
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Stat Server

Platform SDK Developer's Guide

4/3/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Stat Server
Stat Server tracks information about customer interaction networks (contact center, enterprise-wide,
or multi-enterprise telephony and computer networks). It also converts the data accumulated for
directory numbers (DNs), agents, agent groups, and non-telephony-specific object types, such as
email and chat sessions, into statistically useful information, and passes these calculations to other
software applications that request data. For example, Stat Server sends data to Universal Routing
Server (URS), because Stat Server reports on agent availability. You can also use Stat Server's
numerical statistical values as routing criteria.

Stat Server provides contact center managers with a wide range of information, allowing
organizations to maximize the efficiency and flexibility of customer interaction networks. For more
information about Stat Server, consult the Reporting Technical Reference 8.0 Overview and the Stat
Server 8.5 User's Guide.

You can use the Platform SDK to write Java or .NET applications that gather statistical information
from Stat Server. These applications may be fairly simple or quite advanced. This article shows how
to implement the basic functions you will need to write a simple Statistics application.

A Typical Statistics Application

There are many ways in which you might need to use data from Stat Server, but in most cases, you
will use three types of requests:

• RequestOpenStatistic and RequestOpenStatisticEx are used to ask Stat Server to start sending
statistical information to your application. RequestOpenStatistic allows you to request information
about a statistic that has already been defined in the Genesys Configuration Layer, while you can use
RequestOpenStatisticEx to define your own statistics dynamically.

• You can use RequestPeekStatistic to get the value of a statistic that has already been opened using
either RequestOpenStatistic or RequestOpenStatisticEx. Since it can take a while for certain types
of statistical information to be sent to your application, this can be useful if you are writing an
application—such as a wallboard application, for instance—for which you would like statistical values to
be displayed immediately.

• Use RequestCloseStatistic to tell Stat Server that you no longer need information about a particular
statistic.

Tip
When you use RequestOpenStatistic and RequestOpenStatisticEx, you have to
specify a ReferenceId, which is a unique integer that allows Stat Server and your
application to distinguish between different sets of statistical information. You must
also enter this integer in the StatisticId field for any request that refers to the
statistics generated on the basis of your Open request. For example, if you sent a
request for "TotalNumberInboundCalls" for agent 001, you might give the
RequestOpenStatistic a ReferenceId of 333001. A similar request for agent 002

Stat Server

Platform SDK Developer's Guide 2

might have a ReferenceId of 333002. When you want to peek at the value of
"TotalNumberInboundCalls" for agent 001, or close the statistic (or suspend or resume
reporting on the statistic), you need to specify a StatisticId of 333001 for each of
these requests.

Java

Connecting to Stat Server

As mentioned in the article on the architecture, the Platform SDKs uses a message-based
architecture to connect to Genesys servers. This section describes how to connect to Stat Server,
based on the material in the article on Connecting to a Server.

After you have set up your import statements, the first thing you need to do is create a
StatServerProtocol object:

[Java]

StatServerProtocol statServerProtocol =
new StatServerProtocol(

new Endpoint(
statServerEPName,
host,
port));

statServerProtocol.setClientName(clientName);

You can also configure your ADDP and warm standby settings at this point, following the example
shown in the Connecting to a Server article.

Once your configuration is complete, open the connection to Stat Server:

[Java]

try {
statServerProtocol.open();

} catch (InterruptedException e) {
e.printStackTrace();

} catch (ProtocolException e) {
e.printStackTrace();

}

Working with Statistics

The Stat Server application object in the Genesys Configuration Layer comes with many predefined
statistics. You can also define your own statistics using the options tab of this application object. The
Platform SDK allows you to get information about any of these statistics by using

Stat Server

Platform SDK Developer's Guide 3

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

RequestOpenStatistic. There may be times, however, when you want your application to be able to
create new types of statistics dynamically. The Platform SDK also supports this, with the use of
RequestOpenStatisticEx.

This section will show you how to use RequestOpenStatistic to get information on a predefined
statistic. After that, we will give an example of how to use RequestOpenStatisticEx.

The first thing you need to do to use RequestOpenStatistic is to create the request:

[Java]

RequestOpenStatistic requestOpenStatistic
= RequestOpenStatistic.create();

Now you need to describe the statistics object, that is, the object you are monitoring. This description
consists of the object's Configuration Layer ID and object type, and the tenant ID and password:

[Java]

StatisticObject object = StatisticObject.create();
object.setObjectId("Analyst001");
object.setObjectType(StatisticObjectType.Agent);
object.setTenantName("Resources");
object.setTenantPassword("");

Next, you will specify the StatisticType property, which must correspond to the name of the
statistic definition that appears in the options tab. In this case, we are asking for the total login time
for an agent identified as "Analyst001":

[Java]

StatisticMetric metric = StatisticMetric.create();
metric.setStatisticType("TotalLoginTime");

Now you can specify the desired Notification settings. The Statistics Platform SDK supports four
ways of gathering statistics:

1. NoNotification allows you to retrieve statistics when you want them.
2. Periodical means Stat Server reports on statistics based on the time period you request.
3. Immediate means Stat Server reports on statistics whenever a statistical value changes. For time-

related statistics, Immediate means that Stat Server will report the current value whenever a statistical
value changes, but it will also report that value periodically, using the specified notification frequency.

4. Reset means Stat Server reports the current value of a statistic right before setting the statistical value
to zero (0).

In this case, we are interested in receiving statistics on a regular basis, so we have asked for a
notification mode of Periodical, with updates every 5 seconds, using a GrowingWindow statistic
interval. For more information on notification modes, see the section on Notification Modes in the Stat
Server 8.5 User's Guide. For more information on statistic intervals, see the section on TimeProfiles in
the same guide.

[Java]

Notification notification = Notification.create();
notification.setMode(NotificationMode.Periodical);
notification.setFrequency(5);

Stat Server

Platform SDK Developer's Guide 4

At this point, you can add the information about the statistic object and your notification settings to
the request:

[Java]

requestOpenStatistic.setStatisticObject(object);
requestOpenStatistic.setStatisticMetric(metric);
requestOpenStatistic.setNotification(notification);

Before sending this request, you have to assign it an integer that uniquely identifies it, so that Stat
Server and your application can easily distinguish it from other sets of statistical information. Note
that you will also need to enter this integer in the StatisticId field for any subsequent requests
that refer to the statistics generated on the basis of the Open request.

Tip
ReferenceId is a unique integer that is specified for identification of requested
statistics. If no value is set then this property is assigned automatically just before
sending a message; however, if the property has already been assigned then it will
not be modified. If you specify this property on your own, you should guarantee its
uniqueness. StatServer's behavior was corrected (starting from releases 8.1.000.44
and 8.1.200.14 in corresponding families) so that if two requests are sent with the
same ReferenceId then an EventError message is returned for the second request.

[Java]

requestOpenStatistic.setReferenceId(2);

Now you can send the request:

[Java]

System.out.println("Sending:\n" + requestOpenStatistic);
statServerProtocol.send(requestOpenStatistic);

After Stat Server sends the EventStatisticOpened in response to this request, it will start sending
EventInfo messages every 5 seconds. You need to set up an event handler to receive these
messages, as discussed in the the Event Handling article.

This is what one such message might look like:

'EventInfo' ('2')
message attributes:
REQ_ID [int] = 4
USER_REQ_ID [int] = -1
TM_SERVER [int] = 1244412448
TM_LENGTH [int] = 0
LONG_VALUE [int] = 0
VOID_VALUE [object] = AgentStatus {

AgentId = Analyst001
AgentStatus = 23
Time = 1240840034
PlaceStatus = PlaceStatus = 23
Time = 1240840034
LoginId = LoggedOut

Stat Server

Platform SDK Developer's Guide 5

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

}

Creating Dynamic Statistics

As mentioned above, there may be times when you want to get statistical information that has not
already been defined in the Configuration Layer. In cases like that, you can use
RequestOpenStatisticEx. Before you do, however, you should make sure you understand several
topics covered in the Reporting Technical Reference 8.0 Overview and the Stat Server 8.5 User's
Guide, including the use of masks.

The first things you need to do in order to use RequestOpenStatisticEx are similar to what we did in
the previous section. You will start by creating the request and specifying the statistic object and
notification mode, which you will add to the request:

[Java]

RequestOpenStatisticEx request =
RequestOpenStatisticEx.create();

StatisticObject object = StatisticObject.create();
object.setObjectId("Analyst001");
object.setObjectType(StatisticObjectType.Agent);
object.setTenantName("Resources");
object.setTenantPassword("");

Notification notification = Notification.create();
notification.setMode(NotificationMode.Immediate);

request.setNotification(notification);
request.setStatisticObject(object);

Now, instead of requesting a pre-defined statistic type, you need to set up your own masks, as
described in the section on "Metrics: Their Composition and Definition" in the Reporting Technical
Reference 8.0 Overview. The following mask and statistic metric settings give the Current State for
the agent mentioned above:

[Java]

DnActionMask mainMask = ActionsMask.createDNActionsMask();
mainMask.setBit(DnActions.WaitForNextCall);
mainMask.setBit(DnActions.CallDialing);
mainMask.setBit(DnActions.CallRinging);
mainMask.setBit(DnActions.NotReadyForNextCall);
mainMask.setBit(DnActions.CallOnHold);
mainMask.setBit(DnActions.CallUnknown);
mainMask.setBit(DnActions.CallConsult);
mainMask.setBit(DnActions.CallInternal);
mainMask.setBit(DnActions.CallOutbound);
mainMask.setBit(DnActions.CallInbound);
mainMask.setBit(DnActions.LoggedOut);

DnActionMask relMask = ActionsMask.createDNActionsMask();

StatisticMetricEx metric = StatisticMetricEx.create();
metric.setCategory(StatisticCategory.CurrentState);
metric.setMainMask(mainMask);
metric.setRelativeMask(relMask);

Stat Server

Platform SDK Developer's Guide 6

metric.setSubject(StatisticSubject.DNStatus);

request.setStatisticMetricEx(metric);

Once you have set up the masks and the statistic metric, you can create a ReferenceId and send the
request:

[Java]

request.setReferenceId(anIntThatYouSpecify);

System.out.println("Sending:\n" + request);
Message response = statServerProtocol.request(request);
System.out.println("Received:\n" + response);

Current Target State Events

You can use RequestGetStatisticEx and RequestOpenStatisticEx to set up the same type of
current target state definitions that Universal Routing Server (URS) uses. (You can also set these up
using Configuration Manager.) When this type of request has been sent, Stat Server sends some
additional event types:

• EventCurrentTargetStateSnapshot
• EventCurrentTargetStateTargetUpdated
• EventCurrentTargetStateTargetAdded
• EventCurrentTargetStateTargetRemoved

The Snapshot event is returned in response to the open, while the Updated event is sent as state
changes occur. In a situation where you open a CurrentTargetState-based statistic against an agent
group, the Added and Removed messages occur when an agent is added to or removed from an agent
group — it would behave in a similar fashion for place groups.

Here is the output from a typical request:

'EventCurrentTargetStateSnapshot' (17) attributes:
TM_LENGTH [int] = 0
USER_REQ_ID [int] = -1
LONG_VALUE [int] = 0
CURRENT_TARGET_STATE_INFO [CurrentTargetState] = CurrentTargetStateSnapshot (size=1) [

[0] CurrentTargetStateInfo {
AgentId = Analyst001
AgentDbId = 101
LoginId = null
PlaceId = null
PlaceDbId = 0
Extensions = KVList:

'VOICE_MEDIA_STATUS' [int] = 0
'AGENT_VOICE_MEDIA_STATUS' [int] = 0

}
]

REQ_ID [int] = 5
TM_SERVER [int] = 1245182089

Stat Server

Platform SDK Developer's Guide 7

Peeking at a Statistic

There may be times when you need to get immediate information on a statistic you have opened. For
example, you may want to initialize a wallboard display. In that case, you can use
RequestPeekStatistic. Note that Stat Server does not send a handshake event when you use this
request, so you should use the send method rather than the request method when you use it. Note
also that you need to use the StatisticId property to provide the ReferenceId of the
RequestOpenStatistic or RequestOpenStatisticEx associated with the statistic you want
information on:

Tip
If you use the request method on a RequestPeekStatistic, your request will time out
and receive null, rather than retrieving the desired information from Stat Server.

[Java]

RequestPeekStatistic req = RequestPeekStatistic.create();
req.setStatisticId(2);

System.out.println("Sending:\n" + req);
statServerProtocol.send(req);

Suspending Notification

Because there are times when you do not need to collect information on a statistic for a while, the
Platform SDK has requests that allow you to suspend and resume notification. These requests are like
the peek request in that Stat Server does not send a handshake event when you use them, so you
should use the send method rather than the request method when you use these requests. Note also
that you need to use the StatisticId property of these requests to provide the ReferenceId of the
RequestOpenStatistic or RequestOpenStatisticEx associated with the statistic you want
information on. Here is how to suspend notification:

[Java]

RequestSuspendNotification req = RequestSuspendNotification.create();
req.setStatisticId(2);

System.out.println("Sending:\n" + req);
statServerProtocol.send(req);

Use code like this to resume notification:

[Java]

RequestResumeNotification req = RequestResumeNotification.create();
req.setStatisticId(2);

System.out.println("Sending:\n" + req);
statServerProtocol.send(req);

Stat Server

Platform SDK Developer's Guide 8

Closing the Statistic and the Connection

When you are finished communicating with Stat Server, you should close the statistics that you have
opened and close the connection, in order to minimize resource utilization:

[Java]

RequestCloseStatistic req = RequestCloseStatistic.create();
req.setStatisticId(2);

System.out.println("Sending:\n" + req);
statServerProtocol.send(req);

...

statServerProtocol.beginClose();

.NET

Connecting to Stat Server

As mentioned in the article on the architecture, the Platform SDKs uses a message-based
architecture to connect to Genesys servers. This section describes how to connect to Stat Server,
based on the material in the article on Connecting to a Server.

After you have set up using statements, the first thing you need to do is create a
StatServerProtocol object:

[C#]

StatServerProtocol statServerProtocol =
new StatServerProtocol(new Endpoint(statServerUri));

statServerProtocol.ClientId = clientID;
statServerProtocol.ClientName = clientName;

You can also configure your ADDP and warm standby settings at this point, as described in the
Connecting to a Server article.

Once you have finished configuring your protocol object, open the connection to Stat Server:

[C#]

statServerProtocol.Open();

Working with Statistics

The Stat Server application object in the Genesys Configuration Layer comes with many predefined
statistics. You can also define your own statistics using the options tab of this application object. The

Stat Server

Platform SDK Developer's Guide 9

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

Platform SDK allows you to get information about any of these statistics by using
RequestOpenStatistic. There may be times, however, when you want your application to be able to
create new types of statistics dynamically. The Platform SDK also supports this, with the use of
RequestOpenStatisticEx.

This section will show you how to use RequestOpenStatistic to get information on a predefined
statistic. After that, we will give an example of how to use RequestOpenStatisticEx.

The first thing you need to do to use RequestOpenStatistic is to create the request:

[C#]

var requestOpenStatistic = RequestOpenStatistic.Create();

Now you need to describe the statistics object, that is, the object you are monitoring. This description
consists of the object's Configuration Layer ID and object type, and the tenant ID and password:

[C#]

requestOpenStatistic.StatisticObject = StatisticObject.Create();
requestOpenStatistic.StatisticObject.ObjectId = "Analyst001";
requestOpenStatistic.StatisticObject.ObjectType = StatisticObjectType.Agent;
requestOpenStatistic.StatisticObject.TenantName = "Environment";
requestOpenStatistic.StatisticObject.TenantPassword = "";

Next, you will specify the StatisticMetric property for this statistic. A StatisticMetric contains
information including the StatisticType (which must correspond to the name of the statistic
definition that appears in the options tab), along with the required TimeRangeLeft and
TimeRangeRight parameters.

In this case, we are asking for the total login time for an agent identified as "Analyst001":

[C#]

requestOpenStatistic.StatisticMetric = StatisticMetric.Create();
requestOpenStatistic.StatisticMetric.StatisticType = "TotalLoginTime";
requestOpenStatistic.StatisticMetric.TimeProfile = "Default";
// Note: if no time profile is provided, then the default is used automatically

Finally, specify the desired Notification settings. The Statistics Platform SDK supports four ways of
gathering statistics:

• NoNotification allows you to retrieve statistics when you want them.
• Periodical means Stat Server reports on statistics based on the time period you request.
• Immediate means Stat Server reports on statistics whenever a statistical value changes. For time-

related statistics, Immediate means that Stat Server will report the current value whenever a statistical
value changes, but it will also report that value periodically, using the specified notification frequency.

• Reset means Stat Server reports the current value of a statistic right before setting the statistical value
to zero (0).

In this case, we are interested in receiving statistics on a regular basis, so we have asked for a
notification mode of Periodical, with updates every 5 seconds. For more information on notification
modes, see the section on Notification Modes in Stat Server 8.5 User's Guide.

[C#]

Stat Server

Platform SDK Developer's Guide 10

requestOpenStatistic.Notification = Notification.Create();
requestOpenStatistic.Notification.Mode = NotificationMode.Periodical;

requestOpenStatistic.Notification.Frequency = 5; // seconds

Before sending this request, you have to assign it an integer that uniquely identifies it, so that Stat
Server and your application can easily distinguish it from other sets of statistical information. Note
that you will also need to enter this integer in the StatisticId field for any subsequent requests
that refer to the statistics generated on the basis of the Open request.

Tip
ReferenceId is a unique integer that is specified for identification of requested
statistics. If no value is set then this property is assigned automatically just before
sending a message; however, if the property has already been assigned then it will
not be modified. If you specify this property on your own, you should guarantee its
uniqueness. StatServer's behavior was corrected (starting from releases 8.1.000.44
and 8.1.200.14 in corresponding families) so that if two requests are sent with the
same ReferenceId then an EventError message is returned for the second request.

[C#]

requestOpenStatistic.ReferenceId = 3; // Must be unique and is included as StatisticId in
// Peek/Close for the stat

Now you can send the request:

[C#]

Console.WriteLine("Sending:\n{0}", requestOpenStatistic);
var response =

statServerProtocol.Request(requestOpenStatistic);
Console.WriteLine("Received:\n{0}", response);

if (response == null || response.Id != EventStatisticOpened.MessageId)
{

// Open failed, proper error handling goes here
throw new Exception("RequestOpenStatistic failed.");

}

var @event = response as EventStatisticOpened;

After Stat Server sends the EventStatisticOpened in response to this request, it will start sending
EventInfo messages every 5 seconds. You need to set up an event handler to receive these
messages, as discussed in the the Event Handling article.

This is what one such message might look like:

[C#]

'EventInfo' ('2')
message attributes:
REQ_ID [int] = 4
USER_REQ_ID [int] = -1
TM_SERVER [int] = 1244412448

Stat Server

Platform SDK Developer's Guide 11

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

TM_LENGTH [int] = 0
LONG_VALUE [int] = 0
VOID_VALUE [object] = AgentStatus {

AgentId = Analyst001
AgentStatus = 23
Time = 1240840034
PlaceStatus = PlaceStatus = 23
Time = 1240840034
LoginId = LoggedOut

}

Creating Dynamic Statistics

As mentioned above, there may be times when you want to get statistical information that has not
already been defined in the Configuration Layer. In cases like that, you can use
RequestOpenStatisticEx. Before you do, however, you should make sure you understand several
topics covered in the Reporting Technical Reference 8.0 Overview and the Stat Server 8.5 User's
Guide, including the use of masks.

The first things you need to do in order to use RequestOpenStatisticEx are similar to what we did in
the previous section. You will start by creating the request and specifying the statistic object and
notification mode:

[C#]

var req = RequestOpenStatisticEx.Create();

req.StatisticObject = StatisticObject.Create();
req.StatisticObject.ObjectId = "Analyst001";
req.StatisticObject.ObjectType = StatisticObjectType.Agent;
req.StatisticObject.TenantName = "Resources";
req.StatisticObject.TenantPassword = "";

req.Notification = Notification.Create();
req.Notification.Mode = NotificationMode.Immediate;
req.Notification.Frequency = 15;

Now, instead of requesting a statistic type, you need to set up your own masks, as described in the
section on "Metrics: Their Composition and Definition" in the Reporting Technical Reference 8.0
Overview. The following mask and statistic metric settings give the Current State for the agent
mentioned above:

[C#]

var mainMask = ActionsMask.CreateDnActionMask();
mainMask.SetBit(DnActions.WaitForNextCall);
mainMask.SetBit(DnActions.CallDialing);
mainMask.SetBit(DnActions.CallRinging);
mainMask.SetBit(DnActions.NotReadyForNextCall);
mainMask.SetBit(DnActions.CallOnHold);
mainMask.SetBit(DnActions.CallUnknown);
mainMask.SetBit(DnActions.CallConsult);
mainMask.SetBit(DnActions.CallInternal);
mainMask.SetBit(DnActions.CallOutbound);
mainMask.SetBit(DnActions.CallInbound);
mainMask.SetBit(DnActions.LoggedOut);

Stat Server

Platform SDK Developer's Guide 12

var relMask = ActionsMask.CreateDnActionMask();

req.StatisticMetricEx = StatisticMetricEx.Create();
req.StatisticMetricEx.Category = StatisticCategory.CurrentState;
req.StatisticMetricEx.IntervalLength = 0;
req.StatisticMetricEx.MainMask = mainMask;
req.StatisticMetricEx.RelativeMask = relMask;
req.StatisticMetricEx.Subject = StatisticSubject.DNStatus;

Once you have set up the masks and the statistic metric, you can create a ReferenceId and send the
request:

[C#]

req.ReferenceId = referenceIdFromRequestOpenStatistic;

Console.WriteLine("Sending:\n{0}", req);
var response =

statServerProtocol.Request(req);
Console.WriteLine("Received:\n{0}", response);

Current Target State Events

You can use RequestGetStatisticEx and RequestOpenStatisticEx to set up the same type of
current target state definitions that Universal Routing Server (URS) uses. (You can also set these up
using Configuration Manager.) When this type of request has been sent, Stat Server sends some
additional event types:

• EventCurrentTargetStateSnapshot

• EventCurrentTargetStateTargetUpdated

• EventCurrentTargetStateTargetAdded

• EventCurrentTargetStateTargetRemoved

The Snapshot event is returned in response to the open, while the Updated event is sent as state
changes occur. In a situation where you open a CurrentTargetState-based statistic against an agent
group, the Added and Removed messages occur when an agent is added to or removed from an agent
group — it would behave in a similar fashion for place groups.

Here is the output from a typical request:

'EventCurrentTargetStateSnapshot' (17) attributes:
TM_LENGTH [int] = 0
USER_REQ_ID [int] = -1
LONG_VALUE [int] = 0
CURRENT_TARGET_STATE_INFO [CurrentTargetState] = CurrentTargetStateSnapshot (size=1) [

[0] CurrentTargetStateInfo {
AgentId = Analyst001
AgentDbId = 101
LoginId = null
PlaceId = null
PlaceDbId = 0
Extensions = KVList:

'VOICE_MEDIA_STATUS' [int] = 0
'AGENT_VOICE_MEDIA_STATUS' [int] = 0

Stat Server

Platform SDK Developer's Guide 13

}
]

REQ_ID [int] = 5
TM_SERVER [int] = 1245182089

Peeking at a Statistic

There may be times when you need to get immediate information on a statistic you have opened. For
example, you may want to initialize a wallboard display. In that case, you can use
RequestPeekStatistic. Note that Stat Server does not send a handshake event when you use this
request, so you should use the Send method rather than the Request method when you use it. Note
also that you need to use the StatisticId property to provide the ReferenceId of the
RequestOpenStatistic or RequestOpenStatisticEx associated with the statistic you want
information on:

Tip
If you use the Request method on a RequestPeekStatistic, your request will time
out and receive null, rather than retrieving the desired information from Stat Server.

[C#]

var requestPeekStatistic = RequestPeekStatistic.Create();
requestPeekStatistic.StatisticId = 3;

Console.WriteLine("Sending:\n{0}", requestPeekStatistic);
statServerProtocol.Send(requestPeekStatistic);

Suspending Notification

Because there are times when you do not need to collect information on a statistic for a while, the
Platform SDK has requests that allow you to suspend and resume notification. These requests are like
the peek request in that Stat Server does not send a handshake event when you use them, so you
should use the send method rather than the request method when you use these requests. Note also
that you need to use the StatisticId property of these requests to provide the ReferenceId of the
RequestOpenStatistic or RequestOpenStatisticEx associated with the statistic you want
information on. Here is how to suspend notification:

[C#]

var requestSuspendNotification = RequestSuspendNotification.Create();
requestSuspendNotification.StatisticId = 3;

Console.WriteLine("Sending:\n{0}", requestSuspendNotification);
statServerProtocol.Send(requestSuspendNotification);

Use code like this to resume notification:

Stat Server

Platform SDK Developer's Guide 14

[C#]

var requestResumeNotification = RequestResumeNotification.Create();
requestResumeNotification.StatisticId = 3;

Console.WriteLine("Sending:\n{0}", requestResumeNotification);
statServerProtocol.Send(requestResumeNotification);

Closing the Statistic and the Connection

When you are finished communicating with Stat Server, you should close the statistics that you have
opened and close the connection, in order to minimize resource utilization:

[C#]

var requestCloseStatistic = RequestCloseStatistic.Create();
requestCloseStatistic.StatisticId = 3;

Console.WriteLine("Sending:\n{0}", requestCloseStatistic);
statServerProtocol.Send(requestCloseStatistic);

...

statServerProtocol.BeginClose();

Stat Server

Platform SDK Developer's Guide 15

	Platform SDK Developer's Guide
	Stat Server

