
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Using the Protocol Manager Application Block

Platform SDK Developer's Guide

4/3/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Using the Protocol Manager Application
Block
Deprecation Notice: This application block is considered a legacy product staring with
release 8.1.1. Documentation is provided for backwards compatibility, but new
development should consider using the improved method of connecting to servers.

Important
This application block is a reusable production-quality component. It has been
designed using industry best practices and provided with source code so it can be
used "as is," extended, or tailored if you need to.

Please see the License Agreement for details.

One of the two main functions of the Platform SDK is to enable your applications to establish and
maintain connections with Genesys servers. The Protocol Manager Application Block provides unified
management of server protocol objects. It takes care of opening and closing connections to many
different servers, as well as reconfiguration of high availability connections.

Java

Installing the Protocol Manager Application Block

Before you install the Protocol Manager Application Block, it is important to review the software
requirements and the structure of the software distribution.

Building the Protocol Manager Application Block
To build the Protocol Manager Application Block:

1. Open the <Platform SDK Folder>\applicationblocks\protocolmanager folder.
2. Run either build.bat or build.sh, depending on your platform.

This will create the protocolmanagerappblock.jar file, located within the <Platform SDK
Folder>\applicationblocks\protocolmanager\dist\lib directory.

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 2

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK
https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK

Working with the Protocol Manager Application Block
You can find basic information on how to use the Protocol Manager Application Block in the article on
Connecting to a Server Using the Protocol Manager Application Block.

Configuring ADDP

To enable ADDP, set the UseAddp property of your Configuration object to true. You can also set
server and client timeout intervals, as shown here:

[Java]

statServerConfiguration.setUseAddp(true);
statServerConfiguration.setAddpServerTimeout(10);
statServerConfiguration.setAddpClientTimeout(10);

Tip
To avoid connection exceptions in the scenario where a client has configured ADDP
but the server has not, "ADDP" is included as a default value for the "protocol" key in
the configure() method of the ServerChannel class.

Configuring Warm Standby

Enable warm standby in your application by setting your Configuration object's FaultTolerance
property to FaultToleranceMode.WarmStandby, as shown here. You can also configure the backup
server's URI, the timeout interval, and the number of times your application will attempt to contact
the primary server before switching to the backup:

[Java]

statServerConfiguration
.setFaultTolerance(FaultToleranceMode.WarmStandby);

statServerConfiguration.setWarmStandbyTimeout(10);
statServerConfiguration.setWarmStandbyAttempts((short) 5);
try {

statServerConfiguration.setWarmStandbyUri(new URI("tcp://"
+ statServerBackupHost
+ ":"
+ statServerBackupPort));

} catch (URISyntaxException e) {
e.printStackTrace();

}

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 3

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingUsingProtocolManagerAB

High-Performance Message Parsing

The Platform SDK exposes the protocols of supported Genesys servers as an API. This means you can
write .NET and Java applications that communicate with these servers in their native protocols.

Every message you receive from a Genesys server is formatted in some way. Most Genesys servers
use binary protocols, while some use XML-based protocols. When your application receives one of
these messages, it parses the message and places it in the message queue for the appropriate
protocol.

By default, the Platform SDK uses a single thread for all of this message parsing. Since this parsing
can be time-consuming in certain cases, some applications may face serious performance issues. For
example, some applications may receive lots of large binary-format messages, such as some of the
statistics messages generated by Stat Server, while others might need to parse messages in non-
binary formats, such as the XML format used to communicate with Genesys Multimedia (or e-
Services) servers.

This section gives an example of how you can modify Protocol Manager to selectively enable multi-
threaded parsing of incoming messages, in order to work around these kinds of performance issues.
It is important to stress that you must take a careful look at which kind of multi-threading options to
pursue in your applications, since your needs are specific to your situation.

Tip
Your application may also face other performance bottlenecks. For example, you may
need more than one instance of the Message Broker Application Block if you handle
large numbers of messages. For more information on how to configure Message
Broker for high-performance situations, see the Message Broker Application Block
Guide.

This example shows how to call com.genesyslab.platform.commons.threading.DefaultInvoker,
which uses SingleThreadInvoker behind the scenes. As mentioned, you need to determine whether
this is the right solution for your application.

The main thing to take from this example is how to set up an invoker interface, so that you can use
another invoker if DefaultInvoker doesn't meet your needs. For example, Genesys also supplies
com.genesyslab.platform.commons.threading.SingleThreadInvoker, which assigns a single
dedicated thread to each protocol that enables it in your application. This may be useful in some
cases where you have to parse XML messages.

The enhancement shown here will only require small changes to two of the classes in Protocol
Manager, namely ProtocolConfiguration and ProtocolFacility.

To get started, let's declare a new multi-threaded parsing property in the ProtocolConfiguration
class. In this example, the property is called useMultiThreadedMessageParsing. It is declared right
after some ADDP and Warm Standby declarations:

[Java]

private boolean useAddp;
private FaultToleranceMode faultTolerance;

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 4

private Boolean useMultiThreadedMessageParsing;

Now you can code the getter and setter methods for the property itself, as shown here:

[Java]

public Boolean getUseMultiThreadedMessageParsing()
{

return useMultiThreadedMessageParsing;
}

public void setUseMultiThreadedMessageParsing(Boolean value)
{

useMultiThreadedMessageParsing = value;
}

Once you have made these changes, add an if statement to the ApplyChannelConfiguration
method of the ProtocolFacility class so that your applications can selectively enable this property:

[Java]

private void applyChannelConfiguration(
ProtocolConfiguration conf, ProtocolInstance instance)

{
if (conf.getUri() != null)
{

instance.getProtocol().setEndpoint(
new Endpoint(conf.getName(), conf.getUri()));

}

if (conf.getUseMultiThreadedMessageParsing() != null &&
conf.getUseMultiThreadedMessageParsing().booleanValue())

{
instance.getProtocol().

setConnectionInvoker(DefaultInvoker.getSingletonInstance());
}

...

Enabling UseMultiThreadedMessageParsing now calls DefaultInvoker.

To enable multi-threaded parsing, set the useMultiThreadedMessageParsing property of your
Configuration object to true. Here is how to enable the new property for Stat Server messages:

[Java]

statServerConfiguration.setUseMultiThreadedMessageParsing(true);

Receiving Copies of Synchronous Server Messages

Most of the time, when you send a synchronous message to a server, you are satisfied to receive the
response synchronously. But there can be situations where you want to receive a copy of the
response asynchronously, as well. This section shows how to do that.

As in the previous section, this enhancement will only require small changes to the
ProtocolConfiguration and ProtocolFacility classes.

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 5

To get started, let's declare a new copyResponse property in the ProtocolConfiguration class. You
can put this declaration right after the useMultiThreadedMessageParsing declaration we created in
the previous section:

[Java]

private boolean useAddp;
private FaultToleranceMode faultTolerance;
private Boolean useMultiThreadedMessageParsing;
private Boolean copyResponse;

Now you can code the getter and setter methods for the property itself, as shown here:

[Java]

public Boolean getCopyResponse()
{

return copyResponse;
}

public void setCopyResponse(Boolean value)
{

copyResponse = value;
}

It might be a good idea to let anyone using Protocol Manager know whether this property is enabled.
One way to do this is to add it to the toString method in this class:

[Java]

public String toString()
{

StringBuilder sb = new StringBuilder();
.
.
.
sb.append(MessageFormat.format(

"AddpClientTimeout: {0}\n", addpClientTimeout));
sb.append(MessageFormat.format(

"AddpServerTimeout: {0}\n", addpServerTimeout));
sb.append(MessageFormat.format(

"CopyResponse: {0}\n", copyResponse));
...

Once you have made these changes, add an if statement to the applyChannelConfiguration
method of the ProtocolFacility class so that your applications can selectively enable this property:

[Java]

private void applyChannelConfiguration(
ProtocolConfiguration conf, ProtocolInstance instance)

{
if (conf.getUri() != null)
{

instance.getProtocol().setEndpoint(
new Endpoint(conf.getName(), conf.getUri()));

}

if (conf.getCopyResponse() != null)
{

instance.getProtocol().setCopyResponse(

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 6

conf.getCopyResponse());
}

...

To receive a copy of synchronous server messages, set the CopyResponse property of your
Configuration object to true. Here is how to enable the new property for Stat Server messages:

[Java]

statServerConfiguration.setCopyResponse(true);

Supporting New Protocols

When the Platform SDK was first developed, it supported many, but not all, of the servers in the
Genesys environment. As the SDK has matured, support has been added for more servers. As you
might expect, a given version of the Protocol Manager Application Block only supports those servers
that were supported by the Platform SDK at the time of its release. Since you may want to work with
a server that is not currently supported by Protocol Manager, it can be helpful to know how add
support for that server.

This section shows how the Protocol Manager Application Block supports the Stat Server Protocol. You
can use it as a guide if you need to add support for other servers or protocols.

Adding support for the Stat Server Protocol involved three basic steps:

1. Create a new subclass of ProtocolConfiguration called StatServerConfiguration.
2. Create a new subclass of ProtocolFacility called StatServerFacility.
3. Add a statement to the initialize method of ProtocolManagementServiceImpl that associates

StatServerFacility with StatServerProtocol.

The StatServerConfiguration Class
Here is the code for StatServerConfiguration:

[Java]

package com.genesyslab.platform.applicationblocks.commons.protocols;
import com.genesyslab.platform.reporting.protocol.StatServerProtocol;
import java.text.MessageFormat;

public final class StatServerConfiguration extends ProtocolConfiguration
{

private String clientName;
private Integer clientId;

public StatServerConfiguration(String name)
{

super(name, StatServerProtocol.class);
}

public Integer getClientId()
{

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 7

return clientId;
}

public void setClientId(Integer clientId)
{

this.clientId = clientId;
}

public String getClientName()
{

return clientName;
}

public void setClientName(String clientName)
{

this.clientName = clientName;
}

public String toString()
{

StringBuilder sb = new StringBuilder(super.toString());

sb.append(MessageFormat.format("ClientName: {0}\n", clientName));
sb.append(MessageFormat.format("ClientId: {0}\n", this.clientId));

return sb.toString();
}

}

As you can see, this class imports the protocol object, but you will also need to use MessageFormat
when we create the toString() method, so there must be an import statement for that class, as
well:

[Java]

import com.genesyslab.platform.reporting.protocol.StatServerProtocol;
import java.text.MessageFormat;

Here are the class declaration and the field and constructor declarations. Stat Server requires client
name and ID, so these must both be present in StatServerConfiguration:

[Java]

public final class StatServerConfiguration extends ProtocolConfiguration
{

private String clientName;
private Integer clientId;

public StatServerConfiguration(String name)
{

super(name, StatServerProtocol.class);
}

Here are the getter and setter methods for the client name and ID:

[Java]

public Integer getClientId()
{

return clientId;
}

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 8

public void setClientId(Integer clientId)
{

this.clientId = clientId;
}

public String getClientName()
{

return clientName;
}

public void setClientName(String clientName)
{

this.clientName = clientName;
}

And finally, the toString() method:

[Java]

public String toString()
{

StringBuilder sb = new StringBuilder(super.toString());

sb.append(MessageFormat.format("ClientName: {0}\n", clientName));
sb.append(MessageFormat.format("ClientId: {0}\n", this.clientId));

return sb.toString();
}

The StatServerFacility Class
Now we can take a look at the StatServerFacility class. Once again, we will start with the code for
the entire class:

[Java]

package com.genesyslab.platform.applicationblocks.commons.protocols;

import com.genesyslab.platform.commons.protocol.Endpoint;
import com.genesyslab.platform.commons.protocol.Protocol;
import com.genesyslab.platform.reporting.protocol.StatServerProtocol;
import java.net.URI;

public final class StatServerFacility extends ProtocolFacility
{

public void applyConfiguration(
ProtocolInstance instance, ProtocolConfiguration conf)

{
super.applyConfiguration(instance, conf);
StatServerConfiguration statConf = (StatServerConfiguration)conf;
StatServerProtocol statProtocol =

(StatServerProtocol) instance.getProtocol();

/*
if (statConf.getClientName() != null)
{

statProtocol.setClientName(statConf.getClientName());
}

*/

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 9

if (statConf.getClientId() != null)
{

statProtocol.setClientId(statConf.getClientId());
}

}

public Protocol createProtocol(String name, URI uri)
{

return new StatServerProtocol(new Endpoint(name, uri));
}

}

This class needs the following import statements:

[Java]

import com.genesyslab.platform.commons.protocol.Endpoint;
import com.genesyslab.platform.commons.protocol.Protocol;
import com.genesyslab.platform.reporting.protocol.StatServerProtocol;
import java.net.URI;

Here is how to declare the class:

[Java]

public final class StatServerFacility extends ProtocolFacility

There are two methods in this class. The first is applyConfiguration:

[Java]

public void applyConfiguration(
ProtocolInstance instance, ProtocolConfiguration conf)

{
super.applyConfiguration(instance, conf);
StatServerConfiguration statConf = (StatServerConfiguration)conf;
StatServerProtocol statProtocol =

(StatServerProtocol) instance.getProtocol();

/*
if (statConf.getClientName() != null)
{

statProtocol.setClientName(statConf.getClientName());
}

*/
if (statConf.getClientId() != null)
{

statProtocol.setClientId(statConf.getClientId());
}

}

The second method is createProtocol:

[Java]

public Protocol createProtocol(String name, URI uri)
{

return new StatServerProtocol(new Endpoint(name, uri));
}

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 10

Updating ProtocolManagementServiceImpl
To complete this enhancement, a single line of code was added to the initialize method of
ProtocolManagementServiceImpl:

[Java]

private void Initialize()
{

this.facilities.Add(typeof(ConfServerProtocol), new ConfServerFacility());
this.facilities.Add(typeof(TServerProtocol), new TServerFacility());
this.facilities.Add(typeof(InteractionServerProtocol), new

InteractionServerFacility());
this.facilities.Add(typeof(StatServerProtocol), new StatServerFacility());
this.facilities.Add(typeof(OutboundServerProtocol), new OutboundServerFacility());
this.facilities.Add(typeof(LocalControlAgentProtocol), new LcaFacility());
this.facilities.Add(typeof(SolutionControlServerProtocol), new ScsFacility());
this.facilities.Add(typeof(MessageServerProtocol), new MessageServerFacility());

}

Architecture and Design

The Protocol Manager Application Block uses a service-based API. You can use this API to open and
close your connection with Genesys servers and to dynamically reconfigure the parameters for a
given protocol. Protocol Manager also includes built-in warm standby capabilities.

Protocol Manager uses a ServerConfiguration object to describe each server it manages.

.NET

Installing the Protocol Manager Application Block

Before you install the Protocol Manager Application Block, it is important to review the software
requirements and the structure of the software distribution.

Building the Protocol Manager Application Block
The Platform SDK distribution includes a
Genesyslab.Platform.ApplicationBlocks.Commons.Protocols.dll file that you can use as is. This file is
located in the bin directory at the root level of the Platform SDK directory. To build your own copy of
this application block, follow the instructions below:

1. Open the <Platform SDK Folder>\ApplicationBlocks\ProtocolManager folder.
2. Double-click ProtocolManager.sln.
3. Build the solution.

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 11

https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK
https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK

Working with the Protocol Manager Application Block
You can find basic information on how to use the Protocol Manager Application Block in the article on
Connecting to a Server Using the Protocol Manager Application Block at the beginning of this guide.

Configuring ADDP

To enable ADDP, set the UseAddp property of your Configuration object to true. You can also set
server and client timeout intervals, as shown here:

[C#]

statServerConfiguration.UseAddp = true;
statServerConfiguration.AddpServerTimeout = 10;
statServerConfiguration.AddpClientTimeout = 10;

Configuring Warm Standby

Hot standby is not designed to handle situations where both the primary and backup servers are
down. It is also not designed to connect to your backup server if the primary server was down when
you initiated your connection. However, in cases like these, warm standby will attempt to connect. In
fact, warm standby will keep trying one server and then the other, until it does connect. Because of
this, you will probably want to enable warm standby in your applications, even if you are already
using hot standby.

You can enable warm standby in your application by setting your Configuration object's
FaultTolerance property to FaultToleranceMode.WarmStandby, as shown here. You can also
configure the backup server's URI, the timeout interval, and the number of times your application will
attempt to contact the primary server before switching to the backup:

[C#]

statServerConfiguration.FaultTolerance = FaultToleranceMode.WarmStandby;
statServerConfiguration.WarmStandbyTimeout = 5000;
statServerConfiguration.WarmStandbyAttempts = 5;
statServerConfiguration.WarmStandbyUri = statServerBackupUri;

High-Performance Message Parsing

The Platform SDK exposes the protocols of supported Genesys servers as an API. This means you can
write .NET and Java applications that communicate with these servers in their native protocols.

Every message you receive from a Genesys server is formatted in some way. Most Genesys servers
use binary protocols, while some use XML-based protocols. When your application receives one of
these messages, it parses the message and places it in the message queue for the appropriate
protocol.

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 12

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingUsingProtocolManagerAB

By default, the Platform SDK uses a single thread for all of this message parsing. Since this parsing
can be time-consuming in certain cases, some applications may face serious performance issues. For
example, some applications may receive lots of large binary-format messages, such as some of the
statistics messages generated by Stat Server, while others might need to parse messages in non-
binary formats, such as the XML format used to communicate with Genesys Multimedia (or e-
Services) servers.

This section gives an example of how you can modify Protocol Manager to selectively enable multi-
threaded parsing of incoming messages, in order to work around these kinds of performance issues.
It is important to stress that you must take a careful look at which kind of multi-threading options to
pursue in your applications, since your needs are specific to your situation.

Tip
Your application may also face other performance bottlenecks. For example, you may
need more than one instance of the Message Broker Application Block if you handle
large numbers of messages. For more information on how to configure Message
Broker for high-performance situations, see the Using the Message Broker Application
Block.

This example shows how to call Genesyslab.Platform.Commons.Threading.DefaultInvoker, which
uses the .NET thread pool for your message parsing needs. As mentioned, you need to determine
whether this is the right solution for your application, since, for example, the .NET thread pool may
be heavily used for other tasks.

The main thing to take from this example is how to set up an invoker interface, so that you can use
another invoker if DefaultInvoker doesn't meet your needs. For example, Genesys also supplies
Genesyslab.Platform.Commons.Threading.SingleThreadInvoker, which assigns a single
dedicated thread to each protocol that enables it in your application. This may be useful in some
cases where you have to parse XML messages.

The enhancement shown here will only require small changes to two of the classes in Protocol
Manager, namely ProtocolConfiguration and ProtocolFacility.

To get started, let's declare a new multi-threaded parsing property in the ProtocolConfiguration
class. In this example, the property is called useMultiThreadedMessageParsing. It is nullable and is
declared right after some ADDP and Warm Standby declarations:

[C#]

private bool? useAddp;
private FaultToleranceMode? faultTolerance;
private string addpTrace;
private bool? useMultiThreadedMessageParsing;

Now you can code the property itself, as shown here:

[C#]

public bool? UseMultiThreadedMessageParsing
{

get { return this.useMultiThreadedMessageParsing; }
set { this.useMultiThreadedMessageParsing = value; }

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 13

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheMessageBrokerAB

}

Once you have made these changes, add an if statement to the ApplyChannelConfiguration
method of the ProtocolFacility class so that your applications can selectively enable this property:

[C#]

private void ApplyChannelConfiguration(ProtocolInstance entry, ProtocolConfiguration conf)
{

if(conf.Uri != null)
{

entry.Protocol.Endpoint = new Endpoint(conf.Name, conf.Uri);
}

if (conf.UseMultiThreadedMessageParsing != null &&
conf.UseMultiThreadedMessageParsing.Value)

{
entry.Protocol.SetConnectionInvoker(DefaultInvoker.InvokerSingleton);

}
...

Enabling UseMultiThreadedMessageParsing now calls DefaultInvoker, which uses the .NET thread
pool, as mentioned above.

To enable multi-threaded parsing, set the UseMultiThreadedMessageParsing property of your
Configuration object to true. Here is how to enable the new property for Stat Server messages:

[C#]

statServerConfiguration.UseMultiThreadedMessageParsing = true;

Receiving Copies of Synchronous Server Messages

Most of the time, when you send a synchronous message to a server, you are satisfied to receive the
response synchronously. But there can be situations where you want to receive a copy of the
response asynchronously, as well. This section shows how to do that.

As in the previous section, this enhancement will only require small changes to the
ProtocolConfiguration and ProtocolFacility classes.

To get started, let's declare a new copyResponse property in the ProtocolConfiguration class. You
can put this declaration right after the useMultiThreadedMessageParsing declaration we created in
the previous section:

[C#]

private bool? useAddp;
private FaultToleranceMode? faultTolerance;
private string addpTrace;
private bool? useMultiThreadedMessageParsing;
private bool? copyResponse;

Now you can code the property itself, as shown here:

[C#]

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 14

public bool? CopyResponse
{

get { return this.copyResponse; }
set { this.copyResponse = value; }

}

It might be a good idea to let anyone using Protocol Manager know whether this property is enabled.
One way to do this is to add it to the ToString method overrides in this class:

[C#]

public override string ToString()
{

StringBuilder sb = new StringBuilder();
.
.
.
sb.AppendFormat("AddpClientTimeout: {0}\n", this.addpClientTimeout.ToString());
sb.AppendFormat("AddpServerTimeout: {0}\n", this.addpServerTimeout.ToString());
sb.AppendFormat("CopyResponse: {0}\n", this.copyResponse.ToString());
...

Once you have made these changes, add an if statement to the ApplyChannelConfiguration
method of the ProtocolFacility class so that your applications can selectively enable this property:

[C#]

private void ApplyChannelConfiguration(ProtocolInstance entry, ProtocolConfiguration conf)
{

if(conf.Uri != null)
{

entry.Protocol.Endpoint = new Endpoint(conf.Name, conf.Uri);
}

if (conf.CopyResponse != null)
{

entry.Protocol.CopyResponse = conf.CopyResponse.Value;
}
...

To receive a copy of synchronous server messages, set the CopyResponse property of your
Configuration object to true. Here is how to enable the new property for Stat Server messages:

[C#]

statServerConfiguration.CopyResponse = true;

Supporting New Protocols

When the Platform SDK was first developed, it supported many, but not all, of the servers in the
Genesys environment. As the SDK has matured, support has been added for more servers. As you
might expect, a given version of the Protocol Manager Application Block only supports those servers
that were supported by the Platform SDK at the time of its release. Since you may want to work with
a server that is not currently supported by Protocol Manager, it can be helpful to know how add
support for that server.

For example, early versions of Protocol Manager were developed before the Platform SDK supported

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 15

Universal Contact Server (UCS). This section shows how to add UCS support to the Protocol Manager
Application Block. You can also use these instructions as a guide if you need to add support for other
servers.

This enhancement involves three basic steps:

• Create a new subclass of ProtocolConfiguration. We will call this class
ContactServerConfiguration.

• Create a new subclass of ProtocolFacility called ContactServerFacility.
• Add a statement to the Initialize method of ProtocolManagementService that associates the new

ContactServerFacility class with UniversalContactServerProtocol.

Creating a ContactServerConfiguration Class
We will use the StatServerConfiguration class as a template for the new
ContactServerConfiguration class. Here is the code for StatServerConfiguration:

[C#]

using System;
using System.Text;

using Genesyslab.Platform.Reporting.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

public sealed class StatServerConfiguration : ProtocolConfiguration
{

#region Fields

private string clientName;
private int? clientId;

#endregion Fields

public StatServerConfiguration(string name)
: base(name, typeof(StatServerProtocol))

{
}

#region Properties

public string ClientName
{

get { return this.clientName; }
set { this.clientName = value; }

}

public int? ClientId
{

get { return this.clientId; }
set { this.clientId = value; }

}

#endregion Properties

public override string ToString()
{

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 16

StringBuilder sb = new StringBuilder();
sb.Append(base.ToString());

sb.AppendFormat("ClientName: {0}\n", this.clientName);
sb.AppendFormat("ClientId: {0}\n", this.clientId.ToString());

return sb.ToString();
}

}
}

To get started, make a copy of StatServerConfiguration.cs and call it
ContactServerConfiguration.cs. Rename the Platform SDK using statement and the class name,
as shown here:

[C#]

using System;
using System.Text;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

public sealed class ContactServerConfiguration : ProtocolConfiguration
{
...

The connection parameters required by Stat Server are different from those used by UCS. Instead of
clientName and clientId, UCS requires applicationName. Like clientName, applicationName is of
type string. One fairly simple way to modify this class is to delete all references to clientId and
rename the references to clientName to applicationName. Make sure to retain the capitalization in
the property name, which should become ApplicationName.

[C#]

using System;
using System.Text;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

public sealed class ContactServerConfiguration : ProtocolConfiguration
{

#region Fields

private string applicationName;
private int? clientId;

#endregion Fields

...

#region Properties

public string ApplicationName
{

get { return this.applicationName; }
set { this.applicationName = value; }

}

public int? ClientId

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 17

{
get { return this.clientId; }
set { this.clientId = value; }

}

#endregion Properties

public override string ToString()
{

StringBuilder sb = new StringBuilder();
sb.Append(base.ToString());

sb.AppendFormat("applicationName: {0}\n", this.applicationName);
sb.AppendFormat("ClientId: {0}\n", this.clientId.ToString());

return sb.ToString();
}

}
}

The constructor also needs to be renamed. This code:

[C#]

public StatServerConfiguration(string name)
: base(name, typeof(StatServerProtocol))

{
}

should be replaced with this:

[C#]

public ContactServerConfiguration(string name)
: base(name, typeof(UniversalContactServerProtocol))

{
}

When you have made all of these changes, your new class should look like this:

[C#]

using System;
using System.Text;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

public sealed class ContactServerConfiguration : ProtocolConfiguration
{

#region Fields

private string applicationName;

#endregion Fields

public ContactServerConfiguration(string name)
: base(name, typeof(UniversalContactServerProtocol))

{
}
#region Properties

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 18

public string ApplicationName
{

get { return this.applicationName; }
set { this.applicationName = value; }

}

#endregion Properties

public override string ToString()
{

StringBuilder sb = new StringBuilder();
sb.Append(base.ToString());

sb.AppendFormat("ApplicationName: {0}\n", this.applicationName);

return sb.ToString();
}

}
}

Creating a ContactServerFacility Class
The next step is to create a copy of StatServerFacility.cs and name it
ContactServerFacility.cs. Here is what the StatServerFacility class looks like:

[C#]

using System;
using System.Text;

using Genesyslab.Platform.Commons.Collections;
using Genesyslab.Platform.Commons.Protocols;
using Genesyslab.Platform.Reporting.Protocols;
using Genesyslab.Platform.Commons.Logging;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

internal sealed class StatServerFacility : ProtocolFacility
{

public override void ApplyConfiguration(ProtocolInstance entry, ProtocolConfiguration
conf, ILogger logger)

{
base.ApplyConfiguration(entry, conf, logger);

StatServerConfiguration statConf = (StatServerConfiguration)conf;
StatServerProtocol statProtocol = (StatServerProtocol)entry.Protocol;

if (statConf.ClientName != null)
{

statProtocol.ClientName = statProtocol.ClientName;
}
if (statConf.ClientId != null)
{

statProtocol.ClientId = statConf.ClientId.Value;
}

}

public override ClientChannel CreateProtocol(string name, Uri uri)
{

return new StatServerProtocol(new Endpoint(name, uri));

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 19

}
}

}

Start by renaming the using statement and the class name:

[C#]

using System;
using Genesyslab.Platform.Commons.Logging;
using Genesyslab.Platform.Commons.Protocols;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

internal sealed class ContactServerFacility : ProtocolFacility
...

Rename statConf and statProtocol, giving them the correct configuration and protocol types:

[C#]

ContactServerConfiguration ucsConf = (ContactServerConfiguration)conf;
UniversalContactServerProtocol ucsProtocol =

(UniversalContactServerProtocol)entry.Protocol;

And delete the references to ClientId:

[C#]

if (statConf.ClientId != null)
{

statProtocol.ClientId = statConf.ClientId.Value;

Now you can rename ClientName to ApplicationName:

[C#]

if (ucsConf.ApplicationName != null)
{

ucsProtocol.ApplicationName = ucsConf.ApplicationName;
}

When you are finished, you will have a new class that looks like this:

[C#]

using System;
using Genesyslab.Platform.Commons.Logging;
using Genesyslab.Platform.Commons.Protocols;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

internal sealed class ContactServerFacility : ProtocolFacility
{

public override void ApplyConfiguration(ProtocolInstance entry, ProtocolConfiguration
conf, ILogger logger)

{
base.ApplyConfiguration(entry, conf, logger);

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 20

ContactServerConfiguration ucsConf = (ContactServerConfiguration)conf;
UniversalContactServerProtocol ucsProtocol =

(UniversalContactServerProtocol)entry.Protocol;

if (ucsConf.ApplicationName != null)
{

ucsProtocol.ApplicationName = ucsConf.ApplicationName;
}

}

public override ClientChannel CreateProtocol(string name, Uri uri)
{

return new UniversalContactServerProtocol(new Endpoint(name, uri));
}

}
}

Updating ProtocolManagementService
To complete this enhancement, add a single line of code to the Initialize method of
ProtocolManagementService:

[C#]

private void Initialize()
{

this.facilities.Add(typeof(ConfServerProtocol), new ConfServerFacility());
this.facilities.Add(typeof(TServerProtocol), new TServerFacility());
this.facilities.Add(typeof(InteractionServerProtocol), new

InteractionServerFacility());
this.facilities.Add(typeof(StatServerProtocol), new StatServerFacility());
this.facilities.Add(typeof(OutboundServerProtocol), new OutboundServerFacility());
this.facilities.Add(typeof(LocalControlAgentProtocol), new LcaFacility());
this.facilities.Add(typeof(SolutionControlServerProtocol), new ScsFacility());
this.facilities.Add(typeof(MessageServerProtocol), new MessageServerFacility());
this.facilities.Add(typeof(UniversalContactServerProtocol), new

ContactServerFacility());
}

Your copy of Protocol Manager now works with Universal Contact Server!

Architecture and Design

The Protocol Manager Application Block uses a service-based API. You can use this API to open and
close your connection with Genesys servers and to dynamically reconfigure the parameters for a
given protocol. Protocol Manager also includes built-in warm standby capabilities.

Protocol Manager uses a ServerConfiguration object to describe each server it manages. The figure
below gives examples of the structure of some of these objects.

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 21

Tip
Any protocol can be reconfigured dynamically.

Using the Protocol Manager Application Block

Platform SDK Developer's Guide 22

	Platform SDK Developer's Guide
	Using the Protocol Manager Application Block

