
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Routing Server

Platform SDK Developer's Guide

5/2/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Routing Server
Many types of interactions enter a modern contact center, and each of them can have many possible
destinations. Universal Routing Server (URS) helps them get to the right place at the right time by
enabling you to create customized routing strategies — sets of instructions that tell URS how to
handle interactions. These routing strategies can be as simple or complex as you need them to be.
URS uses routing strategies to send interactions from one target to another, as needed, until the
interactions have been successfully processed.

The Routing Platform SDK allows you to write .NET applications that combine logic from your custom
application with the router-based logic of URS, in order to solve many common interaction-related
tasks.

This document tells you where you can go to get more information about URS. It also contains a brief
overview of the features of the Routing Platform SDK, followed by code snippets that show how to
implement the basic functions you will need to write applications that work with URS.

Universal Routing Server Overview

The best way to start learning about Universal Routing Server (URS) is by getting a copy of the
Universal Routing 8.1 Reference Manual. This book tells you how to work with routing strategies,
objects, functions, options, and statistics. It also includes a detailed list of Related Documentation
Resources, which discusses other sources of information that can be useful when you are working
with Genesys Universal Routing.

After becoming familiar with the information in the Universal Routing Reference Manual and related
documentation, you can start using the routing API that is exposed by the Platform SDK. As you learn
about Genesys routing, it is important to keep in mind that the main purpose of the Platform SDK
routing API is to work as a complement to the complex capabilities already available from URS, not to
act as a replacement. This API makes it easier to resolve difficult interaction-related tasks by
combining the capabilities of URS with logic from your custom application.

To create routing strategies, you use either Genesys Composer, which lets you create SCXML-based
strategies, or Interaction Routing Designer (IRD), which creates strategies in the Genesys IRL routing
language. Once the URS environment is established, you then use the Platform SDK routing API to
give your application control over which routing strategies are selected under a given set of
circumstances or what criteria URS uses to choose a particular routing target. For example, your
application can select statistics for URS to use in determining which agent group would be the best
one to route a particular interaction to.

Two Types of Router API Usage
Platform SDK lets you use two different methodologies in working with URS. The first method involves
a standalone router. When you use the standalone router method, all of the interaction processing
logic, including media control, is handled by the router. This method can be used by calling
RequestLoadStrategy.

The second method is called the router-behind API. This method can be used when you want your

Routing Server

Platform SDK Developer's Guide 2

application to handle media control, such as attached data or treatments, rather than leaving that up
to the router. With this method, the router is normally used only to select resources.

The code snippets in this article include some requests that work with standalone routers and some
that work with the router-behind API.

Java

Connecting to Universal Routing Server

The Platform SDK uses a message-based architecture to connect to Genesys servers. The following
code samples show how to connect to URS by using the native protocol object that is part of the
Routing Platform SDK.

First set up import statements for the routing namespaces:

import com.genesyslab.platform.routing.protocol.routingserver.*;
import com.genesyslab.platform.routing.protocol.routingserver.requests.*;

After you have set up your import statements, you need to create a RoutingServerProtocol object:

RoutingServerProtocol protocol =
new RoutingServerProtocol(

new Endpoint(
name, host, port));

protocol.setClientName(clientName);
protocol.setClientType(clientType);

Then you can open your connection to URS:

protocol.open();

Message Handling

Once you have set up your connection to the server, your application needs to be able to send
requests to and receive messages from URS.

Tip
This section describes one possible way to provide message handling. For more
details and other options regarding message handling, refer to the full Event Handling
article.

Messages can be received asynchronously by setting up a MessageHandler object, and then

Routing Server

Platform SDK Developer's Guide 3

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

providing code to execute for each type of message that your application expects to respond to.
Once this object is created, you can assign it to the protocol used to connect to the URS server, as
shown below.

MessageHandler ursMessageHandler = new MessageHandler() {
@Override
public void onMessage(Message message) {

// your event-handling code goes here
switch (message.messageId()) {

case EventInfo.ID:
OnEventInfo(message);
break;

...
}

}
};
protocol.setMessageHandler(ursMessageHandler);

For each message type you intend to respond to, your application must include:

• an additional section inside the switch block that checks to ensure the message ID matches
• a function that defines the desired behavior when reacting to that message type

In the example above, the message ID being checked for would match an incoming EventInfo
message, while the resulting behavior (inside an OnEventInfo function that you would create) has
yet to be defined.

Working with URS

As mentioned above, there are two basic methods for using the Platform SDK to work with URS. This
section contains examples of both the standalone router and router-behind APIs.

Standalone Router
The Routing Platform SDK allows you to control which routing strategy is executed on a given routing
point, while leaving everything else to the routing server. To use this methodology, which is known as
"standalone router," issue a RequestLoadStrategy that specifies the routing point and the
associated T-Server, and also the location of the routing strategy. Once the routing strategy has been
loaded, all interactions arriving on the specified routing point will be processed with that strategy.

The following snippet shows how to do this:

RequestLoadStrategy requestLoadStrategy = RequestLoadStrategy.create();
requestLoadStrategy.setTServer("TheT-Server");
requestLoadStrategy.setRoutingPoint("TheRoutingPoint");
requestLoadStrategy.setPath("<Path to the strategy>");

protocol.send(requestLoadStrategy);

URS will respond to your request with an EventInfo, an example of which is shown here:

'EventInfo' (2) attributes:
R_Message [str] = "ATTENTION: Strategy has been loaded from ooo-file."

Routing Server

Platform SDK Developer's Guide 4

R_cdn_status [int] = 1 [Loaded]
R_cdn [str] = "RP_sip1"
R_ErrorCode [int] = 0 [NoError]
R_tserver [str] = "TServerSip1"
R_refID [int] = 1
R_time [str] = "06/30/2011 10:00:29"
R_path [str] = "<Path>"

You can use RequestNotify to check which routing points have been loaded:

RequestNotify requestNotify = RequestNotify.create();
protocol.send(requestNotify);

This request will also return an EventInfo similar to the one shown above.

When you want to stop using the routing strategy you have loaded, for example, if you want to start
using a different one, you can issue a RequestReleaseStrategy:

RequestReleaseStrategy requestReleaseStrategy =
RequestReleaseStrategy.create();

requestReleaseStrategy.setTServer("TheT-Server");
requestReleaseStrategy.setRoutingPoint("TheRoutingPoint");

Message response = protocol.request(requestReleaseStrategy);

Router-Behind API
The router-behind method allows your application code to handle media control. The following
example shows how to execute a strategy using RequestExecuteStrategy. This request is different
from RequestLoadStrategy in that it only executes a strategy one time, instead of associating a
particular strategy with a routing point. To use RequestExecuteStrategy, specify the routing
strategy you want to execute and the tenant (contact center) in whose environment the strategy is to
be executed, as shown here:

RequestExecuteStrategy requestExecuteStrategy =
RequestExecuteStrategy.create();

requestExecuteStrategy.setStrategy("TheRoutingStrategyName");
requestExecuteStrategy.setTenant("TheTenant");

protocol.send(requestExecuteStrategy);

It is important to remember that it can often take a considerable amount of time to process a routing
strategy. If your request is correctly formatted and can be executed by URS, then you will
immediately receive an EventExecutionInProgress. This is a very simple event that only returns the
reference ID of your request, as you can see here:

'EventExecutionInProgress' ('199')
message attributes:
R_refID [int] = 2

Once your request has successfully executed, you will receive an EventExecutionAck. Here is an
example of the kind of output you might receive from an EventExecutionAck:

'EventExecutionAck' ('200')
message attributes:
R_result [bstr] = KVList:

'DN' [str] = "701"
'CUSTOMER_ID' [str] = "TenantForTest"

Routing Server

Platform SDK Developer's Guide 5

'TARGET' [str] = "701_sip@StatServer1.A"
'SWITCH' [str] = "SipSwitch"
'NVQ' [int] = 1
'PLACE' [str] = "701"
'AGENT' [str] = "701_sip"
'ACCESS' [str] = "701"
'VQ' [str] = "1234"
Context = ComplexClass(OperationContext):
UserData [bstr] = KVList:

'ServiceObjective' [str] = ""
'ServiceType' [str] = "default"
'CBR-Interaction_cost' [str] = ""
'RTargetTypeSelected' [str] = "0"
'CBR-IT-path_DBIDs' [str] = ""
'RVQDBID' [str] = ""
'RTargetPlaceSelected' [str] = "701"
'RTargetAgentSelected' [str] = "701_sip"
'CBR-actual_volume' [str] = ""
'RStrategyName' [str] = "##GetTarget"
'RRequestedSkillCombination' [str] = ""
'RTargetRuleSelected' [str] = ""
'RStrategyDBID' [str] = ""
'RRequestedSkills' [bstr] = KVList:
'CustomerSegment' [str] = "default"
'RTargetObjSelDBID' [str] = "984"
'RTargetObjectSelected' [str] = "701_sip"
'RTenant' [str] = "TenantForTest"
'RVQID' [str] = ""
'CBR-contract_DBIDs' [str] = ""

R_refID [int] = 0

If you have any syntax errors, your request will not execute and you will receive an EventError. Here
is an example of an EventError:

'EventError' (1) attributes:
R_cdn_status [int] = 0 [Released]
R_cdn [str] = ""
R_ErrorCode [int] = 4 [NotAvailable]
R_tserver [str] = ""
R_refID [int] = 1
R_time [str] = ""
R_path [str] = "<Path>"

If, on the other hand, URS has a problem executing your request, you will receive an
EventExecutionError, an example of which is shown here:

'EventExecutionError' ('201')
message attributes:
R_result [bstr] = KVList:

'Reason' [str] = "Rejected"
Context = ComplexClass(OperationContext):

UserData [bstr] = KVList:
'PegRejected' [int] = 1

R_refID [int] = 2

There may be times when you want URS to pick a routing target for you. You can use
RequestFindTarget for that purpose. As shown in the sample below, you can use a statistic to aid in
this selection:

RequestFindTarget requestFindTarget =
RequestFindTarget.create();

Routing Server

Platform SDK Developer's Guide 6

requestFindTarget.setTenant("TheTenant");
requestFindTarget.setTargets("TheTargetList");
requestFindTarget.setTimeout(5);
requestFindTarget.setStatistic("TheStatistic");
requestFindTarget.setStatisticUsage(StatisticUsage.Max);
requestFindTarget.setVirtualQueue("TheQueue");
requestFindTarget.setPriority(1);
requestFindTarget.setMediaType("TheMediaType");

protocol.send(requestFindTarget);

You can also have URS fetch statistical information for you directly, in case you want to know more
about the current conditions in your contact center, perhaps in preparation for a RequestFindTarget.
The following example shows how to do this, using RequestGetStatistic:

RequestGetStatistic requestGetStatistic =
RequestGetStatistic.create();

requestGetStatistic.setTenant("TheTenant");
requestGetStatistic.setTargets("TheTargetList");
requestGetStatistic.setStatistic("StatAgentsBusy");

protocol.send(requestGetStatistic);

Both RequestFindTarget and RequestGetStatistic return the same messages as
RequestExecuteStrategy.

Closing the Connection

When you are finished communicating with URS, you should close the connection, in order to
minimize resource utilization:

protocol.close();

.NET

Connecting to Universal Routing Server

The Platform SDK uses a message-based architecture to connect to Genesys servers. The following
code samples show how to connect to URS by using the native protocol object that is part of the
Routing Platform SDK.

First set up using statements for the routing namespaces:

using Genesyslab.Platform.Routing.Protocols;
using Genesyslab.Platform.Routing.Protocols.RoutingServer;
using Genesyslab.Platform.Routing.Protocols.RoutingServer.Events;
using Genesyslab.Platform.Routing.Protocols.RoutingServer.Requests;

After you have set up your using statements, you need to create a RoutingServerProtocol object:

Routing Server

Platform SDK Developer's Guide 7

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ArchitectureofthePlatformSDKs

RoutingServerProtocol protocol =
new RoutingServerProtocol(

new Endpoint(
name, host, port));

protocol.ClientName = clientName;
protocol.ClientType = clientType;

Then you can open your connection to URS:

protocol.Open();

Message Handling

Once you have set up your connection to the server, your application needs to be able to send
requests to and receive messages from URS.

Tip
This section describes one possible way to provide message handling. For more
details and other options regarding message handling, refer to the full Event Handling
article.

Messages can be received asynchronously by subscribing to the Received .NET event:

protocol.Received += OnURSMessageReceived;

Once subscribed, your application must provide code to handle each type of message that is
expected from the protocol object, as shown below.

void OnURSMessageReceived(object sender, EventArgs e)
{

IMessage message = ((MessageEventArgs)e).Message;
// your event-handling code goes here
switch (message.Id)
{

case EventInfo.MessageId:
OnEventInfo(message);
break;

...
}

}

For each message type you intend to respond to, your application must include:

• an additional section inside the switch block that checks to ensure the message ID matches
• a function that defines the desired behavior when reacting to that message type

In the example above, the message ID being checked for would match an incoming EventInfo
message, while the resulting behavior (inside an OnEventInfo function that you would create) has
yet to be defined.

Routing Server

Platform SDK Developer's Guide 8

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

Working with URS

As mentioned above, there are two basic methods for using the Platform SDK to work with URS. This
section contains examples of both the standalone router and router-behind APIs.

Standalone Router
The Routing Platform SDK allows you to control which routing strategy is executed on a given routing
point, while leaving everything else to the routing server. To use this "standalone router"
methodology, issue a RequestLoadStrategy that specifies the routing point and the associated T-
Server, and also the location of the routing strategy. Once the routing strategy has been loaded, all
interactions arriving on the specified routing point will be processed with that strategy.

The following snippet shows how to do this:

RequestLoadStrategy requestLoadStrategy =
RequestLoadStrategy.Create();

requestLoadStrategy.TServer = "TheT-Server";
requestLoadStrategy.RoutingPoint = "TheRoutingPoint";
requestLoadStrategy.Path = "<Path to the strategy>";

protocol.Send(requestLoadStrategy);

URS will respond to your request with an EventInfo, an example of which is shown here:

'EventInfo' (2) attributes:
R_Message [str] = "ATTENTION: Strategy has been loaded from ooo-file."
R_cdn_status [int] = 1 [Loaded]
R_cdn [str] = "RP_sip1"
R_ErrorCode [int] = 0 [NoError]
R_tserver [str] = "TServerSip1"
R_refID [int] = 1
R_time [str] = "06/30/2011 10:00:29"
R_path [str] = "<Path>"

You can use RequestNotify to check which strategies have been loaded to routing points:

RequestNotify requestNotify =
RequestNotify.Create();

protocol.Send(requestNotify);

This request will also return an EventInfo similar to the one shown above.

When you want to stop using the routing strategy you have loaded, for example, if you want to start
using a different one, you can issue a RequestReleaseStrategy:

RequestReleaseStrategy requestReleaseStrategy =
RequestReleaseStrategy.Create();

requestReleaseStrategy.TServer = "TheT-Server";
requestReleaseStrategy.RoutingPoint = "TheRoutingPoint";

protocol.Send(requestReleaseStrategy);

Routing Server

Platform SDK Developer's Guide 9

Router-Behind API
The router-behind method allows your application code to handle media control. The following
example shows how to execute a strategy using RequestExecuteStrategy. This request is different
from RequestLoadStrategy in that it only executes a strategy one time, instead of associating a
particular strategy with a routing point. To use RequestExecuteStrategy, specify the routing
strategy you want to execute and the tenant (contact center) in whose environment the strategy is to
be executed, as shown here:

RequestExecuteStrategy requestExecuteStrategy =
RequestExecuteStrategy.Create();

requestExecuteStrategy.Strategy = "TheRoutingStrategyName";
requestExecuteStrategy.Tenant = "TheTenant";

protocol.Send(requestExecuteStrategy);

It is important to remember that it can often take a considerable amount of time to process a routing
strategy. If your request is correctly formatted and can be executed by URS, then you will
immediately receive an EventExecutionInProgress. This is a very simple event that only returns the
reference ID of your request, as you can see here:

'EventExecutionInProgress' ('199')
message attributes:
R_refID [int] = 2

Once your request has successfully executed, you will receive an EventExecutionAck. Here is an
example of the kind of output you might receive from an EventExecutionAck:

'EventExecutionAck' ('200')
message attributes:
R_result [bstr] = KVList:

'DN' [str] = "701"
'CUSTOMER_ID' [str] = "TenantForTest"
'TARGET' [str] = "701_sip@StatServer1.A"
'SWITCH' [str] = "SipSwitch"
'NVQ' [int] = 1
'PLACE' [str] = "701"
'AGENT' [str] = "701_sip"
'ACCESS' [str] = "701"
'VQ' [str] = "1234"

Context = ComplexClass(OperationContext):
UserData [bstr] = KVList:

'ServiceObjective' [str] = ""
'ServiceType' [str] = "default"
'CBR-Interaction_cost' [str] = ""
'RTargetTypeSelected' [str] = "0"
'CBR-IT-path_DBIDs' [str] = ""
'RVQDBID' [str] = ""
'RTargetPlaceSelected' [str] = "701"
'RTargetAgentSelected' [str] = "701_sip"
'CBR-actual_volume' [str] = ""
'RStrategyName' [str] = "##GetTarget"
'RRequestedSkillCombination' [str] = ""
'RTargetRuleSelected' [str] = ""
'RStrategyDBID' [str] = ""
'RRequestedSkills' [bstr] = KVList:

'CustomerSegment' [str] = "default"
'RTargetObjSelDBID' [str] = "984"
'RTargetObjectSelected' [str] = "701_sip"

Routing Server

Platform SDK Developer's Guide 10

'RTenant' [str] = "TenantForTest"
'RVQID' [str] = ""
'CBR-contract_DBIDs' [str] = ""

R_refID [int] = 0

If you have any syntax errors, your request will not execute and you will receive an EventError. Here
is an example of an EventError:

'EventError' (1) attributes:
R_cdn_status [int] = 0 [Released]
R_cdn [str] = ""
R_ErrorCode [int] = 4 [NotAvailable]
R_tserver [str] = ""
R_refID [int] = 1
R_time [str] = ""
R_path [str] = "<Path>"

If, on the other hand, URS has a problem executing your request, you will receive an
EventExecutionError, an example of which is shown here:

'EventExecutionError' ('201')
message attributes:
R_result [bstr] = KVList:

'Reason' [str] = "Rejected"
Context = ComplexClass(OperationContext):

UserData [bstr] = KVList:
'PegRejected' [int] = 1

R_refID [int] = 2

There may be times when you want URS to pick a routing target for you. You can use
RequestFindTarget for that purpose. As shown in the sample below, you can use a statistic to aid in
this selection:

RequestFindTarget requestFindTarget =
RequestFindTarget.Create();

requestFindTarget.Tenant = "TheTenant";
requestFindTarget.Targets = "TheTargetList";
requestFindTarget.Timeout = 5;
requestFindTarget.Statistic = "TheStatistic";
requestFindTarget.StatisticUsage = StatisticUsage.Max;
requestFindTarget.VirtualQueue = "TheQueue";
requestFindTarget.Priority = 1;
requestFindTarget.MediaType = "TheMediaType";

protocol.Send(requestFindTarget);

You can also have URS fetch statistical information for you directly, in case you want to know more
about the current conditions in your contact center, perhaps in preparation for a RequestFindTarget.
The following example shows how to do this, using RequestGetStatistic:

RequestGetStatistic requestGetStatistic =
RequestGetStatistic.Create();

requestGetStatistic.Tenant = "TheTenant";
requestGetStatistic.Targets = "TheTargetList";
requestGetStatistic.Statistic = "StatAgentsBusy";

protocol.Send(requestGetStatistic);

Routing Server

Platform SDK Developer's Guide 11

Both RequestFindTarget and RequestGetStatistic return the same messages as
RequestExecuteStrategy.

Closing the Connection

When you are finished communicating with URS, you should close the connection, in order to
minimize resource utilization:

protocol.Close();

Routing Server

Platform SDK Developer's Guide 12

	Platform SDK Developer's Guide
	Routing Server

