
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Quick Start

Platform SDK Developer's Guide

4/3/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Quick Start

Platform SDK for Java

Understanding Port Modes

TLS is configured differently depending on target port mode:

• default - Default mode ports do not use or understand TLS protocol.
• upgrade - Upgrade mode ports allow unsecured connections to be made, switching to TLS mode only

after TLS settings are retrieved from Configuration Server.
• secure - Secure mode ports require TLS to be started immediately, before sending any requests to

server.

Connecting to Default Mode Ports
Default mode is supported for all protocols; no specific configuration is needed for it to work.

Example:

Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort);
ConfServerProtocol protocol = new ConfServerProtocol(cfgServerEndpoint);
protocol.setClientName(appName);
protocol.setClientApplicationType(appType);
protocol.setUserName(username);
protocol.setUserPassword(password);
protocol.open();

It is also OK to specify explicit null parameters for the connection configuration and TLS parameters:

// Explicit null ConnectionConfiguration
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort, null);

// Explicit null ConnectionConfiguration and TLS parameters
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort, null, false, null, null);

Connecting to Upgrade Mode Ports
TLS upgrade mode is supported only for Configuration Protocol, since the TLS settings for connecting
clients must be retrieved from Configuration Server. No specific options are required; the TLS upgrade
logic works by default.

If a user has provided custom settings, then those settings are used if the TLS parameters received
from Configuration Server are empty. The only requirement that the tlsEnabled parameter in the
Endpoint constructor is not to true, otherwise the client side starts TLS immediately and the

Quick Start

Platform SDK Developer's Guide 2



connection would fail because an upgrade mode port expects the connection to be unsecured
initially.

// Setting tlsEnabled to true would cause failure when connecting to upgrade port:
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort,

connConf, true, sslContext, sslOptions);

Connecting to Secure Mode Port
Secure mode is supported for all protocols. TLS configuration objects/properties must be specified
before the connection is opened, and the tlsEnabled parameter must be set to true. Secure port
mode expects the client to start TLS negotiation immediately after connecting, otherwise the
connection fails.

Example:

boolean tlsEnabled = true;
// Here, the minimal TLS configuration is used, see the following section for details
TrustManager trustManager = TrustManagerHelper.createTrustEveryoneTrustManager();
KeyManager keyManager = KeyManagerHelper.createEmptyKeyManager();
SSLContext sslContext = SSLContextHelper.createSSLContext(keyManager, trustManager);
ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort,

connConf, tlsEnabled, sslContext, sslOptions);
ConfServerProtocol protocol = new ConfServerProtocol(cfgServerEndpoint);
protocol.setClientName(appName);
protocol.setClientApplicationType(appType);
protocol.setUserName(username);
protocol.setUserPassword(password);
protocol.open();

TLS Minimal Configuration

Frequently, there is a need to quickly set up code for working TLS connections, dealing with detailed
TLS configuration later. The minimal configuration settings described below do exactly that.

The following code creates an SSLContext object that can be used to configure a connection to a
secure port or to configure a secure server socket. This code uses EmptyKeyManager which indicates
that the party opening connection/socket would not have any certificate to authenticate itself, and
TrustEveryoneTrustManager which trusts any certificate presented by the other party - even expired
or revoked certificates.

boolean tlsEnabled = true;
TrustManager trustManager = TrustManagerHelper.createTrustEveryoneTrustManager();
KeyManager keyManager = KeyManagerHelper.createEmptyKeyManager();
SSLContext sslContext = SSLContextHelper.createSSLContext(keyManager, trustManager);

Note: Connections using this configuration would have a working encryption layer, but they are not
secure because they can neither authenticate themselves nor validate credentials provided by the
other party.

Note: If a server uses mutual TLS mode, then it requires the client to present a certificate. Minimal
configuration does not have certificates, so in this case the TLS negotiation would fail.

Quick Start

Platform SDK Developer's Guide 3



Platform SDK for .NET

Understanding Port Modes

TLS is configured differently depending on target port mode:

• default - Default mode ports do not use or understand TLS protocol.
• upgrade - Upgrade mode ports allow unsecured connections to be made, switching to TLS mode only

after TLS settings are retrieved from Configuration Server.
• secure - Secure mode ports require TLS to be started immediately, before sending any requests to

server.

Connecting to Default Mode Ports
Default mode is supported for all protocols; no specific configuration is needed for it to work.

Example:

Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort);
ConfServerProtocol protocol = new ConfServerProtocol(cfgServerEndpoint);
protocol.ClientName = appName;
protocol.ClientApplicationType = appType;
protocol.UserName = username;
protocol.UserPassword = password;
protocol.Open();

It is also OK to specify explicit null parameters for the connection configuration:

// Explicit null IConnectionConfiguration
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort, null);

Connecting to Upgrade Mode Ports
TLS upgrade mode is supported only for Configuration Protocol, since the TLS settings for connecting
clients must be retrieved from Configuration Server. No specific options are required; the TLS upgrade
logic works by default.

If a user has provided custom settings, then those settings are used if the TLS parameters received
from Configuration Server are empty. The only requirement that the TlsEnabled parameter in the
connection configuration is not to true, otherwise the client side starts TLS immediately and the
connection would fail because an upgrade mode port expects the connection to be unsecured
initially.

// Setting TlsEnabled to true would cause failure when connecting to upgrade port:
KeyValueConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
connConf.TlsEnabled = true;
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort, connConf);

Quick Start

Platform SDK Developer's Guide 4



Connecting to Secure Mode Port
Secure mode is supported for all protocols. TLS configuration objects/properties must be specified
before the connection is opened, and the TlsEnabled parameter must be set to true. Secure port
mode expects the client to start TLS negotiation immediately after connecting, otherwise the
connection fails.

Example:

boolean tlsEnabled = true;
// Here, the minimal TLS configuration is used, see the following section for details
KeyValueConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
connConf.TlsEnabled = true;
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort, connConf);
ConfServerProtocol protocol = new ConfServerProtocol(cfgServerEndpoint);
protocol.ClientName = appName;
protocol.ClientApplicationType = appType;
protocol.UserName = username;
protocol.UserPassword = password;
protocol.Open();

TLS Minimal Configuration

Frequently, there is a need to quickly set up code for working TLS connections, dealing with detailed
TLS configuration later. The minimal configuration settings described below do exactly that.

Platform SDK for .Net requires less configuration, because it always uses the MSCAPI security
provider and Windows Certificate Services (WCS) by default. The following code would trust all
certificates located in the WCS Trusted Root Certificates folder for the current user account.

KeyValueConfiguration config = new KeyValueConfiguration(new KeyValueCollection());
config.TlsEnabled = true;
Endpoint ep = new Endpoint(appName, cfgHost, cfgPort, config);

Note: If a server uses mutual TLS mode, then it requires clients to present a certificate. Minimal
configuration does not have certificates, so in this case the TLS negotiation would fail.

Quick Start

Platform SDK Developer's Guide 5


	Platform SDK Developer's Guide
	Quick Start

