
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Additional Logging Features

Platform SDK Developer's Guide

4/12/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Additional Logging Features

Java

Application Configuration Manager Component

The Application Configuration Manager component is a new addition to the Application Template
Application Block.

This component monitors the application configuration from Configuration Server and provides
notification of any updates to options for your custom application, options of connected servers, or
options of their host objects. It also checks the availability of Log4j2 logging framework and
automatically enables Log4j2 configuration based on the application logging options in Configuration
Manager.

The quickest way to get an application configured for logging in accordance to the application "log"
section might look like the following example:

public class MyApplication {

protected static final LmsEventLogger LOG =
LmsLoggerFactory.getLogger(MyApplication.class);
.....

GFApplicationConfigurationManager appManager =
GFApplicationConfigurationManager.newBuilder()
.withCSEndpoint(new Endpoint("CS-primary", csHost1, csPort1))
.withCSEndpoint(new Endpoint("CS-backup", csHost2, csPort2))
.withClientId(clientType, clientName)
.withUserId(csUsername, csPassword)
.build();

appManager.register(new GFAppCfgOptionsEventListener() {
public void handle(final GFAppCfgEvent event) {

Log.getLogger(getClass()).info(
"The application configuration options received: " + event);

// Init or update own application options from 'event.getAppConfig()'
}});

appManager.init();

// LmsEventLogger method usage:
LOG.log(CommonLmsEnum.GCTI_APP_INIT_COMPLETED);
// Common ILogger method usage:
LOG.info("Some Log4j2 info message");

.....
// Shutdown the configuration manager:
appManager.done();

In this example, the builder for the manager creates and initializes an internal instance of
ConfService and encapsulates the WarmStandby service to handle failures of the Configuration
Server connection.

Additional Logging Features

Platform SDK Developer's Guide 2

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB

Created with these parameters, ConfService has:

• the default ConfService cache enabled;
• a WarmStandby service with default configuration for the two given Configuration Server endpoints;
• automatic Configuration Server subscription for notifications on the application and host object types;

If your application needs to have a custom ConfService instance with a specific configuration (for
example, a customized cache) then it is possible to create an Application Configuration Manager on
your pre-configured ConfService instance. In this case the manager does not take care of the
service connection state or caching - it is up to your application to create and manage the
WarmStandby service, Configuration Server subscriptions, and the ConfService cache.

An example of working with a custom ConfService instance is provided below:

GFApplicationConfigurationManager appManager =
GFApplicationConfigurationManager.newBuilder()
.withConfService(confService)
.build();

appManager.register(new GFAppCfgOptionsEventListener() {
public void handle(final GFAppCfgEvent event) {

Log.getLogger(getClass()).info(
"The application configuration options received: " + event.getAppConfig());

}});
appManager.init();

Common Logging Interfaces Usage

Platform SDK for Java has its own interface for logging (using
com.genesyslab.platform.commons.log) that includes the following classes/interfaces:

• Log,
• ILoggerFactory,
• ILogger

Platform SDK uses the ILogger interface to generate Platform SDK internal log messages, and
custom applications are also able to use this logging interface as shown in below:

public class SomeUserClass {
protected static final ILogger log = Log.getLogger(SomeUserClass.class);

public void doSomething() {
try {

log.debug("doing something");
// ...

} catch (final Exception ex) {
log.debug("exception while doing something", ex);

}
}

}

In this sample, the commons logging messages will go to the particular ILogger interface
implementation.

Additional Logging Features

Platform SDK Developer's Guide 3

Up to release 8.5.0 of Platform SDK, there were two implementations of the interface available: a
silent "NullLogger" (default) and Log4j adapter.

Starting with release 8.5.1, the following additional implementations have been added:

• "simple" console printing implementation;
• java.util.logging adapter;
• Slf4j interface adapter;
• Log4j 2.x adapter.

Also it is possible to create a custom implementation of ILogger and ILoggerFactory, enable their
usage, and get into some other logging system.

LMS Event Loggers and LMS files support

LmsEventLogger is an extension of the common Platform SDK ILogger interface that is used for
logging Genesys LMS events to Message Server or for writing log files in the Genesys-specific format.

An example of simple LmsEventLogger usage is provided below:

class SampleClass {
protected final static LmsEventLogger LOG = LmsLoggerFactory.getLogger(SampleClass.class);
public void method() {

// Use logger to generate event:
LOG.log(LogCategory.Application, CommonLmsEnum.GCTI_LOAD_RESOURCE, "users.db", "no

such file");
// => "Unable to load resource 'users.db', error code 'no such file'"

// or, for event GCTI_CFG_APP[6053, STANDARD, "Configuration for application
obtained"]:

LOG.log(CommonLmsEnum.GCTI_CFG_APP);
// or

LOG.log(6053); // => "Configuration for application obtained"

// or "plain" logging methods:
try {

LOG.debug("Starting cache load...");
// ... do something ...

} catch (final Exception exception) {
LOG.error("Failed to load cache", exception);

}
.....

The Application Configuration Manager component included with Application Template Application
Block is able to automatically configure and keep an updated LmsMessageConveyor with LMS files
configuration.

However, if your custom application does not use the Application Configuration Manager component
then it can configure LMS file usage in the following way:

public class SomeUserClass {
protected static final LmsEventLogger LOG =

LmsLoggerFactory.getLogger(SomeUserClass.class);

Additional Logging Features

Platform SDK Developer's Guide 4

public void configureLogging() {
// Create new instance of LMS conveyor:
LmsMessageConveyor lmsConveyor = new LmsMessageConveyor();

// Configure it:
lmsConveyor.loadConfiguration(appConfig);

// or:
lmsConveyor.loadConfiguration("MyApp.lms");

// Reinitialize the LmsLoggerFactory singleton with the new conveyor:
LmsLoggerFactory.createInstance(lmsConveyor);

// or
LmsLoggerFactory.setLoggerFactoryImpl(Log.LOG_FACTORY_LOG4J2, lmsConveyor);

}
.....

The LMS loggers also have several implementations in order to support different target logging
frameworks including java.util.logging, log4j v1, slf4j, and log4j v2. You can enable specific target
framework usage synchronously with the Platform SDK common logging.

The Application Template application block contains the LMS event loggers, a "common.lms" file, its
correspondent CommonLmsEnum class, and an LmsEnum generator tool for generation of specific
enumerations from the LMS files for your custom applications.

Using Custom LMS Files and Correspondent LmsEnums

1. Create a custom LMS file with the default localization context, for example, "MyApp.lms":
xxxxxxxx|LMS|1.0|MyApp.lms|8.5.100|*

21001|STANDARD|MY_APP_START_EVENT|Application '%s' started the work
21002|ALARM|MY_APP_DATABASE_LOST|App '%s' failed to connect to database '%s'
.....

2. Generate the corresponding enumeration class using the Platform SDK generator:
%> java -cp apptemplate.jar
com.genesyslab.platform.apptemplate.lmslogger.LmsEnumGenerator

MyApp.lms MyAppLmsEnum custom.package.name

As a result there will be a custom.package.name.MyAppLmsEnum enumeration containing declarations from MyApp.lms.

3. (Optional) Create a customized version of the MyApp.lms file with localized messages.
4. (Optional) Load the enumeration(s) with message conveyor and initialize LmsLoggerFactory with it. The

Application Template applcation block exposes annotations processor, which collects information about
available LmsEnums in the application build time, so the default LmsMessageConveyor() constructor is
able to register generated LmsEnums automatically. If it does not do this for some reason, and there is
no acceptable way to let the annotation processor work for your use case, then it is possible to initialize
LmsMessageConveyor explicitly:
LmsMessageConveyor lmsConveyor = new LmsMessageConveyor(CommonLmsEnum.class,
MyAppLmsEnum.class);
lmsConveyor.loadConfiguration("MyApp.lms"); // optional - if there is a localized LMS
file

// Reinitialize the LmsLoggerFactory singleton with the new conveyor:

Additional Logging Features

Platform SDK Developer's Guide 5

LmsLoggerFactory.createInstance(lmsConveyor);
// or
LmsLoggerFactory.setLoggerFactoryImpl(Log.LOG_FACTORY_LOG4J2, lmsConveyor);

5. Call the loggers
lmsLog.log(MyAppLmsEnum.MY_APP_START_EVENT, "my application");
lmsLog.log(LogCategory.Alarm, MyAppLmsEnum.MY_APP_DATABASE_LOST, "my application",
"dbname");

Enabling Logging Framework Usage

The Platform SDK common loggers and LMS events loggers may be configured to direct logs to
particular logging framework by using a system property at application startup, or at runtime with an
explicit API call.

The system property name is com.genesyslab.platform.commons.log.loggerFactory. It may
contain the FQCN of your particular implementation of the Platform SDK common loggers factory, or
the alias name of a built-in implementation (such as "log4j2", "slf4j", etc). If you specify one of the
alias names, this value is also used by the LmsLoggerFactory initialization logic, so that LMS events
from LmsEventLogger will also be directed to the same logging framework.

In this case, the jvm option might look like:

-Dcom.genesyslab.platform.commons.log.loggerFactory=log4j2

This property is handled with the Platform SDK customization options, so you can also enable it by
adding a PlatformSDK.xml file with the following contents to your application classpath:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="com.genesyslab.platform.commons.log.loggerFactory">log4j2</entry>
</properties>

Changing this property after initialization of the LoggerFactory has no effect. So if you need to
enable logging or change the target framework at runtime, this should be done with an explicit API
call. In this case the Platform SDK commons loggers and LMS events loggers need to be reconfigured
separately:

// Platform SDK Commons loggers (re-)configuration:
Log.setLoggerFactory(Log.LOG_FACTORY_LOG4J2);

// AppTemplate LMS Events loggers:
LmsLoggerFactory.setLoggerFactoryImpl(Log.LOG_FACTORY_LOG4J2, lmsMessageConveyor);

Important
Be aware that re-initializing the LMS Loggers factory requires a reference to the actual
LmsMessageConveyor. It is also possible to use "null", in which case the factory
initialization method will try to reuse reference from the "current" LmsLoggerFactory
or will create a default conveyor instance with support of the CommonLmsEnum events.

Additional Logging Features

Platform SDK Developer's Guide 6

These calls are enough to reconfigure loggers which were created earlier; there is no need to recreate
them.

Configuring Logging

Platform SDK does not write logs itself (that is, it's not about the legacy Logger Component). Instead
Platform SDK is just able to send logs to the specified logging framework where they will be handled.
Configuration of logging parameters such as log file names, log levels, and more may be done within
that framework.

The Application Template application block contains parsing logic for Genesys Configuration Manager
Application logging options properties, and Log4j2 configuration structures to allow automatic
framework configuration. This helps applications to automatically start logging to the recommended
Log4j2 framework (as discussed below).

It is also possible to create user defined configurators for some other framework. In this case your
application may use the Application Configuration Manager to retrieve application configuration
details from Configuration Server in the form of POJO structures, and apply those details to its custom
logging framework.

Configuring Logging with Log4j2

Log4j2 is the recommended logging framework. The Application Template application block provides
several options for the logging framework configuration.

Using the Application Configuration Manager allows automatic Log4j2 configuration and
reconfiguration in accordance to the Genesys Configuration Manager application logging options.

Beside the common Genesys logging options, the Application Template application block also
supports a custom "log4j2-config-profile" option, which allows you to create combined logging
configuration as a merge of user defined loggers/appenders with ones created by the Configuration
Manager application options. This is useful in cases where your application consists of several sub-
systems, and is required to split logs from those sub-systems to different log files.

For example, in a Web Application it may be reasonable to separately write logs from Tomcat,
Cassandra, Platform SDK, and the application itself. In this scenario, one straightforward way of
logging configuration may be following:

1. Create a "startup" log4j2.xml configuration, which will be used before the application has retrieved
information from configuration server. This configuration might contain declarations of the application-
specific loggers and appenders. Appenders may be either "startup" or "permanent". The first ones have
names starting with "PSDKAppTpl-".

2. When your application starts with enabled Log4j2 usage, it picks up and uses the startup configuration
"as is". So, we have the application startup logs.

3. When your application has received the Genesys Configuration Manager Application options, it creates
and applies PsdkLog4j2Configuration where log4j2-config-profile = log4j2.xml. It takes the
log4j2 configuration as a base and replaces its startup appender(s) with new ones from the
Configuration Manager Application logging options. This allows you to configure the application logging

Additional Logging Features

Platform SDK Developer's Guide 7

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LoggingFeatures#Configuring_Logging_with_Log4j2

parameters in accordance to Genesys Configuration Manager Application logging options, and gives
you the ability to handle external (for example, Tomcat or Cassandra) logs separately if desired.

Log4j2 Compatibility
The following table describes compatibility and official testing status of Platform SDK with different
versions of Log4j.

• full - this configuration is supported
• partial - Platform SDK commons logging redirect to Log4j2 is supported, but not Log4j2 configuration

using the Application Template Application Block
• none - this configuration is not working

Log4j
2.2

Log4j
2.3

Log4j
2.4x

Log4j
2.5

Log4j
2.6x

Log4j
2.7

Log4j
2.8x

Log4j
2.9x

Log4j
2.10.0

Log4j
2.11.0

Log4j
2.11.1

Platform
SDK
8.5.x
with
Java

6

full
(uses
2.2)

full none none none none none none none none none

Platform
SDK
8.5.x
with
Java
7+

full
(uses
2.2)

full full full partial partial partial partial partial partial partial

Platform
SDK

9.0.000.x
and

9.0.001.x
with
Java
8+

partial partial partial partial partial full
full
(uses
2.8.2)

partial partial partial partial

Platform
SDK

9.0.002.x
and

higher
with
Java
8+

partial partial partial partial partial partial partial full
full
(uses
2.10.0)

full full

.NET

Additional Logging Features

Platform SDK Developer's Guide 8

NLog Adapter for Platform SDK .NET

This adapter combines the benefits of NLog library for .NET - a wide variety of targets that cover most
application requirements - with the the ability to write messages into Genesys Message Server.

Design Overview

The PsdkLoggerFactory class acts as a common entry point for Platform SDK for .NET logger
systems, and can be used on-the-fly by changing the configuration of any existing application.

Starting with release 9.0.001.02, Platform SDK for .NET introduced a new NLogLoggerFactory that
may be set as the default factory for implementing logging system functionality inside of Platform
SDK. This new factory can also create detached logger instances to be used for general purposes.

NLogLoggerFactory produces logger instances that implement the Adapter pattern and include
functionality to write messages to Genesys Message Server, as described by the ILmsEventLogger
interface. This factory can create instances of the ILmsEventLogger interface using the
CreateLmsLogger or CreateNullLmsLogger methods.

The IGLoggerConfiguration interface is used to describe the logger configuration. The
GAppLoggingOptions helper class implements this interface, and should be given logger
configuration details either from the IGApplicationConfiguration interface or directly from
KeyValueCollection storage.

By assigning an LmsMessageConveyor instance to the factory when using the factory constructor, you
can use your own LMS files with predefined message templates that replace the existing templates.

Usage Examples

Example 1: Configure File Target with Expiration
...
var logOptions = new KeyValueCollection()
{

{"verbose", "standard"},
{"message-format", "full"},
{"time-format", "iso8601"},
{"all", "FileTarget.log"},
{"Segment","100Kb"},
{"Buffering","true"},
{"DeleteArchiveFiles","true"},
{"Expire","1day"}

};
var config = new GAppLoggingOptions(logOptions, null);
var loggerFactory = new NLogLoggerFactory();
loggerFactory.Configure(config);
PsdkLoggerFactory.Factory = loggerFactory;
var logger = loggerFactory.CreateLogger("TestFileTarget");
logger.Debug("log message 1");

Additional Logging Features

Platform SDK Developer's Guide 9

logger.Warn("log message 2");
logger.Info("log message 3");
logger.Error("log message 4");
logger.FatalError("log message 5");
...

Example 2: Create and Use Lms Event Logger
...
var logger = NLogLoggerFactory.Default.CreateLmsLogger(null); // use default factory
logger.Debug(CommonLmsMessages.GCTI_ADDP_NO_RESPONSE, "server","Msg", 20, 40);
...

Example 3: Using Lms logger with Custom Template and Logging Level
Replacement
...
var logOptions = new KeyValueCollection()

{
{"verbose", "standard"},
{"message-format", "full"},
{"time-format", "iso8601"},
{"all", "network"},
{"message-server-timeout","20000"}

};
var logExtOptions = new KeyValueCollection()

{
{"level-reassign-14005", "ALARM"},

};
var config = new GAppLoggingOptions(logOptions, logExtOptions, null);
var loggerFactory = new NLogLoggerFactory();
loggerFactory.Configure(config);
var logger = loggerFactory.CreateLmsLogger("test");

var template = new LmsMessageTemplate(14005, LogLevel.Info, "TEST", "Test message: %s");
logger.Log(template,"12345"); // sends with LogLevel.Fatal
...

NLog Extensions

Although NLog has many predefined targets, you can also use additional targets introduced with
Platform SDK by modifying the configuration file.

Examples of using these additional targets, by modifying either your NLog configuration file or your
app.config file, are shown in the examples below:

Message Server Target
<configuration>

<nlog>
<targets>

<target name="lms" type="MessageServer" port="2345" host="localhost" />
</targets>

Additional Logging Features

Platform SDK Developer's Guide 10

<rules>
<logger name="LmsLogger" minLevel="Warn" maxLevel="Fatal" writeTo="lms" />

</rules>
</nlog>

</configuration>

Attribute name Description Required/
Optional Default value Notes

name
Any name of
logger to be used
in code

Required

type target type Required must be
'MessageServer'

host host name of
message server Required

port port of message
server Required must be integer

value 1..65520

clientName Client name field
for Message server Optional null used for

handshake

clientHost Client host field for
Message server Optional null used for

handshake

clientType Client type Id field
for Message server Optional null

used for
handshake, must
be integer value

clientId Client Id field for
Message server Optional null

used for
handshake, must
be integer value

timeout
Timeout of
MessageServerProtocol
class

Optional null must be integer
value

queueSize
Size of internal
queue of
messages to be
sent on server

Optional
1024
(PsdkCustomization.LogFactory.MessageServerInitialQueueLimit
parameter value)

must be integer
value greater than
32

Memory Queue Target
<configuration>

<nlog>
<targets>

<target name="mem" type="MemoryQueue" limit="8192"/>
</targets>
<rules>

<logger name="MemLogger" minLevel="Warn" maxLevel="Fatal" writeTo="mem" />
</rules>

</nlog>
</configuration>

Attribute name Description Required/
Optional Default value Notes

name Any name of
logger to be used Required

Additional Logging Features

Platform SDK Developer's Guide 11

Attribute name Description Required/
Optional Default value Notes

in code

type target type Required must be
'MemoryQueue'

limit
Size of memory
queue of log
messages

Optional
4096
(PsdkCustomization.LogFactory.MemoryQueueSize
parameter value)

Additional Logging Features

Platform SDK Developer's Guide 12

	Platform SDK Developer's Guide
	Additional Logging Features

