
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Event Handling

Platform SDK Developer's Guide

4/9/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Event Handling

Java

Once you have connected to a server, much of the work for your application involves sending
messages to that server and handling the events you receive from the server. This article describes
how to send and receive messages from a server.

Messages: Overview of Events and Requests

Messages you send to a server are called requests, while messages you receive are called events. An
event that is received from a server as the result of executing a request is called a response. In
summary, messages can be classified by using the following taxonomy:

• Requests: sent to the server
• Events: received from the server

• Responses: received as the result of a request
• Unsolicited events: not a direct result of a request

Tip
On this page, we will use the more general term "message" instead of "event", in
order to avoid confusion between protocol events and programming events.

For example, you may send a request to log in an agent or to gather statistics. You might also send a
request to update a configuration object, or to shut down an application.

In each of these cases, the server will respond with an event message, as shown below.

Event Handling

Platform SDK Developer's Guide 2

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

You may also get unsolicited events from the server. That means receiving events that are not a
response to a specific request. For example, EventRinging will notify you of a call ringing on an
extension that you are currently monitoring.

Receiving Messages

With the Platform SDK, you can receive messages synchronously or asynchronously. It is important
that you define the way your application will work in this aspect. In general, you will probably use
only one type or the other in the same application.

Interactive applications normally use asynchronous message handling, because that will prevent the
UI thread from being blocked, which could make the application appear "frozen" to a user. On the
other hand, non-interactive batch applications commonly use synchronous response handling, as that
allows writing easy code that performs step-by-step.

Receiving Messages Asynchronously
Most Platform SDK applications need to handle unsolicited events. This is particularly true for
applications that monitor the status of contact center resources, such as extensions.

You receive server messages by implementing a MessageHandler that contains the event-handling
logic:

[Java]

MessageHandler tserverMessageHandler = new MessageHandler() {
@Override
public void onMessage(Message message) {

// your event-handling code goes here
}

};

Then you set your implementation as the protocol MessageHandler.

[Java]

tserverProtocol.setMessageHandler(tserverMessageHandler);

Event Handling

Platform SDK Developer's Guide 3

Important
You need to know that your event-handling logic will be executed by using the
protocol invoker. Please set the invoker appropriate for your application needs. For
more information about the protocol invoker and how to set it, refer to Connecting to
a Server.

Inside your event-handling code, you will want to execute different logic for different kinds of events.
A typical way to do this is using a switch statement, based on the event identifier:

[Java]

switch (message.messageId()) {
case EventAgentLogin.ID:

OnEventAgentLogin(message);
break;

case EventAgentLogout.ID:
OnEventAgentLogout(message);
break;

}

Receiving Messages Synchronously
Some kinds of applications, such as batch applications, benefit from receiving messages
synchronously. This means that received messages will queue up and be handled by the application
on demand.

In order to receive messages this way, you simply do not set a protocol MessageHandler as
described in the previous section.

Tip
For releases prior to Platform SDK 8.1.1, messages were received synchronously by
default. Please note that 8.1.1 behavior is backwards-compatible, and pre-8.1.1
applications will continue to work as expected without any modification.

To receive a message synchronously, use the Receive method. This method blocks processing,
waiting for the next message to be received before continuing. Take into account that the maximum
time to wait is set by a configurable timeout value. If the timeout expires and no event is received,
you will receive a null value.

[Java]

Message message = tserverProtocol.receive();

If you want to set your own timeout, you can use the Receive method overload that takes a timeout
parameter. Otherwise, if you use Receive with no parameters, the protocol Timeout property will be
used.

Event Handling

Platform SDK Developer's Guide 4

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

Sending Requests Asynchronously

This is the easiest way to send a message to a server. Suppose you have created and filled a request
object, for example, a RequestAgentLogin message for Interaction Server:

[Java]

RequestAgentLogin loginRequest = RequestAgentLogin.create();
loginRequest.setTenantId(tenantId);
loginRequest.setAgentId(agentId);
loginRequest.setPlaceId(placeId);

You can then send it to the server using the following code:

[Java]

interactionServerProtocol.send(loginRequest);

This will result in your application receiving a response from the Interaction Server: either an
EventAck or an EventError message. By using the Send method, you will ignore that response at the
place where you make the request. You will get the response, like any other unsolicited event, using
the techniques described in the Receiving Messages section.

Handling Responses

The understanding of how to send requests and receive events is all you need to communicate with
Genesys servers. However, the Platform SDK also provides the ability to easily associate a response
with the particular request that originated it.

Receiving a Response Synchronously
The easiest way to handle responses is with the Request method. This is a blocking method, as your
application stops to wait for a response to come from the server. Using the same request example
above:

[Java]

Message response = interactionServerProtocol.request(loginRequest);
if (response.messageId() == EventAck.ID) {

EventAck eventAck = (EventAck)response;
// continue here

}
else {

// handle the error here
}

Notice that you will need to cast the message to a specific message type in order to access its
attributes. If a request fails on the server side, you will typically receive an EventError.

Take into account that the Request method blocks until a message is received or a timeout occurs. If
the timeout elapses and no response was received from the server, then a null value is received.
The timeout parameter can be specified in the request method. If you do not use the timeout
parameter then, then the protocol Timeout property is used.

Event Handling

Platform SDK Developer's Guide 5

The Request method will only return one message from the server. In the case that the server returns
subsequent messages, apart from the first response, as a result of the requested operation, then you
must process those messages separately as unsolicited events. Please make sure that your code
handles all messages received from your servers.

When using the Request method, your application only receives the response to that request as a
return value. The response will not be received as an unsolicited event as well. (You can change this
behavior by using the CopyResponse protocol property, described below.)

Receiving a Response Asynchronously
For many applications, blocking your thread while waiting for a response to your request is not
appropriate. For example GUI applications, where the GUI can appear "frozen" if the response takes
too much time to be received. It can also be true for batch applications that may want to send
multiple requests at the same time, while waiting for all responses concurrently. For these scenarios it
is possible to receive responses asynchronously.

Receiving a Response Asynchronously Using a Callback

By using requestAsync, your thread will not block, and it will permit you to handle the response by
using callback methods that will get called asynchronously.

First, you will need to implement a CompletionHandler which will contain the logic for handling the
response to your request:

[Java]

private static final CompletionHandler loginResponseHandler = new CompletionHandler() {

@Override
public void completed(Message message, Void notUsed) {

// handle message here
}

@Override
public void failed(Throwable exc, Void notUsed) {

// handle error here
}

};

Important
The CompletionHandler callback methods will be executed by the protocol invoker.

Then you can use the CompletionHandler as a parameter to the requestAsync method:

[Java]

interactionServerProtocol.requestAsync(loginRequest, null, loginResponseHandler);

Notice that in this example, the attachment parameter has not been used. If you are sharing the
same CompletionHandler implementation for handling the responses to different requests then you

Event Handling

Platform SDK Developer's Guide 6

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling#CopyResponse

may want to use an attachment to make it easy to differentiate among those requests.

Receiving the Response as a Future

Alternatively, you may want to handle responses using the same thread that did the request, but
have the option to do something concurrently while waiting for the response. To accomplish this, use
the beginRequest method.

As an example, you might perform two agent login requests concurrently: one for logging into the T-
Server, and another for logging into Interaction Server.

[Java]

RequestFuture loginVoiceFuture = tserverProtocol.beginRequest(loginVoiceRequest);
RequestFuture loginMultimediaFuture =
interactionServerProtocol.beginRequest(loginMultimediaRequest);

Message loginVoiceResponse = loginVoiceFuture.get();
Message loginMultimediaResponse = loginMultimediaFuture.get();

// handle responses, both are available now

When using the requestAsync or beginRequest methods, you will not receive the response as an
unsolicited event. (You can change this behavior by using the CopyResponse protocol property,
described below).

CopyResponse

Previously it was stated that responses returned by request methods are not received as unsolicited
events by default. This behavior can be modified by using the protocol CopyResponse property. The
default value is false, but it can be set to true like this:

[Java]

tserverProtocol.setCopyResponse(true);

This is particularly useful for protocols which define events that can be both received unsolicited and
as a response to a client request (such as EventAgentLogin defined by the T-Server protocol). By
setting the CopyResponse property to true, you can execute your agent state change logic only when
handling the message as an unsolicited event, and you do not need to include it when receiving the
message as a response.

.NET

Once you have connected to a server, much of the work for your application will involves sending
messages to that server and handling the events you receive from the server. This article describes
how to send and receive messages from a server.

Event Handling

Platform SDK Developer's Guide 7

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling#CopyResponse
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

Messages: Overview of Events and Requests

Messages you send to a server are called requests, while messages you receive are called events. An
event that is received from a server as the result of executing a request is called a response. In
summary, messages can be classified by using the following taxonomy:

• Requests: sent to the server
• Events: received from the server

• Responses: received as the result of a request
• Unsolicited events: not a direct result of a request

Tip
On this page, we will use the more general term "message" instead of "event", in
order to avoid confusion between protocol events and programming events.

For example, you may send a request to log in an agent or to gather statistics. You might also send a
request to update a configuration object, or to shut down an application.

In each of these cases, the server will respond with an event message, as shown below.

You may also get unsolicited events from the server. That means receiving events that are not a
response to a specific request. For example, EventRinging will notify you of a call ringing on an
extension that you are currently monitoring.

Receiving Messages

With the Platform SDK, you can receive messages synchronously or asynchronously. It is important
that you define the way your application will work in this aspect. In general, you will probably use
only one type or the other in the same application.

Event Handling

Platform SDK Developer's Guide 8

Interactive applications normally use asynchronous message handling, because that will prevent the
UI thread from being blocked, which could make the application appear "frozen" to a user. On the
other hand, non-interactive batch applications commonly use synchronous response handling, as that
allows writing easy code that performs step-by-step.

Receiving Messages Asynchronously
Most Platform SDK applications need to handle unsolicited events. This is particularly true for
applications that monitor the status of contact center resources, such as extensions.

You receive server messages asynchronously by subscribing to the Received .NET event:

[C#]

tserverProtocol.Received += OnTServerMessageReceived;

Then you can implement your event-handling logic:

[C#]

void OnTServerMessageReceived(object sender, EventArgs e)
{

IMessage message = ((MessageEventArgs)e).Message;
// your event-handling code goes here

}

Important
You need to know that your event-handling logic will be executed by using the
protocol invoker. Please set the invoker appropriate for your application needs. For
more information about the protocol invoker and how to set it, refer to Connecting to
a Server.

Inside your event-handling code, you will want to execute different logic for different kinds of events.
A typical way to do this is using a switch statement, based on the event identifier:

[C#]

switch (message.Id)
{

case EventAgentLogin.MessageId:
OnEventAgentLogin(message);
break;

case EventAgentLogout.MessageId:
OnEventAgentLogout(message);
break;

}

Receiving Messages Synchronously
Some kinds of applications, such as batch applications, benefit from receiving messages
synchronously. This means that received messages will queue up and be handled by the application
on demand.

Event Handling

Platform SDK Developer's Guide 9

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

In order to receive messages this way, you simply do not subscribe to the Received .NET event as
described in the previous section.

Tip
For releases prior to Platform SDK 8.1.1, messages were received synchronously by
default. Please note that 8.1.1 behavior is backwards-compatible, and pre-8.1.1
applications will continue to work as expected without any modification.

To receive a message synchronously, use the Receive method. This method blocks processing,
waiting for the next message to be received before continuing. Take into account that the maximum
time to wait is set by a configurable timeout value. If the timeout expires and no event is received,
you will receive a null value.

[C#]

IMessage message = tserverProtocol.Receive();

If you want to set your own timeout, you can use the Receive method overload that takes a timeout
parameter. Otherwise, if you use Receive with no parameters, the protocol Timeout property will be
used.

Sending Requests Asynchronously
This is the easiest way to send a message to a server. Suppose you have created and filled a request
object, for example, a RequestAgentLogin message for Interaction Server:

[C#]

var loginRequest = RequestAgentLogin.Create();
loginRequest.TenantId = tenantId;
loginRequest.AgentId = agentId;
loginRequest.PlaceId = placeId;

Then you can send it to the server:

[C#]

interactionServerProtocol.Send(loginRequest);

This will result in your application receiving a response from the Interaction Server: either an
EventAck or an EventError message. By using the Send method, you will ignore that response at the
place where you make the request. You will get the response, like any other unsolicited event, using
the techniques described in the Receiving Messages section.

Handling Responses

The understanding of how to send requests and receive events is all you need to communicate with
Genesys servers. However, the Platform SDK also provides the ability to easily associate a response
with the particular request that originated it.

Event Handling

Platform SDK Developer's Guide 10

Receiving a Response Synchronously
The easiest way to handle responses is with the Request method. This is a blocking method, as your
application stops to wait for a response to come from the server. Using the same request example
above:

[C#]

IMessage response = interactionServerProtocol.Request(loginRequest);
if (response.Id == EventAck.MessageId)
{

var eventAck = (EventAck)response;
// continue here

}
else
{

// handle the error here
}

Notice that you will need to cast the message to a specific message type in order to access its
attributes. If a request fails on the server side, you will typically receive an EventError.

Take into account that the Request method blocks until a message is received or a timeout occurs. If
the timeout elapses and no response was received from the server, then a null value is received.
The timeout parameter can be specified in the request method. If you do not use the timeout
parameter then the protocol Timeout property is used.

The request method will only return one message from the server. In the case that the server returns
subsequent messages, apart from the first response, as a result of the requested operation, then you
must process those messages separately as unsolicited events. Please make sure that your code
handles all messages received from your servers.

When using the Request method, your application only receives the response to that request as a
return value. The response will not be received as an unsolicited event as well. (You can change this
behavior by using the CopyResponse protocol property, described below).

Receiving a Response Asynchronously
For many applications, blocking your thread while waiting for a response to your request is not
appropriate. For example GUI applications, where the GUI can appear "frozen" if the response takes
too much time to be received. It can also be true for batch applications that may want to send
multiple requests at the same time, while waiting for all responses concurrently. For these scenarios it
is possible to receive responses asynchronously.

By using BeginRequest, your thread will not block, and it will permit you to handle the response the
way that best suits your application. This method complies with .NET "Asynchronous Programming
Model". You can find more information about the "Asynchronous Programming Model" in the Web.

For example, your application can handle responses asynchronously by using a callback, which is a
piece of logic that executes asynchronously when the response is received. Define a callback method
like this:

[C#]

void OnLoginResponseReceived(IAsyncResult result) {
IMessage response = interactionServerProtocol.EndRequest(result);

Event Handling

Platform SDK Developer's Guide 11

if (response.Id == EventAck.MessageId)
{

var eventAck = (EventAck)response;
// continue here

}
else
{

// handle the error here
}

}

Then you can submit your request using the callback method.

[C#]

interactionServerProtocol.BeginRequest(loginRequest, OnLoginResponseReceived, null);

As an alternative, you may want to do something concurrently, while waiting for the response. For
example, you could perform two agent login requests concurrently: one for logging the agent into the
T-Server, and another for logging the agent into Interaction Server.

[C#]

var resultLoginVoice = tserverProtocol.BeginRequest(loginVoiceRequest, null, null);
var resultLoginMultimedia = interactionServerProtocol.BeginRequest(loginMultimediaRequest,
null, null);

var loginVoiceResponse = tserverProtocol.EndRequest(resultLoginVoice);
var loginMultimediaResponse = interactionServerProtocol.EndRequest(resultLoginMultimedia);

// handle responses, both are available now

When using the BeginRequest method, your application receives the response to your request as the
return value of EndRequest. You will not receive the response as an unsolicited event. (You can
change this behavior by using the CopyResponse protocol property, described below).

CopyResponse

Previously it was stated that responses returned by request methods are not received as unsolicited
events by default. This behavior can be modified by using the protocol CopyResponse property. The
default value is false, but it can be set to true like this:

[C#]

tserverProtocol.CopyResponse = true;

This is particularly useful for protocols which define events that can be both received unsolicited and
as a response to a client request (such as EventAgentLogin defined by the T-Server protocol). By
setting the CopyResponse property to true, you can execute your agent state change logic only when
handling the message as an unsolicited event, and you do not need to include it when receiving the
message as a response.

Event Handling

Platform SDK Developer's Guide 12

	Platform SDK Developer's Guide
	Event Handling

