
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Log Filtering

Platform SDK Developer's Guide

4/29/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Log Filtering
• 1.1 Introduction
• 1.2 Create and assign message filter directly
• 1.3 Use Application Template to setup filters
• 1.4 Define filter in Configuration Manager
• 1.5 Filter Syntax
• 1.6 Stateful filters
• 1.7 Filter Chain

Platform SDK Developer's Guide 2

Log Filtering

Introduction

Debug Log Level in Platform SDK protocol may affect Application performance due to huge log
information output.

The aim is to introduce the ability to dynamically configure the verbosity of Platform SDK message
logging. This way, production applications will be able to provide appropriate traces for
troubleshooting without hurting performance with overly verbose logs.

This feature should provide ability to set message filtering, for defining which messages should be
logged and which should not.

Message filter can be executed only when Debug log level is enabled.

Create and assign message filter directly

Use setLogMessageFilter() to assign custom log filter implementation for the protocol objects:

protocol.setLogMessageFilter(new MessageFilter(){
public boolean isMessageAccepted(Message message) {

if(message.messageId()==123) {
return true;

}
else {

return false;
}

}
});

This filter allows to log messages with ID equals to 123.

It is possible to assign default filter implementation, see described below.

Use Application Template to setup filters

Application Template provides default filter implementations. This filter can read configuration and
handle updates from Configuration Server.

Default filter implementation should be wired with a client protocol using
FilterConfigurationHelper.bind() method.

User needs to provide application name where filter configuration was defined and Config Service (to
read application):

Log Filtering

Platform SDK Developer's Guide 3

import com.genesyslab.platform.applicationblocks.com.ConfService;
import com.genesyslab.platform.applicationblocks.com.objects.CfgApplication;
import com.genesyslab.platform.applicationblocks.com.queries.CfgApplicationQuery;
import com.genesyslab.platform.apptemplate.configuration.ClientConfigurationHelper;
import com.genesyslab.platform.apptemplate.configuration.GCOMApplicationConfiguration;
import com.genesyslab.platform.apptemplate.configuration.IGApplicationConfiguration.IGAppConnConfiguration;
import com.genesyslab.platform.configuration.protocol.types.CfgAppType;
import com.genesyslab.platform.commons.protocol.Endpoint;
import com.genesyslab.platform.reporting.protocol.StatServerProtocol;

import com.genesyslab.platform.apptemplate.filtering.FilterConfigurationHelper;

public class MyApp {
public void init() {

...
//read application settings and create protocol
String appName = "my-app-name";
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(appName));
GCOMApplicationConfiguration appConfiguration =

new GCOMApplicationConfiguration(cfgApplication);
IGAppConnConfiguration connConfig = appConfiguration.getAppServer(CfgAppType.CFGStatServer);

Endpoint endpoint= ClientConfigurationHelper.createEndpoint(
appConfiguration, connConfig,
connConfig.getTargetServerConfiguration());

StatServerProtocol statProtocol = new StatServerProtocol(endpoint);
statProtocol.setClientName(clientName);

//assign message filters to the protocol
FilterConfigurationHelper.bind(statProtocol, appConfiguration, confService);

statProtocol.open();
}

}

Log Filtering

Platform SDK Developer's Guide 4

Important
For manually created Endpoints the server host and port must match the server host
and port of the IGAppConnConfiguration object (corresponds to one of the
"Connections" tab entries in provided application). Otherwise the
ConfigurationException "No connection object was found in application for protocol
endpoint..." will be thrown. However this will not happen if the Endpoint has been
created using the ClientConfigurationHelper.createEndpoint() helper.

Helper method FilterConfigurationHelper.bind() reads application configuration, instantiates
filter objects, assigns them to protocol, subscribe for Configuration Server notifications, registers
handlers for protocol events and so on. When filters are not required anymore, release filtering
infrastructure:

FilterConfigurationHelper.unbind(statProtocol,confService);

Use Configuration Manager to define filters, as described below.

Define filter in Configuration Manager

Filters are defined in the application "options" tab in configuration manager.

Log Filtering

Platform SDK Developer's Guide 5

Filter name must be preceded with "log-filter." prefix.

For example: "log-filter.my-filter"

Filter names cannot start with "-", "!", or space symbols. Names such as "log-filter.-somefilter" are not
allowed.

Filter options are specified under the "log-filter.name" section.

Example: Define filter for T-Server channel which will show only incoming events for DNs that are
types of Positions or Extension and match "2???". Events should have user data with key
"ROUTING_ERROR". Here is how configuration can be done:

Log Filtering

Platform SDK Developer's Guide 6

Filter options can represent one or more message attribute conditions.

log-filter.simple
message-type = Event*
@DN = 2???
@AddressType = Position, Extension
@UserData.RoutingError = *

After the filter is defined, assign it to one or more protocols on the application’s "Connection" tab.

Log Filtering

Platform SDK Developer's Guide 7

Log Filtering

Platform SDK Developer's Guide 8

In Application Parameters it is possible to specify one or more filters for a protocol:

log-filter = simple, error-filter, other-filter

See Filter Chain for details.

Filter Syntax

It is possible to specify one or more conditions to filter messages by their names or (and) attribute
values.

List of elementary conditions evaluate with "AND" operation.

Message Type Conditions
Evaluates message name or message id.

message-type = constant value

Example:

Log Filtering

Platform SDK Developer's Guide 9

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LogFiltering#Filter_Chain

Option Description
message-type = EventInfo Filter accepting only EventInfo message
message-type = 125,126,127 Filter accepting messages with id 125,126 and 127.
message-type = Event* Filter accepting all Events

Attribute conditions
Evaluates message attribute value.

@attribute-name = constant value

Example:

Option Description
@ReferenceId = 50 Matches ReferenceId attribute value with 50.

@DN = 2???
Matches DN attribute value with 4-character string
starting from "2". Attribute values like "2999" or
"2ef7" will be accepted. Value "299999" will not be
accepted.

@UserData.CustomerID = 87624FAC Matches "CustomerID" key of the complex
"UserData" attribute with "87624FAC" value.

@StatisticObject.ObjectId = place* Matches statistic object which name start from
"place"

Attribute names
Attribute name is specified after the "@" symbol. Attribute names should match getter name of the
corresponding message class. To find out attribute name, see API reference guide for the
corresponding message.

For example:

message.getStatisticObject().getObjectType().equals(...);

equals to filter condition

"@StatisticObject.ObjectType = ... "

To access sub element of the complex attribute (KeyValueCollection, CompoundValue), specify the
name of inner element. Names should be delimited with "." symbol:

@attribute-name.element-1.element-n.

Supported attribute types
Currently supported message attribute types:

• string,
• int,

Log Filtering

Platform SDK Developer's Guide 10

• enum,
• KeyValueCollection,
• CompoundValue (complex attributes like StatisticObject.)

If attribute has complex type, it is possible to specify matching condition only for one of its inner
elements of a simple type: string, integer or enum. For example, here is how to specify condition for
"TenantName" element of the complex "StatisticObject" attribute:

@StatisticObject.TenantName = 101

Constant values
Condition can have one or more constant values, delimited with ",". If one of the specified constants

matching attribute value (or message name), condition will return true.

Constant values supports wildcards:

Symbol Description

*
Any sequence of symbols.
For example, "Event*" matching any message name, starting
from Event

?
Any symbol at specified position.
For example, 555?5 will match 555A5 or 55505 strings.

\
Escape symbol.
For example, 555\?5 will match only 555?5 string.

Constant examples:

@AgentPlace = place1000

@AgentPlace = place*

@AgentPlace = place100??

@AgentPlace = place110, place120, place2??

Inverted conditions
It is possible to invert attribute condition or message condition result by specifying "#not" prefix:

#not message-type = RequestAgentLogin

or

#not @DN = 10

Log Filtering

Platform SDK Developer's Guide 11

Empty filters
Filter with empty options will return negative evaluation result. It can be used to deny all messages
for a protocol object.

Stateful filters

Sometimes user doesn't know what attribute value should be specified in a filter condition. For
example, in Statistic protocol, the ReferenceId attribute (which uniquely identifies EventInfo
message with statistic data), initializing at a runtime, during statistic opening. To find out
ReferenceId value, user needs to search corresponding RequestOpenStatistic in logs.

Use case: trace EventInfo messages with any statistic for "place100".

Default log filter implementation allows to save attribute value from one message and re-use it to
trace other messages.

Configuration sample:

log-filter.stat-filter
message-type = RequestOpenStatistic
@StatisticObject.ObjectId = place100
trace-on-attribute = ReferenceId
trace-until-message-type = EventStatisticClosed

When filter meets condition ("RequestOpenStatistic" message with "place100" statistic object), the
ReferenceId is added to the list of saved values.

When filter receives message ("EventInfo" in statistics protocol) with ReferenceId matching to any of
the saved values, it allows to log the messages. More then one statistics for "place100" could be
opened, so it is possible to store several ReferenceId values.

When filter receives "EventStatisticClosed" with ReferenceId matching to any of the previously
saved values, this value is removed from the list. When values list is empty, no messages could be
logged.

Note 1: Filters processing messages only when debug log level is enabled. In order to save
ReferenceId value, debug log level should be enabled before RequestOpenStatistic is sent to
server.

Note 2: Saved values are cleared upon protocol close.

Note 3: Number of saved values is limited to 1024 to prevent high memory consumption upon
incorrect filter conditions. It can be changed with system property
"com.genesyslab.platform.filtering.valuelist.capacity". Changing to greater value is not
recommended.

Log Filtering

Platform SDK Developer's Guide 12

Filter Chain

List of filters on the "Connection tab" represent a filter chain. By default, filter chain evaluates filter
results as "OR" expression. If one of the filter accept message message will be logged and other
filters will not be evaluated. Filters can be of two types: "accept" and "deny" filters

Use cases
Filter type Use case

accept
(default)

User exactly knows criteria by which messages
should be logged. For example, log all Events and
Requests with "DN" attribute "2000".

deny
User see a lot of unneeded messages in log with
common data. User can specify "deny" filter to
truncate those messages.

Filter chain behavior
Filter type Message evaluation result Filter chain behavior

accept (default) TRUE\FALSE
If TRUE - allow log, do not
execute other filters. Otherwise,
execute next filter. Deny log if
last filter returned FALSE

deny TRUE\FALSE
If TRUE - deny log, do not
execute other filters. Otherwise,
execute next filter. Allow log if
last filter returned FALSE

Syntax
Filter name, prefixed with "-" means "deny" filter. Names without prefix mean "accept" filter.

Example:

"log-filter = -filter"

"log-filter = f1, f2, -f3".

Filter result negation
Optionally, it is possible to invert message evaluation result for a filter with "!" symbol.

Example:

"log-filter = !filter"

"log-filter = f1, !f2, f3"

Log Filtering

Platform SDK Developer's Guide 13

"log-filter = f1, -f2, -!f3".

Special filters
While delivering message from TCP connection to the client's receiver (or in opposite direction),
Platform SDK can trace message on the different points of its way:

2014-07-31 15:07:38,168 [New I/O worker #1] DEBUG otocolMessagePackagerImpl - New message #2
....
2014-07-31 15:07:38,168 [New I/O worker #1] DEBUG ns.protocol.DuplexChannel - Complete
message handling: 2

It is possible to disable such log entries with special filter "skip-trace-msg". This filter can be specified
as a stand-alone filter, or can be used together with other filters in a filter chain:

Example:

log-filter = skip-trace-msg
log-filter = filter-1, filter-2, filter-n, skip-trace-msg

Log Filtering

Platform SDK Developer's Guide 14

	Platform SDK Developer's Guide
	Log Filtering

