, Unidentified Transaction_2
subcategory, associated with screening rules Wrong transaction amount_scrRule and
Unidentified transaction_scrRule.

New Features Analyze Object

Universal Routing Reference 7

https://docs.genesys.com/Documentation/ES/8.5.0/KMUser/KMwelcome
https://docs.genesys.com/Documentation/ES/8.5.0/KMUser/KMwelcome
https://docs.genesys.com/Documentation/ES/8.5.0/KMUser/SCRrules
https://docs.genesys.com/Documentation/ES/8.5.0/KMUser/categSR

Configuring the Analyze Object

1. From the Multimedia toolbar, click the Analyze object then click inside the Routing Design window to
insert the object.

2. Double-click the object to open its properties dialog box. A tree of the default Classification Server
categories and screening rules appears below.

3. From the Classification server drop-down list on the General tab, select a Classification Server from
those in the Configuration Server database. If you leave this field empty, Interaction Server uses the

New Features Analyze Object

Universal Routing Reference 8

first available Classification Server named in its Connections list.
4. From the Language drop-down list, select the language of the incoming interaction. The categories and

screening rules shown will be changed according to selected language. Only those roots associated
(through their Annex property General/Language) with the selected language will be shown.

5. From the Action drop-down list, select screen or classify. Only one Action can be configured. either
screen or classify. For action classify, screening rules are not used so IRD hides screening rules in
this case.

6. If the classify Action is selected, opposite Relevancy Level, enter a percentage indicating the
minimum relevancy (confidence) each category must have (greater or equal) in order for Classification
Server to consider an interaction as belonging to that category (threshold). You have the option of
changing the default but you cannot enter zero.
• If Classification Server finds a category with the minimum specified relevancy, the results are

processed based on the option you select in the Result tab and the interaction goes through the
green port.

• If an existing category cannot be found based on analyzing the interaction, the null result is
attached to the interaction and the interaction also goes through the green port (the error is not
retrievable through the current Error object). See Event3rdServerFault in the Universal Routing
8.1 Reference Manual.

7. Under Get analyzing data from, enter a User Data key to search for data to be analyzed or enter a
variable. If not specified, the data to be analyzed will be taken from the Universal Contact Server
database.

8. Under Categories and screening rules, you have the option of selecting a variable to contain the
categories and/or screening rules to use. If variables are used, you cannot select screening rules or
categories from the tree. You can either select from the tree or specify variables, but you cannot do
both.

9. Note the tree of categories/Screening Rules. If the identifiers do not sufficiently describe them, you can
look up them up in Configuration Manager (Business Attributes) or Genesys Administrator or in
eServices Knowledge Manager, where they were originally defined.

10. The Subcategories using options (required) determine whether Classification Server should consider
parent and child categories (ParentMode in Requests as shown in Samples below. There are three
options.
• To use all screening rules for a selected category, select All.
• To use only the direct children of a selected category (excluding parents), select Direct.
• To individually select categories and rules, select No.

11. Continue to select categories/rules in this fashion until you have selected all the ones you want to use.
12. Select the Parameters tab. If necessary, any additional parameters to the request can be added here.

For additional information see eServices Knowledge Manager documentation.
13. Select the Result tab. Specify what form the results should take. IRD uses the same Result tab for

various Multimedia objects. When screening or classifying, the Do not use output value option does
not apply.

14. Complete the Result tab. If you write the results to a variable, the variable can be parsed by URS and
attached to the interaction for further use in the strategy. You can also attach all the parameters to the
interaction’s User Data. This enables you to analyze this User Data to make further routing decisions.

15. Click OK.

For classification, The response will be either Event3rdServerResponse or Event3rdServerDefault.

New Features Analyze Object

Universal Routing Reference 9

For detail on these responses as well as on using IRD for screening and classification, refer to the
Universal Routing 8.1. Reference Manual.

Samples
[+] Analyze Action Classify
REQUEST
'Version' [str] = "1.0"
'AppType' [str] = "90"
'AppName' [str] = "ClassificationServer2_sbbelovdt"
'Service' [str] = "Analyze"
'Method' [str] = "ClassifyScreenUniversal"
'Parameters' [lst] = KVList:

'Action' [str] = "Classify"
'Language' [str] = "English"
'Categories' [str] = "00016a6W8MUA002Q | 00057a9K3JNC02V7 | 0005Ba9QMHV30KCY"
'ParentMode' [str] = "3"
'RelevancyLevel' [str] = "10"
'IxnText' [str] = "You should transplant these irises into an area providing at least

6 hrs of direct sunlight a day."

bstr [bstr] = KVList:
'TenantId' [int] = 101

RESPONSE
'Version' [str] = "1.0"
'Service' [str] = "Analyze"
'Method' [str] = "ClassifyScreenUniversal"
'Parameters' [lst] = KVList:

'Categories' [lst] = KVList:
'How do I dig irises' [lst] = KVList:

'CtgId' [str] = "00057a9K3JNC038G"
'CtgName' [str] = "How do I dig irises"
'CtgRootName' [str] = "plants"
'CtgPath' [str] = "plants/iris/How do I dig irises"
'CtgRelevancy' [str] = "32"

'Why are they not blooming' [lst] = KVList:
'CtgId' [str] = "00057a9K3JNC038N"
'CtgName' [str] = "Why are they not blooming"
'CtgRootName' [str] = "plants"
'CtgPath' [str] = "plants/iris/Why are they not blooming"
'CtgRelevancy' [str] = "26"

'J2EBJ183K80HB6G2' [lst] = KVList:
'CtgId' [str] = "00016a6W8MUA005Y"
'CtgName' [str] = "J2EBJ183K80HB6G2"
'CtgRootName' [str] = "SBC_1_Root"
'CtgPath' [str] = "SBC_1_Root/J2EBJ183K80HB6G2"
'CtgRelevancy' [str] = "12"

'Sub_A' [lst] = KVList:
'CtgId' [str] = "0005Ba9QMHV30KDE"
'CtgName' [str] = "Sub_A"
'CtgRootName' [str] = "MySimpleTest"
'CtgPath' [str] = "MySimpleTest/Sub_A"
'CtgRelevancy' [str] = "100"

'19CSBDR3K82AXEGS' [lst] = KVList:
'CtgId' [str] = "00016a6W8MUA004K"
'CtgName' [str] = "19CSBDR3K82AXEGS"
'CtgRootName' [str] = "SBC_1_Root"

New Features Analyze Object

Universal Routing Reference 10

'CtgPath' [str] = "SBC_1_Root/19CSBDR3K82AXEGS"
'CtgRelevancy' [str] = "36"

'How should I prepare iris for shipping' [lst] = KVList:
'CtgId' [str] = "00057a9K3JNC038Y"
'CtgName' [str] = "How should I prepare iris for shipping"
'CtgRootName' [str] = "plants"
'CtgPath' [str] = "plants/iris/How should I prepare iris for shipping"
'CtgRelevancy' [str] = "19"

'Why did my irises change color' [lst] = KVList:
'CtgId' [str] = "00057a9K3JNC038T"
'CtgName' [str] = "Why did my irises change color"
'CtgRootName' [str] = "plants"
'CtgPath' [str] = "plants/iris/Why did my irises change color"
'CtgRelevancy' [str] = "25"

'CtgId' [str] = "0005Ba9QMHV30KDE"
'CtgName' [str] = "Sub_A"
'CtgRootName' [str] = "MySimpleTest"
'CtgPath' [str] = "MySimpleTest/Sub_A"
'CtgRelevancy' [str] = "100"

[+] Analyze Action Screen

REQUEST
'Version' [str] = "1.0"
'AppType' [str] = "90"
'AppName' [str] = "ClassificationServer2_sbbelovdt"
'Service' [str] = "Analyze"
'Method' [str] = "ClassifyScreenUniversal"
'Parameters' [lst] = KVList:

'Action' [str] = "Screen"
'Language' [str] = "English"
'Categories' [str] = ""
'Rules' [str] = ""
'RelevancyLevel' [str] = "15"
'ParentMode' [str] = "3"
'IxnText' [str] = "problem, accounts 1111-1111-1111-1111 and 2222-2222-2222-2222"

bstr [bstr] = KVList:
'TenantId' [int] = 101

RESPONSE
'Version' [str] = "1.0"
'Service' [str] = "Analyze"
'Method' [str] = "ClassifyScreenUniversal"
'Parameters' [lst] = KVList:

'ScreenRuleMatch' [str] = "true"
'Categories' [lst] = KVList:

'Neutral' [lst] = KVList:
'CtgId' [str] = "00006a69F6861XCW"
'CtgName' [str] = "Neutral"
'CtgRootName' [str] = "Sentiment"
'CtgPath' [str] = "Sentiment/Neutral"
'CtgRelevancy' [str] = "75"
'Screen' [lst] = KVList:

New Features Analyze Object

Universal Routing Reference 11

'ScreenForNeutralSentiment' [lst] = KVList:
'RuleId' [str] = "00006a69F6861XED"
'RuleName' [str] = "ScreenForNeutralSentiment"
'RuleOrder' [str] = "12"
'RuleRelevancy' [str] = "75"

'Positive' [lst] = KVList:
'CtgId' [str] = "00006a69F6861XCP"
'CtgName' [str] = "Positive"
'CtgRootName' [str] = "Sentiment"
'CtgPath' [str] = "Sentiment/Positive"
'CtgRelevancy' [str] = "85"
'Screen' [lst] = KVList:

'Tech support' [lst] = KVList:
'RuleId' [str] = "00003a01DST4006D"
'RuleName' [str] = "Tech support"
'RuleOrder' [str] = "400"
'FoundValues' [lst] = KVList:

'CardNo(1)' [str] = "1111-1111-1111-1111"
'CardNo(2)' [str] = "2222-2222-2222-2222"

'RuleRelevancy' [str] = "85"
'SB_MultiScanTest' [lst] = KVList:

'RuleId' [str] = "0003Fa8RRCHA0030"
'RuleName' [str] = "SB_MultiScanTest"
'RuleOrder' [str] = "10"
'FoundValues' [lst] = KVList:

'CardNo(1)' [str] = "1111-1111-1111-1111"
'CardNo(2)' [str] = "2222-2222-2222-2222"

'RuleRelevancy' [str] = "75"
'Actionable' [lst] = KVList:

'CtgId' [str] = "00006a69F6861XHN"
'CtgName' [str] = "Actionable"
'CtgRootName' [str] = "Action"
'CtgPath' [str] = "Action/Actionable"
'CtgRelevancy' [str] = "75"
'Screen' [lst] = KVList:

'Tech support' [lst] = KVList:
'RuleId' [str] = "00003a01DST4006D"
'RuleName' [str] = "Tech support"
'RuleOrder' [str] = "400"
'FoundValues' [lst] = KVList:

'CardNo(1)' [str] = "1111-1111-1111-1111"
'CardNo(2)' [str] = "2222-2222-2222-2222"

'RuleRelevancy' [str] = "75"
'SB_MultiScanTest' [lst] = KVList:

'RuleId' [str] = "0003Fa8RRCHA0030"
'RuleName' [str] = "SB_MultiScanTest"
'RuleOrder' [str] = "10"
'FoundValues' [lst] = KVList:

'CardNo(1)' [str] = "1111-1111-1111-1111"
'CardNo(2)' [str] = "2222-2222-2222-2222"

'RuleRelevancy' [str] = "45"
'UnclearIfActionRequired' [lst] = KVList:

'CtgId' [str] = "00006a69F6861XJ3"
'CtgName' [str] = "UnclearIfActionRequired"
'CtgRootName' [str] = "Action"
'CtgPath' [str] = "Action/UnclearIfActionRequired"
'CtgRelevancy' [str] = "75"
'Screen' [lst] = KVList:

'UnclearIfActionRequired' [lst] = KVList:
'RuleId' [str] = "00006a69F6861XN2"
'RuleName' [str] = "UnclearIfActionRequired"
'RuleOrder' [str] = "10"
'RuleRelevancy' [str] = "75"

New Features Analyze Object

Universal Routing Reference 12

'CtgId' [str] = "00006a69F6861XCP"
'CtgRelevancy' [str] = "85"
'CtgName' [str] = "Positive"
'CtgRootName' [str] = "Sentiment"
'CtgPath' [str] = "Sentiment/Positive"

New Features Analyze Object

Universal Routing Reference 13

Budget-Based Routing
Starting with release 8.1.400.50, URS release extends Agent Capacity-Based Routing to support the
Budget-Based Routing functionality implemented in Stat Server.

Important
Budget-Based Routing works with Stat Server version 8.5.110.03 or higher. To enable
Budget-Based Routing, refer to the Stat Server documentation. Budget-Based Routing
is not related to Cost-Based Routing and is an extension to Agent Capacity-Based
Routing.

Budget-Based Routing is an optional addition to the existing Agent Capacity-based routing. Legacy
Agent Capacity routing is based on the certain number of simultaneous interactions of different
media types that an agent can handle.

The new functionality is based on the interaction cost and agent budget for a given media type, in
addition to the legacy Agent Capacity. It allows to take into account that different interactions (even
of the same media type) might require different levels of handling effort from an agent. When the
budget model is enabled, URS selects a target according to the following rules:

• It determines an agent’s ability to accept an interaction of a particular media type based on agent
capacity information (legacy Agent Capacity) provided by Stat Server.

• It verifies if the cost of an interaction is explicitly attached to the interaction with a key as defined in the
interaction-cost-key configuration option.

Important
If the name of the key is not defined, then the name InteractionCost is used.

• It uses agent budget information (available, total and used) provided by Stat Server in the
CurrentTargetState statistic.

• It verifies that the cost of the interaction is less than the agent's remaining budget.

Important
If the interaction has no cost-related information in its attached data, then URS
considers its cost as 0 (zero) and as a result, budget restrictions are not applied to the
interaction.

New Features Budget-Based Routing

Universal Routing Reference 14

Using Agent Skills for Ideal Agent Selection
Starting with URS 8.1.400.19, Universal Routing can select the most ideal agent to handle an
interaction when more than one agent is available. You can also use this functionality to select the
most ideal interaction when there is more than one interaction competing for the same agent. To
implement this functionality, this release introduces two new functions, SetIdealAgent,
TargetListSelected and new option set_ideal_agent.

SetIdealAgent
Parameter: Skill Expression: STRING (constant or variable representing a skill expression)

Return value type: VOID

This function is available from IRD's Function object, Target Manipulation category. The
SetIdealAgent function utilizes a "best fit" factor as one criteria for selecting the most ideal agent to
handle an interaction or to select the most ideal interaction when there is more than one interaction
competing for the same agent. Once you define the ideal agent's skill set, Universal Routing Server
will use this definition if there is any choice when assigning agents to interactions.

Example Skill Expression

The SetIdealAgent function accepts as input a skill expression that you define via the Skill
Expression field in the Function object dialog box. Clicking opposite Skill Expression opens the
Skill Expression Properties dialog box where you create the skill expression. Genesys
recommends that functions not be used in ideal agent skill expressions and that the skill expression
be in DNF form, such as:

Skill1=value1 & Skill2>=value2 & Skill2<=value3 | Skill3=value3

URS would interpret the above expression as follows: The ideal agents are those who have Skill1 set
to value1 (Skill Level in Configuration Database) and Skill2 in between value2 and value3 or
alternatively agents with Skill3 set to a value of 3.

Other examples:

Skill_A < 3 | Skill_A < 6 & Skill_C > 3 & Skill_D >= 6
Skill_A > 3 & Skill_B > 3 & Skill_C > 3 & Skill_D < 3
Skill_A >= 2 & Skill_B >= 3 & Skill_C >= 4

For information on creating skill expressions, see the Universal Routing 8.1 Interaction Routing
Designer Help. Go to Creating a New Strategy > Expression Building. For more detailed information,
search on "Skill Expression" in the Universal Routing 8.1 Reference Manual.

New Features Using Agent Skills for Ideal Agent Selection

Universal Routing Reference 15

How the Skill Expression is Used

When processing interactions using the ideal agent definition, URS measures every qualified agent
for the interaction being processed to determine how exactly the agent's skills match the ideal agent
skills. An extra metric is associated with every agent (see TargetListSelected below), which
indicates how close the agent is to the ideal agent definition. URS then selects the agent whose skills
deviate the least from the skills of the ideal agent.

For more information on this deviation, see Multiple interactions Competing for Same Agent.

Calculated Deviation

A new function, TargetListSelected, returns the calculated deviation of the selected agent from the
ideal agent.

TargetListSelected
Parameter: Key: None

Return value type: STRING

This function returns information about the selected target. If used after the function SetIdealAgent,
it will return additional key mismatch with the deviation value of the selected agent. This function
also returns much of the same data that functions SelectDN/SuspendForDN return about the selected
target as described in the Universal Routing 8.1 Reference Manual.

Calculating the Deviation From Ideal

URS calculates the deviation of an agent from the ideal agent in following way:

If the comparison operation evaluates to a true score of 0, the agent skill does not deviate from the
ideal agent skill. A score greater than 0 indicates how much the agent skill is different from the ideal
agent skill.

• Use of the & operator in the skill expression adds to the score.
• Use of the | operator in the skill expression results in a minimal score.

URS pre-calculates agent skill deviations at the moment some queue is created, not at the moment
when an agent or interaction is actually selected. That means that skill expressions used to define
the ideal agent must contain only skills, numbers, and logical/comparing/mathematical operations.
URS tracks skill updates in the Configuration Database and will recalculate deviations if a skill update
occurs. Genesys recommends not using functions in skill expressions. URS does not track when a
function value changes, which could result in the wrong deviations being used.

New Features Using Agent Skills for Ideal Agent Selection

Universal Routing Reference 16

Example Deviation Calculation

Agent Skills:

AGENTS SKILL A SKILL B SKILL C SKILL D
Agent 1 1 2 3 4
Agent 2 2 3 4
Agent 3 3 4 5 6
Agent 4 4 5 7 1
Agent 5 5 6 1 2
Agent 6 5 6 1 2

Deviation for the Skill_expression:

Skill_A >=2 & Skill_B <=5 & Skill_C=5

AGENTS SKILL_A >=2 SKILL_B <=5 SKILL_C = 5 SKILL_D DEVIATION
Agent 1 1 0 2 0 3
Agent 2 0 0 1 0 1
Agent 3 0 0 0 0 0
Agent 4 0 0 2 0 2
Agent 5 0 1 4 0 5
Agent 6 0 1 4 0 5

Agents with Same Deviation
If an ideal agent is set for an interaction and there are multiple available agents, then URS checks
every one of them and selects the agent having the smallest deviation. If deviations are the same,
then URS uses the value of a statistic to select an agent.

Ideal agent selection is agent-level selection and works as described above only when URS uses
agent-level statistics. In this case, strategy targets are based on skill expressions or are the result of
function UseAgentStatistics[true] being called in the strategy.

Agent/Place Groups
If a strategy uses Group-level statistics (URS uses statistics to select the best Agent Group or Place
Group), then URS behaves as follows:

• URS uses the ideal agent skill expression to select an agent inside every participating Agent Group.

• If more than one Agent/Place Groups has available agents, then URS uses Group statistics to decide
which group to use. URS selects based on the Group having the best statistics, not the group having
the most ideal agents.

Specifically, this means if routing targets are sets of Agent Groups, URS uses
UseAgentStatistics[true] to select the most ideal agent throughout all listed Agent Groups. Note

New Features Using Agent Skills for Ideal Agent Selection

Universal Routing Reference 17

that because the default value of this function is false, when creating the strategy, you must set
UseAgentStatistics to true and position the function before the Agent Group target.

Multiple Interactions Competing for Same Agent

Note: Apart from step 2, all the steps listed below are the standard steps that URS always executes.

URS can also use skill expressions defined for function SetIdealAgent when there are multiple
interactions in queue competing for the same agent (desired agent). As an example, assume an
agent becomes available and there are two competing interactions for this agent (Call1 from VQ 1
and Call2 from VQ2). In this case:

1. URS checks interaction priority. You can use various functions (Priority, IncrementPriority,
SelectDN, SetVQPriority, and so on) in a strategy to specify interaction priority for different queues. If
none of the priority functions is used, then interaction priority is 0. If one of the priority functions is
used, the interaction with the higher priority will be used. If priorities are the same, go to step 2.

2. URS checks "best fit" factor. URS only executes this step if both interactions have ideal agent set.

• URS will select the interaction with the ideal agent skill set that is closest to the skill set of the desired
agent.

• Note: There may be some cases where at least one of the interactions will not have ideal agent set, or
cases where the ideal agent definition for both interactions is equally close to the desired agent. For
these cases, URS checks timing as described in step 3.

• When URS checks timing, the following values are calculated: X1 = T1 + D1 and X2= T2+D2.

The example below uses voice interactions.
• T1 - The time Call1 has been waiting for this agent (with milisecond precision)
• T2 - The time Call2 has been waiting this agent (with milisecond precision)
• D1 - If the strategy for Call1 instructs to use prediction ("what-if" wait time where function

PriorityTuning is used with Prediction set to true), then it is prediction time; otherwise it is 0.
• D2 – If the strategy for Call2 instructs to use prediction ("what-if" wait time where function

PriorityTuning is used with Prediction set to true) then it is prediction time; otherwise it is 0. Go to
step 3b.

3b.If both interactions have a risk of not meeting the Service Objective, then

X1= X1/Call1ServiceObjective and X2= X2/Call2ServiceObjective.

If at least one of the interactions does not use Service Objective, this step is skipped (values
X1 and X2 are not changed). Go to 3c.

3c.If X1 is bigger than X2, Call1 is used and vice versa. If (in the rare case) X1 and X2 are still
the same, go to step 4.

4. URS keeps a global counter. Every time an interaction is placed into a waiting queue, the counter is
incremented by one (no two different entries of some interaction into some queue can have the same

New Features Using Agent Skills for Ideal Agent Selection

Universal Routing Reference 18

value). URS will select the interaction having the smaller counter.

Weighted Agent Skills

Starting with URS 8.1.400.22, you can apply a weight to any skill (or combination of skills) to increase
the importance of a skill. Expressions can include both skill functions and arithmetic operations:

+ (plus)
- (minus)
/ (divide)
and
* (multiply)

URS considers the value of this expression as a deviation from the ideal agent (the less its value, the
more ideal the agent).

There are no restrictions to using these operators, other than that the final skill expression must be a
well-formed mathematical expression having the right balance of opening and closing brackets.

Weighted Ideal Agent Samples
For example, the following skill expressions show how mathematical expressions can increase or
decrease a deviation and define the importance of a specific skill:

5*(Skill1=value1) & Skill2>=value2 & 4+(Skill2<=value3)
(Skill1=value1)-2 & 3*(Skill2>=value2 & Skill2<=value3)
3*(Skill2>=value2) & (Skill2<=value3)/2

The skill expression below is an example where an agent with an employeeid starting with ABC is 10
times better other agents (the deviation will be 0 for such an agent and 10 for all others).

10*(name(“ABC*”)=1)

The name and other skill expression functions are available in IRD's Skill Expression Properties dialog
box.

If Strategy Does Not Use SetIdealAgent

Option automatic_ideal_agent can be used as an alternative to using SetIdealAgent.

automatic_ideal_agent

Location in Configuration Layer by precedence: Routing Point, T-Server, Tenant, URS

Default value: false

Valid values: true, false

New Features Using Agent Skills for Ideal Agent Selection

Universal Routing Reference 19

Value changes: take effect immediately

If set to true, then when URS places the interaction into a queue for first time:

• If this queue targets/agents are defined as a skill expression and
• if function SetIdealAgent was not yet called for this call, then

URS will automatically call the SetIdealAgent function with the value of the skill expression used for
this queue as a target.

Important Notes About Ideal Agent

• When URS evaluates routing targets, the use of the SetIdealAgent function adds an extra layer to the
evaluation process. Except for the interaction priority layer, the Ideal Skill layer will take precedence
over other layers defined in a routing strategy. As a result, use of the SetIdealAgent function in a
strategy can possibly affect (for good or bad) existing routing solutions, such as Service Objective
routing, Age of Interaction routing, and so on. If your routing strategy combines different target
selection criteria, Genesys recommends that you analyze how these different types of target selection
criteria will interact and coexist with each other.

• The first time URS executes a strategy, statistics are normally not yet opened. As a result, if the target
selection is statistic or skill-based, the first interaction could be distributed to any ready agent.

• Selection of an ideal agent for an interaction is effectively agent-level selection. It works as described
here only when URS uses agent-level statistics: either when targets are skill expressions or when
function UseAgentStatistics[true] is called in strategy.

• The interaction selection criteria associated with the SetIdealAgent function are only supported in a
multi-URS environments where the same target might be selected by different instances of URSs if:
all URS instances have the same value of option automatic_ideal_agent
or
all strategies running/served by URSes include function SetIdealAgent (with not empty parameter).

Important
Applying different routing priority criteria (Service Level, Ideal Agent) to calls waiting
for the same targets might sometimes result in out of order routing. In this case, URS
records a composite priority misused message in the log.

New Features Using Agent Skills for Ideal Agent Selection

Universal Routing Reference 20

Associating Virtual Queues with Stat
Servers
Starting with Release 8.1.401.00, the URS default_stat_server option is extended to allow you to
specify a separate default Stat Server for every Virtual Queue. The extension covers cases where the
URS Connections list contains multiple Stat Servers.

Important
For the option description, see the default_stat_server section in the New or
Updated Option Descriptions topic.

New Features Associating Virtual Queues with Stat Servers

Universal Routing Reference 21

New Statistics
Two new statistics, StatAgentLoadingWgt and StatAgentLoadingWgtMedia, are introduced in release
8.1.400.50.

• When the StatAgentLoadingWgt statistic is used as the target selection criterion, the agent within the
Agent or Place Group who has the lowest used agent’s budget for all media types is selected as the
target. If more than one agent has the same total used agent's budget, the time they have been in
their current state is considered. When this statistic is used in a function, such as SData, it returns the
used agent’s budget for all media types.

• When the StatAgentLoadingWgtMedia statistic is used as the target selection criteria, the agent within
the Agent or Place Group who has the lowest used agent’s budget for the current media type is
selected as the target. If more than one agent has the same used agent's budget, the time they have
been in their current state is considered. When this statistic is used in a function, such as SData, it
returns the used agent’s budget for the current media type.

Important
When the StatAgentLoadingWgt and StatAgentLoadingWgtMedia statistics are
defined in the Target Selection object, the Min/Max settings are ignored.

New Features New Statistics

Universal Routing Reference 22

Hyphens Allowed in Interaction Data
Names
Starting with Interaction Routing Designer Release 8.1.400.18, when configuring strategies that use
Interaction Data, IRD allows the use of hyphens in Interaction Data names.

For example, you may want to display customer information for an incoming call on the agent
desktop in the form of a screen pop. In this case, when using IRD to configure the Interaction Data for
the screen pop, you now have the option of using hyphens in Interaction Data names.

New Features Hyphens Allowed in Interaction Data Names

Universal Routing Reference 23

HTTP Bridge Updates
To communicate with Web Services through SOAP/XML and/or REST over HTTP/HTTPS protocols, URS
uses a component called HTTP Bridge. HTTP Bridge allows strategy developers to communicate with
Web Services applications outside of Genesys via the Web Service IRD strategy-building object. For
more information on HTTP Bridge, see the Universal Routing 8.1 Reference Manual.

Support of HTTP Redirections

Starting with Release 8.1.400.23 in October of 2015, URS enhances its support of HTTP redirections.
HTTP Bridge now resends an HTTP request to the new address specified in the Location header of the
received 3xx response.

When responding to a redirect request, HTTP Bridge now:

• Supports both absolute and relative redirection URLs.
• Checks for redirect loops. No more than 5 chained redirects will be allowed.
• Always uses the GET method for redirection URLs if a return code is 303.

Handling of Escape Sequences

Starting with Release 8.1.400.14 in February 2015, HTTP Bridge no longer interprets XML escape
sequences as regular delimiters (< and >) of XML tags. It now passes them into the strategy as is
and does not terminate while processing XML data returned by SOAP-based Web Services containing
XML escape sequences.

Add the following information to the Web Services Options section and also to Appendix B, IRD Web
Services Object:

HTTP Bridge does not get completely XML-formatted text from a Web Service. The text is XML-
formatted to some level, but at deeper levels, the XML text is escaped. For example:

<?xml version='1.0' encoding='utf-8'?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<ns:saveCaseResponse xmlns:ns="http://util.ilog.ist.apple.com">
<ns:return>
< ;?xml version="1.0" encoding="UTF-8"?> ;< ;GENESYS_CASE_CREATE_RESPONSE> ;.....> ;
</ns:return>
</ns:saveCaseResponse>
</soapenv:Body>
</soapenv:Envelope>

Note that the content inside the ns:return tag is not XML-formatted text. It might be interpreted as
XML-formatted text after replacing the Escape sequences

New Features HTTP Bridge Updates

Universal Routing Reference 24

< ; and > ;

with the appropriate < >.

HTTP Bridge does not perform this extra interpreting. Any XML response, if needed, must be in
entirely and correctly-formed XML format.

New Features HTTP Bridge Updates

Universal Routing Reference 25

New or Updated Function Descriptions
The following functions have been either newly added or updated after the Universal Routing 8.1
Reference Manual was last published. Unless otherwise noted, these functions are available in IRD's
Function object. Other functions are located in IRD's Selection object.

ExcludeAgents

Parameters: Agents: STRING (comma-separated list of agent IDs or variable)
Return value type: STRING

This function instructs URS not to route interactions to any agent on the specified list of agents.
Parameter Agents is comma-separated list of agent IDs. Function returns the previous list of excluded
agents.

Previous to 7.6, if a target was selected (if it was ready according to Stat Server and reserved) and
then excluded from the list of valid targets using the ExcludeAgents function, this target was not
actually excluded. Starting with 7.6, the ExcludeAgents function does exclude the agent in the above
scenario.

Note: When URS executes the ExcludeAgents function for an interaction, the URS-provided list of
excluded agents will be applied to the current or any future Selection objects. The effect of the
ExcludeAgents execution can be cancelled only by the execution of another ExcludeAgents function
or if URS stops this interaction processing.

Warning! Function ExcludeAgents affects IVR targets.

FindConfigObject

As of 11/24/15, the existing FindConfigObject function is extended to support additional object
types as shown in the FindConfigObject Returned Results table below.

Look Up Agent Name, Media logged Into and DN, from Agent Login ID and by
Employee ID
Function FindConfigObject with object type CFGPerson and function TargetState can be used to
look up an agent name, the media channel logged into, and the agent's DN, based on an agent's
Login ID or Employee ID.

Function TargetState[‘EmployeeID.A’] with input parameter agent EmployeeID returns agent
readiness information, a list of available medias and DNs.

For example, to use FindConfigObject to find agent (Person) information, the following search criteria
can be used:

New Features New or Updated Function Descriptions

Universal Routing Reference 26

• DBID of agent: FindConfigObject[CFGPerson, ‘dbid:SomeDBID’]
• DBID of one of agent’s logins: FindConfigObject[CFGPerson, ‘logindbid:SomeDBID’]
• EmployeeID of agent: FindConfigObject[CFGPerson, ‘employeeid:SomeEmployeeID’]
• Agents Login: FindConfigObject[CFGPerson, ‘switch:SomeSwitchName|login:SomeLogin’]

FindConfigObject Function Description
Parameters: TYPE: INTEGER
Valid Values: See FindConfigObject Returned Results table
Properties: LIST or variable (provide list of search criteria)
Return value type: LIST

This function returns information about a requested configuration object. You must specify the type of
object for which to search (for example, CFGPlace) and the list-presenting search criteria. A valid set
of search properties consists of either the name or a combination of the switch and number.
Examples:

• For CFGDN objects, name specifies an alias of the required DN, switch specifies the name of the switch to
which the DN must belong, and number specifies this DN number.

• For CFGPlace object, name specifies the name of required place, switch specifies the name of the switch
to which a DN (from among the DNs belonging to this Place) belongs, and number specifies the number
of this DN.

The search criteria specifies a subset of the object properties, while the function provides the rest of
the data. The search criteria must be a unique subset of the properties that identify the configuration
object. See the following search criteria and results and also the table below:

Search Criteria: FindConfigObject[CFGDN, 'name:2201_vit_sw2'] or
FindConfigObject[CFGDN, 'number:2201|switch:vit_sw2']
Results: "dbid:1122|name:Place_102_vit_sw2|tenantdbid:103|tenant:Vit|#1.number:1
02|#1.switch:vit_sw2|#1.type:2|#2.number:112|#2.switch:vit_sw2|#2.type: 1|dns:2".

When search criteria is not based on dbid, but on names, the tenant is required for an object search.
By default, the tenant is the one for the current interaction, but tenant also can be explicitly specified
with extra keys: tenant or tenantdbid.

In addition to specifying a single Configuration object, you can also specify a collection of objects. In
such cases, the search criteria must contain key all with value true. Additionally, the search criteria
might contain extra filters on the Annex (only objects with this value of Annexes are returned). For
example, annex.section,option1:value1|annex.section,option2:value2. When specifying a
collection of objects, URS returns a reduced set of objects properties, all highlighted in bold, in the
table below. Specifying a collection of objects is not supported for tenants, applications, folders, and
enumerator values.

FindConfigObject Returned Results
Object Type Search Key Combinations Returned Properties

CFGSwitch dbid, dbid, type, link, name, tenant,
tenantdbid, tserverdbid,

New Features New or Updated Function Descriptions

Universal Routing Reference 27

Object Type Search Key Combinations Returned Properties

name tserver, folders, annex,
targetdata

CFGFDN
dbid,
name switch or switchdbid+number

dbid, type, number, name,
switchdbid, switch, tenant,
tenantdbid, annex, targetdata

CFGPlace
dbid,
name switch or switchdbid+number

dbid, name, tenant, tenantdbid,
annex, targetdata, dns, folder,
annex

CFGPerson
dbid,
logindbid employeeid switch or
switchdbid+login

dbid, employeeid, firstname,
lastname, username, email,
externalid, tenantdbid, tenant,
placedbid, skills, logins,
folders, annex

CFGTenant
dbid,
name dbid, name, annex,

CFGApplication
dbid,
name switch or switchdbid

dbid, type, name, workdir,
commandline, hostname, hostip,
port, switch, servers, annex

CFGSkill
dbid,
name

dbid, name, tenant, tenantdbid,
annex

CFGAgentLogin
dbid,
name switch or switchdbid+login

dbid, login, switchdbid,
switch, tenant, tenantdbid,
override, annex

CFGTransaction
dbid,
type+name

dbid, type, name, tenant,
tenantdbid, alias, description,
annex

CFGStatDay
dbid,
name

dbid, name, tenant, tenantdbid,
dayofweek, day, starttime,
endtime, min, max, target, rate,
annex

CFGFolder dbid
dbid, name, type, class,
ownertype, ownerdbid, size,
folders, annex

CFGEnumerator
dbid
name

dbid, type, name, tenant,
tenantdbid, description,
displayname, annex

CFGEnumeratorValue
dbid
enumeratordbid+name
enumeratorname+name

dbid, enumeratordbid, name,
description, displayname,
isdefault, annex

New Features New or Updated Function Descriptions

Universal Routing Reference 28

GetInteractionAge

Parameters: None
Return value type: FLOAT

This function returns the time difference in seconds (with milliseconds precision) between the current
moment in time and the age of the interaction timestamp.

PriorityTuning

Update the Warning on page 606 of the Universal Routing 8.1 Reference Manual as follows:

Warning! The interaction selection criteria associated with the PriorityTuning function (age of
interaction, relative wait time (such as wait time in queue or predictive wait time), service objective
risk factor, or any combination of these parameters) are only supported in a multi-URS environments
where the same target might be selected by different instances of URSs if:

• all URS instances have the same value of option use_service_objective and
• all strategies running/served by URSes include the PriorityTuning function with the same parameters

values across all strategies.

RequestRouter

See the RequestRouter function in Estimated Waiting Time Improvement.

run

Starting with release 8.1.400.39, Universal Routing adds support for the run function in skill and
threshold expressions.

Parameters:

• for threshold expression:
subroutine: STRING (Subroutine Name)

param1: STRING

param2: STRING

• for skill expression:
subroutine: STRING (Subroutine Name)

Agent: will be provided to subroutine by URS

Virtual Queue: will be provided to subroutine by URS

New Features New or Updated Function Descriptions

Universal Routing Reference 29

param1: STRING

param2: STRING

Return value type: STRING

This function executes a defined subroutine with provided parameters. The values of all parameters
are passed to the subroutine as input parameters. The subroutine returns 1 output parameter value.
The run function returns a STRING data type. If the expression is comparing a returned value with
some other value, the comparison may not work. If needed, returned data can be explicitly converted
to a number via the type-converting functions num or int.

When accessing the function from a threshold expression, IRD shows only subroutines with 2 input
and 1 output parameters.

For example:

num[run[“subroutine1”,”value_param1”, ”value_param2”]] = “5”

run[“subroutine1”,”value_param1”, ”value_param2”] = “WorkingHours”

New Features New or Updated Function Descriptions

Universal Routing Reference 30

When accessing function from skill expression, IRD shows only subroutines that have 4 input and 1
output parameters.

For example:

run[“subroutine1”,”value_param1”, ”value_param2”]<”English”

New Features New or Updated Function Descriptions

Universal Routing Reference 31

Limitations:
A subroutine called by the run function cannot execute any waiting function, access external servers
for some data, or invoke another subroutine. Any attempt to do so raises an error and terminates
execution of skill or threshold expressions. All data that the subroutine is allowed to use must reside
in URS memory, which means the subroutine can use data only from Configuration Server, Stat
Server, interaction data, and data stored in URS memory.

SetIdealAgent

See the SetIdealAgent function in Using Agent Skills for Agents/Calls Prioritization.

New Features New or Updated Function Descriptions

Universal Routing Reference 32

StrAsciiTok

On page 583 of the Universal Routing 8.1 Reference Manual, the description of the string
manipulation function StrAsciiTok should read "Every time the function StrAsciiTok is called, it stores
in memory the index in String of the next character of the obtained substring." The manual
incorrectly states "...it stores in memory the index in String of the last character...."

TargetListSelected

See the TargetListSelected function in Using Agent Skills for Agents/Calls Prioritization.

TargetState

Update ready:1 in the TargetState function description, results—LIST Fields as follows:

ready:1 The agent is considered (by URS) to be ready. If agent capacity is not used, then URS flags
the agent as ready if his state is reported by Stat Server as WaitForNextCall. If agent capacity is
used then the agent has no state, but only a list of medias, which results in URS flagging the agent as
ready if this list of medias is not empty. By default, URS takes the ready flag into account when
selecting agents, but it can be overwritten in the strategy by calling function CheckAgentState with
an argument of false. This will cause URS to ignore the ready flag when looking for an available
agent for the current call.

You can use the FindConfigObject and TargetState functions look up an agent name, the media
channel logged into, and the agent's DN, based on an agent's Login ID or Employee ID.

Function TargetState[‘EmplooyeeID.A’] returns agent readiness information, a list of available
medias and DNs. This information is in addition to the returned results listed in the function
description in the Universal Routing 8.1 Reference Manual.

Also see FindConfigObject.

transfer-to-agent

Location in Configuration Layer by precedence: T-Server, URS
Default value: false
Valid values: true, false,never
Value changes: take effect immediately

Instructs URS to request T-Server to transfer interactions from an IVR directly to a target agent
instead of returning them to the routing point.

• true - allow transferring from IVR to agent.
• false - do not allow transferring from IVR to agent, except cases when IVR is Routing Point itself.

New Features New or Updated Function Descriptions

Universal Routing Reference 33

• never - do not allow transferring from IVR to agent in all cases.

Use this function where standard routing scenarios do not apply or cannot be used to override the
usual method of routing a call to an agent. For example, there may be special hardware or reporting
needs. Allows you to initiate a direct transfer to an agent using T-Library functionality. For more
information on T-Library functions,see the TLib Reference Guide.

Selection Object Functions

To access these functions in IRD's Routing Design view, click Routing > Selection to open the the
Selection properties dialog box. Cilck Add Item. Under Type, select Skill. Under Name, select All
Functions.

cfgdata
Parameters:

• folder: STRING (Section name on the Annex tab of the Person object)
• option: STRING (Option name in the section on the Annex tab of the Person object)
• default: FLOAT (Preset value is returned, if the option is not found)

Return value type: FLOAT

This function returns a numeric value. If the agent’s option is found, it returns 1. If the option is not
found and the default value is not specified, it returns 0. If the option is not found and the default
value is specified, the default value is returned.

exist
Parameters: Skill Name: STRING (Skill name)
Return value type: FLOAT

This function checks if an agent has the provided skill and is applied directly to skill names. It returns
1, if an agent has the skill, or 0 otherwise.

folder
Parameters: template: STRING (Folder name in the Configuration Layer under Persons)
Return value type: FLOAT

This function checks if an agent is configured in a folder with a name that matches the specified
template. It returns 1, if there is a match, or 0, otherwise.

group
Parameters: Agent Group: STRING (Agent Group name)
Return value type: FLOAT

New Features New or Updated Function Descriptions

Universal Routing Reference 34

https://docs.genesys.com/Documentation/PSDK/8.5.x/TlibRef/Welcome

This function checks if an agent belongs to the specified group. It returns 1, if yes, or 0, otherwise.

loc
Parameters: Switch Name: STRING (Switch name)
Return value type: FLOAT

This function verifies the agent location. It returns 1, if an agent has a DN belonging to the specified
Switch, or 0, otherwise.

login
Parameters: media: STRING (Media name)
Return value type: FLOAT

This function returns 1, if an agent is logged in to provided media, or 0, otherwise. If media is set to
any and an agent is logged in to at least one media, then 1 is returned.

name
Parameters: template: STRING (Agent employee ID template)
Return value type: FLOAT

This function checks if an agent name matches the specified template. It returns 1, if there is a
match, or 0, otherwise.

sitex
Return value type: FLOAT

The sitex function verifies an agent's location (site). It returns 1 if the agent was logged in at the
provided site and 0 otherwise. If the name of the site is set to this, then instead of checking, the
function just returns the site name. The agent's site is usually provided by the agent himself through
the site parameter in the Reasons attribute of the agent ready request. Note: In SIP cluster
configuration, it is automatically populated by SIP Server.

String Manipulation Functions

The following string manipulation functions are available in IRD starting with version 8.1.400.39:

StrUTF8Encode
Parameters: String: STRING or variable (representing the string)
Return value type: STRING

This function performs encoding of the provided multibyte String into UTF8 format. Encoding is done
based on current locale.

New Features New or Updated Function Descriptions

Universal Routing Reference 35

StrUTF8Decode
Parameters: String: STRING or variable (representing the string)
Return value type: STRING

This function performs decoding of the provided UTF8 String into multibyte format. Decoding is done
based on current locale.

StrURLEncode
Parameters:

• String: STRING or variable (representing the string)
• UTF8: INTEGER or variable (representing the integer true/false value)

Return value type: STRING

This function performs URL Encoding of the input String. Additionally UTF8 conversion might also be
applied before URL encoding if the UTF8 parameter is true (on any integer that is not 0). If UTF8
encoding is specified but fails, then URL encoding will be applied to the original string.

Note: URL encoding is the process of replacing unprintable characters within URLs, such as -, _, ., !,
~, *, ’, (, and), with their corresponding hexadecimal code prefixed with %. The URL encoded value is
safe to use as a value for the Web URL parameters.

StrURLDecode
Parameters:

• String: STRING or variable (representing the string)
• UTF8: INTEGER or variable (representing the integer true/false value)

Return value type: STRING

This function performs URL decoding from the input string. Additionally UTF8 conversion might also
be applied after URL decoding if the UTF8 parameter is true (on any integer that is not 0). If UTF8
decoding is specified but fails, then just the result of the URL decoding process will be returned.

Note: URL decoding is the process of replacing the URL encoded characters with their corresponding
original characters and replacing the + sign with a space.

Support for JavaScript

Beginning with release 8.1.400.67, URS supports execution of stand-alone JavaScript strategies and
subroutines. The supported standard is ECMA-327, 3rd edition.

IRD now provides a possibility to write a part of or the entire strategy logic using the JavaScript

New Features New or Updated Function Descriptions

Universal Routing Reference 36

language in Macro or Script objects.

• To enable Script objects, navigate to the Tools/Routing Design Options dialog and in the Views tab
select the Routing Design/Scripts checkbox.

• For Script objects, use the Script/ecma type.
• For Macro objects, select the Complex macro checkbox.
• Write the script source code in the Definition tab and always use the Verify button to check the

validity of the script or macro you create.

The objects you create can be used in regular IRD strategies/subroutines. Script objects can also be
used on their own.

To pass data from the calling strategy to the Script object:

Accessing of input parameters requires writing explicit code that will do it. Calling the strategy will
put input parameters in a stack. In scripts, use the GetInputParams() function to retrieve the input
parameters. Retrieved data will be removed from the stack, so calling the function more than once in
a Script will result in an error. It is recommended to call the GetInputParams() function at the very
beginning of the script.

To pass data from the Script object to the calling strategy:

Use the SetOutputParams(object) function to return output parameters.

Important
If the script is used as a subroutine, then the last executed command should be a
Return(error_code); where error code is 0 if all OK and a non-zero error code if any
error occurs. The following is a sample script with 2 input parameters (i1 and i2) and
2 output parameters (out1 and out2):

var inp = GetInputParams();
var res= new Object();
res.out1= inp.i1+inp.i2;
res.out2= inp.i1-inp.i2;
SetOutputParams(res);
Return(0);

To pass data to a Macro:

Macros are called as subroutines. All macro parameters are considered as input and passed
automatically, there are no output params.

To pass data from a Macro to the calling strategy:

Data can be passed back to the calling strategy from Macro through the following:

• stack – combination of Push(data) and data=Pop()functions.
• wake up calls – combination of WakeCallUp(‘’, data) and data=WakeUpData[‘’] functions.

New Features New or Updated Function Descriptions

Universal Routing Reference 37

• dedicated returning – combination of ReturnEx(error, data) and data=ReturnData[]functions.

INTERACTION scope variables can be used anywhere (Scripts, Macros, strategies, subroutines) to
pass data in any direction.

URS JavaScript Code/Functions Support:

• Standard ECMA-327, ECMAScript 3rd Edition Compact Profile.
• All operators must be ended with “;”.
• Internal characters’ presentation – multibyte (not UTF16).

Functions for JavaScript Strategies
All URS functions can be used. Functions are listed in the compiler.dat file and located in the IRD
installation directory. The following functions have mostly been created for use in JavaScript
strategies (though they also can be used in IRD strategies, if needed):

GetCallObject()
The GetCallObject() function returns an object presenting the current call. The properties of this
object can be used to access (read and sometimes write) real call data. This call object has the
following properties:

• udata or userdata – allows read/write access to call attached data
• GetCallObject().udata.abc = 123; the same as Update(‘{d}abc’, 123)

• X = GetCallObject().udata.abc; the same as X = UData ('abc’)

• X = GetCallObject().udata[‘*’]; returns all calls user data
• GetCallObject().udata.abc = null; the same as DeleteAttachedData (‘abc’)

• GetCallObject().udata.abc = undefined; the same as DeleteAttachedData (‘abc’)

• delete GetCallObject().udata.abc; the same as DeleteAttachedData (‘abc’)

• GetCallObject().udata.abc+ = 5; take current value of attached data, increment it by 5 and re-
attach.

• GetCallObject().udata+ = {“abc”:123, “def”:”aaa”}; the same as Update(‘’,
‘{d}abc:123|def:aaa’)

• GetCallObject().udata- = “abc”; the same as DeleteAttachedData (‘abc’)

• xdata or extensions – allows read/write access to call extensions data
• voice – allows read access to following call data: thisdn or _dest, _orig, acdqueue, type, ani, dnis or

contactedaddr, ced, media or category, customerid, connid, g_uid, callid, trunk, media_server,
and control_server

• location – allows read access to following call data: media_server and control_server

• data – allows read/write access to the call's INTERACTION scope variables

The following functions for target selection are preferred for performing target selection from
JavaScript strategies:

New Features New or Updated Function Descriptions

Universal Routing Reference 38

PutIntoQueue(id, virtual queue, priority, statistic, selection flag, target, . . .)
This function is similar to the SelectDN function with following differences:

• It allows explicit control of call queues with the first parameter. In the SelectDN function, id is selected
by the compiler and they are all different within a strategy. Using the same id in different instances of
the PutIntoQueue function will result in the call’s requeueing (call targeting resulted from an older
PutIntoQueue function will be eliminated and replaced with the new one). If id is set to 0 then the new
id-less call’s queue will always be created.

• It only puts the call into queue but does not try to select a target. The function returns the refid that
can later be used for target selection.

RemoveFromQueue(id, virtual queue)
This function is similar to the ClearTargets function, but allows more explicit control over excluding a
call from one or another queue.

• If the virtual queue is empty and id is not 0, then the call will be removed only from the call queue in
which it was placed by the PutIntoQueue function using the same id.

• If the virtual queue is empty and the id is 0, then the call will be removed from all call queues as well
as from all virtual queues (Virtual queue EventDiverted(redirected) will be distributed for all virtual
queues call is in).

• If virtual queue is not empty the n call will be removed from the all call’s queues associated with
provided virtual queue as well as from this virtual queue (the virtual queue EventDiverted(redirected)
event will be distributed for this virtual queue).

RemoveFromQueueN(refid)
This function is similar to the RemoveFromQueue function, but it removes the call from call queue
identified by refid returned by the PutIntoQueue function. The call is not removed from any virtual
queue.

SelectTargetFromQueue(refid, timeout)
This function is similar to the SuspendForDN function (and in case of refid=0, they are identical). The
function places the call into a waiting for targets from all queues calls are in state for the duration of
the provided timeout. Before doing that function explicitly tries to select target (by statistics) from
the queue the call is in, pointed by the provided refid (return value of the PutIntoQueue function). If
refid is 0, then all call queues will be tried. The returned value is identical to the value provided by
the SuspendForDN function.

RouteToTarget(target)
This function is a more advanced version of the RouteCall function. Similar to the RouteCall
function it accepts a target returned by the SuspendForDN function or the SelectTargetFromQueue
function and routes the call to the provided target. The returned value is identical to the value
returned by the RouteCall function.

The main difference is that this function will try all means to route the call; that is, answer the call if

New Features New or Updated Function Descriptions

Universal Routing Reference 39

needed, return it back to the original Routing Point, and if the call is on an uninterruptible treatment
or in a transition state, it will wait until routing is possible again. It is this function, and not the
RouteCall function that IRD uses when custom routing is activated in Routing objects.

JavaScript support for Treatment functions

The function, TreatmentPlayAnnouncement, and other Treatment<TreatmentType> functions which
are used to start and wait for treatment ending can not be used in JavaScript directly due to a name
conflict with the same name constant.

The recommended way to use this function is by referring to it indirectly through a URS functional
module. For example:

var funcTreatmentPlayAnouncement= FunctionalModule('[www.genesyslab.com/modules/
urs')['TreatmentPlayAnnouncement'];
funcTreatmentPlayAnouncement('LANGUAGE', 'English(US)', 'PROMPT.1.TEXT', 'http://127.1.1.1/
audios/bienvenida_001.wav');

Alternatively the function, StartTreatmentPlayAnnoncement (followed with
SuspendForTreatmentEnd) can be used instead in this case. Effectively, the
Treatment<TreatmentType> functions can be considered as shortcuts for combinations of two
functions StartTreatment<TreatmentType> and SuspendForTreatmentEnd.

Notice how parameters in the above sample are passed to Treatment<TreatmentType> or
StartTreatment<TreatmentType> functions, it is different from passing them to busy treatment
functions. The parameters must be passed directly and as a sequence of keys and values: key, value,
key, value, and so on.

Sample JavaScript Snippet
The following is a sample JS snippet where the call is routed to any available agent during working
hours and if outside working hours, the not the strategy plays an appropriate treatment. The
treatments to play are obtained from some a Web Service.

var funcTreatmentPlayApplication= FunctionalModule('[www.genesyslab.com/modules/
urs')['TreatmentPlayApplication'];

function RouteAnyAgent(greeting, busy)
{

funcTreatmentPlayApplication('APP_ID',greeting);
var queue= PutIntoQueue(1, '', 0, "StatAgentLoading", SelectMin, '?:2>1.GA');
AddBusyTreatment(TreatmentPlayApplication, 'APP_ID:' + busy, 0);
var target= SelectTargetFromQueue(queue, 60);
if (!Failed())

RouteToTarget(target);
}

function RoutetoAnyAgentWorkingHours(greeting, weekend, outoftime, busy)
{

if (Date.getDay()==0 || Date.getDay()==6)
funcTreatmentPlayApplication('APP_ID',weekend);

else if (Date.getHours()<8 || Date.getHours()>18)
funcTreatmentPlayApplication('APP_ID',outoftime);

else
RouteAnyAgent(greeting, busy);

}

New Features New or Updated Function Descriptions

Universal Routing Reference 40

x= ObjectFromJSON(
GetHttpRequestInfo(1,

StrFormat("http://myhost:myport/MyMessage?ani=~s&dnis=~s&connid=~s",
ANI(), DNIS(), ConnID()), "", "", 0, "", ""));

if (!Failed())
RoutetoAnyAgentWorkingHours(x.greeting, x.weekend , x.outoftime , x.busy);

Default();

Secure Connections Support Includes SNI Functionality

Starting with release 8.1.400.71, URS supports Server Name Indication (SNI) extension for TLS
handshakes. As a result, HTTPS resources can be contacted from within URS, that is, using the Web
Service block in IRD.

If the SNI functionality is activated, URS adds an extra parameter, tls-target-name, into the
transport parameters of the connecting requests, set to the name of the host the web request is
directed to.

The SNI functionality can be activated using one of the following methods:

• Set the def_sni option to true. For a description of the new option, refer to the New or Updated Option
Descriptions topic.

• Specify sni:true in the Hints field of the IRD Web Service object. The Hints field is located under TLS
group in the Security tab of the Web Server object.

Important
URS first uses the value from the IRD Web Service object. If that is absent, it uses the
value set by the def_sni URS option.

Optimal Skill Update Mode

Starting with release 8.1.400.75, URS is enhanced to provide a possibility for more optimally updating
skill expressions when part of the skill expression uses the login function. The optimal skill update
mode is activated when the new URS option, content_update_on_login, is set to false. Setting it to
force, which is the default value, overrides the enhancement and retains the behavior from the
previous URS versions.

content_update_on_login
Location: default section of URS Application object
Default Value: force
Valid Values: force, false
Changes Take Effect: Immediately

New Features New or Updated Function Descriptions

Universal Routing Reference 41

Timeout to Wait before Sending Negative Response to Web Client

Beginning with version 8.1.400.78, URS allows users to specify a timeout to wait for before sending a
negative response to a web client's request to perform an operation for an interaction that URS does
not have. Timeout (in seconds) can be defined in the additional parameter, maxdelay, in the web
request to URS or in the call_sync_time option.

call_sync_time
Location: http section of URS Application object
Default Value: 0
Valid Values: 0 to 10
Changes Take Effect: After restart

The value defined in the call_sync_time option is used if the maxdelay parameter is not specified.

For example, urs/call/ConnID/func?name=Timeout¶ms=[120]&maxdelay=2. Here, URS is requested
to apply the Timeout[120] function to the interaction. If the requested interaction is not found, then
URS will wait up to 2 seconds. If URS gets the requested interaction during the 2 seconds, it will apply
the function to it. Else, it answers with an error.

Important
The maximum value allowed for the maxdelay parameter (and the http/
call_sync_time option) is 10 seconds.

Multithreading Capability

Beginning with release 8.1.400.78, URS is enhanced with a multithreading capability to find matching
agents who satisfy the conditions of the specified skill expression, in a given configuration . This
improves URS performance in larger environments characterized by agent headcounts exceeding
10,000 or even 100,000 across locations.

A new configuration option, mts, is introduced to control the multithreading capability.

mts
Location: default section of URS Application object
Default Value: 0:0
Valid Values: 0:0, 1:0, 1:1
Changes Take Effect: Immediately

0:0 - indicates multithreading is switched off.
1:0 - indicates multithreading is turned on, but will be applied to expressions containing only skills.
Skill expressions with statistics and functions are excluded in single threading mode.

New Features New or Updated Function Descriptions

Universal Routing Reference 42

1:1 - multithreading is turned on and skill expressions with statistics and functions are also included
for multithreaded processing.

A new console command, mtskill, is also provided for exploring the multithreading capability.

Format: mtskill <TenantName> <SkillExpression>.

As an output, URS provides 2 corresponding time intervals (in microseconds).

The following limitations are to be considered before turning on multithreading:

• Multithreading is justifiable only in very big environments.

• URS must run on very powerful hardware with multiple processors available for URS (running
multithreading on single processor machine will slowdown URS).

• URS logging is disabled in multithreaded mode, while URS is updating skill expressions.

• Some skill expression functions, such as run, group, folder, and tag, have too big a footprint to be
safely used in a multithreaded environment. Skill expressions containing these functions will always be
executed in the single threaded mode irrespective of the value of the mts option.

Improved EWT Accuracy

EWT accuracy is determined by the difference between the EWT value given when a call enters a
queue and the actual wait time that the particular call spent in the queue. When the difference is
minimal it translates to a better EWT accuracy. EWT accuracy is impacted if calls of different types
are placed into the same VQ. For example, if one VQ is used for both inbound, virtual callback (CB),
and CB outbound calls, then EWT accuracy is low because outbound CB calls have some unique
properties, such as:

• outbound CB calls are placed in VQ only for a short time of several seconds.
• outbound and virtual CB calls are two call representing the same interaction in a VQ. This creates

double counting.
• outbound and virtual CB calls leave the queue at the same time breaking the EWT calculation model,

which assumes that one call is distributed at a time and calls are distributed at a constant rate.

EWT accuracy can be increased if outbound CB calls are not taken into account for EWT calculation.

Beginning with release 8.1.400.83, URS provides more accurate EWT calculations for a Virtual Queue
when interactions that are not intended to be routed by URS end up in the Virtual Queue. URS now
provides the ability to mark and ignore such calls in EWT calculations. You can mark an interaction by
setting its run time mode to 524288 and exclude them from EWT calculations.

To mark an interaction you can, use the SetRunTimeMode function within the IRD strategy. Or, it is set
automatically if EventRouteRequest starting a strategy contains AttributeCallType with value 3
(outbound) and AttributeUserData has the _CB_N_CALLBACK_ACCEPTED key set to 1.

New Features New or Updated Function Descriptions

Universal Routing Reference 43

Ignoring such marked calls in EWT calculations is controlled with the new configuration option,
lvq_ignore_duplicates.

lvq_ignore_duplicates
Location: default section of URS Application object; can also be defined at the VQ level
Default Value: false
Valid Values: true, false
Changes Take Effect: Immediately

Setting the option to true ignores marked calls in EWT calculations.

If the option is set to true for a VQ and when an interaction marked as 524288 leaves the VQ:

• it will not change the distributing quitting rate from that VQ (its quitting will not go into an array of the
last 32 quits). This improves the accuracy of lvq requests when aqt=urs.

• it will be skipped (not counted) when URS goes through (counts) all calls in the VQ to answer an lvq
web request. This improves the accuracy of all types of lvq requests (aqt=urs, urs2 or stat).

If the option is set to false for a VQ, then all interactions in that VQ (regulars or duplicates) will be
counted for EWT calculations.

Log messages about sending VQ events (such as, Queued, Diverted) are now extended to indicate if
URS counts or ignores the interaction in EWT calculations.

12:38:36.134_T_I_00820324eb06cefd \[14:02\] sending event 58 for vq
RBWM_UKFD_Ingress_VQ_EMEA (0 53-7 (0, i=349923 o=349904) 1633001911 170/32) (x)
(The x in the above sample message indicates if the interaction is considered by URS as a duplicate.
If x is 1, it indicates that the interaction is a duplicate, and if x is 0, it indicates that the interaction is
not a duplicate.)

Improved EWT Consistency

Beginning with version 8.1.400.84, URS is enhanced to improve consistency in EWT calculations for
web requests that are interactionless and utilize average handling time provided by the default lvq
URS method.

Improved consistency in EWT calculations is characterised by:

• absence of sharp changes (peaks or drops) in EWT values provided by URS.
• similarity in values of EWT returned by different URS instances in the same environment.

Default behavior
When obtaining EWT values for virtual queues (in response to the lvq web request) URS utilizes its
own data, that is, calls that it places into virtual queues, targets that these calls are waiting for, and
so on. As a result:

• it is possible that there is a sharp change in the provided EWT values if URS switches between sets of
data used to calculate EWT.

New Features New or Updated Function Descriptions

Universal Routing Reference 44

• values returned by different URS instances might not be the same (if the data used by the different URS
instances are also different).

To simulate a global queue perception in a distributed call center, multiple URS instances in the same
environment must be able to provide consistent (ideally, the same) EWT value for the same VQ. A
caller must get the same EWT value regardless of which data center the call lands in.

URS has the following two data sources for calculating the average handling time (time per call from
the VQ) for interactions that are not defined in a web request (max is used in place of connid):

1. Internal queues created by URS when executing strategies.
2. One of the skill expressions from the internal queues that URS remembers (referred as the VQ

Presenter). Internal queues are short lived objects that URS might dispose if not used. It is possible that
all internal queues associated with a VQ are deleted. To be able to provide reasonable data even in
such cases, URS remembers one of the skill expressions. URS selects the skill expression to remember
based on which expression returns the highest number of agents. The identified skill expression
represents the VQ when there are no internal queues and is referred to as the VQ Presenter.

Usually, URS tries to get data from the internal queues first and if at least one internal queue
associated with the VQ exists, then, as listed above, data source 1 is used. If there are no internal
queues, data source 2, that is, data provided by the VQ Presenter is used. A side effect to this
approach is that URS can spontaneously switch between the two data sources (for interactionless
web requests). This might result in the returned EWT values fluctuating frequently.

New enhanced behavior
In the new enhanced behaviour, URS uses the VQ Presenters as the primary source of data for
calculating EWT even if internal queues exist.

To facilitate the new behaviour, URS ensures that:

• A VQ Presenter always exists.
• Any skill expression that the strategy uses can be used as a VQ presenter, even if the skill

expression contains statistics.
• A skill expression identified as a VQ Presenter will not be deleted even if it has not been used for a

long time.

• A VQ Presenter can be set or changed only in the following cases:
• On VQ creation. If a VQ associated with an Agent Group as its origination DN, then this Agent Group

will be set as the initial presenter for the VQ.
• On creating a new internal queue associated with the VQ. At each such instance, sizes of the current

VQ presenter and skill expression used by the internal queue are compared and the biggest one is
selected as the new VQ presenter.

• On placing any interaction into the VQ. Re-skilling of agents theoretically might result in reducing
the size of the selected presenter and it will no longer be the biggest presenter. As a result, URS
constantly rechecks the size of the current VQ presenters whenever a call is added into the VQ. The
size of the current presenter and skill expression used by the call to enter the VQ are compared and
the biggest one is selected.

Each time a VQ Presenter is changed, an entry is logged. For example, 15:27:23.757_M_I_ [10:85]

New Features New or Updated Function Descriptions

Universal Routing Reference 45

LVQ NameOfVQ presenter set: <?Agents5_10:>(21499ec7bb0) media=0.

If different URS instances are executing the same set of strategies, it is likely that all those URS
instances will also have the same VQ Presenters.

By deafult, the existing lvq method with aqt=urs2 will continue to work as before. A new
configuration option, lvq_force_presenter, is introduced to activate the new behaviour.

lvq_force_presenter
Location: default section of URS Application object; can also be defined at the VQ level with
section name as URS application name or __ROUTER__
Default Value: false
Valid Values: true, false
Changes Take Effect: Immediately

Setting the option to true activates the new behaviour where a VQ presenter is used as a primary
source of information to obtain the average handling time per call.

Reporting
To allow evaluation of the quality of the EWT calculations, URS can be enabled to collect (and report
on) data about the estimated and actual waiting times for calls in a virtual queue.

• Every time an interaction enters a virtual queue the current EWTs are obtained and stored inside the
interaction.

• Every time an interaction leaves the virtual queue the stored EWTs along with the actual time the
interaction was waiting for is stored in the virtual queue. The virtual queue store information only about
the latest interaction that quit the queue.

The lvq web request is extended to include this information as well as other statistical data that can
be useful for tracing processing of calls in one or another virtual queue.

You can use the following requests to query data:

• urs/call/max/lvq?tenant=TenantName&name=VirtualQueueName&filter=presenter

- returns the skill expression/agent group used as the current presenter for the specified virtual
queue.

• urs/call/max/lvq?tenant=TenantName&name=VirtualQueueName&filter=trace&ewttrace[=N]

- filter=trace returns tracing data for the specified VQ.
- ewttrace or ewttrace=N triggers the tracing mode for the specified VQ for the next N minutes (by
default N=3).

For a virtual queue in tracing mode, URS collects extra data about the virtual queue (as permanent
collection of such data takes a toll on performance). Additionally, for a VQ in tracing mode, URS
records extra information in the log entries even if the default/verbose option is set to false.

When filter=trace, the following data is returned (note that when a value is unknown the field
might not be returned):

New Features New or Updated Function Descriptions

Universal Routing Reference 46

Field Description
time current UTC time

lcalls_in Local number of calls that have entered the VQ so
far.

lcalls_out Local number of calls that have exited the VQ so
far.

lcalls Local number of calls in the VQ (lcalls_in -
lcalls_out).

rlcalls Local number of real calls in the VQ (lcalls –
duplicates).

calls Global number of calls in the VQ (effectively
StatCallsInQueue as returned by StatServer).

mrs Multi-URS factor (used to convert local data into
global (calls/lcalls).

rcalls An estimate of the global number of real calls
(rlcalls * mrs).

aqt_stat Time per call according to StatServer
(=StatExpectedWaitingTime/StatCallsInQueue).

ewt_stat Waiting time according to StatServer (=aqt_stat *
(rcalls+1)).

aqt_urs Time per call according to URS or global quitting
rate (local quiting rate / mrs).

ewt_urs Waiting time according to URS (=aqt_urs *
(rcalls+1)).

aqt_urs2 Time per call according to URS average handling
time (calculated as per URS settings).

ewt_urs2 Waiting time according to URS (=aqt_urs2 *
(rcalls+1)).

aqt_ursp Same as aqt_urs2, but aht is calculated based on
presenter.

ewt_ursp Same as aqt_urs2, but aht is caluclated based on
presenter.

xid connid of latest call distributed into the VQ.
xtm Latest call entry time into the VQ.

xewt_stat StatServer based estimate of waiting time for the
latest call (at the xtm time).

xewt_urs URS quit rate based estimate of waiting time for
latest call (at the xtm time).

xewt_urs2 URS average handling time based estimate of
waiting time for latest call (at the xtm time).

xewt_ursp
URS average handling time for presenter based
estimate of waiting time for the latest call (at the
xtm time).

For a VQ in tracing mode the log message (logged when the call is distributed from the VQ) is as
follows:

New Features New or Updated Function Descriptions

Universal Routing Reference 47

12:36:04.200_M_I_03390320b4c930b0 [14:02] LVQ NameOfLVQ (58,1) ewts: xtm, xwt,
xewt_stat, xewt_urs, xewt_urs2, xwt_ursp, (along with some other data).

Note that if the VQ is not traced the above message might still be logged if the log level is set to 4 or
5, but the message will have no data for xewt_urs2 and xwt_ursp.

You can follow one of the two patterns given below for tracing EWT for a VQ with the provided web
requests:

1. Periodically (for example, once per minute) you can send URS the following web request, urs/call/
max/lvq?tenant=TenantName&name=VirtualQueueName&filter=trace&ewttrace. Collect the output
data for a period of time (say, a few hours) and visualize the output (for example, as an Excel
spreadsheet).

2. Send the following web request to URS, urs/call/max/
lvq?tenant=TenantName&name=VirtualQueueName&filter=trace&ewttrace=180. Collect URS logs for
the next 180 minutes (3 hours), extract the related log messages from the logs and visualize them.

Limitations
The new behaviour is not necessarily better if compared with the default behaviour where URS relies
on internal queues. That depends on how a specific solution has been implemented and how virtual
queues are used in the solution. It is expected that the new behaviour will work good in cases of
cascaded routing.

Also, URS cannot detect by itself, when the usage of one or another virtual queue changes sharply.
For instance, solutions/strategies may start to use completely new skill expressions. When the usage
of a virtual queue is changed, URS might still continue to use old virtual queues' presenters (if they
happen to be bigger). To address such cases and avoid restarting URS to align virtual queue usage,
the lvqs console command can be used with an extra optional parameter, reset_presenter.

For example: lvqs TenantName VQName reset_presenter
- where VQName is name of the virtual queue or *.
- All matched virtual queues will have their presenter updated (their presenters will be reset based on
the current internal queues URS has for them).

From the Web API, the lvqs console command can be executed as, urs/console?lvqs TenantName
VQName reset_presenter.

New Features New or Updated Function Descriptions

Universal Routing Reference 48

Estimated Waiting Time Improvement and
URS Web API
Universal Routing improves its capability of calculating the estimated waiting time for a routing
target.

• Starting with URS 8.1.400.25, you can use URS Web API methods to calculate a more precise estimated
waiting time. With this release, the following two Web API methods support the improved estimated
waiting time functionality: lvq and query.

• The existing InVQWaitTime function is enhanced to no longer require the association of agents with
virtual queues and can be used in an environment with multiple URSs, queues, and multi-skilled agents.

• Starting with IRD 8.1.400.21, a new function, RequestRouter is available in IRD's Function object, which
simplifies calling the Web API methods from routing strategies.

Method urs/call/connid/lvq

The lvq method allows more control over how estimated wait time is counted. The lvq method can
also be applied to groups of virtual queues. If a virtual queue name ends with .GQ URS counts
estimated waiting time and other parameters for the entire collection of virtual queues.

When the lvq method is invoked with the aqt parameter, the calculation includes:

• stat—identical with value counted by the InVQWaitTime function.
• urs2—Similar to the InVQWaitTime function but URS itself counts AverageHandlingTime. It does not

matter whether or not a virtual queue is configured with an Agent Group.
• urs—Default value, Like urs2, but instead of AverageHandlingTime, URS uses average quitting time

which is counted based on last 32 calls distributed from the queue.

Returned values for the lvq method depend on the input parameters supplied. Samples:

urs/call/connid/lvq/VirtualQueueName?aqt=stat
urs/call/connid/lvq/VirtualQueueName?aqt=urs
urs/call/connid/lvq/VirtualQueueName?aqt=urs2

Important
If aqt=urs2, URS calculates an agent's average handling time based on the agent's
CurrentState/CurrentTargetState statistics. AHT is calculated based on the last 10
calls (for every media) that an agent processes. If aqt=stat, URS calculates an

New Features Estimated Waiting Time Improvement and URS Web API

Universal Routing Reference 49

agent's average handling time using a sliding window of 10 minutes.

To view input parameters and output information: With URS running, open a browser and run the
help method for lvg. The help method is described in the Universal Routing 8.1 Reference Manual,
Appendix C, "Supported Methods." Example: http://host:port/urs/help/call/lvq

The lvq method can be called from a routing strategy with function RequestRouter.

Method urs/call/connid/query

The query method is described in the Universal Routing 8.1 Reference Manual, Appendix C,
"Supported Methods." This method can be helpful when the use of virtual queues is not appropriate
or not possible for calculating estimated wait time. For example, a virtual queue could include calls
that might wait for totally different targets or have different thresholds. This method uses router's
queues instead of virtual queues (all calls in router's queues wait for the same targets and have the
same thresholds). Internally this method uses URS function RvqData to get aggregation information
about all router’s queues where a call resides.

When the query method is invoked, the calculation includes:

• min_rvq_ewt—Minimal estimated waiting time among all router's queues call is counted with using
URS-provided AverageHandlingTime.

• min_ewt—Minimal estimated waiting time among all calls in router's queues is calculated by URS based
on average quitting time.

Notes:

• Calculation of AverageHandlingTime that URS provides for router's queues does not consider multi-
skilled agents or support multiple URSes.

• The query method has no input parameters.

This method can be called from a routing strategy with function RequestRouter.

Function RequestRouter

This function simplifies using URS Web API methods from routing strategies. It allows you to directly
invoke URS Web API methods, which can be any supported methods. Example:

RequestRouter[‘##SELF’, ’urs/call/lvq/VirtualQueueName’, ’aqt=stat’,ConnID[], ‘’]
where STRING RequestRouter[STRING RouterServer, STRING Method, STRING Params, STRING
Context, STRING Reserved]

New Features Estimated Waiting Time Improvement and URS Web API

Universal Routing Reference 50

A sample IRD Function properties dialog box using the lvq method is shown below.

Parameters:
Router Server: Uses ##SELF as the server name for the method to be applied to the same instance
of a running URS. Default value: ‘##SELF’.
Method: With IRD release 8.1.400.21, supported methods for use with this function are urs/call/
lvq or urs/call/query.
Params: If the method must have, but does not contain parameters, they can be provided
separately here.
Context: If the method must have, but does not include an Interaction ID, it can be provided here.
Can also be used for providing a ConnectionID, in which case it must not be included into invoked
methods requiring ConnectionID. For example, instead of urs/call/connid/query, URS just uses
urs/call/query.
Reserved: Not used in IRD release 8.1.400.21.
Return Value Type: STRING

New Features Estimated Waiting Time Improvement and URS Web API

Universal Routing Reference 51

InVQWaitTime Enhancement

Starting with URS release 8.1.400.25, the InVQWaitTime function is enhanced to no longer require
the association of virtual queues with Agent Groups.

• If a virtual queue is associated with some Agent Group, then URS uses Stat Server’s
min(max(StatLoadBalance, 0),10000) statistic for the virtual queue and adjusts it relative to call
position in the queue.

• If a virtual queue is not associated with an Agent Group, then URS calculates an AverageHandlingTime
for all agents from the virtual queue that URS considers as a target and multiplies the calculated result
by the call position in the queue. While calculating an AverageHandlingTime, URS attempts to consider
multi-skilled agents and multiple URSes.

Important
For more information on Expected Wait Time (EWT) and its related statistics,
functions, and methods, refer to the White Paper on EWT.

New Features Estimated Waiting Time Improvement and URS Web API

Universal Routing Reference 52

https://docs.genesys.com/Documentation/R/8.1.4/EWT/EWTinURS

IRD Localization
Starting with Interaction Routing Designer 8.1.400.22, the IRD interface can be adjusted for the user's
language by installing a Language Pack on top of the base installation and by setting a language
preference. Every time a Language Pack is installed, the lang folder in the installation directory is
modified to insert the localized resources, such as the text strings that appear on the screen. Each
logged in user can select their preferred language in the Windows Region and Language dialog box.

When IRD starts, it attempts to render the screens in the user's preferred language. If the Language
Pack is unavailable, the IRD interface will default to the English language.

Available Language Pack

• Japanese Language Pack.

Installing a Language Pack on Windows

1. Install IRD 8.1.400.22.
2. Contact your Genesys representative for the Language Pack.
3. Run setup for the Language Pack you want to install.
4. Follow the steps in the Language Pack installation wizard.

Setting the Language Preference

Specify a language preference in the Windows Region and Language dialog box.

1. On the host where IRD is installed, from the Control Panel, open the Region and Language dialog box.
The figure below shows the dialog box for Windows 7. The dialog box may appear slightly different for
your version of Windows.

2. On the Formats tab, in the Formats section, select the language and click OK. The figure below shows
the dialog box after selecting Japanese.

New Features IRD Localization

Universal Routing Reference 53

New Features IRD Localization

Universal Routing Reference 54

Graceful shutdown
Staring with Release 8.1.400.37, URS supports graceful shutdown, the process for uninterrupted
handling of interactions.

How it works

When a graceful shutdown starts, Management Layer still sees the primary/backup pair relationship
between the two URSs. To facilitate continuous processing of calls, internally those URSs turn into a
cluster of two independent URSs, where HA functionality is no longer available.

Prerequisites

The prerequisites for a graceful shutdown are:

• A primary/backup pair of URSs must be configured and running. Graceful shutdown does not apply to
single (backup-less) URS instances.

• Genesys recommends configuring agent reservation before using graceful shutdown, since the graceful
shutdown process temporarily turns a primary/backup pair of URSs into a cluster of two independent
URSs. For more information, see the agent_reservation option in the Universal Routing 8.1 Reference
Manual.

• If Orchestration Server-controlled interactions are present, verify that the current backup URS is aware
of all such calls. To verify, send a web request to the primary URS: urs/console?backup. The response
should be name(host:port,socket);000000000000. If a non-null connection ID appears after the
semicolon, it is not safe to start the shutdown process, as some ORS-controlled interactions could be
lost.

Performing a graceful shutdown

You can start graceful shutdown with either of the following:

• A web request to the current primary URS: urs/console?rollover, or
• In Genesys Administrator, initiate the graceful shutdown procedure from the URS Application object.

Note that when you start graceful shutdown through GA, URS ignores the request if no proper backup
exists, effectively resulting in an ungraceful shutdown.

During a graceful shutdown, the current primary URS:

• rejects processing requests of new voice interactions (from T-Servers or Web clients).
• stops processing of any multimedia interactions (returns them to interaction queues) and ORS-

New Features Graceful shutdown

Universal Routing Reference 55

controlled voice interactions.
• imitates switching into backup mode of operation, forcing ORS (if any) to reconnect to the current

backup node, which is switching to primary mode.
• finishes processing all existing voice interactions, then exits.

The current backup URS:

• switches into primary mode of operation.
• starts processing new voice calls and all multimedia interactions.

New Features Graceful shutdown

Universal Routing Reference 56

Support of HTTP Proxies
Starting with 8.1.400.27, URS provides support of HTTP Proxies for an "https://" type of request. HTTP
Proxies are specified either in the request itself or globally at the URS Application level, in the web
section.

Starting with 8.1.400.45, URS can use the HTTP CONNECT method to establish a secure tunnel
between URS and the web server when accessing a secure web server through a proxy server. The
option proxy_use_connect controls the connection method.

def_https_proxy_host
Location in Configuration Layer by precedence: web section of URS
Default Value: An empty string
Valid Values: Any valid host name
Changes Take Effect: After restart

This option specifies the HTTP Proxy host for an "https://" type of connection.

def_https_proxy_port
Location in Configuration Layer by precedence: web section of URS
Default Value: An empty string
Valid Values: TCP port
Changes Take Effect: After restart

This option specifies the HTTP Proxy port for an "https://" type of connection.

URS checks these options only if a request does not contain the HTTP Proxy host and port specified.
HTTP Proxy for "https://" must be fully trusted and support secure connection on the Proxy port.

proxy_use_connect
Location in Configuration Layer by precedence: web section of URS
Default Value: true
Valid Values: true, false
Changes Take Effect: After restart

This option specifies the connection method to a secure web server through a HTTP proxy server.

• A value of true uses the HTTP CONNECT method. URS communicates with web servers through HTTP
proxy and performs TLS negotiations directly with the web server.

• A value of false uses the legacy method (not recommended). URS communicates with web servers
through HTTP proxy and performs TLS negotiations with the proxy server.

New Features Support of HTTP Proxies

Universal Routing Reference 57

Updates to Existing 8.1.4 Documentation
Below are documentation updates for the Universal Routing 8.1 Reference Manual:

Chapter Number Chapter Name Update Summary

2 IRD Objects

Classification Object Update

Classification Server 8.5 and Strategy
Execution

Identify Contact Object Update

Web Service Object Update

Workbin Owner Types and Compatible
Target Types

Using Variables - Find Interaction Object

Also see the Security section below.

3 URS/IRD Functions

Additional Data Returned by
SelectDN

New or Updated Function
Descriptions

4 URS Options New or Updated Configuration
Option Descriptions

Appendix C URS Methods

Estimated Wait Time
Improvement Using URS Web API

Additional Information on HTTP Report
Method

Various Other Updates

Maximum Characters for
Combined Length of Target and
Stat Server Name

Distribution of Multimedia
Interactions During Shutdown or
Backup Mode

Removal of 9999 License Limit

Maximum Length Limitation for Text Field
on Web Service Object

Corresponding Genesys Administrator
(GA) Screenshots for Old Configuration
Manager (CME) Screenshots

Security Secure communication with
Workforce Management Server

Updates to Existing 8.1.4 Documentation Support of HTTP Proxies

Universal Routing Reference 58

Chapter Number Chapter Name Update Summary
using the standard Transport
Layer Security (TLS) protocol.
See the Transport Layer Security
section in the Genesys Security
Deployment Guide for details.

IRD supports TLS 1.2. The Security TLS
Protocol control in the Web Service object
contains a new value, TLSv12.

IRD supports communication with
Message Server through a secure port. To
configure a secure connection to Message
Server, refer to the Genesys Security
Deployment Guide.

TLS Support: When connecting to a
server through a security channel (TLS),
URS relies on Genesys Security Layer.
Server-side and Mutual authentication are
supported as specified in the Secure
Connections (TLS) section of the Genesys
Security Deployment Guide.

Updates to Existing 8.1.4 Documentation Support of HTTP Proxies

Universal Routing Reference 59

https://docs.genesys.com/Documentation/System/latest/SDG/Welcome
https://docs.genesys.com/Documentation/System/latest/SDG/Welcome
https://docs.genesys.com/Documentation/System/latest/SDG/Welcome
https://docs.genesys.com/Documentation/System/latest/SDG/Welcome
https://docs.genesys.com/Documentation/System/8.5.x/SDG/SecConnsTLS
https://docs.genesys.com/Documentation/System/8.5.x/SDG/SecConnsTLS

New or Updated IRD Object Descriptions
Add/update the following IRD object descriptions in the Universal Routing 8.1 Reference Manual:

Classification Object Update

Chapter 2: Interaction Routing Designer Objects: In the section on the Classification object, Table 34:
User Data Example, is updated with additional information in the form of notes. The table should now
appear as follows:

Parameter Value

CtgId
00001a05F5U900QW
Note: This value is the Universal Contact Server identifier for the
selected category (category having the maximum relevancy).

CtgRelevancy
95
Note: This is relevancy of the selected category.

CtgName
Cooking
Note: This is name of the selected category.

CtgId_00001a05F5U900QW

95
Note: This identifier, as well as those below, are other
categories (together with their relevancies) returned by
Classification Server as a result of classification.

CtgId_00001a05F5U900QX 85
CtgId_00001a05F5U900QY 75
CtgId_00001a05F5U900QZ 65

Classification Server 8.5 and Strategy Execution

When working in a multimedia deployment, if a screening rule is not found:

• Classification Server 8.1 reports an ExternalServiceResponse message indicating that there is no
match for a screening rule and strategy execution continue through the object’s green port.

• Classification Server 8.5 reports an ExternalServiceFault message with FaultCode 904 indicating
that a screening rule is not found and strategy execution continue through the object’s red port.

Updates to Existing 8.1.4 Documentation New or Updated IRD Object Descriptions

Universal Routing Reference 60

Identify Contact Object Update

Chapter 2: Interaction Routing Designer Objects: In the Identify Contact object, General Tab, the
Update User Data definition should now read as follows:

Universal Contact Server returns contact attribute values only when a unique contact is found/
created. Select Update User Data in the Identify Contact object to have the contact attribute values
returned by the Universal Contact Server be part of the User Data of the response. When the Update
User Data property is selected AND if a unique contact is identified or created, Universal Contact
Server returns the contact attribute values in the User Data part of its response. If a unique contact is
identified or created and the Update User Data property is not set, the contact attribute values will be
returned in the parameter part of the ESP response.

Web Service Object Update

Starting with IRD Release 8.1.400.15, security parameters of the Web Service object are extended to
include Proxy Server parameters—Host and Port—to enable execution of Web requests through HTTP
Proxy Server. New parameters are supported by URS version 8.1.400.16 or later.

Security parameters of the Web Service object are extended to include the following fields:

• Client authentication—To explicitly enable/disable authentication of a client (URS) when a
corresponding Web request is involved. The allowed values for this field are true or false / 1 or 0.

• Protocol—To explicitly specify the security protocol to be used for the specific Web request. It applies
only to UNIX and overrides the URS def_sec_protocol option setting.

New parameters are supported by URS version 8.1.400.16 or later.

Usage of Prefixes to Define Value Types in KVList

Any URS function creating or updating a KVList allows to define the type of values by adding a prefix
to the key name.

Allowed prefixes:

• {s} for string
• {d} for integer

To define type in a nested list, for example, key1.key2.key3, the prefix should be provided before
the innermost key: key1.key2.{d}key3.

Updates to Existing 8.1.4 Documentation New or Updated IRD Object Descriptions

Universal Routing Reference 61

Workbin Owner Types and Compatible Target Types

The list of Targets selected in the Workbin object depend strictly on the selected Type of Workbin
Owner. Changing the Workbin Owner Type may result in clearing the list of Targets specified in the
corresponding tab.

The following table lists the types of workbin owners and their compatible target types:

Workbin Owner Type Compatible Target Types

Agent

Agent

Agent Group

Skill

Variable

Agent Group

Agent Group

Variable

Place

Place

Place Group

Variable

Place Group

Place Group

Variable

Using Variables in the Find Interaction Object

Given below is some additional information on using variables in Condition tab of the Find
Interaction object, explained on page 228 of the Universal Routing 8.1 Reference Manual (Chapter
2: Interaction Routing Designer Objects, Multimedia Objects section):

You can use character sets {|...|} or {?...?} to denote an expression that URS must evaluate. For
example,

Updates to Existing 8.1.4 Documentation New or Updated IRD Object Descriptions

Universal Routing Reference 62

var_contact = {|contactId|} and MediaType = "email".

The result is put into quotes when using {|...|} and is displayed as is, that is not put into quotes,
when using {?...?}.

For example,

• {|contactId|} is displayed as '0002Pa5U45EP0015'  .
• {?contactId?} is displayed 0002Pa5U45EP0015.

Updates to Existing 8.1.4 Documentation New or Updated IRD Object Descriptions

Universal Routing Reference 63

Additional Data Returned by SelectDN
Update the SelectDN list of returned keys in the Universal Routing 8.1 Reference Manual as follows:

If the function SelectDN succeeds in selecting an available target, then, in addition to the pair
return:ok, the list returned by the function will contain the following keys:

• target_name—the name of the selected target from the list.

• target_location—the location of the selected target from the list.

• target_type—the type of the selected target from the list.

• vq—the virtual queue name specified as a parameter of the function SelectDN.

• dn—an available DN of the selected target; this value is reported by Stat Server. If the target is an agent
and the option use_agentid is set to true, then the value of this key will not be a DN but the Employee
ID of the agent.

• switch—the switch where the DN provided for the selected target is located; this value is also reported
by Stat Server.

• agent—the Employee ID of the agent selected; this value, reported by Stat Server, is present only if the
target is of type Agent (.A) or Group of Agents (.GA).

• place—the name of the place selected; this value, reported by Stat Server, is present only if the target
is of type Agent (.A), Group of Agents (.GA), Agent Place (.AP), Group of Places (.GP) or Campaign
Group.

• rdnan—available DN of the selected target; this value is reported by Stat Server. As opposed to dn key.
this value is always real agent’s DN.

• stat_value—if target was selected based on some statistic then this key will be included and provide
value of this statistic.

• priority—if priority of call in queue from which target was selected is not 0. then this value will be
included and provide this priority value.

• *mismatch—if for target selection best fit factor was used, then this value will be included and provide
mismatch of the selected target from the ideal one.

• Also if cost type routing was used, then the list can contain a set of keys (cost.type, cost.cost1.
cost.cost2, cost.orig, cost.dest, cost.contract, cost.table. cost.day, cost.time,
cost.interval, cost.va) reflecting different aspects of cost information for this specific call and
selected target.

Updates to Existing 8.1.4 Documentation Additional Data Returned by SelectDN

Universal Routing Reference 64

https://docs.genesys.com/Documentation/R/8.1.4draft/Ref/AgentSkills

New or Updated Function Descriptions
The following functions have been either newly added or updated after the Universal Routing 8.1
Reference Manual was last published. Unless otherwise noted, these functions are available in IRD's
Function object. Other functions are located in IRD's Selection object.

ExcludeAgents

Parameters: Agents: STRING (comma-separated list of agent IDs or variable)
Return value type: STRING

This function instructs URS not to route interactions to any agent on the specified list of agents.
Parameter Agents is comma-separated list of agent IDs. Function returns the previous list of excluded
agents.

Previous to 7.6, if a target was selected (if it was ready according to Stat Server and reserved) and
then excluded from the list of valid targets using the ExcludeAgents function, this target was not
actually excluded. Starting with 7.6, the ExcludeAgents function does exclude the agent in the above
scenario.

Note: When URS executes the ExcludeAgents function for an interaction, the URS-provided list of
excluded agents will be applied to the current or any future Selection objects. The effect of the
ExcludeAgents execution can be cancelled only by the execution of another ExcludeAgents function
or if URS stops this interaction processing.

Warning! Function ExcludeAgents affects IVR targets.

FindConfigObject

As of 11/24/15, the existing FindConfigObject function is extended to support additional object
types as shown in the FindConfigObject Returned Results table below.

Look Up Agent Name, Media logged Into and DN, from Agent Login ID and by
Employee ID
Function FindConfigObject with object type CFGPerson and function TargetState can be used to
look up an agent name, the media channel logged into, and the agent's DN, based on an agent's
Login ID or Employee ID.

Function TargetState[‘EmployeeID.A’] with input parameter agent EmployeeID returns agent
readiness information, a list of available medias and DNs.

For example, to use FindConfigObject to find agent (Person) information, the following search criteria
can be used:

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 65

• DBID of agent: FindConfigObject[CFGPerson, ‘dbid:SomeDBID’]
• DBID of one of agent’s logins: FindConfigObject[CFGPerson, ‘logindbid:SomeDBID’]
• EmployeeID of agent: FindConfigObject[CFGPerson, ‘employeeid:SomeEmployeeID’]
• Agents Login: FindConfigObject[CFGPerson, ‘switch:SomeSwitchName|login:SomeLogin’]

FindConfigObject Function Description
Parameters: TYPE: INTEGER
Valid Values: See FindConfigObject Returned Results table
Properties: LIST or variable (provide list of search criteria)
Return value type: LIST

This function returns information about a requested configuration object. You must specify the type of
object for which to search (for example, CFGPlace) and the list-presenting search criteria. A valid set
of search properties consists of either the name or a combination of the switch and number.
Examples:

• For CFGDN objects, name specifies an alias of the required DN, switch specifies the name of the switch to
which the DN must belong, and number specifies this DN number.

• For CFGPlace object, name specifies the name of required place, switch specifies the name of the switch
to which a DN (from among the DNs belonging to this Place) belongs, and number specifies the number
of this DN.

The search criteria specifies a subset of the object properties, while the function provides the rest of
the data. The search criteria must be a unique subset of the properties that identify the configuration
object. See the following search criteria and results and also the table below:

Search Criteria: FindConfigObject[CFGDN, 'name:2201_vit_sw2'] or
FindConfigObject[CFGDN, 'number:2201|switch:vit_sw2']
Results: "dbid:1122|name:Place_102_vit_sw2|tenantdbid:103|tenant:Vit|#1.number:1
02|#1.switch:vit_sw2|#1.type:2|#2.number:112|#2.switch:vit_sw2|#2.type: 1|dns:2".

When search criteria is not based on dbid, but on names, the tenant is required for an object search.
By default, the tenant is the one for the current interaction, but tenant also can be explicitly specified
with extra keys: tenant or tenantdbid.

In addition to specifying a single Configuration object, you can also specify a collection of objects. In
such cases, the search criteria must contain key all with value true. Additionally, the search criteria
might contain extra filters on the Annex (only objects with this value of Annexes are returned). For
example, annex.section,option1:value1|annex.section,option2:value2. When specifying a
collection of objects, URS returns a reduced set of objects properties, all highlighted in bold, in the
table below. Specifying a collection of objects is not supported for tenants, applications, folders, and
enumerator values.

FindConfigObject Returned Results
Object Type Search Key Combinations Returned Properties

CFGSwitch dbid, dbid, type, link, name, tenant,
tenantdbid, tserverdbid,

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 66

Object Type Search Key Combinations Returned Properties

name tserver, folders, annex,
targetdata

CFGFDN
dbid,
name switch or switchdbid+number

dbid, type, number, name,
switchdbid, switch, tenant,
tenantdbid, annex, targetdata

CFGPlace
dbid,
name switch or switchdbid+number

dbid, name, tenant, tenantdbid,
annex, targetdata, dns, folder,
annex

CFGPerson
dbid,
logindbid employeeid switch or
switchdbid+login

dbid, employeeid, firstname,
lastname, username, email,
externalid, tenantdbid, tenant,
placedbid, skills, logins,
folders, annex

CFGTenant
dbid,
name dbid, name, annex,

CFGApplication
dbid,
name switch or switchdbid

dbid, type, name, workdir,
commandline, hostname, hostip,
port, switch, servers, annex

CFGSkill
dbid,
name

dbid, name, tenant, tenantdbid,
annex

CFGAgentLogin
dbid,
name switch or switchdbid+login

dbid, login, switchdbid,
switch, tenant, tenantdbid,
override, annex

CFGTransaction
dbid,
type+name

dbid, type, name, tenant,
tenantdbid, alias, description,
annex

CFGStatDay
dbid,
name

dbid, name, tenant, tenantdbid,
dayofweek, day, starttime,
endtime, min, max, target, rate,
annex

CFGFolder dbid
dbid, name, type, class,
ownertype, ownerdbid, size,
folders, annex

CFGEnumerator
dbid
name

dbid, type, name, tenant,
tenantdbid, description,
displayname, annex

CFGEnumeratorValue
dbid
enumeratordbid+name
enumeratorname+name

dbid, enumeratordbid, name,
description, displayname,
isdefault, annex

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 67

GetInteractionAge

Parameters: None
Return value type: FLOAT

This function returns the time difference in seconds (with milliseconds precision) between the current
moment in time and the age of the interaction timestamp.

PriorityTuning

Update the Warning on page 606 of the Universal Routing 8.1 Reference Manual as follows:

Warning! The interaction selection criteria associated with the PriorityTuning function (age of
interaction, relative wait time (such as wait time in queue or predictive wait time), service objective
risk factor, or any combination of these parameters) are only supported in a multi-URS environments
where the same target might be selected by different instances of URSs if:

• all URS instances have the same value of option use_service_objective and
• all strategies running/served by URSes include the PriorityTuning function with the same parameters

values across all strategies.

RequestRouter

See the RequestRouter function in Estimated Waiting Time Improvement.

run

Starting with release 8.1.400.39, Universal Routing adds support for the run function in skill and
threshold expressions.

Parameters:

• for threshold expression:
subroutine: STRING (Subroutine Name)

param1: STRING

param2: STRING

• for skill expression:
subroutine: STRING (Subroutine Name)

Agent: will be provided to subroutine by URS

Virtual Queue: will be provided to subroutine by URS

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 68

param1: STRING

param2: STRING

Return value type: STRING

This function executes a defined subroutine with provided parameters. The values of all parameters
are passed to the subroutine as input parameters. The subroutine returns 1 output parameter value.
The run function returns a STRING data type. If the expression is comparing a returned value with
some other value, the comparison may not work. If needed, returned data can be explicitly converted
to a number via the type-converting functions num or int.

When accessing the function from a threshold expression, IRD shows only subroutines with 2 input
and 1 output parameters.

For example:

num[run[“subroutine1”,”value_param1”, ”value_param2”]] = “5”

run[“subroutine1”,”value_param1”, ”value_param2”] = “WorkingHours”

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 69

When accessing function from skill expression, IRD shows only subroutines that have 4 input and 1
output parameters.

For example:

run[“subroutine1”,”value_param1”, ”value_param2”]<”English”

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 70

Limitations:
A subroutine called by the run function cannot execute any waiting function, access external servers
for some data, or invoke another subroutine. Any attempt to do so raises an error and terminates
execution of skill or threshold expressions. All data that the subroutine is allowed to use must reside
in URS memory, which means the subroutine can use data only from Configuration Server, Stat
Server, interaction data, and data stored in URS memory.

SetIdealAgent

See the SetIdealAgent function in Using Agent Skills for Agents/Calls Prioritization.

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 71

StrAsciiTok

On page 583 of the Universal Routing 8.1 Reference Manual, the description of the string
manipulation function StrAsciiTok should read "Every time the function StrAsciiTok is called, it stores
in memory the index in String of the next character of the obtained substring." The manual
incorrectly states "...it stores in memory the index in String of the last character...."

TargetListSelected

See the TargetListSelected function in Using Agent Skills for Agents/Calls Prioritization.

TargetState

Update ready:1 in the TargetState function description, results—LIST Fields as follows:

ready:1 The agent is considered (by URS) to be ready. If agent capacity is not used, then URS flags
the agent as ready if his state is reported by Stat Server as WaitForNextCall. If agent capacity is
used then the agent has no state, but only a list of medias, which results in URS flagging the agent as
ready if this list of medias is not empty. By default, URS takes the ready flag into account when
selecting agents, but it can be overwritten in the strategy by calling function CheckAgentState with
an argument of false. This will cause URS to ignore the ready flag when looking for an available
agent for the current call.

You can use the FindConfigObject and TargetState functions look up an agent name, the media
channel logged into, and the agent's DN, based on an agent's Login ID or Employee ID.

Function TargetState[‘EmplooyeeID.A’] returns agent readiness information, a list of available
medias and DNs. This information is in addition to the returned results listed in the function
description in the Universal Routing 8.1 Reference Manual.

Also see FindConfigObject.

transfer-to-agent

Location in Configuration Layer by precedence: T-Server, URS
Default value: false
Valid values: true, false,never
Value changes: take effect immediately

Instructs URS to request T-Server to transfer interactions from an IVR directly to a target agent
instead of returning them to the routing point.

• true - allow transferring from IVR to agent.
• false - do not allow transferring from IVR to agent, except cases when IVR is Routing Point itself.

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 72

• never - do not allow transferring from IVR to agent in all cases.

Use this function where standard routing scenarios do not apply or cannot be used to override the
usual method of routing a call to an agent. For example, there may be special hardware or reporting
needs. Allows you to initiate a direct transfer to an agent using T-Library functionality. For more
information on T-Library functions,see the TLib Reference Guide.

Selection Object Functions

To access these functions in IRD's Routing Design view, click Routing > Selection to open the the
Selection properties dialog box. Cilck Add Item. Under Type, select Skill. Under Name, select All
Functions.

cfgdata
Parameters:

• folder: STRING (Section name on the Annex tab of the Person object)
• option: STRING (Option name in the section on the Annex tab of the Person object)
• default: FLOAT (Preset value is returned, if the option is not found)

Return value type: FLOAT

This function returns a numeric value. If the agent’s option is found, it returns 1. If the option is not
found and the default value is not specified, it returns 0. If the option is not found and the default
value is specified, the default value is returned.

exist
Parameters: Skill Name: STRING (Skill name)
Return value type: FLOAT

This function checks if an agent has the provided skill and is applied directly to skill names. It returns
1, if an agent has the skill, or 0 otherwise.

folder
Parameters: template: STRING (Folder name in the Configuration Layer under Persons)
Return value type: FLOAT

This function checks if an agent is configured in a folder with a name that matches the specified
template. It returns 1, if there is a match, or 0, otherwise.

group
Parameters: Agent Group: STRING (Agent Group name)
Return value type: FLOAT

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 73

https://docs.genesys.com/Documentation/PSDK/8.5.x/TlibRef/Welcome

This function checks if an agent belongs to the specified group. It returns 1, if yes, or 0, otherwise.

loc
Parameters: Switch Name: STRING (Switch name)
Return value type: FLOAT

This function verifies the agent location. It returns 1, if an agent has a DN belonging to the specified
Switch, or 0, otherwise.

login
Parameters: media: STRING (Media name)
Return value type: FLOAT

This function returns 1, if an agent is logged in to provided media, or 0, otherwise. If media is set to
any and an agent is logged in to at least one media, then 1 is returned.

name
Parameters: template: STRING (Agent employee ID template)
Return value type: FLOAT

This function checks if an agent name matches the specified template. It returns 1, if there is a
match, or 0, otherwise.

sitex
Return value type: FLOAT

The sitex function verifies an agent's location (site). It returns 1 if the agent was logged in at the
provided site and 0 otherwise. If the name of the site is set to this, then instead of checking, the
function just returns the site name. The agent's site is usually provided by the agent himself through
the site parameter in the Reasons attribute of the agent ready request. Note: In SIP cluster
configuration, it is automatically populated by SIP Server.

String Manipulation Functions

The following string manipulation functions are available in IRD starting with version 8.1.400.39:

StrUTF8Encode
Parameters: String: STRING or variable (representing the string)
Return value type: STRING

This function performs encoding of the provided multibyte String into UTF8 format. Encoding is done
based on current locale.

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 74

StrUTF8Decode
Parameters: String: STRING or variable (representing the string)
Return value type: STRING

This function performs decoding of the provided UTF8 String into multibyte format. Decoding is done
based on current locale.

StrURLEncode
Parameters:

• String: STRING or variable (representing the string)
• UTF8: INTEGER or variable (representing the integer true/false value)

Return value type: STRING

This function performs URL Encoding of the input String. Additionally UTF8 conversion might also be
applied before URL encoding if the UTF8 parameter is true (on any integer that is not 0). If UTF8
encoding is specified but fails, then URL encoding will be applied to the original string.

Note: URL encoding is the process of replacing unprintable characters within URLs, such as -, _, ., !,
~, *, ’, (, and), with their corresponding hexadecimal code prefixed with %. The URL encoded value is
safe to use as a value for the Web URL parameters.

StrURLDecode
Parameters:

• String: STRING or variable (representing the string)
• UTF8: INTEGER or variable (representing the integer true/false value)

Return value type: STRING

This function performs URL decoding from the input string. Additionally UTF8 conversion might also
be applied after URL decoding if the UTF8 parameter is true (on any integer that is not 0). If UTF8
decoding is specified but fails, then just the result of the URL decoding process will be returned.

Note: URL decoding is the process of replacing the URL encoded characters with their corresponding
original characters and replacing the + sign with a space.

Support for JavaScript

Beginning with release 8.1.400.67, URS supports execution of stand-alone JavaScript strategies and
subroutines. The supported standard is ECMA-327, 3rd edition.

IRD now provides a possibility to write a part of or the entire strategy logic using the JavaScript

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 75

language in Macro or Script objects.

• To enable Script objects, navigate to the Tools/Routing Design Options dialog and in the Views tab
select the Routing Design/Scripts checkbox.

• For Script objects, use the Script/ecma type.
• For Macro objects, select the Complex macro checkbox.
• Write the script source code in the Definition tab and always use the Verify button to check the

validity of the script or macro you create.

The objects you create can be used in regular IRD strategies/subroutines. Script objects can also be
used on their own.

To pass data from the calling strategy to the Script object:

Accessing of input parameters requires writing explicit code that will do it. Calling the strategy will
put input parameters in a stack. In scripts, use the GetInputParams() function to retrieve the input
parameters. Retrieved data will be removed from the stack, so calling the function more than once in
a Script will result in an error. It is recommended to call the GetInputParams() function at the very
beginning of the script.

To pass data from the Script object to the calling strategy:

Use the SetOutputParams(object) function to return output parameters.

Important
If the script is used as a subroutine, then the last executed command should be a
Return(error_code); where error code is 0 if all OK and a non-zero error code if any
error occurs. The following is a sample script with 2 input parameters (i1 and i2) and
2 output parameters (out1 and out2):

var inp = GetInputParams();
var res= new Object();
res.out1= inp.i1+inp.i2;
res.out2= inp.i1-inp.i2;
SetOutputParams(res);
Return(0);

To pass data to a Macro:

Macros are called as subroutines. All macro parameters are considered as input and passed
automatically, there are no output params.

To pass data from a Macro to the calling strategy:

Data can be passed back to the calling strategy from Macro through the following:

• stack – combination of Push(data) and data=Pop()functions.
• wake up calls – combination of WakeCallUp(‘’, data) and data=WakeUpData[‘’] functions.

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 76

• dedicated returning – combination of ReturnEx(error, data) and data=ReturnData[]functions.

INTERACTION scope variables can be used anywhere (Scripts, Macros, strategies, subroutines) to
pass data in any direction.

URS JavaScript Code/Functions Support:

• Standard ECMA-327, ECMAScript 3rd Edition Compact Profile.
• All operators must be ended with “;”.
• Internal characters’ presentation – multibyte (not UTF16).

Functions for JavaScript Strategies
All URS functions can be used. Functions are listed in the compiler.dat file and located in the IRD
installation directory. The following functions have mostly been created for use in JavaScript
strategies (though they also can be used in IRD strategies, if needed):

GetCallObject()
The GetCallObject() function returns an object presenting the current call. The properties of this
object can be used to access (read and sometimes write) real call data. This call object has the
following properties:

• udata or userdata – allows read/write access to call attached data
• GetCallObject().udata.abc = 123; the same as Update(‘{d}abc’, 123)

• X = GetCallObject().udata.abc; the same as X = UData ('abc’)

• X = GetCallObject().udata[‘*’]; returns all calls user data
• GetCallObject().udata.abc = null; the same as DeleteAttachedData (‘abc’)

• GetCallObject().udata.abc = undefined; the same as DeleteAttachedData (‘abc’)

• delete GetCallObject().udata.abc; the same as DeleteAttachedData (‘abc’)

• GetCallObject().udata.abc+ = 5; take current value of attached data, increment it by 5 and re-
attach.

• GetCallObject().udata+ = {“abc”:123, “def”:”aaa”}; the same as Update(‘’,
‘{d}abc:123|def:aaa’)

• GetCallObject().udata- = “abc”; the same as DeleteAttachedData (‘abc’)

• xdata or extensions – allows read/write access to call extensions data
• voice – allows read access to following call data: thisdn or _dest, _orig, acdqueue, type, ani, dnis or

contactedaddr, ced, media or category, customerid, connid, g_uid, callid, trunk, media_server,
and control_server

• location – allows read access to following call data: media_server and control_server

• data – allows read/write access to the call's INTERACTION scope variables

The following functions for target selection are preferred for performing target selection from
JavaScript strategies:

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 77

PutIntoQueue(id, virtual queue, priority, statistic, selection flag, target, . . .)
This function is similar to the SelectDN function with following differences:

• It allows explicit control of call queues with the first parameter. In the SelectDN function, id is selected
by the compiler and they are all different within a strategy. Using the same id in different instances of
the PutIntoQueue function will result in the call’s requeueing (call targeting resulted from an older
PutIntoQueue function will be eliminated and replaced with the new one). If id is set to 0 then the new
id-less call’s queue will always be created.

• It only puts the call into queue but does not try to select a target. The function returns the refid that
can later be used for target selection.

RemoveFromQueue(id, virtual queue)
This function is similar to the ClearTargets function, but allows more explicit control over excluding a
call from one or another queue.

• If the virtual queue is empty and id is not 0, then the call will be removed only from the call queue in
which it was placed by the PutIntoQueue function using the same id.

• If the virtual queue is empty and the id is 0, then the call will be removed from all call queues as well
as from all virtual queues (Virtual queue EventDiverted(redirected) will be distributed for all virtual
queues call is in).

• If virtual queue is not empty the n call will be removed from the all call’s queues associated with
provided virtual queue as well as from this virtual queue (the virtual queue EventDiverted(redirected)
event will be distributed for this virtual queue).

RemoveFromQueueN(refid)
This function is similar to the RemoveFromQueue function, but it removes the call from call queue
identified by refid returned by the PutIntoQueue function. The call is not removed from any virtual
queue.

SelectTargetFromQueue(refid, timeout)
This function is similar to the SuspendForDN function (and in case of refid=0, they are identical). The
function places the call into a waiting for targets from all queues calls are in state for the duration of
the provided timeout. Before doing that function explicitly tries to select target (by statistics) from
the queue the call is in, pointed by the provided refid (return value of the PutIntoQueue function). If
refid is 0, then all call queues will be tried. The returned value is identical to the value provided by
the SuspendForDN function.

RouteToTarget(target)
This function is a more advanced version of the RouteCall function. Similar to the RouteCall
function it accepts a target returned by the SuspendForDN function or the SelectTargetFromQueue
function and routes the call to the provided target. The returned value is identical to the value
returned by the RouteCall function.

The main difference is that this function will try all means to route the call; that is, answer the call if

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 78

needed, return it back to the original Routing Point, and if the call is on an uninterruptible treatment
or in a transition state, it will wait until routing is possible again. It is this function, and not the
RouteCall function that IRD uses when custom routing is activated in Routing objects.

JavaScript support for Treatment functions

The function, TreatmentPlayAnnouncement, and other Treatment<TreatmentType> functions which
are used to start and wait for treatment ending can not be used in JavaScript directly due to a name
conflict with the same name constant.

The recommended way to use this function is by referring to it indirectly through a URS functional
module. For example:

var funcTreatmentPlayAnouncement= FunctionalModule('[www.genesyslab.com/modules/
urs')['TreatmentPlayAnnouncement'];
funcTreatmentPlayAnouncement('LANGUAGE', 'English(US)', 'PROMPT.1.TEXT', 'http://127.1.1.1/
audios/bienvenida_001.wav');

Alternatively the function, StartTreatmentPlayAnnoncement (followed with
SuspendForTreatmentEnd) can be used instead in this case. Effectively, the
Treatment<TreatmentType> functions can be considered as shortcuts for combinations of two
functions StartTreatment<TreatmentType> and SuspendForTreatmentEnd.

Notice how parameters in the above sample are passed to Treatment<TreatmentType> or
StartTreatment<TreatmentType> functions, it is different from passing them to busy treatment
functions. The parameters must be passed directly and as a sequence of keys and values: key, value,
key, value, and so on.

Sample JavaScript Snippet
The following is a sample JS snippet where the call is routed to any available agent during working
hours and if outside working hours, the not the strategy plays an appropriate treatment. The
treatments to play are obtained from some a Web Service.

var funcTreatmentPlayApplication= FunctionalModule('[www.genesyslab.com/modules/
urs')['TreatmentPlayApplication'];

function RouteAnyAgent(greeting, busy)
{

funcTreatmentPlayApplication('APP_ID',greeting);
var queue= PutIntoQueue(1, '', 0, "StatAgentLoading", SelectMin, '?:2>1.GA');
AddBusyTreatment(TreatmentPlayApplication, 'APP_ID:' + busy, 0);
var target= SelectTargetFromQueue(queue, 60);
if (!Failed())

RouteToTarget(target);
}

function RoutetoAnyAgentWorkingHours(greeting, weekend, outoftime, busy)
{

if (Date.getDay()==0 || Date.getDay()==6)
funcTreatmentPlayApplication('APP_ID',weekend);

else if (Date.getHours()<8 || Date.getHours()>18)
funcTreatmentPlayApplication('APP_ID',outoftime);

else
RouteAnyAgent(greeting, busy);

}

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 79

x= ObjectFromJSON(
GetHttpRequestInfo(1,

StrFormat("http://myhost:myport/MyMessage?ani=~s&dnis=~s&connid=~s",
ANI(), DNIS(), ConnID()), "", "", 0, "", ""));

if (!Failed())
RoutetoAnyAgentWorkingHours(x.greeting, x.weekend , x.outoftime , x.busy);

Default();

Secure Connections Support Includes SNI Functionality

Starting with release 8.1.400.71, URS supports Server Name Indication (SNI) extension for TLS
handshakes. As a result, HTTPS resources can be contacted from within URS, that is, using the Web
Service block in IRD.

If the SNI functionality is activated, URS adds an extra parameter, tls-target-name, into the
transport parameters of the connecting requests, set to the name of the host the web request is
directed to.

The SNI functionality can be activated using one of the following methods:

• Set the def_sni option to true. For a description of the new option, refer to the New or Updated Option
Descriptions topic.

• Specify sni:true in the Hints field of the IRD Web Service object. The Hints field is located under TLS
group in the Security tab of the Web Server object.

Important
URS first uses the value from the IRD Web Service object. If that is absent, it uses the
value set by the def_sni URS option.

Optimal Skill Update Mode

Starting with release 8.1.400.75, URS is enhanced to provide a possibility for more optimally updating
skill expressions when part of the skill expression uses the login function. The optimal skill update
mode is activated when the new URS option, content_update_on_login, is set to false. Setting it to
force, which is the default value, overrides the enhancement and retains the behavior from the
previous URS versions.

content_update_on_login
Location: default section of URS Application object
Default Value: force
Valid Values: force, false
Changes Take Effect: Immediately

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 80

Timeout to Wait before Sending Negative Response to Web Client

Beginning with version 8.1.400.78, URS allows users to specify a timeout to wait for before sending a
negative response to a web client's request to perform an operation for an interaction that URS does
not have. Timeout (in seconds) can be defined in the additional parameter, maxdelay, in the web
request to URS or in the call_sync_time option.

call_sync_time
Location: http section of URS Application object
Default Value: 0
Valid Values: 0 to 10
Changes Take Effect: After restart

The value defined in the call_sync_time option is used if the maxdelay parameter is not specified.

For example, urs/call/ConnID/func?name=Timeout¶ms=[120]&maxdelay=2. Here, URS is requested
to apply the Timeout[120] function to the interaction. If the requested interaction is not found, then
URS will wait up to 2 seconds. If URS gets the requested interaction during the 2 seconds, it will apply
the function to it. Else, it answers with an error.

Important
The maximum value allowed for the maxdelay parameter (and the http/
call_sync_time option) is 10 seconds.

Multithreading Capability

Beginning with release 8.1.400.78, URS is enhanced with a multithreading capability to find matching
agents who satisfy the conditions of the specified skill expression, in a given configuration . This
improves URS performance in larger environments characterized by agent headcounts exceeding
10,000 or even 100,000 across locations.

A new configuration option, mts, is introduced to control the multithreading capability.

mts
Location: default section of URS Application object
Default Value: 0:0
Valid Values: 0:0, 1:0, 1:1
Changes Take Effect: Immediately

0:0 - indicates multithreading is switched off.
1:0 - indicates multithreading is turned on, but will be applied to expressions containing only skills.
Skill expressions with statistics and functions are excluded in single threading mode.

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 81

1:1 - multithreading is turned on and skill expressions with statistics and functions are also included
for multithreaded processing.

A new console command, mtskill, is also provided for exploring the multithreading capability.

Format: mtskill <TenantName> <SkillExpression>.

As an output, URS provides 2 corresponding time intervals (in microseconds).

The following limitations are to be considered before turning on multithreading:

• Multithreading is justifiable only in very big environments.

• URS must run on very powerful hardware with multiple processors available for URS (running
multithreading on single processor machine will slowdown URS).

• URS logging is disabled in multithreaded mode, while URS is updating skill expressions.

• Some skill expression functions, such as run, group, folder, and tag, have too big a footprint to be
safely used in a multithreaded environment. Skill expressions containing these functions will always be
executed in the single threaded mode irrespective of the value of the mts option.

Improved EWT Accuracy

EWT accuracy is determined by the difference between the EWT value given when a call enters a
queue and the actual wait time that the particular call spent in the queue. When the difference is
minimal it translates to a better EWT accuracy. EWT accuracy is impacted if calls of different types
are placed into the same VQ. For example, if one VQ is used for both inbound, virtual callback (CB),
and CB outbound calls, then EWT accuracy is low because outbound CB calls have some unique
properties, such as:

• outbound CB calls are placed in VQ only for a short time of several seconds.
• outbound and virtual CB calls are two call representing the same interaction in a VQ. This creates

double counting.
• outbound and virtual CB calls leave the queue at the same time breaking the EWT calculation model,

which assumes that one call is distributed at a time and calls are distributed at a constant rate.

EWT accuracy can be increased if outbound CB calls are not taken into account for EWT calculation.

Beginning with release 8.1.400.83, URS provides more accurate EWT calculations for a Virtual Queue
when interactions that are not intended to be routed by URS end up in the Virtual Queue. URS now
provides the ability to mark and ignore such calls in EWT calculations. You can mark an interaction by
setting its run time mode to 524288 and exclude them from EWT calculations.

To mark an interaction you can, use the SetRunTimeMode function within the IRD strategy. Or, it is set
automatically if EventRouteRequest starting a strategy contains AttributeCallType with value 3
(outbound) and AttributeUserData has the _CB_N_CALLBACK_ACCEPTED key set to 1.

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 82

Ignoring such marked calls in EWT calculations is controlled with the new configuration option,
lvq_ignore_duplicates.

lvq_ignore_duplicates
Location: default section of URS Application object; can also be defined at the VQ level
Default Value: false
Valid Values: true, false
Changes Take Effect: Immediately

Setting the option to true ignores marked calls in EWT calculations.

If the option is set to true for a VQ and when an interaction marked as 524288 leaves the VQ:

• it will not change the distributing quitting rate from that VQ (its quitting will not go into an array of the
last 32 quits). This improves the accuracy of lvq requests when aqt=urs.

• it will be skipped (not counted) when URS goes through (counts) all calls in the VQ to answer an lvq
web request. This improves the accuracy of all types of lvq requests (aqt=urs, urs2 or stat).

If the option is set to false for a VQ, then all interactions in that VQ (regulars or duplicates) will be
counted for EWT calculations.

Log messages about sending VQ events (such as, Queued, Diverted) are now extended to indicate if
URS counts or ignores the interaction in EWT calculations.

12:38:36.134_T_I_00820324eb06cefd \[14:02\] sending event 58 for vq
RBWM_UKFD_Ingress_VQ_EMEA (0 53-7 (0, i=349923 o=349904) 1633001911 170/32) (x)
(The x in the above sample message indicates if the interaction is considered by URS as a duplicate.
If x is 1, it indicates that the interaction is a duplicate, and if x is 0, it indicates that the interaction is
not a duplicate.)

Improved EWT Consistency

Beginning with version 8.1.400.84, URS is enhanced to improve consistency in EWT calculations for
web requests that are interactionless and utilize average handling time provided by the default lvq
URS method.

Improved consistency in EWT calculations is characterised by:

• absence of sharp changes (peaks or drops) in EWT values provided by URS.
• similarity in values of EWT returned by different URS instances in the same environment.

Default behavior
When obtaining EWT values for virtual queues (in response to the lvq web request) URS utilizes its
own data, that is, calls that it places into virtual queues, targets that these calls are waiting for, and
so on. As a result:

• it is possible that there is a sharp change in the provided EWT values if URS switches between sets of
data used to calculate EWT.

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 83

• values returned by different URS instances might not be the same (if the data used by the different URS
instances are also different).

To simulate a global queue perception in a distributed call center, multiple URS instances in the same
environment must be able to provide consistent (ideally, the same) EWT value for the same VQ. A
caller must get the same EWT value regardless of which data center the call lands in.

URS has the following two data sources for calculating the average handling time (time per call from
the VQ) for interactions that are not defined in a web request (max is used in place of connid):

1. Internal queues created by URS when executing strategies.
2. One of the skill expressions from the internal queues that URS remembers (referred as the VQ

Presenter). Internal queues are short lived objects that URS might dispose if not used. It is possible that
all internal queues associated with a VQ are deleted. To be able to provide reasonable data even in
such cases, URS remembers one of the skill expressions. URS selects the skill expression to remember
based on which expression returns the highest number of agents. The identified skill expression
represents the VQ when there are no internal queues and is referred to as the VQ Presenter.

Usually, URS tries to get data from the internal queues first and if at least one internal queue
associated with the VQ exists, then, as listed above, data source 1 is used. If there are no internal
queues, data source 2, that is, data provided by the VQ Presenter is used. A side effect to this
approach is that URS can spontaneously switch between the two data sources (for interactionless
web requests). This might result in the returned EWT values fluctuating frequently.

New enhanced behavior
In the new enhanced behaviour, URS uses the VQ Presenters as the primary source of data for
calculating EWT even if internal queues exist.

To facilitate the new behaviour, URS ensures that:

• A VQ Presenter always exists.
• Any skill expression that the strategy uses can be used as a VQ presenter, even if the skill

expression contains statistics.
• A skill expression identified as a VQ Presenter will not be deleted even if it has not been used for a

long time.

• A VQ Presenter can be set or changed only in the following cases:
• On VQ creation. If a VQ associated with an Agent Group as its origination DN, then this Agent Group

will be set as the initial presenter for the VQ.
• On creating a new internal queue associated with the VQ. At each such instance, sizes of the current

VQ presenter and skill expression used by the internal queue are compared and the biggest one is
selected as the new VQ presenter.

• On placing any interaction into the VQ. Re-skilling of agents theoretically might result in reducing
the size of the selected presenter and it will no longer be the biggest presenter. As a result, URS
constantly rechecks the size of the current VQ presenters whenever a call is added into the VQ. The
size of the current presenter and skill expression used by the call to enter the VQ are compared and
the biggest one is selected.

Each time a VQ Presenter is changed, an entry is logged. For example, 15:27:23.757_M_I_ [10:85]

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 84

LVQ NameOfVQ presenter set: <?Agents5_10:>(21499ec7bb0) media=0.

If different URS instances are executing the same set of strategies, it is likely that all those URS
instances will also have the same VQ Presenters.

By deafult, the existing lvq method with aqt=urs2 will continue to work as before. A new
configuration option, lvq_force_presenter, is introduced to activate the new behaviour.

lvq_force_presenter
Location: default section of URS Application object; can also be defined at the VQ level with
section name as URS application name or __ROUTER__
Default Value: false
Valid Values: true, false
Changes Take Effect: Immediately

Setting the option to true activates the new behaviour where a VQ presenter is used as a primary
source of information to obtain the average handling time per call.

Reporting
To allow evaluation of the quality of the EWT calculations, URS can be enabled to collect (and report
on) data about the estimated and actual waiting times for calls in a virtual queue.

• Every time an interaction enters a virtual queue the current EWTs are obtained and stored inside the
interaction.

• Every time an interaction leaves the virtual queue the stored EWTs along with the actual time the
interaction was waiting for is stored in the virtual queue. The virtual queue store information only about
the latest interaction that quit the queue.

The lvq web request is extended to include this information as well as other statistical data that can
be useful for tracing processing of calls in one or another virtual queue.

You can use the following requests to query data:

• urs/call/max/lvq?tenant=TenantName&name=VirtualQueueName&filter=presenter

- returns the skill expression/agent group used as the current presenter for the specified virtual
queue.

• urs/call/max/lvq?tenant=TenantName&name=VirtualQueueName&filter=trace&ewttrace[=N]

- filter=trace returns tracing data for the specified VQ.
- ewttrace or ewttrace=N triggers the tracing mode for the specified VQ for the next N minutes (by
default N=3).

For a virtual queue in tracing mode, URS collects extra data about the virtual queue (as permanent
collection of such data takes a toll on performance). Additionally, for a VQ in tracing mode, URS
records extra information in the log entries even if the default/verbose option is set to false.

When filter=trace, the following data is returned (note that when a value is unknown the field
might not be returned):

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 85

Field Description
time current UTC time

lcalls_in Local number of calls that have entered the VQ so
far.

lcalls_out Local number of calls that have exited the VQ so
far.

lcalls Local number of calls in the VQ (lcalls_in -
lcalls_out).

rlcalls Local number of real calls in the VQ (lcalls –
duplicates).

calls Global number of calls in the VQ (effectively
StatCallsInQueue as returned by StatServer).

mrs Multi-URS factor (used to convert local data into
global (calls/lcalls).

rcalls An estimate of the global number of real calls
(rlcalls * mrs).

aqt_stat Time per call according to StatServer
(=StatExpectedWaitingTime/StatCallsInQueue).

ewt_stat Waiting time according to StatServer (=aqt_stat *
(rcalls+1)).

aqt_urs Time per call according to URS or global quitting
rate (local quiting rate / mrs).

ewt_urs Waiting time according to URS (=aqt_urs *
(rcalls+1)).

aqt_urs2 Time per call according to URS average handling
time (calculated as per URS settings).

ewt_urs2 Waiting time according to URS (=aqt_urs2 *
(rcalls+1)).

aqt_ursp Same as aqt_urs2, but aht is calculated based on
presenter.

ewt_ursp Same as aqt_urs2, but aht is caluclated based on
presenter.

xid connid of latest call distributed into the VQ.
xtm Latest call entry time into the VQ.

xewt_stat StatServer based estimate of waiting time for the
latest call (at the xtm time).

xewt_urs URS quit rate based estimate of waiting time for
latest call (at the xtm time).

xewt_urs2 URS average handling time based estimate of
waiting time for latest call (at the xtm time).

xewt_ursp
URS average handling time for presenter based
estimate of waiting time for the latest call (at the
xtm time).

For a VQ in tracing mode the log message (logged when the call is distributed from the VQ) is as
follows:

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 86

12:36:04.200_M_I_03390320b4c930b0 [14:02] LVQ NameOfLVQ (58,1) ewts: xtm, xwt,
xewt_stat, xewt_urs, xewt_urs2, xwt_ursp, (along with some other data).

Note that if the VQ is not traced the above message might still be logged if the log level is set to 4 or
5, but the message will have no data for xewt_urs2 and xwt_ursp.

You can follow one of the two patterns given below for tracing EWT for a VQ with the provided web
requests:

1. Periodically (for example, once per minute) you can send URS the following web request, urs/call/
max/lvq?tenant=TenantName&name=VirtualQueueName&filter=trace&ewttrace. Collect the output
data for a period of time (say, a few hours) and visualize the output (for example, as an Excel
spreadsheet).

2. Send the following web request to URS, urs/call/max/
lvq?tenant=TenantName&name=VirtualQueueName&filter=trace&ewttrace=180. Collect URS logs for
the next 180 minutes (3 hours), extract the related log messages from the logs and visualize them.

Limitations
The new behaviour is not necessarily better if compared with the default behaviour where URS relies
on internal queues. That depends on how a specific solution has been implemented and how virtual
queues are used in the solution. It is expected that the new behaviour will work good in cases of
cascaded routing.

Also, URS cannot detect by itself, when the usage of one or another virtual queue changes sharply.
For instance, solutions/strategies may start to use completely new skill expressions. When the usage
of a virtual queue is changed, URS might still continue to use old virtual queues' presenters (if they
happen to be bigger). To address such cases and avoid restarting URS to align virtual queue usage,
the lvqs console command can be used with an extra optional parameter, reset_presenter.

For example: lvqs TenantName VQName reset_presenter
- where VQName is name of the virtual queue or *.
- All matched virtual queues will have their presenter updated (their presenters will be reset based on
the current internal queues URS has for them).

From the Web API, the lvqs console command can be executed as, urs/console?lvqs TenantName
VQName reset_presenter.

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 87

URS Functions and Configuration Server
URS functions that read/write data from Configuration Server (FIndConfigObject, SetObjectProperty,
GetObjectProperty, and so on) have to manipulate with Configuration Server object Types and
Subtypes in the way that Configuration Server understands them. Every Configuration object has a
Type and some of them (Transactions, for example) might have a Subtype. For Configuration
Server, both Types and Subtypes are just plain numbers (Enumerators) and are identified by
numbers. For example, 9 means CFGApplication, 2 means DN, 16 means Transaction, 21 means
Transaction subtype list, and so on.

Which number represents which Type or Subtype is basically Configuration Server-related information
(provided in Configuration Server-related documents). Reference to those Configuration Server-
related data can be accessed as follows:

• Types of Configuration Objects
• Types of Transactions
• Other Configuration Server Types

For some Configuration Server Enumerators, URS strategies allow dedicated names. For example,
CFGApplication means just number 9. Where names are allowed, you can use either names or
numbers themselves; where names are not allowed, numbers must be used to present object Types
and Subtypes.

When configuring URS strategies, names are not provided for every Type/Subtype as Configuration
Server might introduce new Types/Subtypes and URS cannot follow all of them. So names are used
to present only well-established object Types with URS having special processing of every Type. For
other Types (like Transaction Subtypes), naked numbers need to be used – URS does not interpret
them; it just passes them to Configuration Server and any number supported by this Configuration
Server can be used.

Regarding Transactions, they are uniquely identified either by dbid or by pair transaction type +
transaction name. For example, to find Transactions, the FindConfigObject function must be
supplied either with a dbid or with pair type and name. Transaction Types are numbers and
Transaction of Type List is 21.

FindConfigObject[CFGTransaction, ‘type:21|name:mylist’]

Or the same (as IRD will replace word CFGTransaction to number 21)

FindConfigObject[16, ‘type:21|name:mylist’]

SetObjectProperty

The function SetObjectProperty enables you to set more then one property within a single Section.
Every odd parameter after the parameter Section is interpreted as the property name and every even
parameter as the property value. If the last property name has no matched parameter with value, it

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 88

https://docs.genesys.com/Documentation/PSDK/latest/Developer/CfgObjectType
https://docs.genesys.com/Documentation/PSDK/latest/Developer/CfgTransactionType
https://docs.genesys.com/Documentation/PSDK/latest/Developer/ConfigLayerEnumList

results in the deletion of this property from object properties.

As in this example, the standard syntax is:

SetObjectProperty[CFGTransaction, 21, '<Transaction List Object Name>', '<Section>',
'<Key_1>', '<Value_1>', '<Key_2>', '<Value_2>', '<Key_3>', '<Value_3>']

Updates to Existing 8.1.4 Documentation New or Updated Function Descriptions

Universal Routing Reference 89

New or Updated Option Descriptions
The option descriptions in this topic are new or replace descriptions in the Universal Routing 8.1
Reference Manual.

Important
URS options are placed in the following option folders:

• For the URS Application — in the default section of the Options tab or the Annex tab
of the URS Properties dialog box. If options are specified in both places, those
specified in the Options tab take precedence.

• For a T-Server Application to which URS connects — in the Options tab or the Annex
tab of the T-Server Application Properties dialog box, in a section with the same
name as the name of the URS Application, or in a section named either __ROUTER__ or
default.

• For a Stat Server Application to which URS connects — in the Options tab of the Stat
Server Application Properties dialog box, in a section with the same name as the name
of the URS Application, or in a section named __ROUTER__ or default.

• For a Message Server Application to which URS connects — in the Options tab of the
Message Server Application Properties dialog box, in a section with the same name as
the name of the URS Application, or in a section named __ROUTER__ or default.

• For all other object types—in the Annex tab of the object Properties dialog box, in a
section with the same name as the name of the URS Application, or in a section named
__ROUTER__.

addp_timeout
ADDP is used to detect a loss of connection between the HTTPBridge and URS. The addp_timeout
option is used to specify how often the HTTPBridge will send ADDP requests to URS and wait for
responses. If no response is received, HTTPBridge will terminate within the defined timeout.

Location: web section of the URS Application object
Default Value: 30 (seconds)
Valid Values: Any positive integer
Changes Take Effect: After restart

If set to 0 or any invalid value, the ADDP functionality is disabled.

Updates to Existing 8.1.4 Documentation New or Updated Option Descriptions

Universal Routing Reference 90

automatic_ideal_agent
You can use this option as an alternative to using SetIdealAgent. If set to true, when URS places the
interaction into a queue for first time, and:

• if this queue targets/agents are defined as a skill expression and,
• if function SetIdealAgent was not yet called for this call, then,

URS will automatically call the SetIdealAgent function with the value of the skill expression used for
this queue as a target. For more information, see Using Agent Skills for Agents/Calls Prioritization.

Location in Configuration Layer by precedence: Routing Point, T-Server, Tenant, URS
Default Value: false
Valid Values: true, false
Changes Take Effect: Immediately

default_stat_server
The default_stat_server option is extended to allow you to specify a separate default Stat Server for
every Virtual Queue. The extension covers cases where URS's Connections list contains multiple Stat
Servers. An updated option description is presented below.

Location in Configuration Layer by precedence: Virtual Queue, Routing Point, T-Server, Tenant,
Universal Routing Server Application
Default Value: None. If a default is not specified, URS uses the first available Stat Server on its
Connections list.
Valid Value: The name of any available Stat Server
Changes Take Effect: Immediately

This option designates which Stat Server to use as the default location when a target in a strategy
omits the location (that is, the target has a format of ID or ID.type rather than
ID@StatServerName.type).

def_http_proxy_host
Location in Configuration Layer by precedence: web section of the URS Application object
Default Value: An empty string
Valid Values: Any valid host name
Changes Take Effect: After restart

URS provides support of HTTP Proxies for an "http://" type of request. HTTP Proxies are specified
globally at the URS Application level, in the web section, by the def_http_proxy_host and
def_http_proxy_port configuration options. The def_http_proxy_host option specifies the HTTP
Proxy host.

def_http_proxy_port
Location in Configuration Layer by precedence: web section of the URS Application object
Default Value: An empty string

Updates to Existing 8.1.4 Documentation New or Updated Option Descriptions

Universal Routing Reference 91

Valid Values: TCP port
Changes Take Effect: After restart

This option specifies the HTTP Proxy port for an "http://" type of connection.

def_sec_protocol
Location in Configuration Layer by precedence: web section of the URS Application object
Default Value: As defined by Genesys Security Layer
Valid Values: SSLv23, SSLv3, TLSv1, TLSv11, TLSv12, TLSv13
Changes Take Effect: After restart

This option specifies which handshake protocol HTTP Bridge uses for outgoing HTTPS connections.
This option can be used only on UNIX operating systems with Genesys Security Pack on UNIX 8.1.x,
starting with 8.1.300.05. This option has no effect on Windows. Protocols are specified by the option
values as follows:

• SSLv23—SSL v2.0
• SSLv3—SSL v3.0
• TLSv1—TLS v1.0
• TLSv11—TLSv1.1
• TLSv12—TLS v1.2
• TLSv13—TLS v1.3

Important
• Starting with 8.1.400.96, the def_sec_protocol configuration option supports a new

value, TLSv13.
• Starting with 8.1.400.33, the def_sec_protocol configuration option supports a new

value, TLSv12. This option was originally introduced in URS 8.1.400.13 on 2/13/15.

def_sni
Location in Configuration Layer by precedence: web section of URS Application object
Default Value: false
Valid Values: true, false
Changes Take Effect: After restart

This new option, introduced in URS 8.1.400.71, enables the Server Name Indication (SNI) extension
for TLS handshakes. When this option is set to true, URS adds an extra parameter, tls-target-
name, into the transport parameters of the connecting requests, set to the name of the host the web
request is directed to.

Updates to Existing 8.1.4 Documentation New or Updated Option Descriptions

Universal Routing Reference 92

lds
For the lds option, you can also specify map as a value, in addition to the valid values of ar (access
resources), ciq (calls in queue), and blk (agents blocking), as described on page number 645 in the
Universal Routing 8.1 Reference Manual.

Use map if the Message Server communicates between multiple URS instances the information about
agents' tags and global maps that the URS instances might use. If a URS instance tags an agent or
adds a key-value pair into a map, then, the information about it will be propagated to the other URS
instances in the same self-awareness cluster.

http_log_size
Location in Configuration Layer by precedence: web section of the URS Application object
Default Value: false
Valid Value: Size of log file in kilobytes
Changes Take Effect: After restart

This option specifies the HTTP Bridge maximum log file segment size in kilobytes. Once the specified
file size is reached, a new segment/file is created and the new log output goes to this new file. You
must configure the http_log_file option to use this option. Also, see the option
log_remove_old_files.

log_file
Location in Configuration Layer by precedence: http section of the URS Application object
Default Value: no default value
Valid Value: log file name
Changes Take Effect: After restart

This option specifies the name of the log file for HTTP Interface error and trace messages.

log_remove_old_files
Location in Configuration Layer by precedence: web section of the URS Application object
Default value: false
Valid Values: either false (meaning old log files are not deleted and all log files will be kept), or an
integer specifying the number of log files that will be kept.
Changes Take Effect: After restart

This option specifies whether the previous segments/ files are to be deleted when the new segment/
file is created. You must also configure the http_log_file option to use this option.

log_remove_old_files
Location in Configuration Layer by precedence: http section of the URS Application object
Default value: false
Valid Values: either false (meaning old log files are not deleted and all log files will be kept), or an
integer specifying the number of log files that will be kept.

Updates to Existing 8.1.4 Documentation New or Updated Option Descriptions

Universal Routing Reference 93

Changes Take Effect: After restart

This option specifies whether the previous segments/ files are to be deleted when the new segment/
file is created. You must also configure the log_file option to use this option.

log_size
Location in Configuration Layer by precedence: http section of the URS Application object
Default Value: false (unlimited size of file)
Valid Value: size of log file in kilobytes
Changes Take Effect: After restart

This option specifies the HTTP Interface maximum log file segment size in kilobytes. Once the
specified file size is reached, a new segment/file is created and the new log output goes to this new
file.

verbose
This option determines the level of log output.

Location in Configuration Layer by precedence: http section of the URS Application object.
Default Value: 0.
Valid Values: 0 to 3.
Changes Take Effect: After restart.

Level 0 produces no log messages. Levels from 1 to 3 produce log information with corresponding
higher levels of detail.

lvqwaittime_stat
From version 8.1.400.53, a new option, lvqwaittime_stat, is introduced to control which waiting
time statistic URS will use to calculate values in response to lvq web requests.

Location: Configuration layer by precedence - Virtual Queue, URS
Default Value: StatExpectedWaitingTime
Valid Value: Any valid statistic name
Changes Take Effect: After restart

When specifying a value for this option, ensure that the statistic is properly configured in IRD or
StatServer. If the name is invalid, an error is reported.

lvq_quit_rate_history
Location in Configuration Layer by precedence: default section of URS Application object; can also
be defined at the VQ level with section name as URS application name or _ROUTER_
Default Value: 32
Valid Values: Any value from 1 to 64
Changes Take Effect: After restart

Updates to Existing 8.1.4 Documentation New or Updated Option Descriptions

Universal Routing Reference 94

One of the methods URS uses to calculate EWT for a Virtual Queue relies on the details of the last 32
calls (that is, the most recent) distributed from the Virtual Queue (VQ). This option introduced in
8.1.400.88, allows users to control how many distributed calls from the VQ to consider for EWT
calculations. When URS creates a VQ it uses the value of this option to determine the size of the
distributed calls history for the VQ. Once the VQ is created the size of the distributed calls history for
the VQ is determined and can be changed only after a URS restart. If URS creates the VQ after the
option was changed at the VQ level, a restart is not needed - this VQ will use the option's latest
value.

max_loading
Location in Configuration Layer by precedence: DB Server/Custom Server/StatServer, Database
Access Point
Default Value: 0 (zero)
Valid Value: any positive integer
Changes Take Effect: Immediately

Specifies the maximum number of unanswered requests that URS can send to a server; for example,
the maximum number of unanswered opening statistic requests that URS can send to StatServer.
Specifically prevents database access bottlenecks when there is high call volume and high customer
request abandonment or when there is high call volume and low DBMS performance. The latter
condition can be caused by an untuned or unoptimized database.

The default value of 0 (zero) indicates that URS is not tracking or limiting the number of requests to
the server.

Important
Though the max_loading option is retired and no longer used, URS continues to provide the possibility to
control its loading on web servers with the max_loading option, similar to how it is done for regular Genesys
servers (for example, DB Server). However, the following differences exist:

• for web servers, the option must be set within the URS application itself, in the web
section (instead of setting it on dedicated servers).

• all options in web section (including max_loading) take effect on http bridge restart.

utf8ors
Location in Configuration Layer by precedence: default section of URS Application object
Default Value: false
Valid Values: true, false
Changes Take Effect: After restart

Introduced in version 8.1.400.95, this option is used to specify if URS must convert the content of
responses on ORS requests from the default locale URS works with, into the utf8 format. Previously
such conversion was considered as part of HTTP communications and was performed only if clients
(including ORS) communicate with URS through the HTTP connection. Conversion was not performed

Updates to Existing 8.1.4 Documentation New or Updated Option Descriptions

Universal Routing Reference 95

if clients connect to URS directly through the Genesys connection layer.

The utf8ors option extends this functionality for cases when ORS communicates with URS through a
direct ORS to URS connection. When converting data to the utf8 format, URS assumes that data is
encoded according to the current locale. Conversion will fail if the format of data URS manipulates
does not match the current locale.

pickup_calls
Location in Configuration Layer by precedence: Annex properties of DN controlled by URS, T-Server,
URS
Default Value: false
Valid Values: false, true, reverse
Changes Take Effect: Immediately

Starting with 8.1.400.36, the pickup_calls configuration option is now supported at the T-Server
and URS Application levels, in addition to the Routing Point DN level. This option enables smart
registration for routing points and depends on T-Server’s ability to provide information on all
interactions pending on a routing point even before routing points are registered by URS at startup.
For additional information on this option, refer to the Universal Routing 8.1 Reference Manual.

pickup_strategy
Location in Configuration Layer by precedence: RP, T-Server, or URS Application levels
Default Value: Option is absent by default (URS will execute the same strategy that it uses for regular
calls at the RP, for picked up calls also.)
Valid Value: Any valid strategy name
Changes Take Effect: Immediately

Starting with release 8.1.400.92, this option is introduced to address the use case where the strategy
for picked up calls at a Routing Point (RP) must be different from the regular strategy loaded on the
same RP. This option can be set up at the RP, TServer, or URS levels and provides the name of the
strategy to be picked up.

Picked up calls are those that existed on some RP before URS was started and can be processed by
URS if the pickup_calls option is set to true. By default, URS executes the same strategy for the
picked up calls that it executes for calls that started with a regular EventRouteRequest event. The
pickup_strategy option allows a different strategy to be executed for picked up calls.

There are a few predefined and hardcoded strategies in URS, which have been created for special
deployments only and must be avoided in regular environments. Specifically, the strategy named
restart must be used only in Azure-based deployments. That is, the pickup_strategy option can be
used by itself in any environment (if pointing to any appropriate strategy), but setting it to point to
the restart strategy must be done only in Azure environments.

proxy_use_connect
Location in Configuration Layer by precedence: web section of URS
Default Value: true
Valid Values: true, false
Changes Take Effect: After restart

Updates to Existing 8.1.4 Documentation New or Updated Option Descriptions

Universal Routing Reference 96

This option specifies the connection method to a secure web server through a HTTP proxy server.

• A value of true uses the HTTP CONNECT method. URS communicates with web servers through HTTP
proxy and performs TLS negotiations directly with the web server.

• A value of false uses the legacy method (not recommended). URS communicates with web servers
through HTTP proxy and performs TLS negotiations with the proxy server.

report_targets
Beginning with version 8.1.400.63, a new value, waited, has been added to the report_targets
option. If the report_targets option is set to true or waited, URS attaches the RTargetsWaited key
into AttributeUserData of the T-Server's events. The value of the new key is a comma separated list
of targets the interaction is waiting for. This data can be used by the default routing strategy if the
processing of an interaction fails.

Location in Configuration Layer by precedence: URS
Default Value: true
Valid Values: true, waited, false
Changes Take Effect: Immediately

For a complete description of the option, refer to page number 660 in Universal Routing 8.1
Reference Manual.

self_port
Location in Configuration Layer by precedence: default section of URS
Default Value: default
Valid Values: none or any valid TCP/IP Port ID
Changes Take Effect: After restart

Release 8.1.400.32 introduces a new option, self_port, which enables URS to establish a SELF
connection when the default listening port is secured, since a SELF connection is not supported via a
secured port.

• A value of none instructs URS to not connect to itself so any related functionality, such as the
RequestRouter function, will be unavailable.

• A value of default instructs URS to use a default port to connect to itself.
• Use the value, hip, for an http interface connection to URS when the default port is secured.
• If you not specify option self_port, then URS will use value default for this option.

skill_in_group_sync
Location in Configuration Layer by precedence: URS
Default Value: 10
Valid Values: Any non-zero positive integer
Changes Take Effect: After restart

This option specifies the maximum number of attempts for URS to execute GetSkillInGroupEx and
CountSkillInGroupEx functions when their parameter sync is set to true.

Updates to Existing 8.1.4 Documentation New or Updated Option Descriptions

Universal Routing Reference 97

start_primary
Location in Configuration Layer by precedence: URS Application object
Default Value: true
Valid Values: true, false
Changes Take Effect: After restart

This option specifies whether URS starts in primary mode or in backup mode in cases when a
primary-backup URS pair is configured. If this option is set to true, then URS will start in primary
mode. If this option is set to false, URS starts in backup mode. After the initial URS startup,
Management Layer may switch the running mode of the URS Application depending on the startup
order.

unknown_aht
Location in Configuration Layer by precedence: URS Application object
Default Value: 9.999 (seconds)
Valid Values: Any positive number (seconds)
Changes Take Effect: After restart

This option provides the average handling time for virtual queues that URS will use in cases when
there is not enough information to calculate the actual EWT.

virtual_queue_attach
Location in Configuration Layer by precedence: URS Application object
Default Value: true
Valid Values: true, false
Changes Take Effect: Immediately

When set to true, URS propagates AttachedDataChanged events through Virtual Queue DNs, and
does not when set to false. The purpose of this option is to reduce network traffic by limiting the
amount of changed events in the attached data of calls. If deployed in a SIP Cluster environment
(URS option environment contains value tcluster, then the default value of the option becomes
false.

wait_agent_activity
Location in Configuration Layer by precedence: default section of URS Application object
Default Value: true
Valid Values: true, false
Changes Take Effect: Immediately

In URS environments with OCS, URS utilizes the agent assignment information provided by OCS and
can delay routing decisions until the agents assignment information is provided. For cases when such
delaying is considered undesirable, this option introduced in URS 8.1.400.88 can be used control the
behavior. If the option is set to false, when agent assignment information is not provided URS will
assume agent is not assigned to any outbound campaign. That is, when URS is working in an
outbound environment, URS opens the agent assignment statistic for every tried agent and will route
to an agent if the interaction activity matches with the activity assigned to the agent. The agent will
not be routable until URS manages to open this statistic (StatServer sends a response when the

Updates to Existing 8.1.4 Documentation New or Updated Option Descriptions

Universal Routing Reference 98

statistic is opened). Setting this option to false will result in URS considering the agent as assigned
to default (inbound) activity and routing inbound interactions to the agent during time needed to
open the statistic.

wait_time_prediction
Location in Configuration Layer by precedence: URS Application object
Default Value: internal
Valid Values: internal, virtual
Changes Take Effect: Immediately

This option controls which queue URS will use when it needs the average quit time of calls from some
internal routing queue. You can specify the value for the option as internal (internal queue is used) or
virtual (virtual queue associated with the internal routing queue is used). The default value is
internal. The option is specified in the URS application object and changes take effect immediately.)

Updates to Existing 8.1.4 Documentation New or Updated Option Descriptions

Universal Routing Reference 99

HTTP Bridge Updates
To communicate with Web Services through SOAP/XML and/or REST over HTTP/HTTPS protocols, URS
uses a component called HTTP Bridge. HTTP Bridge allows strategy developers to communicate with
Web Services applications outside of Genesys via the Web Service IRD strategy-building object. For
more information on HTTP Bridge, see the Universal Routing 8.1 Reference Manual.

Support of HTTP Redirections

Starting with Release 8.1.400.23 in October of 2015, URS enhances its support of HTTP redirections.
HTTP Bridge now resends an HTTP request to the new address specified in the Location header of the
received 3xx response.

When responding to a redirect request, HTTP Bridge now:

• Supports both absolute and relative redirection URLs.
• Checks for redirect loops. No more than 5 chained redirects will be allowed.
• Always uses the GET method for redirection URLs if a return code is 303.

Handling of Escape Sequences

Starting with Release 8.1.400.14 in February 2015, HTTP Bridge no longer interprets XML escape
sequences as regular delimiters (< and >) of XML tags. It now passes them into the strategy as is
and does not terminate while processing XML data returned by SOAP-based Web Services containing
XML escape sequences.

Add the following information to the Web Services Options section and also to Appendix B, IRD Web
Services Object:

HTTP Bridge does not get completely XML-formatted text from a Web Service. The text is XML-
formatted to some level, but at deeper levels, the XML text is escaped. For example:

<?xml version='1.0' encoding='utf-8'?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<ns:saveCaseResponse xmlns:ns="http://util.ilog.ist.apple.com">
<ns:return>
< ;?xml version="1.0" encoding="UTF-8"?> ;< ;GENESYS_CASE_CREATE_RESPONSE> ;.....> ;
</ns:return>
</ns:saveCaseResponse>
</soapenv:Body>
</soapenv:Envelope>

Note that the content inside the ns:return tag is not XML-formatted text. It might be interpreted as
XML-formatted text after replacing the Escape sequences

Updates to Existing 8.1.4 Documentation HTTP Bridge Updates

Universal Routing Reference 100

< ; and > ;

with the appropriate < >.

HTTP Bridge does not perform this extra interpreting. Any XML response, if needed, must be in
entirely and correctly-formed XML format.

Updates to Existing 8.1.4 Documentation HTTP Bridge Updates

Universal Routing Reference 101

Other Universal Routing 8.1.x Updates
This page contains other updates related to URS and IRD that are important to note.

URS Character Limitation

URS allows a maximum 1,023 characters for the combined length of a target name and a Stat Server
name where the target name is the name of a corresponding Configuration Database object plus a
Skill expression (if a Skill expression is used). Also see the Known Issues and Recommendations
section of the Universal Routing Server 8.1.x release note.

Distribution of Multimedia Interactions During Shutdown or
Backup Mode

Starting with 8.1.400.23, when URS shuts down or switches to backup mode, it distributes virtual
queue events for multimedia interactions regardless of whether a backup URS exists. For voice calls,
the URS behavior is the same as previous – virtual queue events are distributed only if there is no
backup URS.

Removal of 9999 License Limit

Starting with 8.1.400.33, the maximum number of licenses to check out from License Server is
extended from 9999 to 1,000,000 seats. Upon startup, URS checks out all available number of
router_seats defined in License Server. When fewer licenses than available are needed, start URS
with a new startup command line parameter: -licnum <number of licenses>.

Additional Information on HTTP Report Method

In addition to the information provided on the HTTP Report method on page 816 of the Universal
Routing 8.1. Reference Manual (Supported Methods section in Appendix C), the Report method also
supports the following input parameters:

• ar - information about agent reservation effectiveness.
• seats - provides information about URS licenses (router_seats) usage.

Updates to Existing 8.1.4 Documentation Other Universal Routing 8.1.x Updates

Universal Routing Reference 102

• tserver - name of T-Server for which information is required.

In the sample tserver method provided on the same page, note that timing related data in the
response provides information about the average time (in milliseconds) that a particular category of
calls spent being in one or another strategy execution state. When any function is executed and is
waiting for an external event to trigger its continuation, the call is placed in a corresponding waiting
state. During this stage, the following states are provided in reporting:

• t - time spent on mandatory treatments
• x - time spent waiting for data from external servers
• s - time spent waiting for data from statserver
• w - time spent waiting for ready targets, returned by the Wait function, which is used by target selection

objects
• r - time spent waiting for the route used event
• f - time spent on all other waiting functions
• n - the time the category of calls were not in any waiting state, that is, time spent in active calls or

spent doing nothing and not running any strategy.

New cpu Parameter
A new parameter, cpu, is introduced in URS release 8.1.400.63, to provide URS CPU consumption,
which can be used for monitoring the health status of URS applications.

There are 2 categories of URS activities - main and background. Main activity is related to executing
strategies, responding to requests, etc. Background activity is mostly related to updating content of
skill groups. URS collects and stores its CPU usage information for the latest 60 seconds of its work.

Output Parameters:

• base - is average CPU consumption on main URS activity. This is the primary parameter to be used to
indicate URS loading.

• max - is detected peak of total CPU consumption including both main and background activities.
• base_max - is detected peak of main CPU consumption.

An example is given below.

Command:
urs/stat/report?cpu

Output:
<cpu>
<base>60</base>
<max>70</max>
<base_max>70</base_max>
</cpu>

Updates to Existing 8.1.4 Documentation Other Universal Routing 8.1.x Updates

Universal Routing Reference 103

Maximum Length Limitation for Text Field on Web Service Object

The maximum length of the input string in the Text field on the General tab of the Web Service
object is limited to 1,010 bytes. (Appendix B, page 776 of the Universal Routing 8.1 Reference
Manual)

Corresponding Genesys Administrator (GA) Screenshots for Old
Configuration Manager (CME) Screenshots

There are references to CME on various pages of the Universal Routing 8.1 Reference Manual. As GA
is now more widely used than CME, the equivalent or corresponding GA screenshots for the old CME
screenshots from the manual are provided below as a point of reference:

Page Number 102: Media Type Business Attributes and Attribute Values

Page Numbers 178, 179, 183, and 201: Category Folders in Knowledge Manager

Updates to Existing 8.1.4 Documentation Other Universal Routing 8.1.x Updates

Universal Routing Reference 104

Page Number 419: Setting Permissions for a Person

Page Number 539: Updating Multiple Objects

Updates to Existing 8.1.4 Documentation Other Universal Routing 8.1.x Updates

Universal Routing Reference 105

Changes to the Limitations of Skill Expressions

The following limitations specified for skill expressions under the IRD Limitations section on pages 31
and 32 of the Universal Routing 8.1 Reference Manual, are no longer applicable:

• Routing objects cannot exceed 100 elements (skill names, numbers, comparisons, and logical
operands).

• A skill expression should have no more than 25 constructions, such as English > 1.

However, there is a limit on the maximum number of characters allowed in a skill expression. A skill
expression can have a maximum of 2933 characters.

Updates to Existing 8.1.4 Documentation Other Universal Routing 8.1.x Updates

Universal Routing Reference 106

URS REST API Security Considerations and
Basic Hardening Steps
In addition to the information provided in the Security section, on page number 59 of the Universal
Routing 8.1 Deployment Guide, the following recommendation is to be considered for the REST API.

Important
The REST API is an internal API and should be appropriately protected because it does
not support common security headers in HTTP and does not have built in protections
for features normally implemented in firewalls (such as DoS). The REST API is not
intended to be exposed to untrusted parties.

It is possible that through the REST API provided by URS, sensitive data stored in strategies
processing interactions might be accessed, and URS forced to perform resource-consuming activities
(DoS attack).

Major security limitations of the RESTful API implementation are:

• No ability to provision HTTP responses with security headers of any kind.
• No firewall features of any kind (rate throttling, etc.).

Given the above, securing access to the URS web API is important.

Hardening Steps for URS REST API
You can perform the following steps to harden the URS REST API:

1. Provision TLS/SSL transport-level security for communications via HTTP and SOAP ports. This is
configured in the Server Info tab of the router application as described in the Genesys Security
Deployment Guide.

2. Configure the firewall to allow connections to URS ports only from 100% trusted zones with no
exceptions. This is very important because, access to the URS HTTP port means access to all features
of the URS REST API.

Updates to Existing 8.1.4
Documentation

URS REST API Security Considerations and Basic Hardening
Steps

Universal Routing Reference 107

https://docs.genesys.com/Documentation/System/8.5.x/SDG/Welcome
https://docs.genesys.com/Documentation/System/8.5.x/SDG/Welcome

Evaluation of Skill Expressions
An important note on evaluation of skill expressions by URS:

During evaluation of skill expressions, URS tries to interpret any name/string from the expression
(excluding function names) as the name of the skill.

• If the configuration does not have a skill with such a name, then the strings/names are interpreted
literally.

• This means that if a skill expression has to contain a literal name (for instance, the name of a folder,
name of a media, or simply a name), it should be verified that the configuration does not have a skill
with the same name, as otherwise the value of the skill (or 0 if agent has no such skill) will be used
instead of the literal name.

Updates to Existing 8.1.4 Documentation Evaluation of Skill Expressions

Universal Routing Reference 108

	Universal Routing Reference
	Table of Contents
	Supplement to the Universal Routing 8.1 Reference Manual
	New Features
	Analyze Object
	Budget-Based Routing
	Using Agent Skills for Ideal Agent Selection
	Associating Virtual Queues with Stat Servers
	New Statistics
	Hyphens Allowed in Interaction Data Names
	HTTP Bridge Updates
	New or Updated Function Descriptions
	Estimated Waiting Time Improvement and URS Web API
	IRD Localization
	Graceful shutdown
	Support of HTTP Proxies

	Updates to Existing 8.1.4 Documentation
	New or Updated IRD Object Descriptions
	Additional Data Returned by SelectDN
	New or Updated Function Descriptions
	URS Functions and Configuration Server

	New or Updated Option Descriptions
	HTTP Bridge Updates
	Other Universal Routing 8.1.x Updates
	URS REST API Security Considerations and Basic Hardening Steps
	Evaluation of Skill Expressions

