
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Using the Message Broker Application Block

Platform SDK Developer's Guide

4/9/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Using the Message Broker Application Block
Deprecation Notice: This application block is considered a legacy product starting with
release 8.1.1. Documentation is provided for backwards compatibility, but new
development should consider using the improved method of message handling.

Important
This application block is a reusable production-quality component. It has been
designed using industry best practices and provided with source code so it can be
used "as is," extended, or tailored if you need to.

Please see the License Agreement for details.

The Message Broker Application Block makes it easy for your applications to handle events in an
efficient way.

Java

Installing the Message Broker Application Block

To work with the Message Broker Application Block, you must ensure that your system meets the
software requirements established in the Genesys Supported Operating Environment Reference
Guide.

Building the Message Broker Application Block

Tip
Starting with release 8.5.0, the common interfaces for COM Application Block and
Message Broker have been moved to an individual commonsappblock.jar file.

To build the Message Broker Application Block:

1. Open the <Platform SDK Folder>\applicationblocks\messagebroker folder.
2. Run either build.bat or build.sh, depending on your platform.

Using the Message Broker Application Block

Platform SDK Developer's Guide 2

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling
https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK

This will create the commonsappblock.jar file, located within the <Platform SDK
Folder>\applicationblocks\messagebroker\dist\lib directory.

Working with the Message Broker Application Block
You can find basic information on how to use the Message Broker Application Block in the article on
Event Handling Using the Message Broker Application Block.

Configuring Message Broker

When you first work with Message Broker, you will probably use a single instance of
EventBrokerService. This means that all messages coming into your application will first pass
through this single instance, as shown in below. Note that configuration diagrams used here do not
show the Protocol Manager Application Block, in order to focus on the architecture of Message Broker.

However, there may be high-traffic scenarios that require multiple instances of Message Broker. This
might happen if you have one or more servers whose events use so much of Message Broker’s
processing time that events from other servers must wait for an unacceptable amount of time. In that
case, you could dedicate an instance of EventBrokerService to the appropriate server.

For example, you may have a scenario in which you frequently receive large volumes of statistics. To
handle that situation, you could dedicate an EventBrokerService instance to Stat Server. In other
situations, you might regularly receive large amounts of Configuration Layer data from Configuration
Server. You could handle this in a similar way by giving Configuration Server its own instance of
EventBrokerService, as shown here:

Using the Message Broker Application Block

Platform SDK Developer's Guide 3

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB

Sometimes you may have large message volumes for each server, in which case you could use a
separate instance of EventBrokerService for each server, as shown here.

Using Message Filters

Message Broker comes with several types of message filters. You can filter on individual messages
using MessageIdFilter or MessageNameFilter. In most cases you will want to use
MessageIdFilter, as it is more efficient than MessageNameFilter. You can also use a
MessageRangeFilter to filter on several messages at a time.

As shown in the article on Event Handling Using the Message Broker Application Block, you can
specify these filters when you register an event handler with the Event Broker Service. Here is a
sample of how to set up a MessageIdFilter:

[Java]

eventBrokerService.register(new StatPackageOpenedHandler(),
packageEvents);

Using the Message Broker Application Block

Platform SDK Developer's Guide 4

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB

There may be times when you want to process several events in the same event handler. In such
cases, you can use a MessageRangeFilter, which will direct all of these events to that handler. Here
is a sample of how to set up the filter:

[Java]

int[] messageRange = new int[] {EventPackageOpened.ID, EventPackageClosed.ID};
MessageRangeFilter packageStatusEvents = new MessageRangeFilter

(messageRange);
eventBrokerService.register(new StatPackageStatusChangedHandler(),

packageStatusEvents);

Your event handler might look something like this:

[Java]

class StatPackageStatusChangedHandler implements Action {

public void handle(Message obj) {
// Common processing goes here...
if (obj.messageId() == EventPackageOpened.ID) {

// EventPackageOpened processing goes here...
} else {

// EventPackageClosed processing goes here...
}

}
}

Some servers use events that have the same name as events used by another server. One example
is EventError, which is used by just about every server except Stat Server. The Event Handling Using
the Message Broker Application Block article shows how to use a Protocol Description object to filter
events by server type in order to avoid confusion when handling these events.

There also may be times when you have several instances of a given server in your environment and
you want to filter by a specific one. To do this, first specify an Endpoint for that server, using a name
for the server in the Endpoint constructor:

[Java]

String statServer1EndpointName = "StatServer1";
Endpoint statServer1Endpoint =

new Endpoint(statServer1EndpointName, statServer1Uri);

Now create the filter:

[Java]

MessageIdFilter statServer1EndpointFilter =
new MessageIdFilter(EventPackageOpened.ID);

And set the EndpointName in the filter:

[Java]

statServer1EndpointFilter.setEndpointName(statServer1EndpointName);

When you register this filter, the handler you specify will only receive messages that were sent from
the instance you mentioned above:

Using the Message Broker Application Block

Platform SDK Developer's Guide 5

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB

[Java]

eventBrokerService.register(new StatPackageOpenedHandler_StatServer1(),
statServer1EndpointFilter);

Architecture and Design

The Message Broker Application Block is designed to make it easy for your applications to handle
events in an efficient way.

Message Broker allows you to set up individual classes to handle specific events coming from
Genesys servers. It receives all of the events from the servers you specify, and sends each one to the
appropriate handler class. Message Broker is a high-performance way to hide the complexity of
event-driven programming — so you can focus on other areas of your application.

Tip
Message Broker has been designed for use with the Protocol Manager Application
Block. Protocol Manager is another high-performance component that makes it easy
for your applications to connect to Genesys servers. You can find basic information on
how to use the Protocol Manager Application Block in the article on Connecting to a
Server.

The Message Broker Application Block Architecture
The Message Broker Application Block uses a service-based API that enables you to write individual
methods that handle one or more events.

For example, you might want to handle every occurrence of EventAgentLogin with a specific
dedicated method, while there might be other events that you wish to send to a common event-
handling method. Message Broker allows you write these methods and register them with an event
broker that manages them for you.

Message Filters

Message Broker uses message filters to identify specific messages, assign them to specified
methods, and route them accordingly.

Design Patterns

This section gives an overview of the design patterns used in the Message Broker Application Block.

Publish/Subscribe Pattern
There are many occasions when one class (the subscriber) needs to be notified when something

Using the Message Broker Application Block

Platform SDK Developer's Guide 6

changes in another class (the publisher). The Message Broker Application Block use the Publish/
Subscribe pattern to inform the client application when events arrive from the server.

Factory Method Pattern
It is common practice for a class to include constructors that enable clients of the class instantiate it.
There are times, however, when a client may need to instantiate one of several different classes. In
some of these situations, the client should not need to decide which class is being created. In this
case, a Factory Method pattern is used. The Factory Method pattern lets a class developer define the
interface for creating an object, while retaining control of which class to instantiate.

How To Properly Manage the EventBrokerService Lifecycle

Unfortunately, a commonly encountered problem is that users create EventBrokerService but do
not dispose of it properly. EventBrokerService exclusively uses an invoker thread to run an infinite
cycle with MessageReceiver.receive() and incoming messages handling logic. EventBroker is
created by user code, so it should be disposed by user code as well. Useful methods are
MessageBrokerService.deactivate() and MessageBrokerService.dispose().

In PSDK 8.1 this class is deprecated and a new one is added to resolve the problem with thread
waiting: EventReceivingBrokerService. This new class implements the MessageReceiver interface
and may be used as external receiver for Platform SDK protocols. In this case, we have no
intermediate redundant queue and incoming messages are delivered from protocol(s) to handler(s)
directly. This class still requires async invoker to execute messages handling, but in this case the
invoker is called once per incoming message, so it's thread is not blocked during the .receive()
operation.

So, EventReceivingBrokerService does not need .dispose() and is GC friendly.

Tip
A similar change has been made to RequestBrokerService.

Also note that the Invoker instance still represents a "costly" resource (thread) and is managed by
user code, so proper attention (allocation/deallocation) is required.

Q: Does it matter if the event broker service is created by the BrokerServiceFactory or not?

A: Actually, BrokerServiceFactory just creates and activates the corresponding broker instance. So
if a broker is created by a call to the factory, it must be disposed of by user code in accordance to its
usage there.

.NET

Using the Message Broker Application Block

Platform SDK Developer's Guide 7

Installing the Message Broker Application Block

To work with the Message Broker Application Block, you must ensure that your system meets the
software requirements established in the Genesys Supported Operating Environment Reference
Guide.

Building the Message Broker Application Block

Tip
Starting with release 8.5.0, the common interfaces for COM Application Block and
Message Broker have been moved to an individual
Genesyslab.Platform.ApplicationBlocks.Commons.dll file.

The Platform SDK distribution includes a Genesyslab.Platform.ApplicationBlocks.Commons.dll
file that you can use as is. This file is located in the bin directory at the root level of the Platform SDK
directory. To build your own copy of this application block, follow the instructions below:

1. Open the <Platform SDK Folder>\ApplicationBlocks\MessageBroker folder.
2. Double-click MessageBroker.sln.
3. Build the solution.

Working with the Message Broker Application Block
You can find basic information on how to use the Message Broker Application Block in the article on
Event Handling Using the Message Broker Application Block.

Configuring Message Broker

When you first work with Message Broker, you will probably use a single instance of
EventBrokerService. This means that all messages coming into your application will first pass
through this single instance, as shown in the figure below. Note that the following configuration
diagrams do not show the Protocol Manager Application Block, in order to focus on the architecture of
Message Broker.

Using the Message Broker Application Block

Platform SDK Developer's Guide 8

https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB

However, there may be high-traffic scenarios that require multiple instances of Message Broker. This
might happen if you have one or more servers whose events use so much of Message Broker's
processing time that events from other servers must wait for an unacceptable amount of time. In that
case, you could dedicate an instance of EventBrokerService to the appropriate server.

For example, you may have a scenario in which you frequently receive large volumes of statistics. To
handle that situation, you could dedicate an EventBrokerService instance to Stat Server. In other
situations, you might regularly receive large amounts of Configuration Layer data from Configuration
Server. You could handle this in a similar way by giving Configuration Server its own instance of
EventBrokerService, as shown in the following figure:

Sometimes you may have large message volumes for each server, in which case you could use a
separate instance of EventBrokerService for each server, as shown here.

Using the Message Broker Application Block

Platform SDK Developer's Guide 9

Using Message Filters

Message Broker comes with several types of message filters. You can filter on individual messages
using MessageIdFilter or MessageNameFilter. In most cases you will want to use
MessageIdFilter, as it is more efficient than MessageNameFilter. You can also use a
MessageRangeFilter to filter on several messages at a time.

As shown in the article on Event Handling Using the Message Broker Application Block in the
beginning of this guide, you can specify these filters when you register an event handler with the
Event Broker Service. Here is a sample of how to set up a MessageIdFilter:

[C#]

eventBrokerService.Register(this.OnEventPackageClosed,
new MessageIdFilter(EventPackageClosed.MessageId));

There may be times when you want to process several events in the same event handler. In such
cases, you can use a MessageRangeFilter, which will direct all of these events to that handler. Here
is a sample of how to set up the filter:

[C#]

eventBrokerService.Register(this.OnEventPackageStatusChanged, new MessageRangeFilter(new
int[] {

EventPackageOpened.MessageId, EventPackageClosed.MessageId}));

Your event handler might look something like this:

[C#]

private void OnEventPackageStatusChanged(IMessage theMessage)
{

// Common processing goes here...
if (theMessage.Id == EventPackageOpened.MessageId)
{

// EventPackageOpened processing goes here...
}
else

Using the Message Broker Application Block

Platform SDK Developer's Guide 10

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB

{
// EventPackageClosed processing goes here...

}
}

Some servers use events that have the same name as events used by another server. One example
is EventError, which is used by just about every server except Stat Server. The Event Handling Using
the Message Broker Application Block article shows how to use a Protocol Description object to filter
events by server type in order to avoid confusion when handling these events.

There also may be times when you have several instances of a given server in your environment and
you want to filter by a specific one. To do this, first specify an Endpoint for that server, using a name
for the server in the Endpoint constructor:

[C#]

string statServer1EndpointName = "StatServer1";
Endpoint statServer1Endpoint =

new Endpoint(statServer1EndpointName, statServer1Uri);

Now create the filter:

[C#]

MessageIdFilter statServer1EndpointFilter =
new MessageIdFilter(EventPackageOpened.MessageId);

And set the EndpointName property of the filter:

[C#]

statServer1EndpointFilter.EndpointName = statServer1EndpointName;

When you register this filter, the handler you specify will only receive messages that were sent from
the instance you mentioned above:

[C#]

eventBrokerService.Register(
this.OnEventPackageOpened_StatServer1, statServer1EndpointFilter);

Architecture and Design

The Message Broker Application Block is designed to make it easy for your applications to handle
events in an efficient way.

Message Broker allows you to set up individual classes to handle specific events coming from
Genesys servers. It receives all of the events from the servers you specify, and sends each one to the
appropriate handler class. Message Broker is a high-performance way to hide the complexity of
event-driven programming — so you can focus on other areas of your application.

Using the Message Broker Application Block

Platform SDK Developer's Guide 11

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB

Tip
Message Broker has been designed for use with the Protocol Manager Application
Block. Protocol Manager is another high-performance component that makes it easy
for your applications to connect to Genesys servers. You can find basic information on
how to use the Protocol Manager Application Block in the article on Connecting to a
Server Using the Protocol Manager Application Block.

The Message Broker Application Block Architecture
The Message Broker Application Block uses a service-based API that enables you to write individual
methods that handle one or more events.

For example, you might want to handle every occurrence of EventAgentLogin with a specific
dedicated method, while there might be other events that you wish to send to a common event-
handling method. Message Broker allows you write these methods and register them with an event
broker that manages them for you.

Message Filters
Message Broker uses message filters to identify specific messages, assign them to specified
methods, and route them accordingly. These message filters are shown in greater detail in the figure
below.

Using the Message Broker Application Block

Platform SDK Developer's Guide 12

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingUsingProtocolManagerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingUsingProtocolManagerAB

Design Patterns

This section gives an overview of the design patterns used in the Message Broker Application Block.

Publish/Subscribe Pattern
There are many occasions when one class (the subscriber) needs to be notified when something
changes in another class (the publisher). Message Broker uses the Publish/Subscribe pattern to
inform the client application when events arrive from the server.

Factory Method Pattern
It is common practice for a class to include constructors that enable clients of the class instantiate it.
There are times, however, when a client may need to instantiate one of several different classes. In
some of these situations, the client should not need to decide which class is being created. In this
case, a Factory Method pattern is used. The Factory Method pattern lets a class developer define the
interface for creating an object, while retaining control of which class to instantiate.

Using the Message Broker Application Block

Platform SDK Developer's Guide 13

	Platform SDK Developer's Guide
	Using the Message Broker Application Block

