
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Working with Custom Servers

Platform SDK Developer's Guide

4/30/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Working with Custom Servers

Java

The ServerChannel class was designed to give you the ability to develop custom servers using
Platform SDK. A ServerChannel instance can accept incoming connections, receive and handle
incoming messages, and send responses to the clients.

Creating a ServerChannel Instance

Before creating a ServerChannel instance, your application should define an instance of some class
which implements the ProtocolFactory interface. You can use any of the existing Platfrom SDK
message factories, although most of these classes cannot follow the logic of existing servers because
the messages used in the handshake procedure are hidden.

The most flexible protocol for any extension is ExternalServiceProtocol, because it does not
require any handshake by default. The following example will use this protocol to create an instance
of ServerChannel:

final ServerChannel server = new ServerChannel(new WildcardEndpoint(11111),
new ExternalServiceProtocolFactory());

Defining Handlers to Process Incoming (Closed) Connections

ServerChannel generates two events to manage client connections. When a new client tries to
connect, ServerChannel raises the onClientChannelOpened event, and when a client disconnects
ServerChannel raises an onClientChannelClosed event. Your code can then process these events,
as shown in the example below:

server.addChannelListener(new ServerChannelListener() {
public void onClientChannelOpened(OutputChannel channel) { /* … */ }
public void onClientChannelClosed(ChannelClosedEvent event) { /* … */ }
public void onChannelOpened(EventObject event) { /* … */ }
public void onChannelError(ChannelErrorEvent event) { /* … */ }
public void onChannelClosed(ChannelClosedEvent event) { /* … */ }

});

Starting the Server
server.open();

Working with Custom Servers

Platform SDK Developer's Guide 2



Processing Incoming Messages

ServerChannel supports multiple ways to receive and process incoming messages:

• receiveRequest Method
• External Receiver
• Message Handler

More details about each approach are explored below.

Using the receiveRequest Method
Using this method allows your to define exactly when messages are read. However, you should
remember that the internal queue which contains incoming messages is not unlimited. The maximum
capacity of this queue will be equal to 4k elements, and once that capacity is filled each new
incoming message will cause the oldest one to be lost.

The most popular way of using the receiveRequest method is inside a dedicated thread, as shown
here:

new Thread() {
@Override
public void run() {

while (running) {
RequestContext request = server.receiveRequest();
if (request != null) {

Message requestMessage = request.getRequestMessage();
Message respondMessage;
// TODO generate respondMessage
if (respondMessage != null) {

request.respond(respondMessage);
}

}
Thread.yield();

}
}

}.start();

Using an External Receiver
To use an external receiver, your should create a class which implements the
RequestReceiverSupport interface, and then use the
ServerChannel.setReceiver(RequestReceiverSupport receiver) method to assign this receiver
to ServerChannel.

The simplest implementation to process incoming messages is shown below:

RequestReceiverSupport receiver = new RequestReceiverSupport() {

public void onChannelOpened(EventObject event) { /* ... */}
public void onChannelError(ChannelErrorEvent event) { /* ... */}
public void onChannelClosed(ChannelClosedEvent event) { /* ... */}

Working with Custom Servers

Platform SDK Developer's Guide 3

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ServerChannel#receiveRequest_Java
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ServerChannel#externalReceiver_Java
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ServerChannel#messageHandler_Java


public void setInputSize(int inputSize) { /* ... */}
public void releaseReceivers() { /* ... */}
public int getInputSize() { return 0; }
public void clearInput() { /* ... */}
public RequestContext receiveRequest(long timeout) { return null; }
public RequestContext receiveRequest() { return null; }

public void processRequest(RequestContext request) {

Message requestMessage = request.getRequestMessage();
Message respondMessage;
// TODO generate respondMessage
if (respondMessage != null) {

request.respond(respondMessage);
}

}
};

server.setReceiver(receiver);

Using Message Handler
Starting with release 8.5.1, Platform SDK has included a new mechanism to handle incoming
messages. ServerChannel was extended with a new method setClientRequestHandler, that can be
used as shown in the following example:

server.setClientRequestHandler(new ClientRequestHandler() {

@Override
public void processRequest(RequestContext context) {

Message requestMessage = request.getRequestMessage();
Message respondMessage;
// TODO generate respondMessage
if (respondMessage != null) {

request.respond(respondMessage);
}

}
});

Closing ServerChannel

Closing the server channel causes all active incoming connections to be closed also. To close server
channel use the ServerChannel.close() method.

server.close();

.NET

The ServerChannel class was designed to give you the ability to develop custom servers using
Platform SDK. A ServerChannel instance can accept incoming connections, receive and handle
incoming messages, and send responses to the clients.

Working with Custom Servers

Platform SDK Developer's Guide 4



Creating a ServerChannel Instance

Before creating a ServerChannel instance, your application should define an instance of some class
which implements the IMessageFactory interface. You can use any of the existing Platfrom SDK
message factories, although most of these classes cannot follow the logic of existing servers because
the messages used in the handshake procedure are hidden.

The most flexible protocol for any extension is ExternalServiceProtocol, because it does not
require any handshake by default. The following example will use this protocol to create an instance
of ServerChannel:

const int portNumber = 22222;
var server = new ServerChannel(new WildcardEndpoint(portNumber),

new ExternalServiceProtocolFactory());

Defining Handlers to Process Incoming (Closed) Connections

ServerChannel generates two events to manage client connections. When a new client tries to
connect, ServerChannel raises the ClientChannelOpened event, and when a client disconnects
ServerChannel raises an ClientChannelClosed event. Your code can then process these events, as
shown in the example below:

server.ClientChannelOpened += (sender, args) =>
{

var arg = args as NewChannelEventArgs;
if (arg != null)
{

var incomingChannel = arg.Channel;
// TODO: do something with incoming channel

}
};
server.ClientChannelClosed += (sender, args) =>
{

var closedChannel = sender as DuplexChannel;
var arg = args as ClosedEventArgs;
var cause = (arg != null)?arg.Cause:null;
// TODO: process closed channel with known arguments and reason of closing

};

Starting the Server
server.Open();

Processing Incoming Messages

ServerChannel supports multiple ways to receive and process incoming messages:

• ReceiveRequest Method

Working with Custom Servers

Platform SDK Developer's Guide 5

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ServerChannel#receiveRequest_Net


• External Receiver
• Message Handler

More details about each approach are explored below.

Using the ReceiveRequest Method
Using this method allows your to define exactly when messages are read. However, you should
remember that the internal queue which contains incoming messages is not unlimited. If messages
are kept in the queue for a long time (5 seconds by default, although this value can be changed by
setting the PsdkCustomization.ReceiveQueueTimeLimit property) without being read, then the
maximum capacity of this queue will be equal to 4k elements and each new incoming message will
lead to lose the eldest one.

The most popular way of using the ReceiveRequest method is inside a dedicated thread, as shown
here:

var processMessagesThreadActiveFlag = new ManualResetEvent(false);
var processMessagesThread = new Thread(() =>
{

while (!processMessagesThreadActiveFlag.WaitOne(100))
{

var request = server.ReceiveRequest(TimeSpan.FromMilliseconds(0));
if (request == null) continue; // nothing to do
var message = request.RequestMessage;
IMessage respond = null;
// TODO: respond = result of process request
if (respond != null)
request.Respond(respond);

}
});
processMessagesThread.Start();

// TODO:

processMessagesThreadActiveFlag.Set();
processMessagesThread.Join();

Using an External Receiver
To use an external receiver, your should create a class which implements the
IRequestReceiverSupport interface, and then use the
ServerChannel.SetReceiver(IRequestReceiverSupport receiver) method to assign this receiver
to ServerChannel.

One implementation to process incoming messages is shown below:

class ServerRequestReceiver : IRequestReceiverSupport
{

public void ClearInput(){}
public int InputSize { get; set; }
public void ReleaseReceivers(){}
public IRequestContext ReceiveRequest(){ return null; }
public IRequestContext ReceiveRequest(TimeSpan timeout){ return null; }

Working with Custom Servers

Platform SDK Developer's Guide 6

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ServerChannel#externalReceiver_Net
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ServerChannel#messageHandler_Net


public void ProcessRequest(IRequestContext request)
{

if (request == null) return; // nothing to do
var message = request.RequestMessage;
IMessage respond = null;
// TODO: respond = result of process request
if (respond != null)

request.Respond(respond);
}

}
server.SetReceiver(new ServerRequestReceiver());

Using Message Handler
Starting with release 8.5.1, Platform SDK has included a new mechanism to handle incoming
messages. ServerChannel was extended with a new event called Received, that can be used as
shown in the following example:

server.Received += (sender, args) =>
{

var channel = sender as DuplexChannel;
var arg = args as MessageEventArgs;
if (arg == null) return;
var incomingMessage = arg.Message;
IMessage outgoingMessage = null;
// TODO: outgoingMessage = result of processing incomingMessage
if ((outgoingMessage != null) && (channel != null))

channel.Send(outgoingMessage);
};

Closing ServerChannel

Closing the server channel causes all active incoming connections to be closed also. To close server
channel use the ServerChannel.Close() method.

server.Close();

Working with Custom Servers

Platform SDK Developer's Guide 7


	Platform SDK Developer's Guide
	Working with Custom Servers

