3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Platform SDK Developer's Guide

Setting up Logging in Platform SDK

4/12/2025



www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.


Setting up Logging in Platform SDK

Setting up Logging in Platform SDK

Java

Using the Built-In Logging Implementation

The Platform SDK Commons library provides adapters for the following implementations:
e com.genesyslab.platform.commons.log.SimpleLoggerFactorylmpl - redirect Platform SDK logs to
System.out;

e com.genesyslab.platform.commons.log.JavaUtilLoggerFactorylmpl - redirect Platform SDK logs to Java
common java.util.logging logging system;

e com.genesyslab.platform.commons.log.Log4JLoggerFactorylmpl - redirect Platform SDK logs to
underlying Log4j 1.x;

¢ com.genesyslab.platform.commons.log.Log4]2LoggerFactorylmpl - redirect Platform SDK logs to
underlying Log4] 2;

e com.genesyslab.platform.commons.log.SIf4JLoggerFactorylmpl - redirect Platform SDK logs to
underlying SIf4j.

Note: Prior to release 8.5.102.02, the only log adapter available was for log4j v1.x and short names were
not available.

By default, these log implementations are switched off but you can enable logging by using one of
the methods described below.

1. In Your Application Code

The easiest way to set up Platform SDK logging in Java is in your code, by creating a factory instance
for the log adapter of your choice and set it as the global logger factory for Platform SDK at the
beginning of your program. An example using the log4j 1.x adapter is show here:
com.genesyslab.platform.commons.log.Log.setLoggerFactory(new Log4JLoggerFactoryImpl());

2. Using a Java System Variable

Using a Java system variable, by setting com.genesyslab.platform.commons.log.loggerFactory to
the fully qualified name of the ILoggerFactory implementation class. For example, to set up log4j as
the logging implementation you can start your application using the following command:

java -Dcom.genesyslab.platform.commons.log.loggerFactory=<log type> <MyMainClass>

Where <log_type> is either a full-defined class names with packages, or one of the following short
names:

e console - for SimpleLoggerFactorylmpl (to System.out);

Platform SDK Developer's Guide 2



Setting up Logging in Platform SDK

e jul - for JavaUtilLoggerFactorylmpl;
e log4j - for the Log4) 1.x adaptor;

* log4j2 - for the Log4) 2 adaptor;
 slf4j - for the SIf4j adaptor;

e auto - with this value, Platform SDK Commons logging tries to detect available the logging system from
the list of ['Log4j2', 'SIf4j', 'Log4j']; if no log system from the list is detected then the
JavaUtilLoggerFactoryImpl adapter will be used.

3. Configuration in the Class Path

You can also configure logging using a PlatformSDK. xml Java properties file that is specified in your
class path:

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry

key="com.genesyslab.platform.commons.log.loggerFactory">com.genesyslab.platform.commons.log.Log4JLoggerFactoryl
</properties>

For more information, refer to details about the PsdkCustomization class in the APl Reference Guide.

Providing a Custom Logging Implementation
If log4j does not fit your needs, it is also possible to provide your own implementation of logging.

In order to do that, you will need to complete the following steps:

1. Implement the ILogger interface, which contains the methods that the Platform SDK uses for logging
messages, by extending the AbstractLogger class.

2. Implement the ILoggerFactory interface, which should create instances of your ILogger
implementation.

3. Finally, set up your ILoggerFactory implementation as the global Platform SDK LoggerFactory, as
described above.

Setting Up Internal Logging for Platform SDK

To use internal logging in Platform SDK, you have to set a logger implementation in Log class before
making any other call to Platform SDK. There are two ways to accomplish this:

1. Set the com.genesyslab.platform.commons.log.loggerFactory system property to the fully qualified
name of the factory class

2. Use the Log.setLoggerFactory(...) method
One of the log factories available in Platform SDK itself is
com.genesyslab.platform.commons.log.Log4JLoggerFactoryImpl which uses log4j. You will have

to setup log4j according to your needs, but a simple log4j configuration file is shown below as an
example.

log4j.logger.com.genesyslab.platform=DEBUG, Al

Platform SDK Developer's Guide 3


https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome

Setting up Logging in Platform SDK

log4j .appender.Al=org.apache.log4j.FileAppender

log4j.appender.Al. file=psdk.log

log4j.appender.Al. layout=org.apache.log4j.PatternLayout
log4j.appender.Al.layout.ConversionPattern=%-4r [%t] %-5p %-25.25C %x - %m%n

The easiest way to set system property is to use -D switch when starting your application:

-Dcom.genesyslab.platform.commons.log.loggerFactory=com.genesyslab.platform.commons.log.Log4JLoggerFactoryImpl
Logging with AIL

In Interaction SDK (AIL) and Genesys Desktop applications, you can enable the Platform SDK logs by
setting the option log/psdk-debug = true.

At startup, AIL calls: Log.setlLoggerFactory(new Log4JLoggerFactoryImpl());
The default level of the logger com.genesyslab.platformis WARN (otherwise, applications would

literally be overloaded with logs). The option is dynamically taken into account; it turns the logger
level to DEBUG when set to true, and back to WARN when set to false.

Dedicated loggers
Platform SDK has several specialized loggers:

1. com.genesyslab.platform.ADDP
2. com.genesyslab.platformmessage.request

3. com.genesyslab.platformmessage.receive

Dedicated ADDP Logger

ADDP logs can be enabled using common Platform SDK log configuration.

log4j.logger.com.genesyslab.platform=INFO, Al
log4j.appender.Al=org.apache.log4j.FileAppender

log4j.appender.Al. file=psdk.log
log4j.appender.Al.layout=org.apache.log4j.PatternLayout
log4j.appender.Al.layout.ConversionPattern=%-4r [%t] %-5p %-25.25C %X - %m%n

In addition, the com.genesyslab.platform.ADDP logger is controlled by the addp-trace option. If
ADDP log is not required on INFO level, it can be disabled using the following option:

PropertyConfiguration config = new PropertyConfiguration();
config.setAddpTraceMode (AddpTraceMode.None);

or
config.setAddpTraceMode (AddpTraceMode.Remote);

The addp-trace option has no effect when DEBUG level is set. ADDP logs will be printed regardless of
the option value.

Platform SDK Developer's Guide 4



Setting up Logging in Platform SDK

In Platform SDK 8.5.0, the second ADDP logger (AddpIntreceptor) was removed to
avoid ADDP log duplication when RootLogger of the logging system is set to DEBUG
level.

Instead of using second ADDP logger to print logs to another file, it is possible to specify additional
appender.

A sample configuration is provided below:

log4j.logger.com.genesyslab.platform=WARN, Al

log4j .appender.Al=org.apache.log4j.ConsoleAppender

log4j.appender.Al. layout=0org.apache.log4j.PatternLayout
log4j.appender.Al.layout.ConversionPattern=%-d [%t] %-5p %-25.25C %X - %m%n
log4j.appender.Al.Threshold=WARN

//additional log file with addp traces.
log4j.logger.com.genesyslab.platform.ADDP=INFO, A2
log4j.appender.A2=o0rg.apache.log4j.FileAppender
log4j.appender.A2.file=addp.log

log4j.appender.A2.append=false
log4j.appender.A2.layout=0org.apache.log4j.PatternLayout
log4j.appender.A2.layout.ConversionPattern=%-d [%t] %-5p %-25.25C %X - %m%n

Dedicated Request and Receive Loggers
A sample Log4j configuration is shown here:

log4j.logger.com.genesyslab.platformmessage. request=DEBUG, Al
log4j.logger.com.genesyslab.platformmessage.receive=DEBUG, Al

In PSDK 8.5.0 version the PSDK.DATA logger was replaced with
com.genesyslab.platformmessage. request and
com.genesyslab.platformmessage. receive loggers.

These loggers allow printing complete message attribute values. By default, large attribute logs are
truncated to avoid application performance impact:

'"EventInfo' (2) attributes:
VOID DELTA VALUE [bstr] =
Ox00 Ox01 OxFF OxXxFF 0x00 0x05 Ox00 Ox00 Ox00 Ox00
0Ox00 Ox00 Ox00 OxO00 Ox00 Ox00 O0x00 OxO00 OXO0 Ox00
0x09 Ox00 Ox00 Ox00 Ox05 Ox00 O0x00 Ox00 OXx00 Ox00
[output truncated, 362 bytes left out of 512]

However, in some cases a full data dump may be required in logs. There are three possible ways to
do this, as shown below:

Platform SDK Developer's Guide



Setting up Logging in Platform SDK

To avoid log duplication when the logging system RootLogger is configured to DEBUG
level, these loggers are disabled by default and can be activated with a system
property. This system property affects both loggers.

1. Activate using system properties:

-Dcom.genesyslab.platform.trace-messages=true //for all protocols
-Dcom.genesyslab.platform.Reporting.StatServer.trace-messages=true //only for stat protocol

2. Activate from code:

//for all protocols
PsdkCustomization.setOption(PsdkOption.PsdkLoggerTraceMessages, "false");

//only for stat protocol
String protocolName = StatServerProtocolFactory.PROTOCOL DESCRIPTION.toString();
PsdkCustomization.setOption(PsdkOption.PsdkLoggerTraceMessages, protocolName, "true");

These static options should be set once at the beginning of the program, before opening Platform
SDK protocols.

3. Activate from PlatformSDK. xml:
<?xml version="1.0" encoding="UTF-8"7?>
<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="com.genesyslab.platform.trace-messages">true</entry>
</properties>

For details about the PsdkCustomization class, refer to the APl Reference Guide.

NET

Setting up Logging

For .NET development, the EnablelLogging method allows logging to be easily set up for any classes
that implement the ILogEnabled interface. This includes:

e All protocol classes: TServerProtocol, StatServerProtocol, etc.

e The WarmStandbyService class of the Warm Standby Application Block.

For example:

tserverProtocol.EnableLogging(new MyLoggerImpl());

Platform SDK Developer's Guide


https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome

Setting up Logging in Platform SDK

Providing a Custom Logging Implementation

You can provide your custom logging functionality by implementing the ILogger interface. Samples
of how to do this are provided in the following section.

Samples

You can download some samples of classes that implement the ILogger interface:
e AbstractLogger: This class can make it easier to implement a custom logger, by providing a default
implementation of ILogger methods.

e TraceSourcelLogger: A logger that uses the .NET TraceSource framework. It adapts the Platform SDK
logger hierarchy to the non-hierarchical TraceSource configuration.

¢ Log4dnetLogger: A logger that uses the log4net libraries.

Platform SDK Developer's Guide



	Platform SDK Developer's Guide
	Setting up Logging in Platform SDK

