
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Platform SDK 9.0.x

Platform SDK Developer's Guide

12/29/2021

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Welcome to the Developer's Guide! 4
Introductory Topics 6

Introducing the Platform SDK 7
Architecture of the Platform SDK 12
Connecting to a Server 14
Configuring Platform SDK Channel Encoding for String Values 32
Using the Warm Standby Application Block 33
Using the Application Template Application Block 42
Using the Cluster Protocol Application Block 76
Event Handling 90
Setting up Logging in Platform SDK 101
Additional Logging Features 107
Log4j2 Configuration with the Application Template Application Block 118

Advanced Platform SDK Topics 135
Using Kerberos Authentication in Platform SDK 136
Secure connections using TLS 140

Quick Start 146
TLS and the Platform SDK Commons Library 150
TLS and the Application Template Application Block 163
Configuring TLS Parameters in Configuration Manager 170
Using and Configuring Security Providers 193
OpenSSL Configuration File 204
Use Cases 211
Using and Configuring TLS Protocol Versions 214

Lazy Parsing of Message Attributes 217
Log Filtering 221
Hide or Tag Sensitive Data in Logs 233
Profiling and Performance Services 242
IPv6 Resolution 248
Managing Protocol Configuration 253
Friendly Reaction to Unsupported Messages 257
Creating Custom Protocols 263
JSON Support 273
Working with Custom Servers 283
Bidirectional Messaging 289

Hide Message Attributes in Logs 294
Resources Releasing in an Application Container 296
Transport Layer Substitution 299

Server-Specific Overviews 308
Telephony (T-Server) 309

Introduction to TLib Functions and Data 320
Configuration 323

Connecting Using UTF-8 Character Encoding 337
Change Password On Next Login 342
Getting the Last Login Info 344
Using the Configuration Object Model Application Block 347
Introduction to the Configuration Layer Objects 385

Stat Server 388
Custom Statistics: Getting Agent State for All Channels 402

Interaction Server 407
Universal Contact Server 412

Creating an Email 421
Chat 434
E-Mail Server 441
Outbound 445
Management Layer 447

LCA Protocol Usage Samples 461
LCA Hang-Up Detection Support 468
Handle Application "Graceful Stop" with the LCA Protocol 474

Routing Server 476
Component Overviews 487

Using the Log Library 488
Migration Overview 505

Migration from Message Broker Application Block Usage 506
Migration from Protocol Manager Application Block Usage 514
Legacy Topics 520

Using the Message Broker Application Block 521
Event Handling Using the Message Broker Application Block 533
Using the Protocol Manager Application Block 549
Connecting to a Server Using the Protocol Manager Application Block 570
Legacy Warm Standby Application Block Description 579

Welcome to the Developer's Guide!
This guide offers a collection of articles that will help you to get started with Platform SDK
development.

For detailed information about the Platform SDKs, please refer to the Platform SDK API Reference for
your specific release.

Getting Started
Learn about the Platform SDK
architecture and how to begin creating
your own custom applications.

Introducing the Platform SDK
Architecture and Design
Event Handling
More...

Working Directly with Genesys Servers
Understand how Platform SDK allows your
application to interact directly with the
desired Genesys Server.

Connecting to a Server
Telephony (T-Server)
More...

Using Application Blocks to Aid
Development
Find out about the architecture of
Genesys Co-browse.

Application Template Application Block
Warm Standby Application Block
Configuration Object Model Application
Block

Commonly Used Features
These features are not specific to a
Genesys server, and can be used in most
applications.

Channel Encoding for String Values
Logging Configuration
Secure Connections Using TLS
More...

Additional Resources
Additional articles to support Platform
SDK developers.

Welcome to the Developer's Guide!

Platform SDK Developer's Guide 4

https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/IntroducingthePlatformSDK
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/IntroductionandSpecificFeatures
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/T-Server
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/Server-SpecificOverviews
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingWarmStandbyAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheCOMAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheCOMAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ChannelEncodingStringValues
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/SettingUpLogging
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/PlatformSDKImplementationofTLS
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/AdvancedPlatformSDKTopics

Migration Overview
Legacy Support
Platform SDK API Reference

Welcome to the Developer's Guide!

Platform SDK Developer's Guide 5

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/MigrationOverview
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LegacyTopics
https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome

Introductory Topics
The following articles give information about common Platform SDK functionality and protocol usage
that all developers should be aware of:

• Introducing the Platform SDK
• Architecture of the Platform SDK
• Connecting to a Server
• Configure Platform SDK Channel Encoding for String Values
• Using the Warm Standby Application Block
• Using the Application Template Application Block
• Using the Cluster Protocol Application Block
• Event Handling
• Setting Up Logging in Platform SDK
• Additional Logging Features
• Log4j2 Configuration with the Application Template Application Block

Introductory Topics

Platform SDK Developer's Guide 6

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/IntroducingthePlatformSDK
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ChannelEncodingStringValues
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingWarmStandbyAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingCPTemplateAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/SettingUpLogging
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LoggingFeatures
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/Log4j2AppTemplateAB

Introducing the Platform SDK
The Platform SDK exposes the protocols of Genesys servers as an API. This means you can write .NET
and Java applications that communicate with these servers in their native protocols.

You can use the Platform SDK to do two main things:

• Establish and maintain a connection to each Genesys server used by your application
• Send and receive messages to and from each of these Genesys servers

In addition to enabling these two basic functions, the Platform SDK ships with application blocks,
which have been built on top of the Platform SDK in order to provide simple yet high-performance
ways to do things like configuring warm standby settings for your connections and working with
configuration objects.

The following image shows the relationship between the Platform SDK protocol objects and the
servers each of them connects with.

Each protocol object subclasses ClientChannel, which in turn subclasses DuplexChannel and
implements the Protocol interface. This means they all share a common interface to the Genesys
servers. The protocol objects communicate with the corresponding Genesys servers over a TCP
connection, with each one using the native protocol of the server it connects with. For example, the
TServerProtocol object communicates over TCP with a T-Server, using the TLIB protocol that is
native to the T-Server.

As mentioned above, the Platform SDK also includes reusable production-quality application blocks
that can be dropped into your code to provide simple yet high-performance ways to carry out
important functions that are commonly needed by applications that communicate with Genesys
servers.

As shown below, there are two main types of application blocks: generic and specific.

Introductory Topics Introducing the Platform SDK

Platform SDK Developer's Guide 7

Generic application blocks provide functionality that is useful for a broad range of applications, such
as configuring connection and warm standby settings. These application blocks are recommended for
use in most development. Specific application blocks are only beneficial for certain types of
applications. For example, the Configuration Object Model application block makes it easy to work
with objects in the Genesys Configuration Layer and is only required when you are writing an
application that requires this functionality.

Finally, the Platform SDK includes additional components designed to make development of custom
applications easier. These components offer support for useful features such as customized logging
or switch abstraction.

The Protocols

The Platform SDK is divided into separate “protocols.” Each component works with one or more of
Genesys servers.

The following table shows the servers each of the Platform SDK protocols connects with, and gives
the names of the native protocols that are used to communicate with each server.

Platform SDK Protocol Name Genesys Servers Native Protocols
Configuration Platform SDK Configuration Server CFGLIB
Contacts Platform SDK Universal Contact Server UCS Protocol

Management Platform SDK
• Message Server
• Solution Control Server

• GMESSAGELIB
• SCSLIB

Introductory Topics Introducing the Platform SDK

Platform SDK Developer's Guide 8

Platform SDK Protocol Name Genesys Servers Native Protocols

• Local Control Agent • LCALIB

Open Media Platform SDK Interaction Server ITX, ESP

Outbound Contact Platform SDK Outbound Contact Server
• CMLIB
• OCS-Desktop Protocol

Routing Platform SDK
• Custom Server
• Universal Routing Server

• Custom Server Protocol
• Routing Server Protocol

Statistics Platform SDK Stat Server STATLIB

Voice Platform SDK T-Servers
• TLIB
• Preview Interaction Protocol

Web Media Platform SDK
• Chat Server
• E-Mail Server Java
• Callback Server

• MCR Chat Lib
• MCR E-Mail Lib
• MCR Callback Lib
• ESP E-Mail Lib

Configuration Platform SDK

The Configuration Platform SDK enables you to build applications that use the services of the
Genesys Configuration Server. This allows these applications to either query on objects in the
Configuration Layer of your Genesys environment or to add, modify, and delete information about
those objects, while taking advantage of an environment in which Configuration Server carries out
several important administrative functions.

Contacts Platform SDK

The Contacts Platform SDK allows you to build applications that view, or interact with, the contact
information for your contact center. This SDK accesses information directly from Universal Contact
Server, allowing you to design applications that access contact information when dealing with
multimedia interactions such as chat or email, for example.

Management Platform SDK

The Management Platform SDK enables you to write applications that interact with Message Server,
Solution Control Server, and Local Control Agents.

Open Media Platform SDK

With the Open Media Platform SDK, you can build client applications that feed open media
interactions into your Genesys environment, or applications that act as custom media servers to

Introductory Topics Introducing the Platform SDK

Platform SDK Developer's Guide 9

perform external service processing (ESP) on interactions that have already entered it.

Outbound Contact Platform SDK

The Outbound Contact Platform SDK can be used to build applications that allow you to manage
outbound campaigns.

Routing Platform SDK

The Routing Platform SDK allows you to write Java and .NET applications that combine logic from your
custom application with the router-based logic of URS, in order to solve many common interaction-
related tasks.

Statistics Platform SDK

With the Statistics Platform SDK, you can build applications that use the services of Stat Server in
order to solicit and monitor statistics from your Genesys environment.

Stat Server tracks information about customer interaction networks (contact center, enterprise-wide,
or multi-enterprise telephony and computer networks). It also converts the data accumulated for
directory numbers (DNs), agents, agent groups, and non-telephony–specific object types, such as
email and chat sessions, into statistically useful information.

Voice Platform SDK

The Voice Platform SDK enables you to design applications that monitor and handle voice interactions
from a traditional or IP-based telephony device.

Web Media Platform SDK

The Web Media Platform SDK can be used to build applications that interact with Chat Server, E-Mail
Server Java, and Callback Server through a web server interface.

The Application Blocks

Important
These application blocks are reusable production-quality components, designed using
industry best practices and provided with source code so they can be used "as is,"
extended, or tailored as necessary.

Please see the License Agreement for details.

Genesys application blocks are reusable production-quality components that provide specific
functionality needed by a broad range of Genesys customers. They have been designed using
industry best practices and provided with source code so they can be used “as is”, extended, or
tailored if you need to. Please see the License Agreement for details.

Application Template Application Block

Introductory Topics Introducing the Platform SDK

Platform SDK Developer's Guide 10

The Application Template Application Block provides a way to read configuration options for
applications in Genesys Administrator and to configure Platform SDK protocols. It also allows standard
connection settings (including ADDP or TLS details) to be retrieved from Configuration Server, and
helps with common features like setting up WarmStandby or assigning message filters.

Configuration Object Model Application Block

The Configuration Object Model (COM) Application Block provides a consistent and intuitive object
model for applications that need to work with Configuration Server objects. Use the COM Application
Block when you need to create, update, or delete Configuration Layer Objects.

Warm Standby Application Block

You can use the Warm Standby Application Block to switch to a backup server in case your primary
server fails, in cases where you do not need to guarantee the integrity of existing interactions.

Deprecated Content
The application blocks listed in this section are considered legacy products. Documentation is still
provided for backwards compatibility, but new development should not use these application blocks.

Message Broker Application Block (deprecated)

The Message Broker Application Block makes it easy for your applications to handle events in an
efficient way.

Deprecated with release 8.1.1. If you have existing applications that use the Message Broker
Application Block, refer to the migration article for details on how to update your code. New
applications should use the improved message handling capability now included in Platform SDK
instead.

Protocol Manager Application Block (deprecated)

The Protocol Manager Application Block allows for simplified communication with more than one
server. It takes care of opening and closing connections to many different servers, as well as handling
the reconfiguration of high availability connections.

Deprecated with release 8.1.1. If you have existing applications that use the Protocol Manager
Application Block, refer to the migration article for details on how to update your code. New
applications should use the improved ability of Platform SDK to connect to servers instead.

The Components

Additional components are included to provide useful functionality for creating custom applications
with the Platform SDK, even if that doesn't necessarily involve communicating with Genesys servers.

Platform SDK Log Library

The Platform SDK Log Library presents an easy-to-use API for logging messages in custom-built
applications.

Introductory Topics Introducing the Platform SDK

Platform SDK Developer's Guide 11

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheCOMAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingWarmStandbyAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/MsgBrokerMigration
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheProtocolManagerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/PrtclMgrMigration
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

Architecture of the Platform SDK
The Platform SDKs enable you to write client or server applications that use messages to
communicate with Genesys servers.

Each SDK has one or more Protocol objects that you can use in your client applications to establish
communication with the appropriate server. These objects use the native protocols of the Genesys
servers they are designed to work with.

From a conceptual standpoint, your application's Protocol object, will be communicating directly
with the appropriate server using the server's protocol running on TCP/IP, as shown below.

Once you have opened a connection to the server, you are ready to send and receive messages. The
Platform SDK supports two message exchange patterns. In some cases, you will need to follow the
Request/Response pattern. That is, you will send a message and wait for a response, as shown below.

At other times, following the Unsolicited Event pattern, you simply need to wait for unsolicited
messages of a certain type.

Introductory Topics Architecture of the Platform SDK

Platform SDK Developer's Guide 12

The messages you send will be in the form of Request classes, such as RequestAgentLogin or
RequestAnswerCall. The messages you receive, whether solicited or not, will be in the form of Event
classes, such as EventAck or EventDialing.

As you can see, the architecture of the Platform SDKs is fairly simple — but you can use it to do some
powerful things.

Introductory Topics Architecture of the Platform SDK

Platform SDK Developer's Guide 13

Connecting to a Server

Java

The applications you write with the Platform SDK need to communicate with one or more Genesys
servers, so the first thing you need to do is create connections with these servers. You will have to
reference libraries and add import statements to your project for each specific protocol you are
working with. These steps are not explicitly described here because the files and packages required
will vary depending on which protocols you plan to use.

Important
Starting with release 8.1.1, the Platform SDK uses Netty by default for the
implementation of its transport layer. Therefore, your project will need to reference
Netty as well.

Once you have connected to a server, you use that connection to exchange messages with the
server. For details about sending and receiving messages to and from a server, refer to the event
handling article.

Creating a Protocol Object

To connect to a Genesys server, you create an instance of the associated protocol class. As an
example, this article will describe connecting to a Genesys T-Server using the TServerProtocol
class. (For different applications, please use this API Reference to check protocol details for the
specific server that you wish to connect to.)

In order to create a protocol object, you will first need to create an Endpoint object which acts as a
container for generic connection parameters. An Endpoint object contains, at a minimum, a server
name, the host name where the server is running, and the port on which the server is listening. The
server name will appear in logs but does not affect protocol behavior; it may be any name that is
significant to you.

Endpoint tserverEndpoint = new Endpoint("T-Server", TSERVER_HOST, TSERVER_PORT);
TServerProtocol tserverProtocol = new TServerProtocol(tserverEndpoint);

After creating your protocol object, you need to specify some connection parameters that are specific
to that protocol. These parameters will differ depending on which server you are connecting to.
Please check to the sections specific to the server that you wish to connect to for more information.

Once configuration is complete, you can open the connection to your server.

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 14

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

Working with a Connection Synchronously
The easiest way to open a connection to your server is to do it synchronously, which means that the
method will block any additional processing until the server connection has either opened
successfully or failed definitively. This is commonly used for non-interactive, batch applications. In
this case, you can add code for using the protocol directly after opening. In the case of failure, the
open method will throw an exception that should be caught and handled.

tserverProtocol.open();
// You can start sending requests here.

When you have finished communicating with your servers, you can close the connection. Similar to
how a connection is opened, you close a synchronous connection by using the following method:

// Synchronous
tserverProtocol.close();

Working with a Connection Asynchronously
You may prefer to open a connection using asynchronous (non-blocking) methods. This is usually
preferred for user-interactive applications, in order to avoid blocking the GUI thread so that the
application does not appear "frozen" to the user.

Important
When using the asynchronous connections, make sure that your code waits for the
Opened event to fire before attempting to send or receive messages. Otherwise you
might be trying to use a connection that is not yet open.

There are two types of asynchronous open/close protocol operations available in Java:

1. Completion handler based asynchronous operations
2. Future based asynchronous operations

Completion Handler Based Asynchronous Operations

Instead of using a normal open or close method, you instead use the following ClientChannel API
methods:

• public <A> void openAsync(CompletionHandler<EventObject, A> handler, A attachment);

• public <A> void openAsync(long timeout, CompletionHandler<EventObject, A> handler, A
attachment);

• public <A> void closeAsync(final CompletionHandler<ChannelClosedEvent, A> handler,
final A attachment);

• public <A> void closeAsync(long timeout, final CompletionHandler<ChannelClosedEvent, A>
handler, final A attachment);

These methods allow you to conveniently specify timeout values, register an internal channel

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 15

listener, and start the beginOpen or beginClose (as appropriate) operation. If the operation is
completed (with or without errors) before the timeout occurs, then the timeout is canceled; otherwise
the operation is assumed to have failed. In either case, the internal channel handler is unregistered
and the handler notified of the results.

Example

CompletionHandler<EventObject, Object> openHandler = new CompletionHandler<EventObject,
Object>() {

@Override
public void completed(EventObject result, MyContext context) {

ChannelOpenedEvent event = (ChannelOpenedEvent)result;
UniversalContactServerProtocol ucs =

(UniversalContactServerProtocol)event.getSource();

// TODO: do not lock current thread. Schedule some work asynchronously.
context.executor.execute(new OpenCompletedTask(context, ucs));

}
@Override
public void failed(Throwable exc, MyContext context) {

// TODO: do not lock current thread. Schedule some work asynchronously.
context.executor.execute(new OpenFailedTask(context));

}
};

CompletionHandler<ChannelClosedEvent, Object> closeHandler = new
CompletionHandler<ChannelClosedEvent, Object>() {

@Override
public void completed(ChannelClosedEvent event , MyContext context) {

UniversalContactServerProtocol ucs =
(UniversalContactServerProtocol)event.getSource();

// TODO: do not lock current thread. Schedule some work asynchronously.
context.executor.execute(new CloseCompletedTask(context, ucs));

}

@Override
public void failed(Throwable exc, MyContext context) {

// TODO: do not lock current thread. Schedule some work asynchronously.
context.executor.execute(new CloseFailedTask(context));

}
};

UniversalContactServerProtocol ucs = new UniversalContactServerProtocol();
ucs.setEndpoint(new Endpoint(HOST, PORT));

MyContext context = new MyContext();

ucs.openAsync(15000, openHandler, context);

// ... in some other place

ucs.closeAsync(15000, closeHandler, context);

Future Based Asynchronous Operations

An alternative way to use asynchronous operations is to use the following Future-based
ClientChannel API methods:

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 16

• public Future<ChannelOpenedEvent> openAsync();

• public Future<ChannelOpenedEvent> openAsync(Long timeout);

• public Future<ChannelClosedEvent> closeAsync();

Example

UniversalContactServerProtocol ucs1 = new UniversalContactServerProtocol(new Endpoint(HOST1,
PORT1));
UniversalContactServerProtocol ucs2 = new UniversalContactServerProtocol(new Endpoint(HOST2,
PORT2));

Future<ChannelOpenedEvent> fOpen1 = ucs1.openAsync(15000L);
Future<ChannelOpenedEvent> fOpen2 = ucs2.openAsync(15000L);

// TODO : do something

while (!(fOpen1.isDone() && fOpen2.isDone())) {
// TODO : do something
Thread.yield();

}

try {
ChannelOpenedEvent ev1 = fOpen1.get();
ChannelOpenedEvent ev2 = fOpen2.get();

// TODO : something here with the opened protocols
}
catch(ExecutionException | InterruptedException ex) {

// do something
}

// ... in some other place
Future<ChannelClosedEvent> fClose1 = ucs1.closeAsync();
Future<ChannelClosedEvent> fClose2 = ucs2.closeAsync();

// TODO : do something

while (!(fClose1 .isDone() && fClose2 .isDone())) {
// TODO : do something

Thread.yield();
}
try {

ChannelClosedEvent ev1 = fClose1.get();
ChannelClosedEvent ev2 = fClose2.get();
// TODO : something here

}
catch(ExecutionException | InterruptedException ex) {

// do something
}

Configuring ADDP

The Advanced Disconnection Detection Protocol (ADDP) is a Genesys proprietary add-on to the TCP/IP

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 17

https://docs.genesys.com/Documentation/FR/latest/Dep/ADDP

stack. It implements a periodic poll when no actual activity occurs over a given connection. If a
configurable timeout expires without a response from the opposite process, the connection is
considered lost.

ADDP is enabled as part of the configuration process for a particular protocol connection instance,
and can either be initialized before the connection is open or reconfigured on already opened
connection.

Tip
Changing the configuration immediately after a connection is opened, or from the
channel event handlers, is not recommended. Some connection configuration options
(including ADDP) can be changed on the fly, however the channel configuration is not
expected to change often or quickly - options are not treated as if they are dynamic
values.

To enable ADDP, use the configuration options of your Endpoint object. Set the UseAddp property to
true and configure the rest of the properties based on your desired performance.

Platform SDK connections have the following ADDP configuration options available:

• protocol - set the option value to addp to enable ADDP;
• addp timeout - specifies how often the client will send ADDP ping requests and wait for responses;
• addp remote timeout - specifies how often the server will send ADDP ping requests and wait for

responses;
• addp tracing enable - used to enable logging of ADDP activities on both the client and server; can be

set to "none", "local", "remote", "full" (or "both").

Here is an initialization code sample:

PropertyConfiguration tserverConfig = new PropertyConfiguration();
tserverConfig.setUseAddp(true);
tserverConfig.setAddpServerTimeout(10);
tserverConfig.setAddpClientTimeout(10);
tserverConfig.setAddpTraceMode(AddpTraceMode.Both);

Endpoint tserverEndpoint = new Endpoint("T-Server", TSERVER_HOST, TSERVER_PORT,
tserverConfig);
TServerProtocol tserverProtocol = new TServerProtocol(tserverEndpoint);

or

...
tserverConfig.setOption(AddpInterceptor.PROTOCOL_NAME_KEY, AddpInterceptor.NAME);
tserverConfig.setOption(AddpInterceptor.TIMEOUT_KEY, "10");
tserverConfig.setOption(AddpInterceptor.REMOTE_TIMEOUT_KEY, "11.5");
tserverConfig.setOption(AddpInterceptor.TRACE_KEY, "full");
...

Note that timeout values are stored as strings and parsed as float values. So, it is ok to have:

tserverConfig.setOption(AddpInterceptor.TIMEOUT_KEY, "10");

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 18

tserverConfig.setInteger(AddpInterceptor.TIMEOUT_KEY, 10); // its the same value
tserverConfig.setOption(AddpInterceptor.TIMEOUT_KEY, "11.5"); // = is treated as 11500 ms

Tip
The minimum allowed value for ADDP timeouts is 1 (one second). If a timeout value is
set to any value lower than 1, then a timeout of one second is used instead.

Also note that in tserverConfig.setOption(AddpInterceptor.TRACE_KEY, "full"), the
tserverConfig.setOption(...) method accepts the following string values:

• "none" - no logging occurs
• "local" - ADDP activities are logged locally on the client side
• "remote" - a special initialization bit is sent in the ADDP initialization message to server side, asking the

server to write its own ADDP tracing records to a server side log
• "full" - the equivalent of "local" + "remote"

Note that the comparison is case-insensitive for option values, so "FULL" == "Full" == "full".
Unknown trace mode option values are treated as "none".

Tip
In release 8.1.0 of Platform SDK for Java, property handling logic was improved with
truncation of the "CFGTM" prefix to automatically handle the Configuration Server
protocol enumeration CfgTraceMode.toString(). So, if you use the latest Platform
SDK 8.1.0 version for Java, writing CfgTraceMode.CFGTMBoth.toString() is
acceptable, but earlier versions of Platform SDK for Java require that you translate the
enumeration values to the corresponding string values.

Configuring IPv6 Connection

For backward compatibility with older/legacy Genesys servers and platforms, Platform SDK has
disabled usage of IPv6 addresses by default. However, IPv6 usage may be explicitly enabled for a
particular connection through specific connection configuration options.

There are two Platform SDK connection options to configure IPv6 usage:

1. enable-ipv6: possible values are:
• '0' - support disabled (default)
• '1' - support enabled;

2. ip-version: possible values are:
• '4,6' - look for IPv4 addresses first (default)

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 19

• '6,4' - look for IPv6 addresses first.

PropertyConfiguration tserverConfig = new PropertyConfiguration();
tserverConfig.setIPv6Enabled(true);
tserverConfig.setIPVersion(Connection.IP_VERSION_6_4);

Endpoint tserverEndpoint = new Endpoint("T-Server", TSERVER_HOST, TSERVER_PORT,
tserverConfig);
TServerProtocol tserverProtocol = new TServerProtocol(tserverEndpoint);

Note: In some environment configurations (Java 5, some Java 6 versions, or old versions of Windows)
an java.net.SocketException: Address family not supported by protocol exception may
occur. The problem is in the underlying JVM/OS platform related to NIO functionality.

This error may be resolved by:

1. Switching to Java 7+ version;
2. Switching to OIO usage instead of NIO with jvm system property:

-Dcom.genesyslab.platform.commons.connection.impl.netty.transport=OIO

or with Java method call (should be executed before any of Platform SDK protocols creation)

PsdkCustomization.setOption(PsdkOption.NettyTransportType, "OIO");

Configuring Client-Side Host/Port

Platform SDK allows client socket local host/port binding for Platform SDK connections.

PropertyConfiguration tserverConfig = new PropertyConfiguration();
tserverConfig.setLocalBindingPort(localPort);
tserverConfig.setLocalBindingHost(localHost);

Endpoint tserverEndpoint = new Endpoint("T-Server", TSERVER_HOST, TSERVER_PORT,
tserverConfig);
TServerProtocol tserverProtocol = new TServerProtocol(tserverEndpoint);

Important
Be aware that client-side port binding may affect the restoration procedure for
connections, leading to errors such as "port is in use". This error may also occur if the
target hostname is resolved to several IP addresses and Platform SDK failed to
connect to the first of them.

There is a special case regarding the usage of local port binding with TServer High Availiability (HA)
connections. HA protocol connections hold two real connections behind the scenes: one to the
primary and one to the backup. The system does not allow both connections to bind to the same local
port, so to handle this situation an additional parameter is required for the backup connection local
port binding:

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 20

PropertyConfiguration tserverConfig = new PropertyConfiguration();
tserverConfig.setLocalBindingPort(localPort);
tserverConfig.setInteger(Connection.BACKUP_BIND_PORT_KEY, localPort2);

Endpoint tserverEndpoint = new Endpoint("T-Server", TSERVER_HOST, TSERVER_PORT,
tserverConfig);
TServerProtocol tserverProtocol = new TServerProtocol(tserverEndpoint);

Configuring Warm Standby

The WarmStandby Application Block will help you connect or reconnect to your Genesys servers. You
will benefit by using the WarmStandby for every application that needs to maintain open connections
to Genesys servers, whether you use hot standby or you are only connecting to a single server with
no backup redundancy configured.

If you use hot standby, use the WarmStandby Application Block when retrying the connection to your
primary or backup server until success, or for reconnecting after both the primary and backup servers
are unavailable.

If you are connecting to a single server, use the WarmStandby Application Block to retry the first
connection or to reconnect after that server has been unavailable. In this case, configure the
WarmStandbyService to use the same Endpoint as primary and backup.

Activating the WarmStandby Application Block Service
To activate the WarmStandby Application Block, you create, configure and start a
WarmStandbyService object. Two Endpoint objects must be defined: one with parameters for
connecting to your primary server and one for connecting to your backup server. You must also
remember to start the WarmStandbyService before opening the protocol.

Endpoint tserverEndpoint = new Endpoint("T-Server", TSERVER_HOST, TSERVER_PORT,
tserverConfig);
Endpoint tserverBackupEndpoint = new Endpoint("T-Server", TSERVER_BACKUP_HOST,

TSERVER_BACKUP_PORT, tserverConfig);

TServerProtocol tserverProtocol = new TServerProtocol(tserverEndpoint);

WarmStandbyConfiguration warmStandbyConfig = new WarmStandbyConfiguration(tserverEndpoint,
tserverBackupEndpoint);

warmStandbyConfig.setTimeout(5000);
warmStandbyConfig.setAttempts((short)2);

WarmStandbyService warmStandby = new WarmStandbyService(tserverProtocol);
warmStandby.applyConfiguration(warmStandbyConfig);
warmStandby.start();

tserverProtocol.beginOpen();

Stopping the WarmStandby Application Block Service
Stop the WarmStandbyService object when your application does not need to maintain the
connection with the server any longer. This is typically done at the end of your program.

warmStandby.stop();

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 21

tserverProtocol.close();

For more information about how the WarmStandby Application Block works, please refer to the
WarmStandby Application Block documentation.

AsyncInvokers

AsyncInvokers are an important aspect of the Platform SDK protocols. They encapsulate the way a
piece of code is executed. By using invokers, you can customize what thread executes protocol
channel events and handles protocol events. You can also use a thread-pool for parsing protocol
messages.

For GUI applications, you normally want most of the logic to happen in the context of the GUI thread.
That will enable you to update GUI elements directly, and will simplify your code because you will not
have to care about multi-threading.

For instance, if you are working with a Swing application, you can use the following AsyncInvoker
implementation:

public class SwingInvoker implements AsyncInvoker {

@Override
public void invoke(Runnable target) {

SwingUtilities.invokeLater(target);
}

@Override
public void dispose() {}

}

Assigning a Protocol Invoker
The protocol invoker is in charge of executing channel events (such as channel closed and channel
opened) and protocol events (received messages from the server). Usually, when developing a GUI
application, you will want to use the GUI thread for handling all kinds of protocol events. By using the
AsyncInvoker class described in the section before, you can assign a protocol invoker like this:

TServerProtocol tserverProtocol = new TServerProtocol(tserverEndpoint);
tserverProtocol.setInvoker(new SwingInvoker());

The protocol invoker is of utmost importance for your application. If you do not explicitly set an
invoker, then a default internal Platform SDK thread is used, and you will need to use care with
possible multi-threading issues.

.NET

The applications you write with the Platform SDK need to communicate with one or more Genesys
servers, so the first thing you need to do is create connections with these servers. You will have to
reference libraries and add using statements to your project for each specific protocol you are

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 22

working with. These steps are not explicitly described here because the files and packages required
will vary depending on which protocols you plan to use. Once you have connected to a server, you
use that connection to exchange messages with the server. For details about sending and receiving
messages to and from a server, refer to the Event Handling article.

Creating a Protocol Object

To connect to a Genesys server, you create an instance of the associated protocol class. As an
example, this article will describe a connection to a Genesys T-Server using the TServerProtocol class.
(For different applications, please use this API Reference to check protocol details for the specific
server that you wish to connect to.)

In order to create a protocol object, you will first need to create an Endpoint object which acts as a
container for generic connection parameters. An Endpoint object contains, at a minimum, a server
name, the host name where the server is running, and the port on which the server is listening. The
server name will appear in logs but does not affect protocol behavior; it may be any name that is
significant to you.

var tserverEndpoint = new Endpoint("T-Server", TServerHost, TServerPort);
var tserverProtocol = new TServerProtocol(tserverEndpoint);

After creating your protocol object, you need to specify some connection parameters that are specific
to that protocol. These parameters will differ depending on which server you are connecting to.
Please check to the sections specific to the server that you wish to connect to for more information.

Once configuration is complete, you can open the connection to your server.

Working with a Connection Synchronously
The easiest way to open a connection to your server is to do it synchronously, which means that the
method will block any additional processing until the server connection has either opened
successfully or failed definitively. This is commonly used for non-interactive, batch applications. In
this case, you can add code for using the protocol directly after opening. In the case of failure, the
open method will throw an exception that should be caught and handled.

tserverProtocol.Open();
// You can start sending requests here.

When you have finished communicating with your servers, you can close the connection. Similar to
how a connection is opened, you can also choose to close a connection either synchronously or
asynchronously by using one of the following methods:

tserverProtocol.Close();

Or:

tserverProtocol.Dispose();

Working with a Connection Asynchronously
You may prefer to open a connection using asynchronous (non-blocking) methods. This is usually

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 23

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

preferred for user-interactive applications, in order to avoid blocking the GUI thread so that the
application does not appear "frozen" to the user.

Important
When using the asynchronous connections, make sure that your code waits for the
Opened event to fire before attempting to send or receive messages. Otherwise you
might be trying to use a connection that is not yet open.

There are two types of asynchronous open/close protocol operations:

1. Pure asynchronous operations
2. IAsyncResult based asynchronous operations

Pure Asynchronous Operations

These operation use channel timeout with the following ClientChannel API methods:

• public void BeginOpen();

• public void BeginClose();

Example

var ucs = new UniversalContactServerProtocol(new Endpoint(HOST, PORT)) {Timeout =
TimeSpan.FromSeconds(20)};

var openedEvent = new ManualResetEvent(false);
ucs.Opened += (sender, args) => openedEvent.Set();
var closedEvent = new ManualResetEvent(false);
ucs.Closed += (sender, args) => closedEvent.Set();
ucs.BeginOpen();

// ... in some other place
if (!openedEvent.WaitOne(TimeSpan.FromSeconds(30))) // here might be any timeout value
{

// channel has not been opened yet
}

// TODO: Work with the channel

ucs.BeginClose();

// ... in some other place
if (!closedEvent.WaitOne(TimeSpan.FromSeconds(30))) // here might be any timeout value
{

// channel has not been closed yet
}

IAsyncResult Based Asynchronous Operations

Instead of using a normal open or close method, you instead use the following ClientChannel API
methods:

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 24

• public IAsyncResult BeginOpen(AsyncCallback callback, object state);

• public IAsyncResult BeginOpen(TimeSpan timeout, AsyncCallback callback, object state);

• public void EndOpen(IAsyncResult iAsyncResult);

• public IAsyncResult BeginClose(AsyncCallback callback, object state);

• public IAsyncResult BeginClose(TimeSpan timeout, AsyncCallback callback, object state);

• public void EndClose(IAsyncResult iAsyncResult);

These methods allow you to conveniently specify timeout values, register an internal channel
listener, and start the beginOpen or beginClose (as appropriate) operation. If the operation is
completed (with or without errors) before the timeout occurs, then the timeout is canceled; otherwise
the operation is assumed to have failed. In either case, the internal channel handler is unregistered
and the handler notified of the results.

Additional information about IAsyncResult interface is available on MSDN.

Example: Using Callbacks

var ucs = new UniversalContactServerProtocol(new Endpoint(HOST, PORT)) { Timeout =
TimeSpan.FromSeconds(20) };

var openedEvent = new ManualResetEvent(false);
var closedEvent = new ManualResetEvent(false);
ucs.BeginOpen(ar =>
{

try
{

ucs.EndOpen(ar);
openedEvent.Set();
// TODO: notify if operation is successful

}
catch (Exception e)
{

// TODO: notify about the error
}

}, ucs);

// ... in some other place
if (!openedEvent.WaitOne(TimeSpan.FromSeconds(30))) // here might be any timeout value
{

// channel has not been opened yet
}

ucs.BeginClose(ar =>
{

try
{

ucs.EndClose(ar);
closedEvent.Set();

// TODO: notify if operation is successful
}
catch (Exception e)
{

// TODO: notify about the error
}

}, ucs);

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 25

// ... in some other place
if (!closedEvent.WaitOne(TimeSpan.FromSeconds(30))) // here might be any timeout value
{

// channel has not been closed yet
}

Example: Using IAsyncResult

var ucs = new UniversalContactServerProtocol(new Endpoint(HOST, PORT)) { Timeout =
TimeSpan.FromSeconds(20) };

var openResult = ucs.BeginOpen(null, null);
// ... in some other place
try
{

ucs.EndOpen(openResult);
// TODO: notify if operation is successful

}
catch (Exception e)
{

// TODO: notify about the error
}

var closeResult = ucs.BeginClose(null, null);
// ... in some other place
try
{

ucs.EndClose(closeResult);
// TODO: notify if operation is successful

}
catch (Exception e)
{

// TODO: notify about the error
}

Configuring ADDP

The Advanced Disconnection Detection Protocol (ADDP) is a Genesys proprietary add-on to the TCP/IP
stack. It implements a periodic poll when no actual activity occurs over a given connection. If a
configurable timeout expires without a response from the opposite process, the connection is
considered lost.

To enable ADDP, use the configuration options of your Endpoint object. Set the UseAddp property to
true and configure the rest of the properties based on your desired performance. For a description of
all ADDP-related options, please refer to the API Reference.

var tserverConfig = new PropertyConfiguration();
tserverConfig.UseAddp = true;
tserverConfig.AddpServerTimeout = 10;
tserverConfig.AddpClientTimeout = 10;
tserverConfig.AddpTrace = "both";

var tserverEndpoint = new Endpoint("T-Server", TServerHost, TServerPort, tserverConfig);
var tserverProtocol = new TServerProtocol(tserverEndpoint);

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 26

https://docs.genesys.com/Documentation/FR/latest/Dep/ADDP

Tip
The minimum allowed value for ADDP timeouts is 1 (one second). If a timeout value is
set to any value lower than 1, then a timeout of one second is used instead.

Tip
In release 8.1.1 of Platform SDK for .NET, property handling logic was improved with
truncation of the "CFGTM" prefix to automatically handle the Configuration Server
protocol enumeration CfgTraceMode.toString(). So, if you use the latest Platform
SDK 8.1.1 version for .NET, writing CfgTraceMode.CFGTMBoth.toString() is
acceptable, but earlier versions of Platform SDK for .NET require that you translate the
enumeration values to the corresponding string values.

Configuring IPv6 Connection

For backward compatibility with older/legacy Genesys servers and platforms, Platform SDK has
disabled usage of IPv6 addresses by default. However, IPv6 usage may be explicitly enabled for a
particular connection through specific connection configuration options.

There are two Platform SDK connection options to configure IPv6 usage:

1. enable-ipv6: possible values are:
• 'false' - support disabled (default)
• 'true' - support enabled

2. ip-version: possible values are:
• '4,6' - look for IPv4 addresses first (default)
• '6,4' - look for IPv6 addresses first

PropertyConfiguration configuration = new PropertyConfiguration();
configuration.SetOption(CommonConnection.EnableIPv6Key, "1");
configuration.SetOption(CommonConnection.IpVersionKey, "6,4");
var client = new TServerProtocol(new Endpoint(host, port, configuration));

or:

PropertyConfiguration configuration = new PropertyConfiguration
{

IPv6Enabled = true,
IPVersion = "6,4"

};
var client = new TServerProtocol(new Endpoint(host, port, configuration));

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 27

Configuring Client Side Host/Port

Platform SDK allows client socket local host/port binding for Platform SDK connections.

PropertyConfiguration configuration = new PropertyConfiguration
{

LocalBindingHost = host,
LocalBindingPort = port

};

var client = new TServerProtocol(new Endpoint(srvHost, srvPort, configuration));

Important
Be aware that client-side port binding may affect the restoration procedure for
connections, leading to errors such as "port is in use". This error may also occur if the
target hostname is resolved to several IP addresses and Platform SDK failed to
connect to the first of them.

There is a special case regarding the usage of local port binding with T-Server High Availability (HA)
connections. HA protocol connections hold two real connections behind the scenes: one to the
primary and one to the backup. The system does not allow both connections to bind to the same local
port, so to handle this situation an additional parameter is required for the backup connection local
port binding:

PropertyConfiguration configuration = new PropertyConfiguration
{

LocalBindingHost = host,
LocalBindingPort = port,
BackupLocalBindingHost = host,
BackupLocalBindingPort = backupPort

};

var client = new TServerProtocol(new Endpoint(srvHost, srvPort, configuration));

Configuring Warm Standby

The Warm Standby Application Block will help you connect or reconnect to your Genesys servers. You
will benefit by using the Warm Standby for every application that needs to maintain open
connections to Genesys servers, whether you use hot standby or you are only connecting to a single
server with no backup redundancy configured.

If you use hot standby, use the Warm Standby Application Block when retrying the connection to your
primary or backup server until success, or for reconnecting after both the primary and backup servers
are unavailable.

If you are connecting to a single server, use the Warm Standby Application Block to retry the first
connection or to reconnect after that server has been unavailable. In this case, configure the
WarmStandbyService to use the same Endpoint as primary and backup.

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 28

Activating the WarmStandby Application Block
To activate the Warm Standby Application Block, you create, configure and start a
WarmStandbyService object. Two Endpoint objects must be defined: one with parameters for
connecting to your primary server and one for connecting to your backup server. You must also
remember to start the WarmStandbyService before opening the protocol.

var tserverEndpoint = new Endpoint("T-Server", TServerHost, TServerPort, tserverConfig);
var tserverBackupEndpoint = new Endpoint("T-Server", TServerBackupHost,

TServerBackupPort, tserverConfig);

var tserverProtocol = new TServerProtocol(tserverEndpoint);

var warmStandbyConfig = new WarmStandbyConfiguration(tserverEndpoint, tserverBackupEndpoint);
warmStandbyConfig.Timeout = 5000;
warmStandbyConfig.Attempts = 2;

var warmStandby = new WarmStandbyService(tserverProtocol);
warmStandby.ApplyConfiguration(warmStandbyConfig);
warmStandby.Start();

tserverProtocol.Open();

Stopping the WarmStandby Application Block
Stop the WarmStandbyService object when your application does not need to maintain the
connection with the server any longer. This is typically done at the end of your program.

warmStandby.Stop();
tserverProtocol.Dispose();

For more information about how the Warm Standby Application Block works, please refer to the Warm
Standby Application Block documentation.

AsyncInvokers

AsyncInvokers are an important aspect of the Platform SDK protocols. They encapsulate the way a
piece of code is executed. By using invokers, you can customize what thread executes protocol
channel events and handles protocol events. You can also use a thread-pool for parsing protocol
messages.

For GUI applications, you normally want most of the logic to happen in the context of the GUI thread.
That will enable you to update GUI elements directly, and will simplify your code because you will not
have to care about multi-threading.

For instance, if you are working with a Windows Forms or WPF application,, you can use the following
IAsyncInvoker implementation:

public class SyncContextInvoker : IAsyncInvoker
{

private readonly SynchronizationContext syncContext;

public SyncContextInvoker()
{

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 29

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingWarmStandbyAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingWarmStandbyAB

this.syncContext = SynchronizationContext.Current;
}

public void Invoke(Delegate d, params object[] args)
{

syncContext.Post(s => { d.DynamicInvoke(args); }, null);
}

public void Invoke(WaitCallback callback, object state)
{

syncContext.Post(s => { callback(state); }, null);
}

public void Invoke(EventHandler handler, object sender, EventArgs args)
{

syncContext.Post(s => { handler(sender, args); }, null);
}

}

The Protocol Invoker
The protocol invoker is in charge of executing channel events (such as channel closed and channel
opened) and protocol events (received messages from the server). Usually, when developing a GUI
application, you will want to use the GUI thread for handling all kinds of protocol events. By using the
class implemented in the section before, you can assign a protocol invoker like this:

var tserverProtocol = new TServerProtocol(tserverEndpoint);
tserverProtocol.Invoker = new SyncContextInvoker();

The protocol invoker is of utmost importance for your application. If you do not explicitly set an
invoker, then a default internal Platform SDK thread is used, and you will need to use care with multi-
threading issues.

Advanced: Multithreaded Message Parsing

Tip
Please apply this section only if your application is suffering from performance
problems because of large message parsing. You should identify the bottleneck using
profiling techniques, and should measure the effect after making these changes by
using the same profiling techniques.

Take into account that the technique described here can affect the correctness of your application,
since concurrently parsing messages can affect the order in which those messages are received. So
use this technique only selectively and in places where order of received messages is not relevant.

Every message you receive from a Genesys server is formatted in some way. Most Genesys servers
use binary protocols, while some use XML-based protocols. When your application receives one of
these messages, it parses the message and places it in the message queue for the appropriate
protocol.

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 30

By default, the Platform SDK uses a single thread for parsing all messages. This parsing can be time-
consuming in certain cases, and some applications may face performance issues. For example, some
applications may receive lots of large binary-format messages, such as some of the statistics
messages generated by Stat Server, while others might need to parse messages in non-binary
formats, such as the XML format used to communicate with Genesys Multimedia (or e-Services)
servers.

If message parsing becomes a bottleneck for your application, you can try to enable multi-threaded
message parsing. This is done by setting the protocol connection invoker to an invoker that
dispatches work to a pool of threads. One such invoker is provided out-of-the-box:

statServerProtocol.SetConnectionInvoker(DefaultInvoker.InvokerSingleton);

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 31

Configuring Platform SDK Channel
Encoding for String Values
While sending string attributes/values to a server (or to the other side of any connection), Platform
SDK packs strings to their binary representation. The binary representation depends on actual
charset encoding, so it is important that this data will be unpacked with correct encoding when
received on the other side of the connection.

Genesys protocols do not allow client and server sides to synchronize (that is, exchange) the
encoding being used, so application developers may need to handle this configuration manually.
(Exception: A Configuration Server 8.1.2+ deployment that is configured as UTF-8 multi-lingual can
automatically synchronize UTF-8 encoding with Platform SDK 8.1.3 or later. For details, see
Connecting Using UTF-8 Character Encoding.) The most common situation requiring this type of
configuration occurs when a Genesys server and the application using Platform SDK to connect with
that server have different localization settings, causing default encoding to be different on both sides.

There are two possible solutions for synchronizing the client side encoding with that of the server
side:

1. (Java only) Change default jvm encoding with the jvm argument: java -Dfile.encoding=...
This changes the charset encoding for the entire jvm, so will affect the main application and any
Platform SDK connections to other servers. It may affect the client application relation with other
components on the client host.

2. (Java only) Starting with Platform SDK 8.1.3, the new com.genesyslab.platform.defaultcharset
system property can be used to set default charset encoding for Platform SDK connections without the
need to change default encoding for whole jvm.

Platform SDK checks this property once before opening the first connection, and if a value is
specified then it will be used as the default encoding for all Platform SDK connections (instead of
the value defined for the jvm).

3. Configure a particular Platform SDK connection to use the server side encoding with following
connection configuration option (added in Platform SDK 8.0.1):

[Java]

protocol = ...;

PropertyConfiguration conf = new PropertyConfiguration();
conf.setOption(Connection.STR_ATTR_ENCODING_NAME_KEY, "windows-1252");

protocol.configure(conf);
protocol.open();

[C#]

protocol = ...;

PropertyConfiguration conf = new PropertyConfiguration();
conf.SetOption(CommonConnection.StringAttributeEncodingKey, "windows-1252");

protocol.Configure(conf);
protocol.Open();

Introductory Topics Configuring Platform SDK Channel Encoding for String Values

Platform SDK Developer's Guide 32

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectUsingUTF8Enconding

Using the Warm Standby Application Block

Tip
• This application block is a reusable production-quality component. It has been designed

using industry best practices and provided with source code so it can be used "as is,"
extended, or tailored if you need to.
Please see the License Agreement for details.

• The Warm Standby Application Block described in this topic is a redesign first available
with Platform SDK 8.5.101.06 for Java or 8.5.101.06 for .NET, that provides no
backwards-compatibility for earlier releases. For information about earlier versions of
the Warm Standby Application Block, please read the Legacy Warm Standby Application
Block Description.

This article describes how developers can use the Warm Standby Application Block to maintain
availability of connections between their applications and Genesys servers. It applies to all Server
Deployment Modes, no matter if single-server mode, primary-backup mode, or cluster (N+1) mode.

The WarmStandby class is designed to handle the process of connecting (first-time connection) and
reconnecting (in case of a connection failure) to the Genesys servers. WarmStandby maintains a pool
of server addresses and sequentially tries to connect to a server until an attempt is successful or the
pool has been exhausted.

WarmStandby raises events about its behavior that can be traced by client code.

Supported Server Deployment Modes

• Single Server: WarmStandby assists with reconnection attempts to the same server when the client
gets disconnected.

• Classical Genesys Primary-Backup: WarmStandby assists with reconnection attempts to the same
server, and failovers among the pair of servers. In some cases, failovers need to wait for a delay for the
backup server to become active (for example, with Configuration Server).

• Active N+1 Cluster: WarmStandby assists with reconnections and failovers.

In addition, any of these configurations can be deployed in Multiple Data Centers mode. In this
mode, the service is deployed across Data Centers, where every Data Center has a set of servers
configured in any of the Server Deployment Modes above. WarmStandby enables the client to do Data
Center failovers by allowing the pool of server addresses to be reconfigured. Triggering a Site failover
(pool reconfiguration) is the responsibility of the client application, as it will depend on deployment-
specifics.

Behavior
Behavior in the case of pool-exhaustion is defined programmatically by your client application, and

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 33

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LegacyWarmStandbyAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LegacyWarmStandbyAB

depends on your needs. In some cases, you will want WarmStandby to stop trying to connect. This is
the case for client applications that need an open connection to go on with the application logic. In
other cases you will want to continue attempting to connect, for keeping service availability. For that
you can programmatically activate automatic restore, in order for WarmStandby to continue
connection attempts in the background. The same client application may need to use both
approaches, in order to start up by using the stop-on-pool-exhaustion approach (for example: a user
authentication step on startup), and then activate automatic restore as soon as all the startup logic is
done.

WarmStandby defines a concrete background automatic restore strategy that follows these rules:

• When an established connection to a server breaks (disconnection), the same server is retried
immediately once (reconnection), in order to recover from casual network or protocol failures. A
random delay can be configured (ReconnectionRandomDelayRange), which will be useful for client
applications with a large number of running instances (such as custom agent desktops) so that every
client does not try to reconnect at the same time.

• If reconnection fails, the next server in the pool is tried (failover). A configurable delay (BackupDelay)
can be applied before the failover, for cases where a passive server may need some time to become
active (such as a Configuration Server running in backup mode).

• After all the servers in the configured pool are tried, the pool is retried again, after a configurable delay
(RetryDelay). This repeats indefinitely until the client application programmatically decides to stop.
RetryDelay is a list, so that a back-off strategy can be applied to retry delays. For example: "first wait
5 seconds, then 10 seconds, and then 30 seconds for all future attempts."

Summary
The following is a brief summary of the different ways that client applications should use
WarmStandby:

• Batch (synchronous, non-interactive) client applications will just need to call open(), and possibly check
if the connection is open during their execution by using the isOpen() method.

• GUI (asynchronous, interactive) client applications will normally want to connect, but only keep the
connection open after some other conditions hold (for example: user authentication, other connections
also open, etc). They will therefore call openAsync() and then autoRestore() when appropriate.

• Daemon (lengthy, non-interactive) client applications can just call autoRestore() or, if they need to
process the result of the open operation, the can use autoRestore(false) and then open() or
openAsync().

Java

Creating

Before creating a new WarmStandby instance, you first create a protocol instance for the server you
want to connect to. Every WarmStandby constructor requires a protocol instance as a parameter, as
shown in the examples below.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 34

UniversalContactServerProtocol ucs = new UniversalContactServerProtocol();
WarmStandby ws = new WarmStandby(ucs);

or

UniversalContactServerProtocol ucs = new UniversalContactServerProtocol();
WarmStandby ws = new WarmStandby(ucs, new Endpoint("host1", port1), new Endpoint("host2",
port2));

Important
Once the WarmStandby object is created, you can no longer use the open and close
operations for that protocol or set the channel endpoint directly. These operations will
now be handled using the WarmStandby object instead.

Configuring

The configuration for WarmStandby contains the following information:

• Endpoints: a list of endpoints which will be processed while trying to open the channel;
• Timeout: timeout for the channel opening operation;
• BackupDelay: interval between getting disconnected from a server and the first attempt to switch

endpoints;
• RetryDelay: intervals between cycles for trying to reconnect to a server;
• ReconnectionRandomDelayRange: maximum value of additional random delay.

Initial configuration of WarmStandby occurs inside the instance constructor, but an external
configuration can be applied whenever it is convenient for your application.

There are two ways you can update WarmStandby configuration:

1. directly updating specific configuration values in your WarmStandby instance
2. maintaining and updating a WSConfig object to hold configuration details, and then applying the entire

configuration to your WarmStandby implementation

For simple applications where WarmStandby configuration typically does not change and you are
connecting to a small number of Genesys servers, the first method may be easier. But if your
application uses a more dynamic approach for the WarmStandby feature, or if you want to apply the
same configuration details to multiple protocol objects, then using WSConfig to manage the
configuration details can simplify your programming.

Updating Configuration Directly
You can use the getConfig() method to return and modify the current WarmStandby configuration
details, as shown below.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 35

ws.getConfig()
.setEndpoints(new Endpoint("host1", port1), new Endpoint("host2", port2))
.setBackupDelay(2000)
.setReconnectionRandomDelayRange(5000)
.setRetryDelay(100, 500, 5000)
.setTimeout(10000);

Note that you only need to set fields you want updated using this method. For example, if you use a
constructor that sets Endpoint details then the setEndpoints line could be ignored.

Using the WSConfig Object
You can also create a WSConfig object that holds configuration details. This object allows you to
update and manage configuration settings, and only have them applied to the WarmStandby
object(s) when you are ready by using setConfig.

WSConfig cfg = new WSConfig()
.setEndpoints(new Endpoint("host1", port1), new Endpoint("host2", port2))
.setBackupDelay(2000)
.setReconnectionRandomDelayRange(5000)
.setRetryDelay(100, 500, 5000)
.setTimeout(10000);

ws.setConfig(cfg);

or

WSConfig cfg = new WSConfig();
cfg.setEndpoints(new Endpoint("host1", port1), new Endpoint("host2", port2))
cfg.setBackupDelay(2000)
cfg.setReconnectionRandomDelayRange(5000)
cfg.setRetryDelay(100, 500, 5000)
cfg.setTimeout(10000);

ws.setConfig(cfg);

Using WarmStandby

Opening a Protocol Without Reconnect
The following code shows how to make a single connection attempt. If this attempt is unsuccessful
then WarmStandby finishes its work.

UniversalContactServerProtocol ucs = new UniversalContactServerProtocol();
WarmStandby ws = new WarmStandby(ucs, new Endpoint("host1", port1), new Endpoint("host2",
port2));
try {

ws.open();
}
catch (WSNoAvailableServersException ex) {

// TODO: Handle exception
}
catch (WSCanceledException ex) {

// TODO: Handle exception
}

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 36

or

UniversalContactServerProtocol ucs = new UniversalContactServerProtocol();
WarmStandby ws = new WarmStandby(ucs, new Endpoint("host1", port1), new Endpoint("host2",
port2));
try {

ws.open();
}
catch (WSException ex) {

// TODO: Handle exception
}

Opening a Protocol with Reconnect
The following code leads to an endless cycle of connection attempts, with some delays between
attempts, until a success is found or a manual break occurs.

In this scenario, if a channel gets disconnected then WarmStandy will initiate a new cycle of
connections to server.

UniversalContactServerProtocol ucs = new UniversalContactServerProtocol();
WarmStandby ws = new WarmStandby(ucs, new Endpoint("host1", port1), new Endpoint("host2",
port2));
ws.autoRestore();

WarmStandby.autoRestore() is a way to instruct the WarmStandby: "you now take care of keeping
the connection available in the background".

Closing a WarmStandby Connection
To close an open WarmStandby connection, use the close() method.

UniversalContactServerProtocol ucs = new UniversalContactServerProtocol();
WarmStandby ws = new WarmStandby(ucs, new Endpoint("host1", port1), new Endpoint("host2",
port2));
// TODO: do something
ws.close();

The close() method automatically cancels the requirement for any further attempts to re-establish a
connection. Use the autoRestore(), or autoRestore(boolean), method to re-enable reconnection
attempts.

Asynchronous Operations of WarmStandby
Code samples above are for synchronous operations, which block the current thread.

Asynchronous operations are similar to synchronous but don’t block the running thread. To use
asynchronous operations, use the table below and replace any calls to synchronous methods with the
asynchronous equivalents.

Synchronous method Asynchronous equivalent
open() openAsync().get()
close() closeAsync().get()

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 37

Tip
You can also use the WarmStandby asynchronous open/close operations with the
Future interface.

Using WarmStandby Event Handlers
WarmStandby contains four events you should use for notification of connection status.

Event name Event description
ChannelOpened Notifies that channel was opened successfully.
ChannelDisconnected Notifies that channel was disconnected.

EndpointTriedUnsuccessfully Notifies that the another connection attempt was
unsuccessful.

AllEndpointsTriedUnsuccessfully Notifies that the all connection attempts in the
current cycle were unsuccessful.

Important
Using open() and openAsync().get() methods for your WarmStandby connection inside
these event handlers will cause a thrown exception.

.NET

Creating

Before creating a new WarmStandby instance, you first create a protocol instance for the server you
want to connect to. Every WarmStandby constructor requires a protocol instance as a parameter, as
shown in the examples below.

var ws = new WarmStandby(new UniversalContactServerProtocol());
// any other child of ClientChannel may be used

Important
Once the WarmStandby object is created, you can no longer use the open and close
operations for that protocol or set the channel endpoint directly. These operations will
now be handled using the WarmStandby object instead.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 38

Configuring

The configuration for WarmStandby contains the following information:

• Endpoints: a list of endpoints which will be processed while trying to open the channel;
• Timeout: timeout for the channel opening operation;
• BackupDelay: interval between getting disconnected from a server and the first attempt to switch

endpoints;
• RetryDelay: intervals between cycles for trying to reconnect to a server;
• ReconnectionRandomDelayRange: maximum value of additional random delay.

Initial configuration of WarmStandby occurs inside the instance constructor, but you can also use the
WSConfig object to hold a custom values that can be maintained and applied whenever it is
convenient for your application. WSConfig allows your application to adjust the WarmStandby
configuration details as needed, or allows you to apply the same configuration details to multiple
protocol objects.

There are two ways to create a WSConfig object:

var cfg = new WSConfig
{

Endpoints = new List<Endpoint>
{

new Endpoint("host1", port1),
new Endpoint("host2", port2),
new Endpoint("host3", port3)

},
BackupDelay = 2000,
ReconnectionRandomDelayRange = 5000,
RetryDelay = new []{100, 500, 5000},
Timeout = 10000

};

or

cfg = new WSConfig();
cfg.SetEndpoints(new Endpoint("host1", port1),

new Endpoint("host2", port2),
new Endpoint("host3", port3));

cfg.SetRetryDelay(100, 500, 5000);
cfg.BackupDelay = 2000;
cfg.Timeout = 10000;
cfg.ReconnectionRandomDelayRange = 5000;

Then you can easily apply the configuration to an existing WarmStandby instance:

ws.Configuration = cfg;

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 39

Using WarmStandby

Opening a Protocol Without Reconnect
The following code shows how to make a single connection attempt. If this attempt is unsuccessful
then WarmStandby finishes its work.

var ws = new WarmStandby(new UniversalContactServerProtocol ());
// any other child of ClientChannel may be used
var cfg = new WSConfig()
{

Timeout = 1000,
BackupDelay = 2000,
ReconnectionRandomDelayRange = 3000

}.SetEndpoints(new Endpoint("host1", port1), new Endpoint("host2",
port2)).SetRetryDelay(1000, 2000);
ws.Configuration = cfg;
try
{

ws.Open();
}
catch (Exception)
{

// TODO: Handle exception
}

Opening a Protocol with Reconnect
The following code leads to an endless cycle of connection attempts, with some delays between
attempts, until a success is found or a manual break occurs.

In this scenario, if a channel gets disconnected then WarmStandy will initiate a new cycle of
connections to server.

var ws = new WarmStandby(new UniversalContactServerProtocol ());
// any other child of ClientChannel may be used
var cfg = new WSConfig()
{

Timeout = 1000,
BackupDelay = 2000,
ReconnectionRandomDelayRange = 3000

}.SetEndpoints(new Endpoint("host1", port1), new Endpoint("host2",
port2)).SetRetryDelay(1000, 2000);
ws.Configuration = cfg;
ws.AutoRestore(true); // leads to opening of Warmstandby

Closing a WarmStandby Connection
To close an open WarmStandby connection, use the Close() method.

var ws = new WarmStandby(new UniversalContactServerProtocol ());
// any other child of ClientChannel may be used
// TODO: do something
try
{

ws.Close();

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 40

}
catch (Exception)
{

// TODO: Handle exception
}

The Close() method automatically cancels the requirement for any further attempts to re-establish a
connection. Use the AutoRestore(), or AutoRestore(bool), method to re-enable reconnection attempts.

Asynchronous Operations of WarmStandby
Code samples above are for synchronous operations, which lock the current thread.

Asynchronous operations are similar to synchronous but don’t lock the running thread. To use
asynchronous operations, use the table below and replace any calls to synchronous methods with the
asynchronous equivalents.

Synchronous method Asynchronous equivalent
Open() EndOpen(BeginOpen(null,null))
Close() EndClose(BeginClose(null,null))

Tip
WarmStandby .NET asynchronous open/close operations were designed using
IAsyncResult interface.

Using WarmStandby Event Handlers
WarmStandby contains four events you should use for notification of connection status.

Event name Event description
ChannelOpened Notifies that channel was opened successfully.
ChannelDisconnected Notifies that channel was disconnected.

EndpointTriedUnsuccessfully Notifies that the another connection attempt was
unsuccessful.

AllEndpointsTriedUnsuccessfully Notifies that the all connection attempts in the
current cycle were unsuccessful.

Important
Using the Open() or EndOpen(IAsyncResult) methods for your WarmStandby
connection inside these event handlers will cause a thrown exception.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 41

Using the Application Template Application
Block

Important
This application block is a reusable production-quality component. It has been
designed using industry best practices and provided with source code so it can be
used "as is," extended, or tailored if you need to.

Please see the License Agreement for details.

Java

The Application Template Application Block provides a way to read configuration options for
applications in Genesys Administrator and to configure Platform SDK protocols. It also allows standard
connection settings (including ADDP or TLS details) to be retrieved from Configuration Server, and
helps with common features like setting up WarmStandby or assigning message filters. Primary
Application Template functionality includes:

• ClientConfigurationHelper sets up client connections and configures WarmStandby.
• ServerConfigurationHelper sets up server connections.
• GConfigTlsPropertyReader extracts TLS-related option values from configuration objects, and is

intended to be used together with
com.genesyslab.platform.commons.connection.tls.TLSConfigurationParser.

• FilterConfigurationHelper helps to bind message filters with protocol objects.
• GFApplicationConfigurationManager monitors the application configuration from Configuration

Server and provides notification of any updates to options for your custom application, options of
connected servers, or options of their host objects. If Log4j2 logging framework exists, then this
component also enables Log4j2 configuration based on the application logging options in Configuration
Manager. For more information, refer to the Additional Logging Features article.

• ClusterClientConfigurationHelper helps create and configure the Cluster Protocol Application Block.

Setting Up a Client Connection

Application Template helper creates com.genesyslab.platform.Endpoint instance with initialized
configuration properties. Details about how to specify required options in Configuration server are
available below. In order to retrieve specified options from Configuration Server, user should read
IGApplicationConfiguration object where this properties are stored.

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 42

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LoggingFeatures
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingCPTemplateAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB#DefineConfigOptions

Sample:

//create Configuration Service
ConfServerProtocol confProtocol = new ConfServerProtocol(new Endpoint(host,port));
confProtocol.setUserName("...");
confProtocol.setClientName("...");
confProtocol.setClientApplicationType(CfgAppType.CFGSCE.ordinal());
IConfService confService = ConfServiceFactory.createConfService(confProtocol);
confProtocol.open();

//read your application options
String appName = "my-app-name";
CfgApplication cfgApplication = confService.retrieveObject(CfgApplication.class,

new CfgApplicationQuery(appName));

GCOMApplicationConfiguration appConfiguration = new
GCOMApplicationConfiguration(cfgApplication);

//get particular connection definition
IGAppConnConfiguration connConfig = appConfiguration.getAppServer(CfgAppType.CFGStatServer);

//returns configured endpoint.
Endpoint epStatSrv = ClientConfigurationHelper.createEndpoint(appConfiguration,

connConfig, connConfig.getTargetServerConfiguration());

//use protocol with configured endpoint
StatServerProtocol statProtocol = new StatServerProtocol(epStatSrv);
statProtocol.setClientName(clientName);
statProtocol.open();

Tip
Instructions on how to enable TLS using the Application Template Application Block
are part of the TLS-specific documentation.

Configuring WarmStandby
Note: This section was updated for Platform SDK for Java release 8.5.102.02. For earlier releases, expand
the "Legacy Content" text at the end of this section.

The Application Template helper createWarmStandbyConfigEx() allows you to create a configuration
for the new implementation of the warm standby, as illustrated here:

String appName = "my-app-name"
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(appName));

GCOMApplicationConfiguration appConfiguration =
new GCOMApplicationConfiguration(cfgApplication);

IGAppConnConfiguration connConfig = appConfiguration.getAppServer(CfgAppType.CFGStatServer);

//Helper method for new WarmStandby

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 43

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingApplicationTemplateAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB#LegacyConfigWS

WSConfig wsConfig = ClientConfigurationHelper.createWarmStandbyConfigEx(appConfiguration,
connConfig);

StatServerProtocol statProtocol = new StatServerProtocol();
statProtocol.setClientName(clientName);

WarmStandby warmStandby = new WarmStandby(statProtocol);
warmStandby.setConfig(wsConfig);
warmStandby.autoRestore();

Configuration in Configuration Manager looks quite similar to the classic Warm Standby configuration
with one difference: there are special timing parameters which are quite different than "Reconnection
Timeout" and "Reconnection Attempts" and thus are specified apart from them. The "Reconnection
Timeout" and "Reconnection Attempts" are not used in new Warm Standby Configuration.

Client Connection options:

Name Values, in Seconds
warm-standby.retry-delay 5, 10, 15
warm-standby.reconnection-random-delay-range 10
warm-standby.open-timeout 30

See Warm Standby documentation and the API Reference guide for details about how these timing
options customize Warm Standby behavior.

Options can be specified in Configuration Manager as shown below:

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 44

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingWarmStandbyAB

The last option is specified in Backup Server Applications on the Options tab. This characteristic of
the backup server describes how much time is required for the server to step into primary mode.

Options Tab Section Value, in Seconds
warm-standby backup-delay=5

[+] Legacy Content

Configuring WarmStandby (Legacy Content)
Note: This section only applies to Platform SDK releases prior to:

• Java - 8.5.102.02
• .NET - 8.5.102.03

This section describes how to configure WarmStandby service with Application Template helpers. To
find out how to use the WarmStandby service, see the corresponding Using the Warm Standby
Application Block article.

Application Template helper method creates configuration for
com.genesyslab.platform.applicationblocks.warmstandby.WarmStandbyService. The result
includes parameters for the connection to primary and backup servers defined in the specified
application configuration information.

Sample:

String appName = "my-app-name";
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(appName));

GCOMApplicationConfiguration appConfiguration = new
GCOMApplicationConfiguration(cfgApplication);
IGAppConnConfiguration connConfig = appConfiguration.getAppServer(CfgAppType.CFGStatServer);

WarmStandbyConfiguration wsConfig =
ClientConfigurationHelper.createWarmStandbyConfig(appConfiguration, connConfig);

StatServerProtocol statProtocol = new StatServerProtocol(wsConfig.getActiveEndpoint());
statProtocol.setClientName(clientName);
WarmStandbyService wsService = new WarmStandbyService(statProtocol);

wsService.applyConfiguration(wsConfig);
wsService.start();
statProtocol.beginOpen();

Setting Up a Server Channel

Similar to the creation of the client connection, provide the IGApplicationConfiguration object to
the helper class.

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 45

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingWarmStandbyAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingWarmStandbyAB

Sample:

Endpoint endpoint = ServerConfigurationHelper.createListeningEndpoint(appConfiguration,
appConfiguration.getPortInfo("default"));
ExternalServiceProtocolListener serverChannel = new ExternalServiceProtocolListener(endpoint);

This helper creates an Endpoint instance initialized with properties like the listening TCP port number,
ADDP parameters, and so on.

Setting Up TLS

Instructions on how to enable TLS using the Application Template Application Block are part of the
TLS-specific documentation. Please refer to that article for details about how to enable secure
connections using the Application Template.

Also, see how to Configure TLS Parameters in Configuration Manager for a client or server channel.

Enabling Message Filtering

Using the Debug Log Level in Platform SDK protocol may affect Application performance due to the
huge amount of log information output. It is possible to setup message filters for a protocol object,
where the filter is configured in Genesys Administrator. This way, production applications will be able
to provide appropriate log traces for troubleshooting without hurting performance with overly
verbose logging.

See how to setup message filters for additional details.

Defining Configuration Options in Genesys Administrator

Options can be specified in the CfgApplication object using Genesys Administrator. There are
several possible option locations in the CfgApplication object:

• Options tab
• Annex tab
• Connections parameters
• Port parameters
• Host annex

Common Options
Here is how options could be specified on the Options tab:

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 46

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingApplicationTemplateAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LogFiltering

Here is how options could be specified for a particular connection (using the Connection parameters):

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 47

A complete options list is provided in the table below.

Section Option Description

commons-connection

string-attributes-encoding Specifies encoding for string
attributes.

lazy-parsing-enabled

Boolean value. Enables or
disables lazy parsing of
properties, for which lazy parsing
possibility is enabled in protocol.
Currently used in Configuration Server
protocol, enabled by default.

address
Host bind option, specifies host
from which connection should be
made

port
Port bind option, specifies port
from which connection should be
made

backup-port
Port bind option, specifies port
from which connection should be
made (bind to) for backup server.

operation-timeout Integer value. Timeout for
operations like stopReading and

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 48

Section Option Description
resumeReading.
Timeout is specified in milliseconds.

connection-timeout

Integer value. Sets connection
timeout option for the local
socket to be opened by
connection.
Timeout is specified in milliseconds.

reuse-address
Boolean value. Sets
SO_REUSEADDR option for the
local socket to be opened by
connection

keep-alive
Boolean value. Sets
SO_KEEPALIVE option for the
local socket to be opened by
connection.

ucs-protocol

use-utf-for-responses

Boolean value. If set to false,
UCSprotocol will add
'tkv.multibytes'='false' pair in
Request KVlist of the message. It
is false by default.

use-utf-for-requests

Boolean value. If set to true, all
string values of each KVlist will
be packed as UtfStrings (in
"UTF-16BE" encoding), instead of
common strings. It is true by
default.

webmedia-protocol

target-xml-version

Version of XML which is used to
transport WebMedia protocol
messages.
See corresponding
javax.xml.transform.OutputKeys.Version
property for details.

replace-illegal-unicode-chars
Boolean value. Enables or
disables replacing of the illegal
unicode chars in Webmedia XML
messages.

illegal-unicode-chars-
replacement

String to replace illegal unicode
chars

IPV6 Options
The IPV6 usage can be enabled with "enable-ipv6" option.

Section Option Description
common enable-ipv6 Turns IPv6 support on/off.

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 49

Section Option Description

Possible values: 0 (default, implied) and
1.

If set to 0, IPv6 support would be
disabled, even if supported by OS/
platform.

The ip-version constant specifies the order in which connection attempts will be made to IPv6 and
IPv4 addresses. Possible values include the following strings:

• "4,6" (default)
• "6,4"

This setting has no effect on the connection if enable-ipv6 is set to 0; warning would be logged. Has
no effect on server side; warning would be logged.

Option values should be specified within the connection transport properties:

ADDP Options
ADDP options, which can be handled with the Application Template helper, should be specified on the
Connections tab.

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 50

TLS Options
See the article on Configuring TLS Parameters in Configuration Manager for more information about
TLS options.

Cluster Connection Configuration Helpers

This section describes Application Template helper methods that support the configuration of cluster
connections to Genesys server, including use cases and samples.

Cluster Connection Configuration Types
There are two types of Genesys server cluster configuration available in Configuration Server: client-
aligned configuration, and node-aligned configuration.

Both types provide information about addresses of the target servers in a cluster, and connection
options used to communicate with them. You must choose the proper helper to use for each type of
cluster configuration.

Client-aligned configuration methods:

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 51

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters

• ClusterClientConfigurationHelper.createClusterProtocolEndpoints(IGApplicationConfigurat
ion appConfig, CfgAppType serverType)

• ClusterClientConfigurationHelper.createClusterProtocolEndpoints(IGApplicationConfigurat
ion appConfig, IGAppConnConfiguration clusterConn, CfgAppType serverType)

Node-aligned configuration methods:

• ClusterClientConfigurationHelper.createRefClusterProtocolEndpoints(IConfService
confService, IGApplicationConfiguration appConfig, CfgAppType serverType)

• ClusterClientConfigurationHelper.createRefClusterProtocolEndpoints(IConfService
confService, IGApplicationConfiguration appConfig, IGAppConnConfiguration clusterConn,
CfgAppType serverType)

Client-Aligned Configuration Samples
Sample 1

In the first sample scenario, a "ClientApp" Application is connected to the "ClusterApp'" virtual
application (type=CFGApplicationCluster) that has connections to cluster nodes of one ore more
clusters.

ClusterProtocol protocol ...
List<WSConfig> nodesList =
ClusterClientConfigurationHelper.createClusterProtocolEndpoints(ClientApp,
CfgAppType.CFGContactServer);
protocol.setNodes(nodesList);

Sample 2

In the second sample scenario, the "MyNodeApp" Application is a cluster node that is connected to
the "MyClusterApp" virtual application. In this case, "MyClusterApp" is a shared store of connection
configurations for all cluster nodes, which can have connections to other clusters like "UCS" as well
as stand-alone servers.

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 52

ClusterProtocol protocol ...
List<WSConfig> nodesList =
ClusterClientConfigurationHelper.createClusterProtocolEndpoints(MyClusterApp,
clusterAppConnection, CfgAppType.CFGContactServer);
protocol.setNodes(nodesList);

Connection Options

You can use Genesys Administrator to define connection parameter options (such as ADDP, ip-
version, strings encoding, or TCP socket options) that are used for all nodes in a cluster, or to define
connection parameter for a particular node that will overriding common parameters.

• Common Options: Specified in the connection from ClientApp to ClusterApp (or from OwnClusterApp if
application is a node of some type of cluster).

• Node-Specific Options: can be specified in Configuration Manager in connection from ClusterApp to
NodeApp.

See eServices Load Balancing Business Continuity for examples.

Node-Aligned Configuration
Sample 3

In the third sample scenario, the "ClientApp" Application is connected to the "UCSClusterApp" virtual

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 53

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB#DefineConfigOptions
https://docs.genesys.com/Documentation/IW/9.0.x/Dep/eServicesDRandLB

application that groups UCS nodes. Unlike previous configurations, the cluster nodes in this scenario
are also connected to the "UCSClusterApp" virtual application.

ClusterProtocol protocol ...
List<WSConfig> nodesList =
ClusterClientConfigurationHelper.createRefClusterProtocolEndpoints(confService, ClientApp,
CfgAppType.CFGContactServer);
protocol.setNodes(nodesList);

Sample 4

In the fourth sample scenario, the "MyNodeApp" Application is a cluster node. The "MyClusterApp"
application has a connection to the UCS cluster ("UCSClusterApp" application). UCS nodes also have
connections to "UCSClusterApp".

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 54

ClusterProtocol protocol ...
List<WSConfig> nodesList =
ClusterClientConfigurationHelper.createRefClusterProtocolEndpoints(confService, MyNodeApp,
clusterAppConnection, CfgAppType.CFGContactServer);
protocol.setNodes(nodesList);

Connection Options

You can use Genesys Administrator to define connection parameter options (such as ADDP, ip-
version, strings encoding, or TCP socket options), but in this scenario this configuration is applied for
all nodes in a cluster.

• Common Options: Specified in the connection from ClientApp to ClusterApp.

Client Connection Active Nodes Randomizer

Important
Dynamic updates to the cluster configuration are still possible with this approach. Your
application should use the shuffler.setNodes(nodes) function to change the list of
cluster nodes, instead of using Cluster Protocol methods directly.

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 55

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB#DefineConfigOptions

The randomizer helper component supports cluster load balancing from client applications, by
allowing your applications to work with a server cluster without creating live connections to all of its
nodes. This also prevents many clients from being stuck on a single connection, to resolve issues
such as a single server overloading on startup, and can be of critical importance in use cases where
the number of clients could be in the tens of thousands.

This helper takes a list of cluster nodes, and performs periodical endpoint rotation. The existing
Cluster Protocol functionality to update its nodes configuration dynamically..

For each new node that is added:

1. a new instance of the related PSDK protocol class is created
2. asynchronous open is started
3. after the node has connected to its server, the node is added to load balancer

For each node that is removed:

1. the removed node is immediately excluded from the load balancer
2. the node is scheduled to be closed after its protocol timeout delay (which allows responses to be

delivered for in-progress requests)

The randomizer uses the Collections.shuffle(nodes) method to randomize the sequence of given
nodes.When updating the protocol node configuration, the randomizer uses a round-robin rotation
over a whole list of randomly-sorted cluster nodes, choosing a subset of given number of elements.
This allows the protocol to avoid breaking all connections at a single moment, and to stay online
during switchover.

The randomizer component also has an optional ability to attach truncated nodes' endpoints as
backup endpoints for selected ones. This allows the internal WarmStandby service to quickly
switchover from an unresponsive node.

Sample usage of this component could look like the following:

final UcsClusterProtocol ucsNProtocol = new UcsClusterProtocolBuilder().build();
List<WSConfig> nodes = ...;
ClusterNodesShuffler shuffler = new ClusterNodesShuffler(ucsNProtocol, 2); // creates nodes

shuffler for 2 active connections
shuffler.setUseBackups(true); // - lets the shuffler to use truncated nodes endpoints as

backup endpoints for the selected ones
shuffler.setNodes(nodes); // - initializes shuffler with the whole list of cluster nodes

ucsNProtocol.open();

TimerActionTicket shufflerTimer = TimerFactory.getTimer().schedule(3000, 3000, shuffler); //
- schedules shuffling operation with 3 secs delay and 3 secs period

// Do the business logic on the cluster protocol...
// In case of update in the cluster configuration, application should use

'shuffler.setNodes(newNodes)'
// instead of ClusterProtocol's methods related to nodes configuration.

// Shutdown:
shufflerTimer.cancel();
ucsNProtocol.close();

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 56

Code Samples
Simple Client Application Connecting to Any UCS Cluster

This sample checks the connection configuration for "WCC mode" UCS 9.0 cluster, then for "WDE
mode" UCS cluster, and then for "legacy mode" connection to UCS (pri/bck) server.

// Take "my application configuration" from context, or read it in a way like this:
IGApplicationConfiguration myApp = new GCOMApplicationConfiguration(

confService.retrieveObject(CfgApplication.class,
new CfgApplicationQuery(myAppName)));

// For the first, try UCS 9 connection cluster:
List<WSConfig> conns = ClusterClientConfigurationHelper.createRefClusterProtocolEndpoints(

confService, myApp, CfgAppType.CFGContactServer);
if (conns == null || conns.isEmpty()) {

// If there is no UCS 9 cluster connected, then we try older UCS cluster, or simple UCS
connection(s):

conns = ClusterClientConfigurationHelper.createClusterProtocolEndpoints(
myApp, CfgAppType.CFGContactServer);

}

System.out.println("Connections: " + conns);

WCC-Based Cluster Node Application Connecting to Any UCS Cluster

This sample works in context of WCC.

// Take "my application configuration" from context, or read it in a way like this:
final IGApplicationConfiguration myApp = new GCOMApplicationConfiguration(

confService.retrieveObject(CfgApplication.class,
new CfgApplicationQuery(myAppName)));

IGApplicationConfiguration myClusterApp = null;
// if we do not have 'myClusterApp' from WCC context, we may take it by this way:
final List<IGAppConnConfiguration> clusters = GApplicationConfiguration

.getAppServers(myApp.getAppServers(), CfgAppType.CFGApplicationCluster);
if (clusters != null) {

if (clusters.size() == 1) {
myClusterApp = clusters.get(0).getTargetServerConfiguration();
log.infoFormat(

"Application is recognized as a node of cluster ''{0}''",
myClusterApp.getApplicationName());

} else if (clusters.size() > 1) {
log.error("Application has more than one application cluster connected"

+ " - its treated as a standalone app");
}

}

// Select application cluster connection start point:
final IGApplicationConfiguration connSrc = (myClusterApp != null) ? myClusterApp : myApp;

// For the first, try UCS 9 connection cluster:
List<WSConfig> conns = ClusterClientConfigurationHelper.createRefClusterProtocolEndpoints(

confService, connSrc, CfgAppType.CFGContactServer);
if (conns == null || conns.isEmpty()) {

// If there is no UCS 9 cluster connected, then we try older UCS cluster, or simple UCS
connection(s):

conns = ClusterClientConfigurationHelper.createClusterProtocolEndpoints(
connSrc, CfgAppType.CFGContactServer);

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 57

}

System.out.println("Connections: " + conns);

Client Nodes Randomizer Usage Sample

Application code using the randomizer component may look like the following sample:

final List<WSConfig> nodes = ...;
final UcsClusterProtocol ucsNProtocol =

new UcsClusterProtocolBuilder()
.build();

ucsNProtocol.setTimeout(5000); // sets protocol timeout to 5 secs
ucsNProtocol.setClientName("MyClientName");
ucsNProtocol.setClientApplicationType("MyAppType");

ClusterNodesShuffler shuffler = new ClusterNodesShuffler(ucsNProtocol, 2); // creates nodes
shuffler for 2 active connections
TimerActionTicket shufflerTimer = null;

try {
shuffler.setNodes(nodes); // - initializes shuffler with the whole list of cluster nodes.
ucsNProtocol.open();
shufflerTimer = TimerFactory.getTimer().schedule(3000, 3000, shuffler); // - schedules

shuffling operation with 3 secs delay and 3 secs period

// do the business logic on the cluster protocol...
for (int i = 0; i < 200; i++) {

EventGetVersion resp = (EventGetVersion)
ucsNProtocol.request(RequestGetVersion.create());

System.err.println("Resp from: " + resp.getEndpoint());
Thread.sleep(300);

}
} finally {

if (shufflerTimer != null) {
shufflerTimer.cancel();
shufflerTimer = null;

}
ucsNProtocol.close();

}

Handling Updates From Config Server
The GFApplicationConfigurationManager component monitors Config Server for updates and
provides notifications about changes in applications.

You should register for updates at GFApplicationConfigurationManager.

GFApplicationConfigurationManager appManager = ...
appManager.register(new ClientConnEventListener());
appManager.init();

In the handle (GFAppCfgEvent event) method implementation, create a new connection configuration
using one of the helpers mentioned above:

import com.genesyslab.platform.apptemplate.application;

public class ClientConnEventListener extends GFAppCfgEventListener {

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 58

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LoggingFeatures
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LoggingFeatures

private UcsClusterProtocol ucsProtocol;
@Override
public void handle(GFAppCfgEvent event) {

//get new application configuration
IGApplicationConfiguration appconfig = event.getAppConfig();

//create new connection configuration
List<WSConfig> conns =

ClusterClientConfigurationHelper.createClusterProtocolEndpoints(appconfig,
CfgAppType.CFGContactServer);

//apply connection configuration
ucsProtocol.setNodes(conns);

}
}

Important
WCC-based cluster configuration does not support an update handler at this time.
Subscribing to updates in this case will lead to Config Server overloading, so
customers are encouraged to make direct requests to Config Server to actualize the
cluster configuration before opening ClusterProtocol.

.NET

The Application Template Application Block provides a way to read configuration options for
applications in Genesys Administrator and to configure Platform SDK protocols. It also allows standard
connection settings (including ADDP or TLS details) to be retrieved from Configuration Server, and
helps with common features like setting up WarmStandby or assigning message filters. Primary
Application Template functionality includes:

• ClientConfigurationHelper sets up client connections and configures WarmStandby.
• ServerConfigurationHelper sets up server connections.

Setting Up a Client Connection

Application Template helper creates an Endpoint instance with initialized configuration properties.
Details about how to specify required options in Configuration server are available below. In order to
retrieve specified options from Configuration Server, user should read IGApplicationConfiguration
object where this properties are stored.

Sample:

//create Configuration Service
ConfServerProtocol confProtocol = new ConfServerProtocol(new Endpoint(host,port)){

UserName = "...",
ClientName = "...",
ClientApplicationType= (int)cfgAppType,

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 59

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB#DefineConfigOptionsNET

UserPassword = "..."
};
IConfService confService = ConfServiceFactory.CreateConfService(confProtocol);
confProtocol.Open();

//read your application options
var myApplicationName = "...";
var applicationConfiguration = new GCOMApplicationConfiguration(

new CfgApplicationQuery(confService){ Name = myApplicationName }.ExecuteSingleResult()
);

CfgAppType myApplicationType = default(CfgAppType);
var applicationEndPoint = ClientConfigurationHelper.CreateEndpoint(applicationConfiguration,

applicationConfiguration.GetAppServer(myApplicationType),
applicationConfiguration.GetAppServer(myApplicationType).TargetServerConfiguration);

//use protocol with configured endpoint
StatServerProtocol statProtocol = new StatServerProtocol(applicationEndPoint);
statProtocol.ClientName = clientName;
statProtocol.Open();

Configuring WarmStandby

The Application Template helper CreateWarmStandbyConfigEx() allows you to create a configuration
for the new implementation of the warm standby, as illustrated here:

var myApplicationName = "…";
CfgAppType myApplicationType = default(CfgAppType);
var applicationConfiguration = new GCOMApplicationConfiguration(

new CfgApplicationQuery(confService){ Name = myApplicationName }.ExecuteSingleResult()
);
WSConfig warmStandbyConfig = ClientConfigurationHelper.CreateWarmStandbyConfigEx(

applicationConfiguration,applicationConfiguration.GetAppServer(myApplicationType));

Configuration in Configuration Manager looks quite similar to the classic Warm Standby configuration
with one difference: there are special timing parameters which are quite different than "Reconnection
Timeout" and "Reconnection Attempts" and thus are specified apart from them. The "Reconnection
Timeout" and "Reconnection Attempts" are not used in new Warm Standby Configuration.

Client Connection options:

Name Values, in Seconds
warm-standby.retry-delay 5, 10, 15
warm-standby.reconnection-random-delay-range 10
warm-standby.open-timeout 30

See Warm Standby documentation and the API Reference guide for details about how these timing
options customize Warm Standby behavior.

Options can be specified in Configuration Manager as shown below:

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 60

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingWarmStandbyAB

The last option is specified in Backup Server Applications on the Options tab. This characteristic of
the backup server describes how much time is required for the server to step into primary mode.

Options Tab Section Value, in Seconds
warm-standby backup-delay=5

[+] Legacy Content

Configuring WarmStandby (Legacy Content)

This section describes how to configure WarmStandby service with Application Template helpers. To
find out how to use the WarmStandby service, see the corresponding Using the Warm Standby
Application Block article.

Application Template helper method creates configuration for WarmStandbyService. The result
includes parameters for the connection to primary and backup servers defined in the specified
application configuration information.

Sample:

var myApplicationName = "…";
CfgAppType myApplicationType = default(CfgAppType);
var applicationConfiguration = new GCOMApplicationConfiguration(

new CfgApplicationQuery(confService){ Name = myApplicationName }.ExecuteSingleResult()

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 61

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LegacyWarmStandbyAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LegacyWarmStandbyAB

);
WarmStandbyConfiguration warmStandbyConfig =
ClientConfigurationHelper.CreateWarmStandbyConfig(

applicationConfiguration,applicationConfiguration.GetAppServer(myApplicationType));

Setting Up a Server Channel

Similar to the creation of the client connection, provide the IGApplicationConfiguration object to
the helper class.

Sample:

Endpoint endpoint = ServerConfigurationHelper.CreateListeningEndpoint(appConfiguration,
appConfiguration.PortInfo("default"));
ExternalServiceProtocolListener serverChannel = new ExternalServiceProtocolListener(endpoint);

This helper creates an Endpoint instance initialized with properties like the listening TCP port number,
ADDP parameters, and so on.

Defining Configuration Options in Genesys Administrator

Options can be specified in the CfgApplication object using Genesys Administrator. There are
several possible option locations in the CfgApplication object:

• Application options tab
• Connection parameters
• Port parameters

Common Options
Here is how options could be specified on the Options tab:

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 62

Here is how options could be specified for a particular connection (using the Connection parameters):

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 63

A complete options list is provided in the table below.

Section Option Description

commons-connection

string-attributes-encoding Specifies encoding for string
attributes.

lazy-parsing-enabled

Boolean value. Enables or
disables lazy parsing of
properties, for which lazy parsing
possibility is enabled in protocol.
Currently used in Configuration Server
protocol, enabled by default.

address
Host bind option, specifies host
from which connection should be
made

port
Port bind option, specifies port
from which connection should be
made

backup-address
Host bind option, specifies host
from which connection should be
made for backup server.

backup-port Port bind option, specifies port
from which connection should be

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 64

Section Option Description
made (bind to) for backup server.

ucs-protocol

use-utf-for-responses

Boolean value. If set to false,
UCSprotocol will add
'tkv.multibytes'='false' pair in
Request KVlist of the message. It
is false by default.

use-utf-for-requests

Boolean value. If set to true, all
string values of each KVlist will
be packed as UtfStrings (in
"UTF-16BE" encoding), instead of
common strings. It is true by
default.

webmedia-protocol
replace-illegal-unicode-chars

Boolean value. Enables or
disables replacing of the illegal
unicode chars in Webmedia XML
messages.

illegal-unicode-chars-
replacement

String to replace illegal unicode
chars

IPV6 Options
The IPV6 usage can be enabled with "enable-ipv6" option.

Section Option Description

common enable-ipv6

Turns IPv6 support on/off.
Possible values: 0 (default, implied) and
1.

If set to 0, IPv6 support would be
disabled, even if supported by OS/
platform.

The ip-version constant specifies the order in which connection attempts will be made to IPv6 and
IPv4 addresses. Possible values include the following strings:

• "4,6" (default)
• "6,4"

This setting has no effect on the connection if enable-ipv6 is set to 0; warning would be logged. Has
no effect on server side; warning would be logged.

Option values should be specified within the connection transport properties:

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 65

ADDP Options
ADDP options, which can be handled with the Application Template helper, should be specified on the
Connections tab.

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 66

TLS Options
See the article on Configuring TLS Parameters in Configuration Manager for more information about
TLS options.

Cluster Connection Configuration Helpers

This section describes Application Template helper methods that support the configuration of cluster
connections to Genesys server, including use cases and samples.

Cluster Connection Configuration Types
There are two types of Genesys server cluster configuration available in Configuration Server: client-
aligned configuration, and node-aligned configuration.

Both types provide information about addresses of the target servers in a cluster, and connection
options used to communicate with them. You must choose the proper helper to use for each type of
cluster configuration.

Client-aligned configuration methods:

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 67

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters

• ClusterClientConfigurationHelper.CreateClusterProtocolEndpoints(IGApplicationConfigurat
ion appConfig, CfgAppType serverType)

• ClusterClientConfigurationHelper.CreateClusterProtocolEndpoints(IGApplicationConfigurat
ion appConfig, IGAppConnConfiguration clusterConn, CfgAppType serverType)

Node-aligned configuration methods:

• ClusterClientConfigurationHelper.CreateRefClusterProtocolEndpoints(IConfService
confService, IGApplicationConfiguration appConfig, CfgAppType serverType)

• ClusterClientConfigurationHelper.CreateRefClusterProtocolEndpoints(IConfService
confService, IGApplicationConfiguration appConfig, IGAppConnConfiguration clusterConn,
CfgAppType serverType)

Client-Aligned Configuration Samples
Sample 1

In the first sample scenario, a "ClientApp" Application is connected to the "ClusterApp'" virtual
application (type=CFGApplicationCluster) that has connections to cluster nodes of one ore more
clusters.

IClusterProtocol protocol ...
IList<WSConfig> nodesList =
ClusterClientConfigurationHelper.CreateClusterProtocolEndpoints(ClientApp,
CfgAppType.CFGContactServer);
protocol.SetNodes(nodesList);

Sample 2

In the second sample scenario, the "MyNodeApp" Application is a cluster node that is connected to
the "MyClusterApp" virtual application. In this case, "MyClusterApp" is a shared store of connection
configurations for all cluster nodes, which can have connections to other clusters like "UCS" as well
as stand-alone servers.

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 68

IClusterProtocol protocol ...
IList<WSConfig> nodesList =
ClusterClientConfigurationHelper.CreateClusterProtocolEndpoints(MyClusterApp,
clusterAppConnection, CfgAppType.CFGContactServer);
protocol.SetNodes(nodesList);

Connection Options

You can use Genesys Administrator to define connection parameter options (such as ADDP, ip-
version, strings encoding, or TCP socket options) that are used for all nodes in a cluster, or to define
connection parameter for a particular node that will overriding common parameters.

• Common Options: Specified in the connection from ClientApp to ClusterApp (or from OwnClusterApp if
application is a node of some type of cluster).

• Node-Specific Options: can be specified in Configuration Manager in connection from ClusterApp to
NodeApp.

See eServices Load Balancing Business Continuity for examples.

Node-Aligned Configuration
Sample 3

In the third sample scenario, the "ClientApp" Application is connected to the "UCSClusterApp" virtual

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 69

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB#DefineConfigOptions
https://docs.genesys.com/Documentation/IW/9.0.x/Dep/eServicesDRandLB

application that groups UCS nodes. Unlike previous configurations, the cluster nodes in this scenario
are also connected to the "UCSClusterApp" virtual application.

IClusterProtocol protocol ...
IList<WSConfig> nodesList =
ClusterClientConfigurationHelper.CreateRefClusterProtocolEndpoints(confService, ClientApp,
CfgAppType.CFGContactServer);
protocol.SetNodes(nodesList);

Sample 4

In the fourth sample scenario, the "MyNodeApp" Application is a cluster node. The "MyClusterApp"
application has a connection to the UCS cluster ("UCSClusterApp" application). UCS nodes also have
connections to "UCSClusterApp".

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 70

IClusterProtocol protocol ...
IList<WSConfig> nodesList =
ClusterClientConfigurationHelper.CreateRefClusterProtocolEndpoints(confService, MyNodeApp,
clusterAppConnection, CfgAppType.CFGContactServer);
protocol.SetNodes(nodesList);

Connection Options

You can use Genesys Administrator to define connection parameter options (such as ADDP, ip-
version, strings encoding, or TCP socket options), but in this scenario this configuration is applied for
all nodes in a cluster.

• Common Options: Specified in the connection from ClientApp to ClusterApp.

Client Connection Active Nodes Randomizer

Important
Dynamic updates to the cluster configuration are still possible with this approach. Your
application should use the shuffler.SetNodes(nodes); function to change the list of
cluster nodes, instead of using Cluster Protocol methods directly.

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 71

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB#DefineConfigOptions

The randomizer helper component supports cluster load balancing from client applications, by
allowing your applications to work with a server cluster without creating live connections to all of its
nodes. This also prevents many clients from being stuck on a single connection, to resolve issues
such as a single server overloading on startup, and can be of critical importance in use cases where
the number of clients could be in the tens of thousands.

This helper takes a list of cluster nodes, and performs periodical endpoint rotation. The existing
Cluster Protocol functionality to update its nodes configuration dynamically..

For each new node that is added:

1. a new instance of the related PSDK protocol class is created
2. asynchronous open is started
3. after the node has connected to its server, the node is added to load balancer

For each node that is removed:

1. the removed node is immediately excluded from the load balancer
2. the node is scheduled to be closed after its protocol timeout delay (which allows responses to be

delivered for in-progress requests)

The randomizer uses the Collections.shuffle(nodes) method to randomize the sequence of given
nodes.When updating the protocol node configuration, the randomizer uses a round-robin rotation
over a whole list of randomly-sorted cluster nodes, choosing a subset of given number of elements.
This allows the protocol to avoid breaking all connections at a single moment, and to stay online
during switchover.

The randomizer component also has an optional ability to attach truncated nodes' endpoints as
backup endpoints for selected ones. This allows the internal WarmStandby service to quickly
switchover from an unresponsive node.

Sample usage of this component could look like the following:

IList<WSConfig> nodes = ...;
UcsClusterProtocol ucsNProtocol = new UcsClusterProtocolBuilder().Build();

var shuffler = new ClusterNodesShuffler(ucsNProtocol, 2); // creates nodes shuffler for 2
active connections
shuffler.UseBackups = true;// - lets the shuffler to use truncated nodes endpoints as backup
endpoints for the selected ones
try {

shuffler.SetNodes(nodes); // - initializes shuffler with the whole list of cluster nodes.
ucsNProtocol.Open();
shuffler.StartTimer(3000, 3000); // - schedules shuffling operation with 3 secs delay and

3 secs period

// Do the business logic on the cluster protocol...
// In case of update in the cluster configuration, application should use

'shuffler.SetNodes(newNodes)'
// instead of ClusterProtocol's methods related to nodes configuration.

} finally {
shuffler.StopTimer();
ucsNProtocol.Close();

}

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 72

Code Samples
Simple Client Application Connecting to Any UCS Cluster

This sample checks the connection configuration for "WCC mode" UCS 9.0 cluster, then for "WDE
mode" UCS cluster, and then for "legacy mode" connection to UCS (pri/bck) server.

// Take "my application configuration" from context, or read it in a way like this:
ConfServerProtocol cfgProtocol=new ConfServerProtocol(new Endpoint(host, port));
IConfService confService=ConfServiceFactory.CreateConfService(cfgProtocol);
IGApplicationConfiguration myApp = new GCOMApplicationConfiguration(

new CfgApplicationQuery(confService){Name = "myAppName"}.ExecuteSingleResult());

// For the first, try UCS 9 connection cluster:
IList<WSConfig> conns = ClusterClientConfigurationHelper.CreateRefClusterProtocolEndpoints(

confService, myApp, CfgAppType.CFGContactServer);
if ((conns == null) || (conns.Count==0)) {

// If there is no UCS 9 cluster connected, then we try older UCS cluster, or simple UCS
connection(s):

conns = ClusterClientConfigurationHelper.CreateClusterProtocolEndpoints(
myApp, CfgAppType.CFGContactServer);

}

Console.WriteLine("Connections: " + conns);

WCC-Based Cluster Node Application Connecting to Any UCS Cluster

This sample works in context of WCC.

var cfgProtocol=new ConfServerProtocol(new Endpoint(host, port));
var confService=ConfServiceFactory.CreateConfService(cfgProtocol);
// Take "my application configuration" from context, or read it in a way like this:
IGApplicationConfiguration myApp = new GCOMApplicationConfiguration(

new CfgApplicationQuery(confService){Name = "myAppName"}.ExecuteSingleResult());

IGApplicationConfiguration myClusterApp = null;
// if we do not have 'myClusterApp' from WCC context, we may take it by this way:
IList<IGAppConnConfiguration> clusters =
GApplicationConfiguration.GetAppServers(myApp.AppServers, CfgAppType.CFGApplicationCluster);
if (clusters != null) {

if (clusters.Count == 1) {
myClusterApp = clusters[0].TargetServerConfiguration;
log.InfoFormat("Application is recognized as a node of cluster

''{0}''",myClusterApp.ApplicationName);
} else if (clusters.Count > 1) {

log.Error("Application has more than one application cluster connected - its treated
as a standalone app");

}
}

// Select application cluster connection start point:
IGApplicationConfiguration connSrc = myClusterApp ?? myApp;

// For the first, try UCS 9 connection cluster:
IList<WSConfig> conns = ClusterClientConfigurationHelper.CreateRefClusterProtocolEndpoints(

confService, connSrc, CfgAppType.CFGContactServer);
if (conns == null || conns.Count==0) {

// If there is no UCS 9 cluster connected, then we try older UCS cluster, or simple UCS
connection(s):

conns = ClusterClientConfigurationHelper.CreateClusterProtocolEndpoints(

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 73

connSrc, CfgAppType.CFGContactServer);
}

Console.WriteLine("Connections: " + conns);

Client Nodes Randomizer Usage Sample

Application code using the randomizer component may look like the following sample:

IList<WSConfig> nodes = ...;
UcsClusterProtocol ucsNProtocol = new UcsClusterProtocolBuilder().Build();
ucsNProtocol.Timeout = TimeSpan.FromSeconds(5); // sets protocol timeout to 5 secs
ucsNProtocol.ClientName = "MyClientName";
ucsNProtocol.ClientApplicationType = "MyAppType";

var shuffler = new ClusterNodesShuffler(ucsNProtocol, 2); // creates nodes shuffler for 2
active connections

try {
shuffler.SetNodes(nodes); // - initializes shuffler with the whole list of cluster nodes.
ucsNProtocol.Open();
shuffler.StartTimer(3000, 3000); // - schedules shuffling operation with 3 secs delay

and 3 secs period

// do the business logic on the cluster protocol...
for (int i = 0; i < 200; i++)
{

var resp = ucsNProtocol.Request(RequestGetVersion.Create()) as EventGetVersion;
if (resp!=null) Console.WriteLine("Resp from: " + resp.Endpoint);
Thread.Sleep(300);

}
} finally {

shuffler.StopTimer();
ucsNProtocol.Close();

}

Handling Updates From Config Server
The GFApplicationConfigurationManager component monitors Config Server for updates and
provides notifications about changes in applications.

You should register for updates at GFApplicationConfigurationManager.

In the handle (GFAppCfgEvent event) method implementation, create a new connection configuration
using one of the helpers mentioned above:

using Genesyslab.Platform.AppTemplate.Application;

UcsClusterProtocol ucsProtocol = ...;
GFApplicationConfigurationManager appManager = ...;
appManager.Register(@event =>
{

//get new application configuration
IGApplicationConfiguration appconfig = @event.AppConfig;

//create protocol config
var wsconfig = ClusterClientConfigurationHelper.CreateClusterProtocolEndpoints(appconfig,

CfgAppType.CFGContactServer);

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 74

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LoggingFeatures
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LoggingFeatures

//apply new set of protocol endpoints
ucsProtocol.SetNodes(wsconfig);

});
appManager.Init();

Important
WCC-based cluster configuration does not support an update handler at this time.
Subscribing to updates in this case will lead to Config Server overloading, so
customers are encouraged to make direct requests to Config Server to actualize the
cluster configuration before opening ClusterProtocol.

Introductory Topics Using the Application Template Application Block

Platform SDK Developer's Guide 75

Using the Cluster Protocol Application Block

Java

This Application Block is designed to be used with applications where a large number of requests
should be spread between a configured set of UCS servers - or other Genesys servers - in a cluster,
providing a type of high-availability (HA) connection to that cluster. In addition to this application
block, the Cluster Protocol also includes a set of configuration helpers in the Application Template
Application Block.

Tip
When the Cluster Protocol Application Block is connected to a cluster, it can be used in
UCS9 N+1 server mode connected to all nodes, or in UCS9 N+1 client mode
connected to one node. When the application block is connected to a single
application that has a backup configured, it works in UCS8 mode Primary/Backup.

Architecture Overview

One of the simplest and most common uses of the Platform SDK interface is a protocol that interacts
directly with a Genesys server using a set of standard protocol methods (such as Open, Close, Send,
Request).

To provide a single working protocol with at least one backup, we use the Warm Standby Application
Block. That application block intercepts control of the protocol interface and provides switch-over
between multiple protocols, or protocol restoration, using a single Warm Standby endpoint.

The Cluster Protocol builds on this idea, allowing you to work simultaneously with a series of
protocols and Warm Standby application blocks (each of which can represent one or many individual
protocols) the same way that you would with a single, standard protocol. To configure the Cluster
Protocol, you use a mixed list of protocol and Warm Standby endpoints gathered from Configuration
Server.

Introductory Topics Using the Cluster Protocol Application Block

Platform SDK Developer's Guide 76

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB

The Cluster Protocol itself covers any scenarios where we need simultaneous connections through a
load balancer to many servers, where each server may have one or many backups.

Sequence Diagram: Main Scenario When Using Cluster Protocol Application Block

Introductory Topics Using the Cluster Protocol Application Block

Platform SDK Developer's Guide 77

High Availability Options

The Cluster Protocol is able to control the state of protocol connections, and use the Warm Standby
Application Block to keep them opened. Each cluster node may be initialized as a standard Platform
SDK Endpoint, or using WSConfig (Warm Standby configuration) with one or more backup Endpoints
added. A list of opened connections is tracked using a Load Balancer, which allows requests to be
spread across connected protocols.

This gives your application the flexibility to configure one endpoint per connection ("server mode"),
or to combine cluster endpoints in a single Warm Standby configuration and let the Cluster Protocol
use a single connection to anyone of them ("client mode").

Load Balancing Options
The default Load Balancing strategy uses a "round robin" algorithm over connected servers for
request forwarding. It is possible for you to create your own implementation of the Load Balancer
interface, however, and provide it during creation of the Cluster Protocol instance.

Implementing a Custom LoadBalancer

final EspClusterProtocol haProtocol =

Introductory Topics Using the Cluster Protocol Application Block

Platform SDK Developer's Guide 78

new EspClusterProtocolBuilder()
.withLoadBalancer(new MyLoadBalancer())
.build();

protected class MyLoadBalancer implements ClusterProtocolLoadBalancer {
@Override
public void configure(final ConnectionConfiguration config) {
}
@Override
public void addNode(final Protocol node) {
}
@Override
public void removeNode(final Protocol node) {
}
@Override
public Protocol chooseNode(final Message request) {
}
@Override
public void clear() {
}

}

Disaster Recovery
Platform SDK does not inject any business functionality into connections, so the Cluster Protocol
Application Block is able to provide disaster recovery by meeting the following requirements:

1. High availability maintains a list of active connections to ensure that requests are not sent to
disconnected servers.

2. Any request that receives a ChannelClosedOnSendException or ChannelClosedOnRequestException
response (because the connection was broken but not yet removed from the active list) is automatically
resent to a different connection. Other exceptions are passed through to the client application to be
handled manually.

There is no special configuration required to enable disaster recovery, but your application will need
to include logic that handles generic IO exceptions or protocol timeout exceptions.

Sequence Diagram: Cluster Protocol with Node Connection Failure

Introductory Topics Using the Cluster Protocol Application Block

Platform SDK Developer's Guide 79

Sequence Diagram: Cluster Protocol User Request Failure

How to Handle Lost Requests
It is possible for a communication error to occur where your application sends a request but the
connection is broken before any response is received. When using the Cluster Protocol you may not

Introductory Topics Using the Cluster Protocol Application Block

Platform SDK Developer's Guide 80

know if another node in the cluster handled the request. In this scenario your application won't know
if the server was able to receive or process the request correctly.

To address this, your application should include business logic that handles exceptions or null returns
for a Cluster Protocol request and acts appropriately based on the type of request. For example, a
request to read data can be sent again without impact, while a request that modifies data on the
server may require your application to check the server state before retrying or providing notification
that the request was successful.

Configuration Options

Important
For this release, only the UCS cluster type is supported.

The Cluster Protocol Application Block supports configuration in Configuration Manager for the client
application and cluster.

Introductory Topics Using the Cluster Protocol Application Block

Platform SDK Developer's Guide 81

Dynamic Configuration Options Updates
Cluster Protocol objects support graceful, dynamic updates of the cluster configuration, allowing you
to add or remove nodes on an opened and actively used cluster protocol.

Adding a new node automatically creates the new node protocol connection in the background and
attempts an asynchronous opening. The load balancer is notified about the new node connection
immediately after it is connected.

Removing a connected node from the cluster protocol causes the protocol to exclude that node from
the load balancer, and then disconnect the node after the protocol timeout delay. This delay allows
for delivery of responses on any requests that were already started.

Code Examples

Cluster Protocol Usage Example

UcsClusterProtocol ucsNProtocol =
new UcsClusterProtocolBuilder()

.build();
ucsNProtocol.setClientName("MyClientName");
ucsNProtocol.setClientApplicationType("MyAppType");
ucsNProtocol.setNodesEndpoints(

new Endpoint("ucs1", UCS_1_HOST, UCS_1_PORT),
new Endpoint("ucs2", UCS_2_HOST, UCS_2_PORT),
new Endpoint("ucs3", UCS_3_HOST, UCS_3_PORT));

ucsNProtocol.open();

EventGetVersion resp1 = (EventGetVersion) ucsNProtocol.request(RequestGetVersion.create());
EventGetVersion resp2 = (EventGetVersion) ucsNProtocol.request(RequestGetVersion.create());

Configuration Helper Example

The ClusterClientConfigurationHelper class is designed to make it easier for your application to
make use of this Application Block by performing the following steps:

1. Checks if client application is connected to cluster application
2. If cluster application detected, then creates endpoints for all cluster connections of the specify type
3. If cluster application not detected or no connections in cluster application found, then creates endpoints

for all client application connections of the specify type (compatibility mode)
4. If connected server has backup application, endpoint will have classical Primary\Backup configuration
5. Supports specifying shared ADDP options, Transport and Application parameters in connection to cluster

application. Those parameters can be overridden in connection to particular cluster node.

For more information, including an overview of the new Cluster Connection Configuration Helpers,
see Using the Application Template Application Block.

Introductory Topics Using the Cluster Protocol Application Block

Platform SDK Developer's Guide 82

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB

.NET

This Application Block is designed to be used with applications where a large number of requests
should be spread between a configured set of UCS servers - or other Genesys servers - in a cluster,
providing a type of high-availability (HA) connection to that cluster. In addition to this application
block, the Cluster Protocol also includes a set of configuration helpers in the Application Template
Application Block.

Tip
When the Cluster Protocol Application Block is connected to a cluster, it can be used in
UCS9 N+1 server mode connected to all nodes, or in UCS9 N+1 client mode
connected to one node. When the application block is connected to a single
application that has a backup configured, it works in UCS8 mode Primary/Backup.

Architecture Overview

One of the simplest and most common uses of the Platform SDK interface is a protocol that interacts
directly with a Genesys server using a set of standard protocol methods (such as Open, Close, Send,
Request).

To provide a single working protocol with at least one backup, we use the Warm Standby Application
Block. That application block intercepts control of the protocol interface and provides switch-over
between multiple protocols, or protocol restoration, using a single Warm Standby endpoint.

The Cluster Protocol builds on this idea, allowing you to work simultaneously with a series of
protocols and Warm Standby application blocks (each of which can represent one or many individual
protocols) the same way that you would with a single, standard protocol. To configure the Cluster
Protocol, you use a mixed list of protocol and Warm Standby endpoints gathered from Configuration
Server.

Introductory Topics Using the Cluster Protocol Application Block

Platform SDK Developer's Guide 83

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB

The Cluster Protocol itself covers any scenarios where we need simultaneous connections through a
load balancer to many servers, where each server may have one or many backups.

Sequence Diagram: Main Scenario When Using Cluster Protocol Application Block

Introductory Topics Using the Cluster Protocol Application Block

Platform SDK Developer's Guide 84

High Availability Options

The Cluster Protocol is able to control the state of protocol connections, and use the Warm Standby
Application Block to keep them opened. Each cluster node may be initialized as a standard Platform
SDK Endpoint, or using WSConfig (Warm Standby configuration) with one or more backup Endpoints
added. A list of opened connections is tracked using a Load Balancer, which allows requests to be
spread across connected protocols.

This gives your application the flexibility to configure one endpoint per connection ("server mode"),
or to combine cluster endpoints in a single Warm Standby configuration and let the Cluster Protocol
use a single connection to anyone of them ("client mode").

Load Balancing Options
The default Load Balancing strategy uses a "round robin" algorithm over connected servers for
request forwarding. It is possible for you to create your own implementation of the Load Balancer
interface, however, and provide it during creation of the Cluster Protocol instance.

Introductory Topics Using the Cluster Protocol Application Block

Platform SDK Developer's Guide 85

Disaster Recovery
Platform SDK does not inject any business functionality into connections, so the Cluster Protocol
Application Block is able to provide disaster recovery by meeting the following requirements:

1. High availability maintains a list of active connections to ensure that requests are not sent to
disconnected servers.

2. Any request that receives a ChannelClosedOnSendException or ChannelClosedOnRequestException
response (because the connection was broken but not yet removed from the active list) is automatically
resent to a different connection. Other exceptions are passed through to the client application to be
handled manually.

There is no special configuration required to enable disaster recovery, but your application will need
to include logic that handles generic IO exceptions or protocol timeout exceptions.

Sequence Diagram: Cluster Protocol with Node Connection Failure

Sequence Diagram: Cluster Protocol User Request Failure

Introductory Topics Using the Cluster Protocol Application Block

Platform SDK Developer's Guide 86

How to Handle Lost Requests
It is possible for a communication error to occur where your application sends a request but the
connection is broken before any response is received. When using the Cluster Protocol you may not
know if another node in the cluster handled the request. In this scenario your application won't know
if the server was able to receive or process the request correctly.

To address this, your application should include business logic that handles exceptions or null returns
for a Cluster Protocol request and acts appropriately based on the type of request. For example, a
request to read data can be sent again without impact, while a request that modifies data on the
server may require your application to check the server state before retrying or providing notification
that the request was successful.

Configuration Options

Important
For this release, only the UCS cluster type is supported.

The Cluster Protocol Application Block supports configuration in Configuration Manager for the client
application and cluster.

Introductory Topics Using the Cluster Protocol Application Block

Platform SDK Developer's Guide 87

Dynamic Configuration Options Updates
Cluster Protocol objects support graceful, dynamic updates of the cluster configuration, allowing you
to add or remove nodes on an opened and actively used cluster protocol.

Adding a new node automatically creates the new node protocol connection in the background and
attempts an asynchronous opening. The load balancer is notified about the new node connection
immediately after it is connected.

Removing a connected node from the cluster protocol causes the protocol to exclude that node from
the load balancer, and then disconnect the node after the protocol timeout delay. This delay allows
for delivery of responses on any requests that were already started.

Code Examples

Cluster Protocol Usage Example

var ucsNProtocol = new UcsClusterProtocolBuilder().Build();
ucsNProtocol.ClientName = "MyClientName";
ucsNProtocol.ClientApplicationType = "MyAppType";
ucsNProtocol.SetNodesEndpoints(

new Endpoint("ucs1", UCS_1_HOST, UCS_1_PORT),
new Endpoint("ucs2", UCS_2_HOST, UCS_2_PORT),

Introductory Topics Using the Cluster Protocol Application Block

Platform SDK Developer's Guide 88

new Endpoint("ucs3", UCS_3_HOST, UCS_3_PORT));
ucsNProtocol.Open();

EventGetVersion resp1 = (EventGetVersion)ucsNProtocol.Request(RequestGetVersion.Create());
EventGetVersion resp2 = (EventGetVersion)ucsNProtocol.Request(RequestGetVersion.Create());

Configuration Helper Class

The ClusterClientConfigurationHelper class is designed to make it easier for your application to
make use of this Application Block by performing the following steps:

1. Checks if client application is connected to cluster application
2. If cluster application detected, then creates endpoints for all cluster connections of the specify type
3. If cluster application not detected or no connections in cluster application found, then creates endpoints

for all client application connections of the specify type (compatibility mode)
4. If connected server has backup application, endpoint will have classical Primary\Backup configuration
5. Supports specifying shared ADDP options, Transport and Application parameters in connection to cluster

application. Those parameters can be overridden in connection to particular cluster node.

For more information, including an overview of the new Cluster Connection Configuration Helpers,
see Using the Application Template Application Block.

Introductory Topics Using the Cluster Protocol Application Block

Platform SDK Developer's Guide 89

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB

Event Handling

Java

Once you have connected to a server, much of the work for your application involves sending
messages to that server and handling the events you receive from the server. This article describes
how to send and receive messages from a server.

Messages: Overview of Events and Requests

Messages you send to a server are called requests, while messages you receive are called events. An
event that is received from a server as the result of executing a request is called a response. In
summary, messages can be classified by using the following taxonomy:

• Requests: sent to the server
• Events: received from the server

• Responses: received as the result of a request
• Unsolicited events: not a direct result of a request

Tip
On this page, we will use the more general term "message" instead of "event", in
order to avoid confusion between protocol events and programming events.

For example, you may send a request to log in an agent or to gather statistics. You might also send a
request to update a configuration object, or to shut down an application.

In each of these cases, the server will respond with an event message, as shown below.

Introductory Topics Event Handling

Platform SDK Developer's Guide 90

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

You may also get unsolicited events from the server. That means receiving events that are not a
response to a specific request. For example, EventRinging will notify you of a call ringing on an
extension that you are currently monitoring.

Receiving Messages

With the Platform SDK, you can receive messages synchronously or asynchronously. It is important
that you define the way your application will work in this aspect. In general, you will probably use
only one type or the other in the same application.

Interactive applications normally use asynchronous message handling, because that will prevent the
UI thread from being blocked, which could make the application appear "frozen" to a user. On the
other hand, non-interactive batch applications commonly use synchronous response handling, as that
allows writing easy code that performs step-by-step.

Receiving Messages Asynchronously
Most Platform SDK applications need to handle unsolicited events. This is particularly true for
applications that monitor the status of contact center resources, such as extensions.

You receive server messages by implementing a MessageHandler that contains the event-handling
logic:

[Java]

MessageHandler tserverMessageHandler = new MessageHandler() {
@Override
public void onMessage(Message message) {

// your event-handling code goes here
}

};

Then you set your implementation as the protocol MessageHandler.

[Java]

tserverProtocol.setMessageHandler(tserverMessageHandler);

Introductory Topics Event Handling

Platform SDK Developer's Guide 91

Important
You need to know that your event-handling logic will be executed by using the
protocol invoker. Please set the invoker appropriate for your application needs. For
more information about the protocol invoker and how to set it, refer to Connecting to
a Server.

Inside your event-handling code, you will want to execute different logic for different kinds of events.
A typical way to do this is using a switch statement, based on the event identifier:

[Java]

switch (message.messageId()) {
case EventAgentLogin.ID:

OnEventAgentLogin(message);
break;

case EventAgentLogout.ID:
OnEventAgentLogout(message);
break;

}

Receiving Messages Synchronously
Some kinds of applications, such as batch applications, benefit from receiving messages
synchronously. This means that received messages will queue up and be handled by the application
on demand.

In order to receive messages this way, you simply do not set a protocol MessageHandler as
described in the previous section.

Tip
For releases prior to Platform SDK 8.1.1, messages were received synchronously by
default. Please note that 8.1.1 behavior is backwards-compatible, and pre-8.1.1
applications will continue to work as expected without any modification.

To receive a message synchronously, use the Receive method. This method blocks processing,
waiting for the next message to be received before continuing. Take into account that the maximum
time to wait is set by a configurable timeout value. If the timeout expires and no event is received,
you will receive a null value.

[Java]

Message message = tserverProtocol.receive();

If you want to set your own timeout, you can use the Receive method overload that takes a timeout
parameter. Otherwise, if you use Receive with no parameters, the protocol Timeout property will be
used.

Introductory Topics Event Handling

Platform SDK Developer's Guide 92

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

Sending Requests Asynchronously

This is the easiest way to send a message to a server. Suppose you have created and filled a request
object, for example, a RequestAgentLogin message for Interaction Server:

[Java]

RequestAgentLogin loginRequest = RequestAgentLogin.create();
loginRequest.setTenantId(tenantId);
loginRequest.setAgentId(agentId);
loginRequest.setPlaceId(placeId);

You can then send it to the server using the following code:

[Java]

interactionServerProtocol.send(loginRequest);

This will result in your application receiving a response from the Interaction Server: either an
EventAck or an EventError message. By using the Send method, you will ignore that response at the
place where you make the request. You will get the response, like any other unsolicited event, using
the techniques described in the Receiving Messages section.

Handling Responses

The understanding of how to send requests and receive events is all you need to communicate with
Genesys servers. However, the Platform SDK also provides the ability to easily associate a response
with the particular request that originated it.

Receiving a Response Synchronously
The easiest way to handle responses is with the Request method. This is a blocking method, as your
application stops to wait for a response to come from the server. Using the same request example
above:

[Java]

Message response = interactionServerProtocol.request(loginRequest);
if (response.messageId() == EventAck.ID) {

EventAck eventAck = (EventAck)response;
// continue here

}
else {

// handle the error here
}

Notice that you will need to cast the message to a specific message type in order to access its
attributes. If a request fails on the server side, you will typically receive an EventError.

Take into account that the Request method blocks until a message is received or a timeout occurs. If
the timeout elapses and no response was received from the server, then a null value is received.
The timeout parameter can be specified in the request method. If you do not use the timeout
parameter then, then the protocol Timeout property is used.

Introductory Topics Event Handling

Platform SDK Developer's Guide 93

The Request method will only return one message from the server. In the case that the server returns
subsequent messages, apart from the first response, as a result of the requested operation, then you
must process those messages separately as unsolicited events. Please make sure that your code
handles all messages received from your servers.

When using the Request method, your application only receives the response to that request as a
return value. The response will not be received as an unsolicited event as well. (You can change this
behavior by using the CopyResponse protocol property, described below.)

Receiving a Response Asynchronously
For many applications, blocking your thread while waiting for a response to your request is not
appropriate. For example GUI applications, where the GUI can appear "frozen" if the response takes
too much time to be received. It can also be true for batch applications that may want to send
multiple requests at the same time, while waiting for all responses concurrently. For these scenarios it
is possible to receive responses asynchronously.

Receiving a Response Asynchronously Using a Callback

By using requestAsync, your thread will not block, and it will permit you to handle the response by
using callback methods that will get called asynchronously.

First, you will need to implement a CompletionHandler which will contain the logic for handling the
response to your request:

[Java]

private static final CompletionHandler loginResponseHandler = new CompletionHandler() {

@Override
public void completed(Message message, Void notUsed) {

// handle message here
}

@Override
public void failed(Throwable exc, Void notUsed) {

// handle error here
}

};

Important
The CompletionHandler callback methods will be executed by the protocol invoker.

Then you can use the CompletionHandler as a parameter to the requestAsync method:

[Java]

interactionServerProtocol.requestAsync(loginRequest, null, loginResponseHandler);

Notice that in this example, the attachment parameter has not been used. If you are sharing the
same CompletionHandler implementation for handling the responses to different requests then you

Introductory Topics Event Handling

Platform SDK Developer's Guide 94

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling#CopyResponse

may want to use an attachment to make it easy to differentiate among those requests.

Receiving the Response as a Future

Alternatively, you may want to handle responses using the same thread that did the request, but
have the option to do something concurrently while waiting for the response. To accomplish this, use
the beginRequest method.

As an example, you might perform two agent login requests concurrently: one for logging into the T-
Server, and another for logging into Interaction Server.

[Java]

RequestFuture loginVoiceFuture = tserverProtocol.beginRequest(loginVoiceRequest);
RequestFuture loginMultimediaFuture =
interactionServerProtocol.beginRequest(loginMultimediaRequest);

Message loginVoiceResponse = loginVoiceFuture.get();
Message loginMultimediaResponse = loginMultimediaFuture.get();

// handle responses, both are available now

When using the requestAsync or beginRequest methods, you will not receive the response as an
unsolicited event. (You can change this behavior by using the CopyResponse protocol property,
described below).

CopyResponse

Previously it was stated that responses returned by request methods are not received as unsolicited
events by default. This behavior can be modified by using the protocol CopyResponse property. The
default value is false, but it can be set to true like this:

[Java]

tserverProtocol.setCopyResponse(true);

This is particularly useful for protocols which define events that can be both received unsolicited and
as a response to a client request (such as EventAgentLogin defined by the T-Server protocol). By
setting the CopyResponse property to true, you can execute your agent state change logic only when
handling the message as an unsolicited event, and you do not need to include it when receiving the
message as a response.

.NET

Once you have connected to a server, much of the work for your application will involves sending
messages to that server and handling the events you receive from the server. This article describes
how to send and receive messages from a server.

Introductory Topics Event Handling

Platform SDK Developer's Guide 95

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling#CopyResponse
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

Messages: Overview of Events and Requests

Messages you send to a server are called requests, while messages you receive are called events. An
event that is received from a server as the result of executing a request is called a response. In
summary, messages can be classified by using the following taxonomy:

• Requests: sent to the server
• Events: received from the server

• Responses: received as the result of a request
• Unsolicited events: not a direct result of a request

Tip
On this page, we will use the more general term "message" instead of "event", in
order to avoid confusion between protocol events and programming events.

For example, you may send a request to log in an agent or to gather statistics. You might also send a
request to update a configuration object, or to shut down an application.

In each of these cases, the server will respond with an event message, as shown below.

You may also get unsolicited events from the server. That means receiving events that are not a
response to a specific request. For example, EventRinging will notify you of a call ringing on an
extension that you are currently monitoring.

Receiving Messages

With the Platform SDK, you can receive messages synchronously or asynchronously. It is important
that you define the way your application will work in this aspect. In general, you will probably use
only one type or the other in the same application.

Introductory Topics Event Handling

Platform SDK Developer's Guide 96

Interactive applications normally use asynchronous message handling, because that will prevent the
UI thread from being blocked, which could make the application appear "frozen" to a user. On the
other hand, non-interactive batch applications commonly use synchronous response handling, as that
allows writing easy code that performs step-by-step.

Receiving Messages Asynchronously
Most Platform SDK applications need to handle unsolicited events. This is particularly true for
applications that monitor the status of contact center resources, such as extensions.

You receive server messages asynchronously by subscribing to the Received .NET event:

[C#]

tserverProtocol.Received += OnTServerMessageReceived;

Then you can implement your event-handling logic:

[C#]

void OnTServerMessageReceived(object sender, EventArgs e)
{

IMessage message = ((MessageEventArgs)e).Message;
// your event-handling code goes here

}

Important
You need to know that your event-handling logic will be executed by using the
protocol invoker. Please set the invoker appropriate for your application needs. For
more information about the protocol invoker and how to set it, refer to Connecting to
a Server.

Inside your event-handling code, you will want to execute different logic for different kinds of events.
A typical way to do this is using a switch statement, based on the event identifier:

[C#]

switch (message.Id)
{

case EventAgentLogin.MessageId:
OnEventAgentLogin(message);
break;

case EventAgentLogout.MessageId:
OnEventAgentLogout(message);
break;

}

Receiving Messages Synchronously
Some kinds of applications, such as batch applications, benefit from receiving messages
synchronously. This means that received messages will queue up and be handled by the application
on demand.

Introductory Topics Event Handling

Platform SDK Developer's Guide 97

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

In order to receive messages this way, you simply do not subscribe to the Received .NET event as
described in the previous section.

Tip
For releases prior to Platform SDK 8.1.1, messages were received synchronously by
default. Please note that 8.1.1 behavior is backwards-compatible, and pre-8.1.1
applications will continue to work as expected without any modification.

To receive a message synchronously, use the Receive method. This method blocks processing,
waiting for the next message to be received before continuing. Take into account that the maximum
time to wait is set by a configurable timeout value. If the timeout expires and no event is received,
you will receive a null value.

[C#]

IMessage message = tserverProtocol.Receive();

If you want to set your own timeout, you can use the Receive method overload that takes a timeout
parameter. Otherwise, if you use Receive with no parameters, the protocol Timeout property will be
used.

Sending Requests Asynchronously
This is the easiest way to send a message to a server. Suppose you have created and filled a request
object, for example, a RequestAgentLogin message for Interaction Server:

[C#]

var loginRequest = RequestAgentLogin.Create();
loginRequest.TenantId = tenantId;
loginRequest.AgentId = agentId;
loginRequest.PlaceId = placeId;

Then you can send it to the server:

[C#]

interactionServerProtocol.Send(loginRequest);

This will result in your application receiving a response from the Interaction Server: either an
EventAck or an EventError message. By using the Send method, you will ignore that response at the
place where you make the request. You will get the response, like any other unsolicited event, using
the techniques described in the Receiving Messages section.

Handling Responses

The understanding of how to send requests and receive events is all you need to communicate with
Genesys servers. However, the Platform SDK also provides the ability to easily associate a response
with the particular request that originated it.

Introductory Topics Event Handling

Platform SDK Developer's Guide 98

Receiving a Response Synchronously
The easiest way to handle responses is with the Request method. This is a blocking method, as your
application stops to wait for a response to come from the server. Using the same request example
above:

[C#]

IMessage response = interactionServerProtocol.Request(loginRequest);
if (response.Id == EventAck.MessageId)
{

var eventAck = (EventAck)response;
// continue here

}
else
{

// handle the error here
}

Notice that you will need to cast the message to a specific message type in order to access its
attributes. If a request fails on the server side, you will typically receive an EventError.

Take into account that the Request method blocks until a message is received or a timeout occurs. If
the timeout elapses and no response was received from the server, then a null value is received.
The timeout parameter can be specified in the request method. If you do not use the timeout
parameter then the protocol Timeout property is used.

The request method will only return one message from the server. In the case that the server returns
subsequent messages, apart from the first response, as a result of the requested operation, then you
must process those messages separately as unsolicited events. Please make sure that your code
handles all messages received from your servers.

When using the Request method, your application only receives the response to that request as a
return value. The response will not be received as an unsolicited event as well. (You can change this
behavior by using the CopyResponse protocol property, described below).

Receiving a Response Asynchronously
For many applications, blocking your thread while waiting for a response to your request is not
appropriate. For example GUI applications, where the GUI can appear "frozen" if the response takes
too much time to be received. It can also be true for batch applications that may want to send
multiple requests at the same time, while waiting for all responses concurrently. For these scenarios it
is possible to receive responses asynchronously.

By using BeginRequest, your thread will not block, and it will permit you to handle the response the
way that best suits your application. This method complies with .NET "Asynchronous Programming
Model". You can find more information about the "Asynchronous Programming Model" in the Web.

For example, your application can handle responses asynchronously by using a callback, which is a
piece of logic that executes asynchronously when the response is received. Define a callback method
like this:

[C#]

void OnLoginResponseReceived(IAsyncResult result) {
IMessage response = interactionServerProtocol.EndRequest(result);

Introductory Topics Event Handling

Platform SDK Developer's Guide 99

if (response.Id == EventAck.MessageId)
{

var eventAck = (EventAck)response;
// continue here

}
else
{

// handle the error here
}

}

Then you can submit your request using the callback method.

[C#]

interactionServerProtocol.BeginRequest(loginRequest, OnLoginResponseReceived, null);

As an alternative, you may want to do something concurrently, while waiting for the response. For
example, you could perform two agent login requests concurrently: one for logging the agent into the
T-Server, and another for logging the agent into Interaction Server.

[C#]

var resultLoginVoice = tserverProtocol.BeginRequest(loginVoiceRequest, null, null);
var resultLoginMultimedia = interactionServerProtocol.BeginRequest(loginMultimediaRequest,
null, null);

var loginVoiceResponse = tserverProtocol.EndRequest(resultLoginVoice);
var loginMultimediaResponse = interactionServerProtocol.EndRequest(resultLoginMultimedia);

// handle responses, both are available now

When using the BeginRequest method, your application receives the response to your request as the
return value of EndRequest. You will not receive the response as an unsolicited event. (You can
change this behavior by using the CopyResponse protocol property, described below).

CopyResponse

Previously it was stated that responses returned by request methods are not received as unsolicited
events by default. This behavior can be modified by using the protocol CopyResponse property. The
default value is false, but it can be set to true like this:

[C#]

tserverProtocol.CopyResponse = true;

This is particularly useful for protocols which define events that can be both received unsolicited and
as a response to a client request (such as EventAgentLogin defined by the T-Server protocol). By
setting the CopyResponse property to true, you can execute your agent state change logic only when
handling the message as an unsolicited event, and you do not need to include it when receiving the
message as a response.

Introductory Topics Event Handling

Platform SDK Developer's Guide 100

Setting up Logging in Platform SDK

Java

Using the Built-In Logging Implementation
The Platform SDK Commons library provides adapters for the following implementations:

• com.genesyslab.platform.commons.log.SimpleLoggerFactoryImpl - redirect Platform SDK logs to
System.out;

• com.genesyslab.platform.commons.log.JavaUtilLoggerFactoryImpl - redirect Platform SDK logs to Java
common java.util.logging logging system;

• com.genesyslab.platform.commons.log.Log4JLoggerFactoryImpl - redirect Platform SDK logs to
underlying Log4j 1.x;

• com.genesyslab.platform.commons.log.Log4J2LoggerFactoryImpl - redirect Platform SDK logs to
underlying Log4J 2;

• com.genesyslab.platform.commons.log.Slf4JLoggerFactoryImpl - redirect Platform SDK logs to
underlying Slf4j.

Note: Prior to release 8.5.102.02, the only log adapter available was for log4j v1.x and short names were
not available.

By default, these log implementations are switched off but you can enable logging by using one of
the methods described below.

1. In Your Application Code

The easiest way to set up Platform SDK logging in Java is in your code, by creating a factory instance
for the log adapter of your choice and set it as the global logger factory for Platform SDK at the
beginning of your program. An example using the log4j 1.x adapter is show here:

com.genesyslab.platform.commons.log.Log.setLoggerFactory(new Log4JLoggerFactoryImpl());

2. Using a Java System Variable

Using a Java system variable, by setting com.genesyslab.platform.commons.log.loggerFactory to
the fully qualified name of the ILoggerFactory implementation class. For example, to set up log4j as
the logging implementation you can start your application using the following command:

java -Dcom.genesyslab.platform.commons.log.loggerFactory=<log_type> <MyMainClass>

Where <log_type> is either a full-defined class names with packages, or one of the following short
names:

• console - for SimpleLoggerFactoryImpl (to System.out);

Introductory Topics Setting up Logging in Platform SDK

Platform SDK Developer's Guide 101

• jul - for JavaUtilLoggerFactoryImpl;
• log4j - for the Log4J 1.x adaptor;
• log4j2 - for the Log4J 2 adaptor;
• slf4j - for the Slf4j adaptor;
• auto - with this value, Platform SDK Commons logging tries to detect available the logging system from

the list of ['Log4j2', 'Slf4j', 'Log4j']; if no log system from the list is detected then the
JavaUtilLoggerFactoryImpl adapter will be used.

3. Configuration in the Class Path

You can also configure logging using a PlatformSDK.xml Java properties file that is specified in your
class path:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry
key="com.genesyslab.platform.commons.log.loggerFactory">com.genesyslab.platform.commons.log.Log4JLoggerFactoryImpl</entry>
</properties>

For more information, refer to details about the PsdkCustomization class in the API Reference Guide.

Providing a Custom Logging Implementation
If log4j does not fit your needs, it is also possible to provide your own implementation of logging.

In order to do that, you will need to complete the following steps:

1. Implement the ILogger interface, which contains the methods that the Platform SDK uses for logging
messages, by extending the AbstractLogger class.

2. Implement the ILoggerFactory interface, which should create instances of your ILogger
implementation.

3. Finally, set up your ILoggerFactory implementation as the global Platform SDK LoggerFactory, as
described above.

Setting Up Internal Logging for Platform SDK
To use internal logging in Platform SDK, you have to set a logger implementation in Log class before
making any other call to Platform SDK. There are two ways to accomplish this:

1. Set the com.genesyslab.platform.commons.log.loggerFactory system property to the fully qualified
name of the factory class

2. Use the Log.setLoggerFactory(...) method

One of the log factories available in Platform SDK itself is
com.genesyslab.platform.commons.log.Log4JLoggerFactoryImpl which uses log4j. You will have
to setup log4j according to your needs, but a simple log4j configuration file is shown below as an
example.

log4j.logger.com.genesyslab.platform=DEBUG, A1

Introductory Topics Setting up Logging in Platform SDK

Platform SDK Developer's Guide 102

https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome

log4j.appender.A1=org.apache.log4j.FileAppender
log4j.appender.A1.file=psdk.log
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %-25.25c %x - %m%n

The easiest way to set system property is to use -D switch when starting your application:

-Dcom.genesyslab.platform.commons.log.loggerFactory=com.genesyslab.platform.commons.log.Log4JLoggerFactoryImpl

Logging with AIL

In Interaction SDK (AIL) and Genesys Desktop applications, you can enable the Platform SDK logs by
setting the option log/psdk-debug = true.

At startup, AIL calls: Log.setLoggerFactory(new Log4JLoggerFactoryImpl());

The default level of the logger com.genesyslab.platform is WARN (otherwise, applications would
literally be overloaded with logs). The option is dynamically taken into account; it turns the logger
level to DEBUG when set to true, and back to WARN when set to false.

Dedicated loggers

Platform SDK has several specialized loggers:

1. com.genesyslab.platform.ADDP
2. com.genesyslab.platformmessage.request
3. com.genesyslab.platformmessage.receive

Dedicated ADDP Logger

ADDP logs can be enabled using common Platform SDK log configuration.

log4j.logger.com.genesyslab.platform=INFO, A1
log4j.appender.A1=org.apache.log4j.FileAppender
log4j.appender.A1.file=psdk.log
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %-25.25c %x - %m%n

In addition, the com.genesyslab.platform.ADDP logger is controlled by the addp-trace option. If
ADDP log is not required on INFO level, it can be disabled using the following option:

PropertyConfiguration config = new PropertyConfiguration();
config.setAddpTraceMode(AddpTraceMode.None);

or

config.setAddpTraceMode(AddpTraceMode.Remote);

The addp-trace option has no effect when DEBUG level is set. ADDP logs will be printed regardless of
the option value.

Introductory Topics Setting up Logging in Platform SDK

Platform SDK Developer's Guide 103

Important
In Platform SDK 8.5.0, the second ADDP logger (AddpIntreceptor) was removed to
avoid ADDP log duplication when RootLogger of the logging system is set to DEBUG
level.

Instead of using second ADDP logger to print logs to another file, it is possible to specify additional
appender.

A sample configuration is provided below:

log4j.logger.com.genesyslab.platform=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-d [%t] %-5p %-25.25c %x - %m%n
log4j.appender.A1.Threshold=WARN

//additional log file with addp traces.
log4j.logger.com.genesyslab.platform.ADDP=INFO, A2
log4j.appender.A2=org.apache.log4j.FileAppender
log4j.appender.A2.file=addp.log
log4j.appender.A2.append=false
log4j.appender.A2.layout=org.apache.log4j.PatternLayout
log4j.appender.A2.layout.ConversionPattern=%-d [%t] %-5p %-25.25c %x - %m%n

Dedicated Request and Receive Loggers
A sample Log4j configuration is shown here:

log4j.logger.com.genesyslab.platformmessage.request=DEBUG, A1
log4j.logger.com.genesyslab.platformmessage.receive=DEBUG, A1

Important
In PSDK 8.5.0 version the PSDK.DATA logger was replaced with
com.genesyslab.platformmessage.request and
com.genesyslab.platformmessage.receive loggers.

These loggers allow printing complete message attribute values. By default, large attribute logs are
truncated to avoid application performance impact:

'EventInfo' (2) attributes:
VOID_DELTA_VALUE [bstr] =

0x00 0x01 0xFF 0xFF 0x00 0x05 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x09 0x00 0x00 0x00 0x05 0x00 0x00 0x00 0x00 0x00
... [output truncated, 362 bytes left out of 512]

However, in some cases a full data dump may be required in logs. There are three possible ways to
do this, as shown below:

Introductory Topics Setting up Logging in Platform SDK

Platform SDK Developer's Guide 104

Important
To avoid log duplication when the logging system RootLogger is configured to DEBUG
level, these loggers are disabled by default and can be activated with a system
property. This system property affects both loggers.

1. Activate using system properties:

-Dcom.genesyslab.platform.trace-messages=true //for all protocols
-Dcom.genesyslab.platform.Reporting.StatServer.trace-messages=true //only for stat protocol

2. Activate from code:

//for all protocols
PsdkCustomization.setOption(PsdkOption.PsdkLoggerTraceMessages, "false");

//only for stat protocol
String protocolName = StatServerProtocolFactory.PROTOCOL_DESCRIPTION.toString();
PsdkCustomization.setOption(PsdkOption.PsdkLoggerTraceMessages, protocolName, "true");

These static options should be set once at the beginning of the program, before opening Platform
SDK protocols.

3. Activate from PlatformSDK.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="com.genesyslab.platform.trace-messages">true</entry>
</properties>

For details about the PsdkCustomization class, refer to the API Reference Guide.

.NET

Setting up Logging
For .NET development, the EnableLogging method allows logging to be easily set up for any classes
that implement the ILogEnabled interface. This includes:

• All protocol classes: TServerProtocol, StatServerProtocol, etc.
• The WarmStandbyService class of the Warm Standby Application Block.

For example:

tserverProtocol.EnableLogging(new MyLoggerImpl());

Introductory Topics Setting up Logging in Platform SDK

Platform SDK Developer's Guide 105

https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome

Providing a Custom Logging Implementation
You can provide your custom logging functionality by implementing the ILogger interface. Samples
of how to do this are provided in the following section.

Samples
You can download some samples of classes that implement the ILogger interface:

• AbstractLogger: This class can make it easier to implement a custom logger, by providing a default
implementation of ILogger methods.

• TraceSourceLogger: A logger that uses the .NET TraceSource framework. It adapts the Platform SDK
logger hierarchy to the non-hierarchical TraceSource configuration.

• Log4netLogger: A logger that uses the log4net libraries.

Introductory Topics Setting up Logging in Platform SDK

Platform SDK Developer's Guide 106

Additional Logging Features

Java

Application Configuration Manager Component

The Application Configuration Manager component is a new addition to the Application Template
Application Block.

This component monitors the application configuration from Configuration Server and provides
notification of any updates to options for your custom application, options of connected servers, or
options of their host objects. It also checks the availability of Log4j2 logging framework and
automatically enables Log4j2 configuration based on the application logging options in Configuration
Manager.

The quickest way to get an application configured for logging in accordance to the application "log"
section might look like the following example:

public class MyApplication {

protected static final LmsEventLogger LOG =
LmsLoggerFactory.getLogger(MyApplication.class);
.....

GFApplicationConfigurationManager appManager =
GFApplicationConfigurationManager.newBuilder()
.withCSEndpoint(new Endpoint("CS-primary", csHost1, csPort1))
.withCSEndpoint(new Endpoint("CS-backup", csHost2, csPort2))
.withClientId(clientType, clientName)
.withUserId(csUsername, csPassword)
.build();

appManager.register(new GFAppCfgOptionsEventListener() {
public void handle(final GFAppCfgEvent event) {

Log.getLogger(getClass()).info(
"The application configuration options received: " + event);

// Init or update own application options from 'event.getAppConfig()'
}});

appManager.init();

// LmsEventLogger method usage:
LOG.log(CommonLmsEnum.GCTI_APP_INIT_COMPLETED);
// Common ILogger method usage:
LOG.info("Some Log4j2 info message");

.....
// Shutdown the configuration manager:
appManager.done();

In this example, the builder for the manager creates and initializes an internal instance of
ConfService and encapsulates the WarmStandby service to handle failures of the Configuration
Server connection.

Introductory Topics Additional Logging Features

Platform SDK Developer's Guide 107

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB

Created with these parameters, ConfService has:

• the default ConfService cache enabled;
• a WarmStandby service with default configuration for the two given Configuration Server endpoints;
• automatic Configuration Server subscription for notifications on the application and host object types;

If your application needs to have a custom ConfService instance with a specific configuration (for
example, a customized cache) then it is possible to create an Application Configuration Manager on
your pre-configured ConfService instance. In this case the manager does not take care of the
service connection state or caching - it is up to your application to create and manage the
WarmStandby service, Configuration Server subscriptions, and the ConfService cache.

An example of working with a custom ConfService instance is provided below:

GFApplicationConfigurationManager appManager =
GFApplicationConfigurationManager.newBuilder()
.withConfService(confService)
.build();

appManager.register(new GFAppCfgOptionsEventListener() {
public void handle(final GFAppCfgEvent event) {

Log.getLogger(getClass()).info(
"The application configuration options received: " + event.getAppConfig());

}});
appManager.init();

Common Logging Interfaces Usage

Platform SDK for Java has its own interface for logging (using
com.genesyslab.platform.commons.log) that includes the following classes/interfaces:

• Log,
• ILoggerFactory,
• ILogger

Platform SDK uses the ILogger interface to generate Platform SDK internal log messages, and
custom applications are also able to use this logging interface as shown in below:

public class SomeUserClass {
protected static final ILogger log = Log.getLogger(SomeUserClass.class);

public void doSomething() {
try {

log.debug("doing something");
// ...

} catch (final Exception ex) {
log.debug("exception while doing something", ex);

}
}

}

In this sample, the commons logging messages will go to the particular ILogger interface
implementation.

Introductory Topics Additional Logging Features

Platform SDK Developer's Guide 108

Up to release 8.5.0 of Platform SDK, there were two implementations of the interface available: a
silent "NullLogger" (default) and Log4j adapter.

Starting with release 8.5.1, the following additional implementations have been added:

• "simple" console printing implementation;
• java.util.logging adapter;
• Slf4j interface adapter;
• Log4j 2.x adapter.

Also it is possible to create a custom implementation of ILogger and ILoggerFactory, enable their
usage, and get into some other logging system.

LMS Event Loggers and LMS files support

LmsEventLogger is an extension of the common Platform SDK ILogger interface that is used for
logging Genesys LMS events to Message Server or for writing log files in the Genesys-specific format.

An example of simple LmsEventLogger usage is provided below:

class SampleClass {
protected final static LmsEventLogger LOG = LmsLoggerFactory.getLogger(SampleClass.class);
public void method() {

// Use logger to generate event:
LOG.log(LogCategory.Application, CommonLmsEnum.GCTI_LOAD_RESOURCE, "users.db", "no

such file");
// => "Unable to load resource 'users.db', error code 'no such file'"

// or, for event GCTI_CFG_APP[6053, STANDARD, "Configuration for application
obtained"]:

LOG.log(CommonLmsEnum.GCTI_CFG_APP);
// or

LOG.log(6053); // => "Configuration for application obtained"

// or "plain" logging methods:
try {

LOG.debug("Starting cache load...");
// ... do something ...

} catch (final Exception exception) {
LOG.error("Failed to load cache", exception);

}
.....

The Application Configuration Manager component included with Application Template Application
Block is able to automatically configure and keep an updated LmsMessageConveyor with LMS files
configuration.

However, if your custom application does not use the Application Configuration Manager component
then it can configure LMS file usage in the following way:

public class SomeUserClass {
protected static final LmsEventLogger LOG =

LmsLoggerFactory.getLogger(SomeUserClass.class);

Introductory Topics Additional Logging Features

Platform SDK Developer's Guide 109

public void configureLogging() {
// Create new instance of LMS conveyor:
LmsMessageConveyor lmsConveyor = new LmsMessageConveyor();

// Configure it:
lmsConveyor.loadConfiguration(appConfig);

// or:
lmsConveyor.loadConfiguration("MyApp.lms");

// Reinitialize the LmsLoggerFactory singleton with the new conveyor:
LmsLoggerFactory.createInstance(lmsConveyor);

// or
LmsLoggerFactory.setLoggerFactoryImpl(Log.LOG_FACTORY_LOG4J2, lmsConveyor);

}
.....

The LMS loggers also have several implementations in order to support different target logging
frameworks including java.util.logging, log4j v1, slf4j, and log4j v2. You can enable specific target
framework usage synchronously with the Platform SDK common logging.

The Application Template application block contains the LMS event loggers, a "common.lms" file, its
correspondent CommonLmsEnum class, and an LmsEnum generator tool for generation of specific
enumerations from the LMS files for your custom applications.

Using Custom LMS Files and Correspondent LmsEnums

1. Create a custom LMS file with the default localization context, for example, "MyApp.lms":
xxxxxxxx|LMS|1.0|MyApp.lms|8.5.100|*

21001|STANDARD|MY_APP_START_EVENT|Application '%s' started the work
21002|ALARM|MY_APP_DATABASE_LOST|App '%s' failed to connect to database '%s'
.....

2. Generate the corresponding enumeration class using the Platform SDK generator:
%> java -cp apptemplate.jar
com.genesyslab.platform.apptemplate.lmslogger.LmsEnumGenerator

MyApp.lms MyAppLmsEnum custom.package.name

As a result there will be a custom.package.name.MyAppLmsEnum enumeration containing declarations from MyApp.lms.

3. (Optional) Create a customized version of the MyApp.lms file with localized messages.
4. (Optional) Load the enumeration(s) with message conveyor and initialize LmsLoggerFactory with it. The

Application Template applcation block exposes annotations processor, which collects information about
available LmsEnums in the application build time, so the default LmsMessageConveyor() constructor is
able to register generated LmsEnums automatically. If it does not do this for some reason, and there is
no acceptable way to let the annotation processor work for your use case, then it is possible to initialize
LmsMessageConveyor explicitly:
LmsMessageConveyor lmsConveyor = new LmsMessageConveyor(CommonLmsEnum.class,
MyAppLmsEnum.class);
lmsConveyor.loadConfiguration("MyApp.lms"); // optional - if there is a localized LMS
file

// Reinitialize the LmsLoggerFactory singleton with the new conveyor:

Introductory Topics Additional Logging Features

Platform SDK Developer's Guide 110

LmsLoggerFactory.createInstance(lmsConveyor);
// or
LmsLoggerFactory.setLoggerFactoryImpl(Log.LOG_FACTORY_LOG4J2, lmsConveyor);

5. Call the loggers
lmsLog.log(MyAppLmsEnum.MY_APP_START_EVENT, "my application");
lmsLog.log(LogCategory.Alarm, MyAppLmsEnum.MY_APP_DATABASE_LOST, "my application",
"dbname");

Enabling Logging Framework Usage

The Platform SDK common loggers and LMS events loggers may be configured to direct logs to
particular logging framework by using a system property at application startup, or at runtime with an
explicit API call.

The system property name is com.genesyslab.platform.commons.log.loggerFactory. It may
contain the FQCN of your particular implementation of the Platform SDK common loggers factory, or
the alias name of a built-in implementation (such as "log4j2", "slf4j", etc). If you specify one of the
alias names, this value is also used by the LmsLoggerFactory initialization logic, so that LMS events
from LmsEventLogger will also be directed to the same logging framework.

In this case, the jvm option might look like:

-Dcom.genesyslab.platform.commons.log.loggerFactory=log4j2

This property is handled with the Platform SDK customization options, so you can also enable it by
adding a PlatformSDK.xml file with the following contents to your application classpath:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="com.genesyslab.platform.commons.log.loggerFactory">log4j2</entry>
</properties>

Changing this property after initialization of the LoggerFactory has no effect. So if you need to
enable logging or change the target framework at runtime, this should be done with an explicit API
call. In this case the Platform SDK commons loggers and LMS events loggers need to be reconfigured
separately:

// Platform SDK Commons loggers (re-)configuration:
Log.setLoggerFactory(Log.LOG_FACTORY_LOG4J2);

// AppTemplate LMS Events loggers:
LmsLoggerFactory.setLoggerFactoryImpl(Log.LOG_FACTORY_LOG4J2, lmsMessageConveyor);

Important
Be aware that re-initializing the LMS Loggers factory requires a reference to the actual
LmsMessageConveyor. It is also possible to use "null", in which case the factory
initialization method will try to reuse reference from the "current" LmsLoggerFactory
or will create a default conveyor instance with support of the CommonLmsEnum events.

Introductory Topics Additional Logging Features

Platform SDK Developer's Guide 111

These calls are enough to reconfigure loggers which were created earlier; there is no need to recreate
them.

Configuring Logging

Platform SDK does not write logs itself (that is, it's not about the legacy Logger Component). Instead
Platform SDK is just able to send logs to the specified logging framework where they will be handled.
Configuration of logging parameters such as log file names, log levels, and more may be done within
that framework.

The Application Template application block contains parsing logic for Genesys Configuration Manager
Application logging options properties, and Log4j2 configuration structures to allow automatic
framework configuration. This helps applications to automatically start logging to the recommended
Log4j2 framework (as discussed below).

It is also possible to create user defined configurators for some other framework. In this case your
application may use the Application Configuration Manager to retrieve application configuration
details from Configuration Server in the form of POJO structures, and apply those details to its custom
logging framework.

Configuring Logging with Log4j2

Log4j2 is the recommended logging framework. The Application Template application block provides
several options for the logging framework configuration.

Using the Application Configuration Manager allows automatic Log4j2 configuration and
reconfiguration in accordance to the Genesys Configuration Manager application logging options.

Beside the common Genesys logging options, the Application Template application block also
supports a custom "log4j2-config-profile" option, which allows you to create combined logging
configuration as a merge of user defined loggers/appenders with ones created by the Configuration
Manager application options. This is useful in cases where your application consists of several sub-
systems, and is required to split logs from those sub-systems to different log files.

For example, in a Web Application it may be reasonable to separately write logs from Tomcat,
Cassandra, Platform SDK, and the application itself. In this scenario, one straightforward way of
logging configuration may be following:

1. Create a "startup" log4j2.xml configuration, which will be used before the application has retrieved
information from configuration server. This configuration might contain declarations of the application-
specific loggers and appenders. Appenders may be either "startup" or "permanent". The first ones have
names starting with "PSDKAppTpl-".

2. When your application starts with enabled Log4j2 usage, it picks up and uses the startup configuration
"as is". So, we have the application startup logs.

3. When your application has received the Genesys Configuration Manager Application options, it creates
and applies PsdkLog4j2Configuration where log4j2-config-profile = log4j2.xml. It takes the
log4j2 configuration as a base and replaces its startup appender(s) with new ones from the
Configuration Manager Application logging options. This allows you to configure the application logging

Introductory Topics Additional Logging Features

Platform SDK Developer's Guide 112

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LoggingFeatures#Configuring_Logging_with_Log4j2

parameters in accordance to Genesys Configuration Manager Application logging options, and gives
you the ability to handle external (for example, Tomcat or Cassandra) logs separately if desired.

Log4j2 Compatibility
The following table describes compatibility and official testing status of Platform SDK with different
versions of Log4j.

• full - this configuration is supported
• partial - Platform SDK commons logging redirect to Log4j2 is supported, but not Log4j2 configuration

using the Application Template Application Block
• none - this configuration is not working

Log4j
2.2

Log4j
2.3

Log4j
2.4x

Log4j
2.5

Log4j
2.6x

Log4j
2.7

Log4j
2.8x

Log4j
2.9x

Log4j
2.10.0

Log4j
2.11.0

Log4j
2.11.1

Platform
SDK
8.5.x
with
Java

6

full
(uses
2.2)

full none none none none none none none none none

Platform
SDK
8.5.x
with
Java
7+

full
(uses
2.2)

full full full partial partial partial partial partial partial partial

Platform
SDK

9.0.000.x
and

9.0.001.x
with
Java
8+

partial partial partial partial partial full
full
(uses
2.8.2)

partial partial partial partial

Platform
SDK

9.0.002.x
and

higher
with
Java
8+

partial partial partial partial partial partial partial full
full
(uses
2.10.0)

full full

.NET

Introductory Topics Additional Logging Features

Platform SDK Developer's Guide 113

NLog Adapter for Platform SDK .NET

This adapter combines the benefits of NLog library for .NET - a wide variety of targets that cover most
application requirements - with the the ability to write messages into Genesys Message Server.

Design Overview

The PsdkLoggerFactory class acts as a common entry point for Platform SDK for .NET logger
systems, and can be used on-the-fly by changing the configuration of any existing application.

Starting with release 9.0.001.02, Platform SDK for .NET introduced a new NLogLoggerFactory that
may be set as the default factory for implementing logging system functionality inside of Platform
SDK. This new factory can also create detached logger instances to be used for general purposes.

NLogLoggerFactory produces logger instances that implement the Adapter pattern and include
functionality to write messages to Genesys Message Server, as described by the ILmsEventLogger
interface. This factory can create instances of the ILmsEventLogger interface using the
CreateLmsLogger or CreateNullLmsLogger methods.

The IGLoggerConfiguration interface is used to describe the logger configuration. The
GAppLoggingOptions helper class implements this interface, and should be given logger
configuration details either from the IGApplicationConfiguration interface or directly from
KeyValueCollection storage.

By assigning an LmsMessageConveyor instance to the factory when using the factory constructor, you
can use your own LMS files with predefined message templates that replace the existing templates.

Usage Examples

Example 1: Configure File Target with Expiration
...
var logOptions = new KeyValueCollection()
{

{"verbose", "standard"},
{"message-format", "full"},
{"time-format", "iso8601"},
{"all", "FileTarget.log"},
{"Segment","100Kb"},
{"Buffering","true"},
{"DeleteArchiveFiles","true"},
{"Expire","1day"}

};
var config = new GAppLoggingOptions(logOptions, null);
var loggerFactory = new NLogLoggerFactory();
loggerFactory.Configure(config);
PsdkLoggerFactory.Factory = loggerFactory;
var logger = loggerFactory.CreateLogger("TestFileTarget");
logger.Debug("log message 1");

Introductory Topics Additional Logging Features

Platform SDK Developer's Guide 114

logger.Warn("log message 2");
logger.Info("log message 3");
logger.Error("log message 4");
logger.FatalError("log message 5");
...

Example 2: Create and Use Lms Event Logger
...
var logger = NLogLoggerFactory.Default.CreateLmsLogger(null); // use default factory
logger.Debug(CommonLmsMessages.GCTI_ADDP_NO_RESPONSE, "server","Msg", 20, 40);
...

Example 3: Using Lms logger with Custom Template and Logging Level
Replacement
...
var logOptions = new KeyValueCollection()

{
{"verbose", "standard"},
{"message-format", "full"},
{"time-format", "iso8601"},
{"all", "network"},
{"message-server-timeout","20000"}

};
var logExtOptions = new KeyValueCollection()

{
{"level-reassign-14005", "ALARM"},

};
var config = new GAppLoggingOptions(logOptions, logExtOptions, null);
var loggerFactory = new NLogLoggerFactory();
loggerFactory.Configure(config);
var logger = loggerFactory.CreateLmsLogger("test");

var template = new LmsMessageTemplate(14005, LogLevel.Info, "TEST", "Test message: %s");
logger.Log(template,"12345"); // sends with LogLevel.Fatal
...

NLog Extensions

Although NLog has many predefined targets, you can also use additional targets introduced with
Platform SDK by modifying the configuration file.

Examples of using these additional targets, by modifying either your NLog configuration file or your
app.config file, are shown in the examples below:

Message Server Target
<configuration>

<nlog>
<targets>

<target name="lms" type="MessageServer" port="2345" host="localhost" />
</targets>

Introductory Topics Additional Logging Features

Platform SDK Developer's Guide 115

<rules>
<logger name="LmsLogger" minLevel="Warn" maxLevel="Fatal" writeTo="lms" />

</rules>
</nlog>

</configuration>

Attribute name Description Required/
Optional Default value Notes

name
Any name of
logger to be used
in code

Required

type target type Required must be
'MessageServer'

host host name of
message server Required

port port of message
server Required must be integer

value 1..65520

clientName Client name field
for Message server Optional null used for

handshake

clientHost Client host field for
Message server Optional null used for

handshake

clientType Client type Id field
for Message server Optional null

used for
handshake, must
be integer value

clientId Client Id field for
Message server Optional null

used for
handshake, must
be integer value

timeout
Timeout of
MessageServerProtocol
class

Optional null must be integer
value

queueSize
Size of internal
queue of
messages to be
sent on server

Optional
1024
(PsdkCustomization.LogFactory.MessageServerInitialQueueLimit
parameter value)

must be integer
value greater than
32

Memory Queue Target
<configuration>

<nlog>
<targets>

<target name="mem" type="MemoryQueue" limit="8192"/>
</targets>
<rules>

<logger name="MemLogger" minLevel="Warn" maxLevel="Fatal" writeTo="mem" />
</rules>

</nlog>
</configuration>

Attribute name Description Required/
Optional Default value Notes

name Any name of
logger to be used Required

Introductory Topics Additional Logging Features

Platform SDK Developer's Guide 116

Attribute name Description Required/
Optional Default value Notes

in code

type target type Required must be
'MemoryQueue'

limit
Size of memory
queue of log
messages

Optional
4096
(PsdkCustomization.LogFactory.MemoryQueueSize
parameter value)

Introductory Topics Additional Logging Features

Platform SDK Developer's Guide 117

Log4j2 Configuration with the Application
Template Application Block
Platform SDK Application Template Application Block contains Log4j2 plugin component for logging
configuration.

Its goal is to allow application to configure logging in accordance to the Common Genesys Logging
Options with Log4j2 library.

Enabling and configuring PSDK log4j2 logging

Using AppTemplate Configuration Manager
GFApplicationConfigurationManager, once initialized, automatically applies and listen for updates in
the application logging configuration.

public class MyApplication {
protected static final LmsEventLogger LOG =

LmsLoggerFactory.getLogger(MyApplication.class);

...
GFApplicationConfigurationManager appManager =

GFApplicationConfigurationManager.newBuilder()
.withCSEndpoint(new Endpoint("CS-primary", csHost1, csPort1))
.withCSEndpoint(new Endpoint("CS-backup", csHost2, csPort2))
.withClientId(clientType, clientName)
.withUserId(csUsername, csPassword)
.build();

appManager.register(new GFAppCfgOptionsEventListener() {
public void handle(final GFAppCfgEvent event) {

Log.getLogger(getClass()).info("The application configuration options received: "
+ event);

// Init or update own application options from 'event.getAppConfig()'
}});

appManager.init();

// LmsEventLogger method usage:
LOG.log(CommonLmsEnum.GCTI_APP_INIT_COMPLETED);
// Common ILogger method usage:
LOG.info("Some Log4j2 info message");

...

For more details see Additional Logging Features.

Using AppTemplate API calls
If GApplicationConfigurationManager is not used, its still possible to configure logging in the same
way by using AppTemplate API calls.

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 118

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LoggingFeatures

In package "com.genesyslab.platform.apptemplate.log4j2" AppTemplate provides classes named
PsdkLog4j2Configuration and Log4j2Configurator.

Main cases are following:

1. Create PsdkLog4j2Configuration with its factory method "parse(KeyValueCollection)" and set it with the
configurator (Log4j2Configurator.setConfig()). It uses optional config profile and given application
Options "log" sections, and configures. Drawbacks: no "log-extended" Options section is taken into
account, no Message Server appender from the application connections.

2. Obtain IGApplicationConfiguration and apply it with the configurator
(Log4j2Configurator.applyLoggingConfig()). The application configuration may be explicitely filled using
GApplicationConfiguration, or automatically initialized from ConfService using
COMGApplicationConfiguration. This way includes initialization of "log-extended" Options sections and
may add Message Server appender if its properly configured in the application configuration. Note: this
configuration appliance method also switches PSDK loggers to send their logs to Log4j2 (if it was not
enabled earlier).

More details on enabling of PSDK logging may be found in Setting up Logging in Platform SDK.

Switch PSDK logging to log4j2 with system properties
The following properties are supported:

• "-Dcom.genesyslab.platform.commons.log.loggerFactory=log4j2" to switch PSDK commons logging
implementation to send logs to log4j2.

• "-Dcom.genesyslab.platform.apptemplate.lmslogger.factory=log4j2" to switch AppTemplate
LmsEventLogger's to send logs and LMS events to log4j2.

AppTemplate Logging configuration profile

AppTemplate logging configuration profile is a usual Log4j2 xml configuration file. And it may be used
as "startup configuration" before application is initialized and read its configuration from
Configuration Server.

For details on Log4j2 configuration details see: http://logging.apache.org/log4j/2.x/manual/
configuration.html.

To use "log4j2.xml" as the config profile, it should be referred with application CME Option:

[log]
"log4j2-config-profile"="log4j2.xml"

Example of startup logging configuration with logs formatted in the common Genesys LMS style:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration packages="com.genesyslab.platform.apptemplate.log4j2plugin">

<Appenders>
<GLogFile name="PSDKAppTpl-LogFile" fileName="startup.log">

<GLmsLayout timeFormat="locale" messageFormat="full"/>
<GLogRolloverStrategy expConfig="8 days"/>

</GLogFile>
<GLogFile name="PSDK" fileName="psdk.log">

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 119

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/SettingUpLogging

<GLmsLayout timeFormat="locale" messageFormat="full"/>
<GLogRolloverStrategy expConfig="8 days"/>

</GLogFile>
</Appenders>
<Loggers>

<Root level="debug">
<AppenderRef ref="PSDKAppTpl-LogFile"/>

</Root>
<Logger name="com.genesyslab.platform" level="debug">

<AppenderRef ref="PSDK"/>
</Logger>

</Loggers>
</Configuration>

Logging profile feature: "startup" appenders
Appenders, which have "PSDKAppTpl-" prefix in their names are treated as "startup" appenders.

Those ones are actual when the config profile is used as a usual log4j2 configuration file at the
application startup time. But, when application has started, loaded its application configuration
options, and called AppTemplate logging configuration (referring this profile), the "startup" appenders
are excluded from the new configuration.

Logging profile feature: separate subsystems logs
Specifics of the Genesys Logging Configuration Options is that log files may be generated and filtered
by evel level, but not by logger or "source" name. I.e. generated by the "log" appenders are added to
the "root" logger of logging configuration.

Logging configuration profile allows creation of dedicated appenders and custom loggers declaration
for collecting of specific subsystem(s) logs separately from main application logs.

Example of such configuration is in the config profile sample above - appender named "PSDK", and
logger named "com.genesyslab.platform". This file name is "hardcoded" in the config profile and
can't be changed from application CME Options. But its still possible to change following parameters
of the logger with "logger-<id>" option in "log-extended" section: "level" and "additivity" (see details
bellow). By this way, its possible to change messages level of the PSDK log file, and to add or exclude
PSDK messages from main application log files.

Useful Platform SDK loggers for optional configuration

PSDK root logger
Platform SDK loggers are named under PSDK base package - "com.genesyslab.platform". Usage of
this logger name allows applications to separately configure, filter and record PSDK internal logs.

Protocol messages tracing loggers
Usually, PSDK generates debug logs reflecting Protocols communications messages in truncated form
together with other debug messages.

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 120

Sometimes applications may need to have separated recordings of protocols communications
messages dumps.

For this purpose PSDK contains dedicated loggers:

• "com.genesyslab.platformmessage.request",
• "com.genesyslab.platformmessage.receive",
• and their common name - "com.genesyslab.platformmessage".

By default, these loggers are disabled. Its possible to enable them with jvm system property "-
Dcom.genesyslab.platform.trace-messages=true".

Important
This system property is "branched" for support of values definitions for different
protocol types. For example, "-
Dcom.genesyslab.platform.Configuration.ConfServer.trace-messages=true" or "-
Dcom.genesyslab.platform.Reporting.StatServer.trace-messages=true".

These values enable tracing for Config Server and Stat Server protocols only. "Branched" options
names are constructed by insertion of a string representation of specific ProtocolDecription value
(see DuplexChannel.getProtocolDescription().toString()).

It's possible to provide several different declarations for different protocols at a same time. It's also
possible to enable tracing for the common property ("enable by default"), and disable for some
specific protocols.

ADDP logger
There is a dedicated specially named logger for ADDP traces - "com.genesyslab.platform.ADDP".

It's for possible adjustment of ADDP traces logging filtering.

Application CME Logging Options

The AppTemplate logging configuration is based on AppTemplate Application Configuration structure
as a snapshot representation of a COM AB CfgApplication structure.

Following values are taken into account: "log" and "log-extended" sections of the applications'
"Options", and connected Message Server CME application.

Options section "log"
Most of this section options are inherited from the Genesys Common Log Options descriptions, as
listed in the Framework 8.5 Configuration Options Reference Manual.

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 121

verbose

Specifies if log output is created, and if so, the minimum level of log events generated. Log event
levels, starting with the highest priority level, are Standard, Interaction, Trace, and Debug.
Default Value: all
Valid Values:

• all - All log events (that is, log events of the Standard, Trace, Interaction, and Debug levels)
are generated.

• debug - The same as all.
• trace - Log events of Trace level and higher (that is, log events of Standard, Interaction, and

Trace levels) are generated, but log events of the Debug level are not generated.
• interaction - Log events of Interaction level and higher (that is, log events of Standard and

Interaction levels) are generated, but log events of Trace and Debug levels are not generated.
• standard - Log events of Standard level are generated, but log events of Interaction, Trace,

and Debug levels are not generated.
• none - No log output is produced.

Changes Take Effect: Immediately
Additional Information: Note: For definitions of the Standard, Interaction, Trace, and Debug log
levels, refer to the Framework Management Layer User’s Guide or Framework Genesys
Administrator Help.
To configure log outputs, set log level options ("all", "alarm", "standard", "interaction", "trace", and/or "debug") to the
desired types of log output ("stdout", "stderr", "network", "memory", and/or [filename], for log file output).

You can use:

• One log level option to specify different log outputs.
• One log output type for different log levels.
• Several log output types simultaneously, to log events of the same or different log levels.

You must separate the log output types by a comma when you are configuring more than one output for the same log
level.

all

Specifies the outputs to which an application sends all log events. The log output types must be
separated by a comma when more than one output is configured.
Default Value: No default value.
Valid Values: Log output types:

• stdout - Log events are sent to the Standard output (stdout).
• stderr - Log events are sent to the Standard error output (stderr).
• network - Log events are sent to Message Server, which can reside anywhere on the network.

Message Server stores the log events in the Log Database. Setting the all log level option to
the network output enables an application to send log events of the Standard, Interaction,
and Trace levels to Message Server. Debug-level log events are neither sent to Message

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 122

Server nor stored in the Log Database.
• [filename] - Log events are stored in a file with the specified name. If a path is not specified,

the file is created in the application’s working directory.

Changes Take Effect: Immediately
Additional Information: For example: all = stdout, logfile
Note1: The log output options are activated according to the setting of the Verbose configuration option.

Note2: To ease the troubleshooting process, consider using unique names for log files that different applications generate.

Warning! Directing log output to the console (by using "stdout", "stderr" settings) can affect application performance.
Avoid using these log output settings in a production environment.

alarm

Specifies the outputs to which an application sends the log events of the Alarm level. The log
output types must be separated by a comma when more than one output is configured.
Default Value: No default value.
Valid Values: Log output types:

• stdout - Log events are sent to the Standard output (stdout).
• stderr - Log events are sent to the Standard error output (stderr).
• network - Log events are sent to Message Server, which can reside anywhere on the network.

Message Server stores the log events in the Log Database.
• [filename] - Log events are stored in a file with the specified name. If a path is not specified,

the file is created in the application’s working directory.

Changes Take Effect: Immediately
Additional Information: For example: alarm = stderr, network
Note1: The log output options are activated according to the setting of the Verbose configuration option.

Note2: To ease the troubleshooting process, consider using unique names for log files that different applications generate.

Warning! Directing log output to the console (by using "stdout", "stderr" settings) can affect application performance.
Avoid using these log output settings in a production environment.

standard

Specifies the outputs to which an application sends the log events of the Standard level. The log
output types must be separated by a comma when more than one output is configured.
Default Value: No default value.
Valid Values: Log output types:

• stdout - Log events are sent to the Standard output (stdout).
• stderr - Log events are sent to the Standard error output (stderr).
• network - Log events are sent to Message Server, which can reside anywhere on the network.

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 123

Message Server stores the log events in the Log Database.
• [filename] - Log events are stored in a file with the specified name. If a path is not specified,

the file is created in the application’s working directory.

Changes Take Effect: Immediately
Additional Information: For example: standard = stdout, logfile
Note1: The log output options are activated according to the setting of the Verbose configuration option.

Note2: To ease the troubleshooting process, consider using unique names for log files that different applications generate.

Warning! Directing log output to the console (by using "stdout", "stderr" settings) can affect application performance.
Avoid using these log output settings in a production environment.

interaction

Specifies the outputs to which an application sends the log events of the Interaction level and
higher (that is, log events of the Standard and Interaction levels). The log outputs must be
separated by a comma when more than one output is configured.
Default Value: No default value.
Valid Values: Log output types:

• stdout - Log events are sent to the Standard output (stdout).
• stderr - Log events are sent to the Standard error output (stderr).
• network - Log events are sent to Message Server, which can reside anywhere on the network.

Message Server stores the log events in the Log Database.
• [filename] - Log events are stored in a file with the specified name. If a path is not specified,

the file is created in the application’s working directory.

Changes Take Effect: Immediately
Additional Information: For example: interaction = stdout, logfile
Note1: The log output options are activated according to the setting of the Verbose configuration option.

Note2: To ease the troubleshooting process, consider using unique names for log files that different applications generate.

Warning! Directing log output to the console (by using "stdout", "stderr" settings) can affect application performance.
Avoid using these log output settings in a production environment.

trace

Specifies the outputs to which an application sends the log events of the Trace level and higher
(that is, log events of the Standard, Interaction, and Trace levels). The log outputs must be
separated by a comma when more than one output is configured.
Default Value: No default value.
Valid Values: Log output types:

• stdout - Log events are sent to the Standard output (stdout).
• stderr - Log events are sent to the Standard error output (stderr).

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 124

• network - Log events are sent to Message Server, which can reside anywhere on the network.
Message Server stores the log events in the Log Database. Setting the all log level option to
the network output enables an application to send log events of the Standard, Interaction,
and Trace levels to Message Server. Debug-level log events are neither sent to Message
Server nor stored in the Log Database.

• [filename] - Log events are stored in a file with the specified name. If a path is not specified,
the file is created in the application’s working directory.

Changes Take Effect: Immediately
Additional Information: For example: trace = stdout, logfile
Note1: The log output options are activated according to the setting of the Verbose configuration option.

Note2: To ease the troubleshooting process, consider using unique names for log files that different applications generate.

Warning! Directing log output to the console (by using "stdout", "stderr" settings) can affect application performance.
Avoid using these log output settings in a production environment.

debug

Specifies the outputs to which an application sends the log events of the Debug level and higher
(that is, log events of the Standard, Interaction, Trace, and Debug levels). The log output types
must be separated by a comma when more than one output is configured.
Default Value: No default value.
Valid Values: Log output types:

• stdout - Log events are sent to the Standard output (stdout).
• stderr - Log events are sent to the Standard error output (stderr).
• network - Log events are sent to Message Server, which can reside anywhere on the network.

Message Server stores the log events in the Log Database.
• [filename] - Log events are stored in a file with the specified name. If a path is not specified,

the file is created in the application’s working directory.

Changes Take Effect: Immediately
Additional Information: For example: debug = stdout, logfile
Note1: The log output options are activated according to the setting of the Verbose configuration option.

Note2: To ease the troubleshooting process, consider using unique names for log files that different applications generate.

Note3: Debug-level log events are never sent to Message Server or stored in the Log Database.

Warning! Directing log output to the console (by using "stdout", "stderr" settings) can affect application performance.
Avoid using these log output settings in a production environment.

segment

Specifies whether there is a segmentation limit for a log file. If there is, sets the mode of
measurement, along with the maximum size. If the current log segment exceeds the size set by
this option, the file is closed and a new one is created. This option is ignored if log output is not
configured to be sent to a log file.

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 125

Default Value: 100 MB
Valid Values:

• false - No segmentation is allowed.
• <number>[KB] - Sets the maximum segment size, in kilobytes. The minimum segment size is

100 KB.
• <number> MB - Sets the maximum segment size, in megabytes.
• <number> hr - Sets the number of hours for the segment to stay open. The minimum number

is 1 hour.

Changes Take Effect: Immediately

expire

Determines whether log files expire. If they do, sets the measurement for determining when they
expire, along with the maximum number of files (segments) or days before the files are removed.
This option is ignored if log output is not configured to be sent to a log file.
Default Value: 10
Valid Values:

• false - No expiration; all generated segments are stored.
• <number>[file] - Sets the maximum number of log files to store. Specify a number from

1–1000.
• <number> day - Sets the maximum number of days before log files are deleted. Specify a

number from 1–100.

Changes Take Effect: Immediately
Additional Information: Note: If an option’s value is set incorrectly (out of the range of valid
values), it will be automatically reset to 10.

compress-method

Platform SDK AppTemplate AB specific property to specify method that will be used for archiving
log files.
The log option name is case insensitive, and can be "CompressMethod", "compress-method", or "compress_method".

Default Value: none
Valid Values:

• none - No archiving; all generated log files are stored "as-is".
• gzip - GZip archiving is to be used for "historical" log files.
• zip - Zip archiving is to be used for "historical" log files.
• zip<digit> - Zip archiving with given compression level is to be used for "historical" log files.

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 126

Changes Take Effect: Immediately
Introduced in release: 9.0.003.01

time-convert

Specifies the system in which an application calculates the log record time when generating a log
file. The time is converted from the time in seconds since "00:00:00 UTC, January 1, 1970".
The log option name is case insensitive, and can be: "TimeConvert", "time-convert", or "time_convert".

Default Value: local
Valid Values:

• local - The time of log record generation is expressed as a local time, based on the time zone
and any seasonal adjustments. Time zone information of the application’s host computer is
used.

• utc - The time of log record generation is expressed as Coordinated Universal Time (UTC).

Changes Take Effect: Immediately

time-format

Specifies how to represent, in a log file, the time when an application generates log records. A log
record’s time field in the ISO 8601 format looks like this: "2001-07-24T04:58:10.123".
The log option name is case insensitive, and can be: "TimeFormat", "time-format", or "time_format".

Default Value: time
Valid Values:

• time - The time string is formatted according to "HH:MM:SS.sss" (hours, minutes, seconds,
and milliseconds) format.

• locale - The time string is formatted according to the system’s locale.
• iso8601 - The date in the time string is formatted according to the ISO 8601 format. Fractional

seconds are given in milliseconds.

Changes Take Effect: Immediately

message-format

Specifies the format of log record headers that an application uses when writing logs in the log
file. Using compressed log record headers improves application performance and reduces the log
file's size. With the value set to short:

• A header of the log file or the log file segment contains information about the application
(such as the application name, application type, host type, and time zone), whereas single log

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 127

records within the file or segment omit this information.
• A log message priority is abbreviated to Std, Int, Trc, or Dbg, for Standard, Interaction, Trace,

or Debug messages, respectively.
• The message ID does not contain the prefix GCTI or the application type ID.

The log option name is case insensitive, and can be: "MessageFormat", "message-format", or "message_format".

Default Value: medium
Valid Values:

• short - An application uses compressed headers when writing log records in its log file.
• medium - An application uses medium size headers when writing log records in its log file.
• full - An application uses complete headers when writing log records in its log file.
• shortcsv - An application uses compressed headers with comma delimiter when writing log

records in its log file. This value is only valid for Platform SDK Application Template-based
applications.

• shorttsv - An application uses compressed headers with tab char delimiter when writing log
records in its log file. This value is only valid for Platform SDK Application Template-based
applications.

• shortdsv - An application uses compressed headers with message-header-delimiter delimiter
when writing log records in its log file. This value is only valid for Platform SDK Application
Template-based applications.

• custom - An application uses custom log messages format, which is separately defined in
option custom-message-format or output-pattern. This value is only valid for Platform SDK
Application Template-based applications.

Changes Take Effect: Immediately
Additional Information: A log record in the full format looks like this:
2002-05-07T18:11:38.196 Standard localhost cfg_dbserver GCTI-00-05060 Application started

A log record in the short format looks like this:

2002-05-07T18:15:33.952 Std 05060 Application started

Note: Whether the full, short, or any other format is used, time is printed in the format specified by the "time-format"
option.

use-native-levels

Platform SDK AppTemplate AB specific option.
It enables support of native log levels (like "Error", "Warn", etc) to be used for non-LMS messages in common LMS events
formats instead of LMS levels like "Standard", "Interaction", etc.

The log option name is case insensitive, and can be: "UseNativeLevels", "use-native-levels", or "use_native_levels".

Note: This option is experimental and its value procession may get changed.

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 128

Introduced in release: 9.0.002.09

message-header-delimiter

Platform SDK AppTemplate AB specific property as a parameter for "shortdsv" message format
("message-format").
The log option name is case insensitive, and can be: "MessageHeaderDelimiter", "message-header-delimiter", or
"message_header_delimiter".

Default Value: |

custom-message-format

Platform SDK AppTemplate AB specific option.
Value of this option is used as a log message pattern if "message-format" option value is equal to "custom".

In comparison with "output-pattern", this option provides predefined messages prefix containing timestamp (by "time-
format"/"time-convert"), and the LMS-style log level.

The log option name is case insensitive, and can be: "CustomMessageFormat", "custom-message-format", or
"custom_message_format".

Note: This option is experimental and its value procession may get changed.

Introduced in release: 9.0.002.01

output-pattern

Platform SDK AppTemplate AB specific option.
Value of this option is used as a log message pattern if "message-format" option value is equal to "custom".

In comparison with "custom-message-format", this option does not provide predefined messages prefix like a timestamp
with log level.

The log option name is case insensitive, and can be: "OutputPattern", "output-pattern", or "output_pattern".

Introduced in release: 9.0.002.05

file-encoding

Platform SDK AppTemplate AB specific property for configuration of the log files encoding.
The log option name is case insensitive, and can be: "FileEncoding", "file-encoding", or "file_encoding".

Default Value: UTF-8

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 129

file-header-provider

Platform SDK AppTemplate AB specific property for customization of the log files header content.
The log option name is case insensitive, and can be: "FileHeaderProvider", "file-header-provider", or
"file_header_provider".

Additional Information: If this option is not specified, then the provider is taken with SPI
declaration for the com.genesyslab.platform.apptemplate.log4j2plugin.FileHeaderProvider
interface.

enable-thread

Specifies whether to enable or disable the logging thread. If set to true (the logging thread is
enabled), the logs are stored in an internal queue to be written to the specified output by a
dedicated logging thread. This setting also enables the log throttling feature, which allows the
verbose level to be dynamically reduced when a logging performance issue is detected.
The log option name is case insensitive, and can be: "EnableThread", "enable-thread", or "enable_thread".

Default Value: false
Valid Values: true, false
Additional Information: Refer to the Framework 8.5 Management Framework User’s Guide for
more information about the log throttling feature.
If this option is set to false (the logging thread is disabled), each log is written directly to the outputs by the thread that
initiated the log request. This setting also disables the log throttling feature.

Note: Platform SDK AppTemplate AB does not support the log throttling feature.

enable-location-for-thread

Platform SDK AppTemplate AB specific option to enable the call location information passing to
the Log4j2 logging thread, which was enabled with option "enable-thread".
The log option name is case insensitive, and can be: "EnableLocationForThread", "enable-location-for-thread", or
"enable_location_for_thread".

Additional Information: If one of the layouts is configured with a location-related attribute like
HTML locationInfo, or one of the patterns %C or $class, %F or %file, %l or %location, %L
or %line, %M or %method, Log4j will take a snapshot of the stack, and walk the stack trace to
find the location information.
This is an expensive operation: 1.3 - 5 times slower for synchronous loggers. Synchronous loggers wait as long as
possible before they take this stack snapshot. If no location is required, the snapshot will never be taken.

However, asynchronous loggers need to make this decision before passing the log message to another thread; the
location information will be lost after that point. The performance impact of taking a stack trace snapshot is even higher

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 130

for asynchronous loggers: logging with location is 4 - 20 times slower than without location. For this reason, asynchronous
loggers do not include location information by default.

log4j2-config-profile

Platform SDK AppTemplate AB specific option.
It defines a base structure and may contain some predefined startup or permanent appenders, and initial custom loggers
configurations.

The log option name is case insensitive, and can be: "Log4j2ConfigProfile", "log4j2-config-profile", or
"log4j2_config_profile".

default-logdir

Platform SDK AppTemplate AB specific option.
Default root directory for the log files. If specified, it is applied to file names defined in options like "standard",
"interaction", "debug", etc.

It's used if log file name is not absolute path, and is not started from "./", or "../".

Note: This option value may be overridden with jvm system property "default-logdir".

The log option name is case insensitive, and can be: "DefaultLogdir", "default-logdir", or "default_logdir".

Introduced in release: 9.0.005.00

msgsrv-intMsgsLevel

Platform SDK AppTemplate AB specific property to set log messages filter on Message Server
Appender for Platform SDK internal events.
This value should not be lower than INFO level to not cause unlimited recursion/avalanche.

The log option name is case insensitive, and can be: "msgsrv-intMsgsLevel", "msgsrv_intMsgsLevel".

Default Value: info
Valid Values: info, warn, error, fatal, off
Changes Take Effect: Immediately
Introduced in release: 9.0.005.02

message-file

Specifies the file name for application-specific log events. The name must be valid for the
operating system on which the application is running. The option value can also contain the
absolute path to the application-specific *.lms file. Otherwise, an application looks for the file in
its working directory.

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 131

The log option name is case insensitive, and can be: "MessageFile", "message-file", or "message_file".

Default Value: As specified by a particular application
Valid Values: Any valid message file ("<filename>.lms")
Changes Take Effect: Immediately, if an application cannot find its "*.lms" file at startup
Additional Information: For example:
message-file = my-app.lms

Warning! An application that does not find its *.lms file at startup cannot generate application-specific log events and
send them to Message Server.

event-log-host

Platform SDK AppTemplate AB specific property to let user applications be able to override the
applications' host name in log files and message server events.
It is used by the AppTemplate Log4j2 logging configuration functions in PsdkLog4j2Configuration and Log4j2Configurator.

The log option name (case insensitive): "EventLogHost", "event-log-host", or "event_log_host".

Changes Take Effect: Immediately
Additional Information: For example:
event-log-host = node-1-virtual-host

Options section "log-extended"
Some of this section options are inherited from the Genesys Common Log Options descriptions, as
listed in the Framework 8.5 Configuration Options Reference Manual.

level-reassign-disable

When this option is set to true, the original (default) log level of all log events in the [log-
extended] section are restored. This option is useful when you want to use the default levels, but
not delete the customization statements.
Default Value: false
Valid Values: true, false
Changes Take Effect: Immediately

level-reassign-<eventID>

Specifies a log level for log event <eventID> that is different than its default level, or disables log
event <eventID> completely. If no value is specified, the log event retains its default level.
Default Value: Default value of log event <eventID>

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 132

Changes Take Effect: Immediately
Additional Information: This option is useful when you want to customize the log level for
selected log events.
These options can be deactivated with the level-reassign-disable option.

See Genesys Common Log Options descriptions section of Framework 8.5 Configuration Options Reference Manual for
more details on this option.

Example: this example shows customized log level settings, subject to the following log configuration:

[log]
verbose = interaction
all = stderr
interaction = log_file
standard = network

Before the log levels of the log are changed:

• Log event 1020, with default level standard, is output to stderr and log_file, and sent to
Message Server.

• Log event 2020, with default level standard, is output to stderr and log_file, and sent to
Message Server.

• Log event 3020, with default level trace, is not generated.
• Log event 4020, with default level debug, is not generated.

Extended log configuration section:

[log-extended]
level-reassign-1020 = none
level-reassign-2020 = interaction
level-reassign-3020 = interaction
level-reassign-4020 = standard

After the log levels are changed:

• Log event 1020 is disabled and not logged.
• Log event 2020 is output to stderr and log_file.
• Log event 3020 is output to stderr and log_file.
• Log event 4020 is output to stderr and log_file, and sent to Message Server.

logger-<id>

Platform SDK specific extended logging configuration option for applying of custom properties on
loggers configuration.

Changes Take Effect: Immediately
Additional Information: The "log-extended" section of CME Application Options may contain
multiple declarations of loggers customization records.
For example:

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 133

[log-extended]
logger-ID1 = "logger1.name: level=debug, additivity=false"
logger-ID2 = "logger2.name: level=error"

"ID1" and "ID2" are just unique identifiers of the logger declarations in the options section.

"logger1.name" and "logger2.name" are loggers names in a common log4j sense of loggers naming convention.

These values will be applied to the internally generated log4j2 configuration in the following way (the declarations will be
created, or adjusted, if already exist):

<Loggers>
<Logger name="logger1.name" level="debug" additivity="false" />
<Logger name="logger2.name" level="error" />

</Loggers>

It's included in GAppLogExtOptions, which may contain list of such descriptions, and is a part of GAppLoggingOptions. The
custom logger declaration supports following (optional) properties:

• level - the Level to be associated with the Logger;
• additivity ("true"/"false") - true if the logger should be additive, false otherwise;
• includeLocation ("true"/"false") - whether location should be passed downstream.

Introductory Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 134

Advanced Platform SDK Topics
Advanced Platform SDK Topics
The following articles provide details about advanced Platform SDK features you may want to take
advantage of:

• Using Kerberos Authentication in Platform SDK
• Secure Connections Using TLS

• Quick Start
• Using the Platform SDK Commons Library
• Using the Application Template Application Block
• Configuring TLS Parameters in Configuration Manager
• Using and Configuring Security Providers
• OpenSSL Configuration File
• Use Cases
• Using and Configuring TLS Protocol Versions

• Lazy Parsing of Message Attributes
• Log Filtering
• Hide or Tag Sensitive Data in Logs
• Profiling and Performance Services
• IPv6 Resolution
• Managing Protocol Configuration
• Friendly Reaction to Unsupported Messages
• Creating Custom Protocols
• JSON Support in Java
• Working with Custom Servers
• Bidirectional Messaging
• Hide Message Attributes in Logs
• Resources Releasing in an Application Container
• Transport Layer Substitution

Advanced Platform SDK Topics Log4j2 Configuration with the Application Template Application Block

Platform SDK Developer's Guide 135

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/SSOSupport
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/PlatformSDKImplementationofTLS
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSQuickStart
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingPSDKCommonsLibrary
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingApplicationTemplateAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSOpenSSLConfigurationFile
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUseCases
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSProtocolsVersion
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LazyParsingofMessageAttributes
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LogFiltering
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LogSensitiveData
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ProfilingServices
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/IPv6
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ManagedProtocolConfig
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UnsupportedMsg
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ExtServiceProtocol
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/JSONSupport
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ServerChannel
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/BidirectionalMessaging
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/HideMessageAttributes
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ResourceRelease
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TransportLayerSubst

Using Kerberos Authentication in Platform
SDK

Java

Introduction

Platform SDK supports using Kerberos authentication with Configuration Server. Platform SDK can
independently obtain a Kerberos ticket or use Kerberos ticket provided by user. Each case requires an
individual approach.

Using Service Principal Name

Service Principal Name (SPN) is a unique identifier of service which in couples with user’s credentials
can uniquely identify access to requested service. To use the ServicePrincipalName user have to
assign it using setSPN method of a channel Endpoint.

Microsoft-specific Note: SPN has to be registered in Active Directory using utility setspn.exe. See
Microsoft technet documentation. User has to have the required access rights to execute this utility's
commands.

Code example: Connect CS using SPN

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint(host, port).setSPN(spn));
protocol.setClientName(clientName);
protocol.setClientApplicationType(clientType);

protocol.open();

Usage of Independently Acquired Ticket

If user has a ticket as byte array data, Platform SDK can use it too. In this case user has to assign
ticket acquirer to the protocol instance.

Code example: Connect to CS using raw data GSS Kerberos ticket

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint(host, port));
protocol.setClientName(clientName);
protocol.setClientApplicationType(clientType);
RawDataTicketAcquirer ticketAcquirer = new RawDataTicketAcquirer(ticketBytes);

Advanced Platform SDK Topics Using Kerberos Authentication in Platform SDK

Platform SDK Developer's Guide 136

protocol.setTicketAcquirer(ticketAcquirer);

protocol.Open();

The previous example applies only for tickets compatible with GSS API (RFC 2743). Configuration
Server also supports pure Kerberos tickets without a GSS envelope, as obtained by using the MIT
Kerberos library for instance.

In this case please use the second constructor of RawDataTicketAcquirer:

RawDataTicketAcquirer(byte[] arguments, bool isGSSTicket)

If isGSSTicket is false, then a registration message is created with another attribute specially
designed for this goal.

Code example: Connect to Configuration Server Using Raw Data Pure Kerberos Ticket

boolean isGSSTicket = false;
ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint(host, port));
protocol.setClientName(clientName);
protocol.setClientApplicationType(clientType);
RawDataTicketAcquirer ticketAcquirer = new RawDataTicketAcquirer(ticketBytes, isGSSTicket);
protocol.setTicketAcquirer(ticketAcquirer);

protocol.Open();

Notes for Windows
Kerberos authorization as current logined user must be enabled manually in few steps:

1. set registry key "AllowTGTSessionKey"=dword:00000001 in HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Control\Lsa\Kerberos\Parameters

2. update JCE policy from oracle site
• jre1.7/lib/security <- http://www.oracle.com/technetwork/java/javase/downloads/

jce-7-download-432124.html
• jre1.8/lib/security <- http://www.oracle.com/technetwork/java/javase/downloads/

jce8-download-2133166.html

3. Time on kdc,server and client machines must be seconds synchronized
4. krb5.conf can be placed in any folder but you must specify its location using system property

"java.security.krb5.conf"

.NET

Introduction

Platform SDK supports using Kerberos authentication with Configuration Server. Platform SDK can
independently obtain a Kerberos ticket or use Kerberos ticket provided by user. Each case requires an

Advanced Platform SDK Topics Using Kerberos Authentication in Platform SDK

Platform SDK Developer's Guide 137

individual approach.

Using Service Principal Name

Service Principal Name (SPN) is a unique identifier of service which in couples with user's credentials
can uniquely identify access to requested service. To use the SPN user have to assign field
ServicePrincipalName of AbstractChannel.Endpoint.

Microsoft-specific Note: SPN has to be registered in Active Directory using utility setspn.exe. See
Microsoft technet documentation. User has to have the required access rights to execute this utility's
commands.

Code example: Connect CS using SPN

var protocol = new ConfServerProtocol(new Endpoint(host, port) { ServicePrincipalName = spn })
{

ClientApplicationType = clientApp,
ClientName = clientName

};

protocol.Open();

Usage of Independently Acquired Ticket

If user has a ticket as byte array data Platform SDK can use it too. In this case user has to assign
ticket acquirer to the protocol instance.

Code example: Connect to CS using raw data GSS Kerberos ticket

var protocol = new ConfServerProtocol(new Endpoint(host, port))
{

ClientApplicationType = clientApp,
ClientName = clientName,
KerberosTicketAcquirer = new RawDataTicketAcquirer(rawTicketData)

};

protocol.Open();

The previous example applies only for tickets compatible with GSS API (RFC 2743). Configuration
Server also supports pure Kerberos tickets without a GSS envelope, as obtained by using the MIT
Kerberos library for instance.

In this case please use the second constructor of RawDataTicketAcquirer:

RawDataTicketAcquirer(byte[] arguments, bool isGSSTicket)

If isGSSTicket is false, then a registration message is created with another attribute specially
designed for this goal.

Code example: Connect to Configuration Server Using Raw Data Pure Kerberos Ticket

Advanced Platform SDK Topics Using Kerberos Authentication in Platform SDK

Platform SDK Developer's Guide 138

var isGSSTicket = false;
var protocol = new ConfServerProtocol(new Endpoint(host, port))
{

ClientApplicationType = clientApp,
ClientName = clientName,
KerberosTicketAcquirer = new RawDataTicketAcquirer(rawTicketData, isGSSTicket)

};

protocol.Open();

Advanced Platform SDK Topics Using Kerberos Authentication in Platform SDK

Platform SDK Developer's Guide 139

Secure connections using TLS

Java

This page provides an introduction to creating and configuring Transport Layer Security (TLS) for your
Platform SDK connections, as introduced in release 8.1.1.

Introduction to TLS

This page provides an overview of the TLS implementation provided in the 8.1.1 release of Platform
SDK. It introduces Platform SDK users to TLS concepts and then provides links to expanded articles
and examples that describe implementation details.

Before working with TLS to create secure connections, you should have a basic awareness of how
public key cryptography works.

Certificates
Transport Layer Security (TLS) technology uses public key cryptography, where the key required to
encrypt and decrypt information is divided into two parts: a public key and a private key. These parts
are reciprocal in the sense that data encrypted using a private key can be decrypted with the public
key and vice versa, but cannot be decrypted using the same key that was used for encryption.

There is an X.509 standard for public key (certificate) format, and public-key cryptography standards
(PKCS) that define format for private key (PKCS#8) and related data structures.

Certificate Authority (CA)
In the context of TLS, a CA is an entity that is trusted by both sides of network connection. Each CA
has a public X.509 certificate and owns a related private key that kept secret. A CA can generate and
sign certificates for other parties using its private key, and then that CA certificate can be used by
the parties to validate their certificates. A CA can also issue public Certificate Revocation Lists (CRLs),
which are also used by parties for certificate validation.

The relation between certificates and CRL can be depicted like this:

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 140

Certificate Usage
To create a secure connection, each party must have a copy of:

• a public CA certificate
• a CRL issued by the CA
• their own public certificate (with a corresponding private key)

When a network connection is established, the client initiates a TLS handshake process during which
the parties exchange their public certificates, prove that they own corresponding private keys, create
a shared session encryption key, and negotiate which cipher suite will be used.

Placement and exchange of certificate data is shown on the following diagram:

TLS only requires that servers send their certificates, but the client certificates can also be
exchanged depending on server settings. Cases where the client certificates are demanded by the
server are called “Mutual TLS”, as both sides send their certificates.

If all certificates pass validation and the ciphers are negotiated successfully, then a TLS connection is
established and higher-level protocols may proceed.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 141

Implementing and Configuring TLS

Genesys strongly recommends reading all TLS in Platform SDK articles in order to get understanding
of how TLS works in general and how it is supported in Platform SDK. A Quick Start page is provided
for reference, but the specific implementation details and expanded information provided in other
pages will help you to better understand how to provide TLS support in your applications. Once you
have an understanding of how TLS is implemented, you can use the Use Case guide to quickly find
code snippets or relevant links for common tasks.

There are two main ways to implement TLS in your Platform SDK code:

1. Use the Platform SDK Commons Library to specify TLS settings directly when creating endpoints
2. Use the Application Template Application Block to read connection parameters inside configuration

objects retrieved from Configuration Server, then use those parameters to configure TLS settings.

Note: If using the Application Template Application Block, you will need to configure TLS Parameters
in Configuration Manager before the application is tested.

Recommendations are also provided for the configuration and use of security providers. The security
providers discussed on that page have been tested within the described configurations, and worked
reliably.

Migrating TLS Support From Platform SDK Release 8.1.0

This section outlines migration information that may be needed for applications that were developed
using the TLS implementation provided with the 8.1.0 release of Platform SDK.

Platform SDK 8.1.0 had the following connection configuration parameters for TLS:

• Connection.TLS_KEY

• Connection.SSL_KEYSTORE_PATH_KEY

• Connection.SSL_KEYSTORE_PASS

The TLS_KEY parameter is the equivalent of enableTls flag in the current release, while the other
parameters specified the location and password for the Java keystore file containing certificates that
were used by the application to authenticate itself. TLS configuration code looked like this:

ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
connConf.setOption(Connection.TLS_KEY, "1");
connConf.setOption(Connection.SSL_KEYSTORE_PATH_KEY, "c:/certificates/client-certs.keystore");
connConf.setOption(Connection.SSL_KEYSTORE_PASS, "pa$$w0rd");

In Platform SDK 8.1.1, this code can be translated to the following:

boolean tlsEnabled = true;
// By default, PSDK 8.1.0 trusted any certificate
TrustManager trustManager = TrustManagerHelper.createTrustEveryoneTrustManager();
// Keystore entries may be protected with individual password,
// but usually, these passwords are the same as keystore password
KeyManager keyManager = KeyManagerHelper.createJKSKeyManager(

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 142

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSQuickStart
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUseCases
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingPSDKCommonsLibrary
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingApplicationTemplateAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSSecurityProviders

"c:/certificates/client-certs.keystore", "pa$$w0rd".toCharArray(),
"pa$$w0rd".toCharArray());
SSLContext sslContext = SSLContextHelper.createSSLContext(keyManager, trustManager);

In most cases, certificates from other parties will need to be validated. Assuming there is a separate
keystore file with a CA certificate, this can be achieved with the following code:

TrustManager trustManager = TrustManagerHelper.createJKSTrustManager(
"c:/certificates/CA-cert.keystore", "pa$$w0rd".toCharArray(), null, null);

Please note that different keystore files are used for the KeyManager and TrustManager objects. For
more information, see Using the Platform SDK Commons Library.

Known Issues

For more details about the known issues listed here, refer to Using and Configuring Security
Providers.

• Java 7:
• CRL files without extension section cannot be loaded: http://bugs.sun.com/bugdatabase/

view_bug.do?bug_id=7166885.
Note: Although the bug is marked as "Will not fix", it seems to be fixed since Java 7 update 7.

• CRLs located in WCS are ignored, please use CRLs as files.

• MSCAPI: MSCAPI does not have a documented way to programmatically set passwords to the private
key stored in WCS. Regardless of the password returned by CallbackHandler, if the private key is
protected with a confirmation prompt or password prompt then the user will be shown an OS-specific
popup dialog.

.NET

This page provides an introduction to creating and configuring Transport Layer Security (TLS) for your
Platform SDK connections, as introduced in release 8.1.1.

Introduction to TLS

This page provides an overview of the TLS implementation provided in the 8.1.1 release of Platform
SDK. It introduces Platform SDK users to TLS concepts and then provides links to expanded articles
and examples that describe implementation details.

Before working with TLS to create secure connections, you should have a basic awareness of how
public key cryptography works.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 143

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingPSDKCommonsLibrary
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSSecurityProviders

Certificates
Transport Layer Security (TLS) technology uses public key cryptography, where the key required to
encrypt and decrypt information is divided into two parts: a public key and a private key. These parts
are reciprocal in the sense that data encrypted using a private key can be decrypted with the public
key and vice versa, but cannot be decrypted using the same key that was used for encryption.

There is an X.509 standard for public key (certificate) format, and public-key cryptography standards
(PKCS) that define format for private key (PKCS#8) and related data structures.

Certificate Authority (CA)
In the context of TLS, a CA is an entity that is trusted by both sides of network connection. Each CA
has a public X.509 certificate and owns a related private key that kept secret. A CA can generate and
sign certificates for other parties using its private key, and then that CA certificate can be used by
the parties to validate their certificates. A CA can also issue public Certificate Revocation Lists (CRLs),
which are also used by parties for certificate validation.

The relation between certificates and CRL can be depicted like this:

Certificate Usage
To create a secure connection, each party must have a copy of:

• a public CA certificate
• a CRL issued by the CA
• their own public certificate (with a corresponding private key)

When a network connection is established, the client initiates a TLS handshake process during which
the parties exchange their public certificates, prove that they own corresponding private keys, create
a shared session encryption key, and negotiate which cipher suite will be used.

Placement and exchange of certificate data is shown on the following diagram:

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 144

TLS only requires that servers send their certificates, but the client certificates can also be
exchanged depending on server settings. Cases where the client certificates are demanded by the
server are called “Mutual TLS”, as both sides send their certificates.

If all certificates pass validation and the ciphers are negotiated successfully, then a TLS connection is
established and higher-level protocols may proceed.

Migrating TLS Support From Platform SDK Release 8.1.0

This section outlines migration information that may be needed for applications that were developed
using the TLS implementation provided with the 8.1.0 release of Platform SDK.

There were no significant changes to interfaces for the .NET version of Platform SDK 8.1.1, so the
same code would work for 8.1.0 and later releases:

KeyValueConfiguration config = new KeyValueConfiguration(new KeyValueCollection());
config.TlsEnabled = true;
config.TlsCertificate = "29 3f 0d d9 65 a1 a9 92 dd 1c 8c 2a e7 20 74 06 c5 ba 0f 10";
Endpoint ep = new Endpoint(AppName, Host, Port, config);

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 145

Quick Start

Platform SDK for Java

Understanding Port Modes

TLS is configured differently depending on target port mode:

• default - Default mode ports do not use or understand TLS protocol.
• upgrade - Upgrade mode ports allow unsecured connections to be made, switching to TLS mode only

after TLS settings are retrieved from Configuration Server.
• secure - Secure mode ports require TLS to be started immediately, before sending any requests to

server.

Connecting to Default Mode Ports
Default mode is supported for all protocols; no specific configuration is needed for it to work.

Example:

Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort);
ConfServerProtocol protocol = new ConfServerProtocol(cfgServerEndpoint);
protocol.setClientName(appName);
protocol.setClientApplicationType(appType);
protocol.setUserName(username);
protocol.setUserPassword(password);
protocol.open();

It is also OK to specify explicit null parameters for the connection configuration and TLS parameters:

// Explicit null ConnectionConfiguration
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort, null);

// Explicit null ConnectionConfiguration and TLS parameters
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort, null, false, null, null);

Connecting to Upgrade Mode Ports
TLS upgrade mode is supported only for Configuration Protocol, since the TLS settings for connecting
clients must be retrieved from Configuration Server. No specific options are required; the TLS upgrade
logic works by default.

If a user has provided custom settings, then those settings are used if the TLS parameters received
from Configuration Server are empty. The only requirement that the tlsEnabled parameter in the
Endpoint constructor is not to true, otherwise the client side starts TLS immediately and the

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 146

connection would fail because an upgrade mode port expects the connection to be unsecured
initially.

// Setting tlsEnabled to true would cause failure when connecting to upgrade port:
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort,

connConf, true, sslContext, sslOptions);

Connecting to Secure Mode Port
Secure mode is supported for all protocols. TLS configuration objects/properties must be specified
before the connection is opened, and the tlsEnabled parameter must be set to true. Secure port
mode expects the client to start TLS negotiation immediately after connecting, otherwise the
connection fails.

Example:

boolean tlsEnabled = true;
// Here, the minimal TLS configuration is used, see the following section for details
TrustManager trustManager = TrustManagerHelper.createTrustEveryoneTrustManager();
KeyManager keyManager = KeyManagerHelper.createEmptyKeyManager();
SSLContext sslContext = SSLContextHelper.createSSLContext(keyManager, trustManager);
ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort,

connConf, tlsEnabled, sslContext, sslOptions);
ConfServerProtocol protocol = new ConfServerProtocol(cfgServerEndpoint);
protocol.setClientName(appName);
protocol.setClientApplicationType(appType);
protocol.setUserName(username);
protocol.setUserPassword(password);
protocol.open();

TLS Minimal Configuration

Frequently, there is a need to quickly set up code for working TLS connections, dealing with detailed
TLS configuration later. The minimal configuration settings described below do exactly that.

The following code creates an SSLContext object that can be used to configure a connection to a
secure port or to configure a secure server socket. This code uses EmptyKeyManager which indicates
that the party opening connection/socket would not have any certificate to authenticate itself, and
TrustEveryoneTrustManager which trusts any certificate presented by the other party - even expired
or revoked certificates.

boolean tlsEnabled = true;
TrustManager trustManager = TrustManagerHelper.createTrustEveryoneTrustManager();
KeyManager keyManager = KeyManagerHelper.createEmptyKeyManager();
SSLContext sslContext = SSLContextHelper.createSSLContext(keyManager, trustManager);

Note: Connections using this configuration would have a working encryption layer, but they are not
secure because they can neither authenticate themselves nor validate credentials provided by the
other party.

Note: If a server uses mutual TLS mode, then it requires the client to present a certificate. Minimal
configuration does not have certificates, so in this case the TLS negotiation would fail.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 147

Platform SDK for .NET

Understanding Port Modes

TLS is configured differently depending on target port mode:

• default - Default mode ports do not use or understand TLS protocol.
• upgrade - Upgrade mode ports allow unsecured connections to be made, switching to TLS mode only

after TLS settings are retrieved from Configuration Server.
• secure - Secure mode ports require TLS to be started immediately, before sending any requests to

server.

Connecting to Default Mode Ports
Default mode is supported for all protocols; no specific configuration is needed for it to work.

Example:

Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort);
ConfServerProtocol protocol = new ConfServerProtocol(cfgServerEndpoint);
protocol.ClientName = appName;
protocol.ClientApplicationType = appType;
protocol.UserName = username;
protocol.UserPassword = password;
protocol.Open();

It is also OK to specify explicit null parameters for the connection configuration:

// Explicit null IConnectionConfiguration
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort, null);

Connecting to Upgrade Mode Ports
TLS upgrade mode is supported only for Configuration Protocol, since the TLS settings for connecting
clients must be retrieved from Configuration Server. No specific options are required; the TLS upgrade
logic works by default.

If a user has provided custom settings, then those settings are used if the TLS parameters received
from Configuration Server are empty. The only requirement that the TlsEnabled parameter in the
connection configuration is not to true, otherwise the client side starts TLS immediately and the
connection would fail because an upgrade mode port expects the connection to be unsecured
initially.

// Setting TlsEnabled to true would cause failure when connecting to upgrade port:
KeyValueConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
connConf.TlsEnabled = true;
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort, connConf);

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 148

Connecting to Secure Mode Port
Secure mode is supported for all protocols. TLS configuration objects/properties must be specified
before the connection is opened, and the TlsEnabled parameter must be set to true. Secure port
mode expects the client to start TLS negotiation immediately after connecting, otherwise the
connection fails.

Example:

boolean tlsEnabled = true;
// Here, the minimal TLS configuration is used, see the following section for details
KeyValueConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
connConf.TlsEnabled = true;
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort, connConf);
ConfServerProtocol protocol = new ConfServerProtocol(cfgServerEndpoint);
protocol.ClientName = appName;
protocol.ClientApplicationType = appType;
protocol.UserName = username;
protocol.UserPassword = password;
protocol.Open();

TLS Minimal Configuration

Frequently, there is a need to quickly set up code for working TLS connections, dealing with detailed
TLS configuration later. The minimal configuration settings described below do exactly that.

Platform SDK for .Net requires less configuration, because it always uses the MSCAPI security
provider and Windows Certificate Services (WCS) by default. The following code would trust all
certificates located in the WCS Trusted Root Certificates folder for the current user account.

KeyValueConfiguration config = new KeyValueConfiguration(new KeyValueCollection());
config.TlsEnabled = true;
Endpoint ep = new Endpoint(appName, cfgHost, cfgPort, config);

Note: If a server uses mutual TLS mode, then it requires clients to present a certificate. Minimal
configuration does not have certificates, so in this case the TLS negotiation would fail.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 149

TLS and the Platform SDK Commons
Library

Platform SDK for Java

Important
The contents of this page only apply to Java implementations.

Using the Platform SDK Commons Library to Configure TLS

Starting with Platform SDK 8.1.1, the only way to configure connections is by using Endpoint objects,
which contain all parameters related to the endpoint connection—including TLS parameters that
indicate whether TLS is enabled and provide details about the SSL context and extended options.

Tip
In earlier releases, Platform SDK provided three ways to configure connections:

• using ConnectionConfiguration objects passed to Protocol constructors
• setting parameters in the protocol context
• adding a textual parameter representation to the URL query

The following diagrams show interdependencies among the Platform SDK objects used to establish
network connections and support TLS.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 150

TLS Configuration Objects Containment Hierarchy

This page outlines each step required to create supporting objects for a TLS-enabled Endpoint.

Callback Handlers
In many cases, certificate or key storage is password-protected. This means that Platform SDK will
need the password to access storage. The Java CallbackHandler interface offers a flexible way to
pass this type of credential data:

package javax.security.auth.callback;
...
public interface CallbackHandler {

void handle(Callback[] callbacks)
throws java.io.IOException, UnsupportedCallbackException;

}

The handle() method accepts credential requests in the form of Callback objects that have
appropriate setter methods. The most common callback implementation is PasswordCallback. User
code may use a GUI to ask the end user to:

• enter a password
• retrieve a password from a file, pipe, network, and so on

Here is an example of a CallbackHandler delegating password retrieval to a GUI:

CallbackHandler callbackHandler = new CallbackHandler() {
public void handle(Callback[] callbacks) throws IOException,

UnsupportedCallbackException {
for (Callback c : callbacks) {

if (c instanceof PasswordCallback) {
PasswordCallback p = (PasswordCallback) c;
p.setPassword(gui.getKeyStorePassword());

}
}

}
};

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 151

When No Password is Required

In some cases, certificate storage does not need a password. The API may still dictate that a
CallbackHandler be provided however, so the Platform SDK includes a predefined class that can be
used as a "dummy" CallbackHandler for this scenario:

com.genesyslab.platform.commons.connection.tls.DummyPasswordCallbackHandler

Here is an example of using this dummy class:

CallbackHandler callbackHandler = new DummyPasswordCallbackHandler();

Key Managers
Java provides a KeyManager interface. This interface defines functionality that can be used to load
and contain certificates or keys, or to select appropriate certificates or keys.

Classes based on the KeyManager interface are used by Java TLS support to retrieve certificates that
will be sent over the network to a remote party for validation. They are also used to retrieve the
corresponding private keys. On the client side, KeyManager classes retrieve client certificates or keys;
on the server side they retrieve server certificates or keys.

The Platform SDK Commons library has a helper class, KeyManagerHelper, which makes it easy to
create key managers using several types of key stores and security providers. The built-in key
manager types are:

• PEM — reads certificate/key pairs from X.509 PEM files.
• MSCAPI — uses the Microsoft CryptoAPI and Windows certificate services to retrieve certificate/key

pairs.
• PKCS11 — delegates to an external security provider plugged in via the PKCS#11 interface, for

example, Mozilla NSS.
• JKS — retrieves a certificate/key pair from a Java Keystore file.
• Empty — does not retrieve anything. This type is for use as a dummy key manager. For example,

clients that do not have certificates can use it.

Here are some examples of key manager creation:

// From PEM file
X509ExtendedKeyManager km = KeyManagerHelper.createPEMKeyManager(

"c:/cert/client-cert.pem", "c:/cert/client-cert-key.pem");

// From MSCAPI
CallbackHandler cbh = new DummyPasswordCallbackHandler();
// Whitespace characters are allowed anywhere inside the string
String certThumbprint =

"4A 3F E5 08 48 3A 00 71 8E E6 C1 34 56 A4 48 34 55 49 D9 0E";
X509ExtendedKeyManager km = KeyManagerHelper.createMSCAPIKeyManager(

cbh, certThumbprint);

// From PKCS11
// This provider does not allow customization of Key Manager
// This is required for FIPS-140 certification
// Dummy callback handler will not work, must use strong password
CallbackHandler passCallback = ...;

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 152

X509ExtendedKeyManager km = KeyManagerHelper.createPKCS11KeyManager(
passCallback);

// From JKS
// JKS key store does not allow callback usage (bug in Java?)
// Individual entries in JKS key store can be password-protected
char[] keyStorePass = "keyStorePass".toCharArray();
char[] entryPass = "entryPass".toCharArray();
X509ExtendedKeyManager km = KeyManagerHelper.createJKSKeyManager(

"c:/cert/client-cert.jks", keyStorePass, entryPass);

// Empty key manager
// Using KeyManagerHelper class
X509ExtendedKeyManager km1 = KeyManagerHelper.createEmptyKeyManager();
// Direct creation
X509ExtendedKeyManager km2 = new EmptyX509ExtendedKeyManager();

Trust Managers
A Trust Manager is an entity that decides which certificates from a remote party are to be trusted. It
performs certificate validation, checks the expiration date, matches the host name, checks the
certificate against a CRL list, and builds and validates the chain of trust. The chain of trust starts from
a certificate trusted by both sides (for example, a CA certificate) and continues with second-level
certificates signed by CA, then possibly with third-level certificates signed by second-level authorities
and so on. Chain length can vary, but Platform SDK was designed to explicitly support two-level
chains consisting of a CA certificate and a leaf certificate signed by CA.

Trust manager instances are created based on storage that contains trusted certificates. The number
of trusted certificates can vary depending on the type of trust manager being used. With PEM files,
the storage contains only a single CA certificate; other provider types can have larger sets of trusted
certificates.

The Platform SDK Commons library has a helper class, TrustManagerHelper, which makes it easy to
create trust managers that use several types of certificate stores and security providers, and which
can accept additional parameters that affect certificate validation. Built-in trust manager types are:

• PEM — Reads a CA certificate from an X.509 PEM file.
• MSCAPI — Uses the Microsoft CryptoAPI and Windows certificate services to retrieve CA certificates and

validate certificates.
• PKCS11 — Delegates certificate validation to an external security provider plugged in via the PKCS#11

interface, for example, Mozilla NSS.
• JKS — Retrieves a CA certificate from a Java Keystore file and uses Java built-in validation logic.
• Default — Uses trusted certificates shipped with or configured in Java Runtime and Java built-in

validation logic.
• TrustEveryone — Trusts any certificates. Can be used on the server side when you do not expect any

certificates from clients, or during testing.

Here are some examples of trust manager creation (with generic crlPath and expectedHostName
parameters defined in the first example):

// Generic parameters for trust manager examples
String crlPath = "c:/cert/ca-crl.pem";
String expectedHostName = "serverhost";
// From PEM file

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 153

X509TrustManager tm = TrustManagerHelper.createPEMTrustManager(
"c:/cert/ca.pem", crlPath, expectedHostName);

// From MSCAPI
// CRL is loaded from PEM file (Platform SDK supports only file-base CRLs)
// Concrete CA is not specified, all certificates from WCS Trusted Root are used
CallbackHandler cbh = new DummyPasswordCallbackHandler();
X509TrustManager tm = TrustManagerHelper.createMSCAPITrustManager(

cbh, crlPath, expectedHostName);

// From PKCS#11
// This provider implementation in Java does not allow custom host name check,
// but CRL can still be used
X509TrustManager tm = TrustManagerHelper.createPKCS11TrustManager(

cbh, crlPath);

// From JKS
// JKS key store does not allow callback usage (bug in Java?)
// Certificate-only entries cannot have passwords in JKS key store
// CRL and host name check are supported
char[] keyStorePass = "keyStorePass".toCharArray();
X509ExtendedKeyManager km = KeyManagerHelper.createJKSTrustManager(

"c:/cert/ca-cert.jks", keyStorePass, crlPath, expectedHostName);

// From Java built-in trusted certificates
// This one does not support CRL and host name check
X509ExtendedKeyManager km = KeyManagerHelper.createDefaultTrustManager();

// Trust Everyone
X509ExtendedKeyManager km =

KeyManagerHelper.createTrustEveryoneTrustManager();

SSLContext and SSLExtendedOptions
An SSLContext instance serves as a container for all SSL and TLS parameters and objects and also as
a factory for SSLEngine instances.

SSLEngine instances contain logic that deals directly with TLS handshaking, negotiation, and data
encryption and decryption. SSLEngine instances are not reusable and must be created anew for each
connection. This is a good reason for requiring users to provide an SSLContext instance rather than
an instance of SSLEngine. SSLEngine instances are created by the Platform SDK connection layer
and are not exposed to user code.

Only some of the parameters for SSLEngine can be pre-set in SSLContext. However, the
SSLExtendedOptions class may be used to collect additional parameters.

SSLExtendedOptions currently contains two parameters:

• the "mutual TLS" flag
• a list of enabled cipher suites

The mutual TLS flag is used only by server applications. When the flag is turned on, the server will
require connecting clients to send their certificates for validation. The connections of any clients that
do not send certificates will fail.

The list of enabled cipher suites contains the names of all cipher suites that will be used as filters for
SSLEngine. As a result, only ciphers that are supported by SSLEngine and that are contained in the

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 154

enabled cipher suites list will be enabled for use.

Platform SDK includes the SSLContextHelper helper class to support one-line creation of SSLContext
and SSLExtendedOptions instances.

Here are some examples:

// Creating SSLContext
KeyManager km = ...;
TrustManager tm = ...;
SSLContext sslContext = SSLContextHelper.createSSLContext(km, tm);

String[] cipherList = new String[] {
"TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
"TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA"};

// Can be single String with space-separated suite names
String cipherNames = "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA " +

"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA " +
"TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA";

boolean mutualTLS = false;

// Creating SSLExtendedOptions directly
SSLExtendedOptions sslOpts1 =

new SSLExtendedOptions(mutualTLS, cipherList);
SSLExtendedOptions sslOpts2 =

new SSLExtendedOptions(mutualTLS, cipherNames);

// Create SSLExtendedOptions using the helper class:
SSLExtendedOptions sslOpts3 =

SSLContextHelper.createSSLExtendedOptions(mutualTLS, cipherList);
SSLExtendedOptions sslOpts4 =

SSLContextHelper.createSSLExtendedOptions(mutualTLS, cipherNames);

Endpoints
Now that supporting objects have been created and configured, you are ready to create an Endpoint.

The connection configuration parameters of an Endpoint are read-only—they cannot be changed
after the Endpoint is created. This configuration information is then used by Protocol instances, the
warm standby service, the connection layer and the TLS layer.

A sample Endpoint configuration is shown below:

ConnectionConfiguration connConf = ...;
SSLContext sslContext = ...;
SSLExtendedOptions sslOpts = ...;
tlsEnabled = true;
// Specifying host name and port.
Endpoint ep1 = new Endpoint("Server-1", "serverhost", 9090, connConf,

tlsEnabled, sslContext, sslOpts);
// Specifying URI. Query part is still supported.
String uri = "tcp://Server-1@serverhost:9090/" +

"?protocol=addp&addp-remote-timeout=5&addp-trace=remote";
Endpoint ep2 = new Endpoint("Server-1", uri, connConf,

tlsEnabled, sslContext, sslOpts);

Note: Configuration parameters can be set directly in a Protocol instance context, but will be
overwritten and lost under the following conditions:

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 155

• a new Endpoint is set up
• the protocol is forced to reconnect
• a warm standby switchover occurs

Configuring TLS for Client Connections
Using the information above, you are now ready to configure actual client connections.

Example:

// Get TLS configuration objects for connection
String clientName = "ClientApp";
String host = "serverhost";
int port = 9000;
SSLContext sslContext = ...; // Assume it is created
SSLExtendedOptions sslOptions = ...; // Assume it is created
boolean tlsEnabled = true;

ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
Endpoint epTSrv = new Endpoint(

clientName, host, port, connConf, tlsEnabled, sslContext, sslOptions);

TServerProtocol tsProtocol = new TServerProtocol(epTSrv);
tsProtocol.setClientName(clientName);
tsProtocol.open();

Configuring TLS for Servers
Using the information above, you are now ready to configure actual server connections.

String serverName = "ServerApp";
String host = "serverhost";
int port = 9000;
SSLContext sslContext = ...; // Assume it is created
SSLExtendedOptions sslOptions = ...; // Assume it is created
boolean tlsEnabled = true;

ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
Endpoint epTSrv = new Endpoint(

serverName, host, port, connConf, tlsEnabled, sslContext, sslOptions);

ExternalServiceProtocolListener serverChannel =
new ExternalServiceProtocolListener(endpoint);

Parameter-based TLS Configuration
Platform SDK has a way to create TLS objects based on a set of parameters in a more declarative
fashion rather than creating them programmatically. This feature was initially developed as a part of
Application Template to configure TLS based on parameters from Configuration objects and then was
generalized to use different parameter sources and moved to Commons. Currently this mechanism
supports only three providers: PEM, MSCAPI and PKCS#11. Usage sequence is the following:

1. Prepare a source of TLS parameters and parse it using TLSConfigurationParser resulting in
TLSConfiguration instance.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 156

2. Customize TLSConfiguration.
1. Add callback handlers.
2. Clients: set expected host name.

3. Create SSLContext and SSLExtendedOptions from TLSConfiguration.

This section continues with step-by-step examples and ends with a more detailed review of helper
classes.

Parsing TLS Parameters

Platform SDK Commons has a few helper classes that make it easier to extract TLS parameters from
a properties files, command-line arguments, etc.: TLSConfiguration and TLSConfigurationParser.
TLSConfiguration is a container for parsed TLS parameters and TLSConfigurationParser provides a
general parsing method and several overloaded shortcut methods for specific cases.

Examples:

// Using KVList as a parameters source
KVList tlsProps = new KeyValueCollection();
tlsProps.addObject("tls", "1");
tlsProps.addObject("certificate", "client-cert.pem");
TLSConfiguration tlsConfClient =

TLSConfigurationParser.parseClientTlsConfiguration(tlsProps);
TLSConfiguration tlsConfServer =

TLSConfigurationParser.parseServerTlsConfiguration(tlsProps);

// Using Map as a parameters source
Map<String, String> tlsProps = new HashMap<String, String>();
tlsProps.put("tls", "1");
tlsProps.put("certificate", "client-cert.pem");
TLSConfiguration tlsConfClient =

TLSConfigurationParser.parseClientTlsConfiguration(tlsProps);
TLSConfiguration tlsConfServer =

TLSConfigurationParser.parseServerTlsConfiguration(tlsProps);

// Using Properties as a parameters source
Properties tlsProps = new Properties();
tlsProps.load(new FileInputStream("tls.properties"));
TLSConfiguration tlsConfClient =

TLSConfigurationParser.parseClientTlsConfiguration(tlsProps);
TLSConfiguration tlsConfServer =

TLSConfigurationParser.parseServerTlsConfiguration(tlsProps);

// Using String as a parameters source
// Format corresponds to Transport Parameters as they appear in Configuration Manager
String tlsProps = "tls=1;certificate=client-cert.pem"; // No spaces around ";"
TLSConfiguration tlsConfClient =

TLSConfigurationParser.parseClientTlsConfiguration(tlsProps);
TLSConfiguration tlsConfServer =

TLSConfigurationParser.parseServerTlsConfiguration(tlsProps);

Customizing TLS Configuration

When TLSConfiguration is prepared, it may still need some customization. Callback handlers for
password retrieval, for example, cannot be configured in parameters and must be set explicitly. They
should be set always, even if not used, because some security providers require them.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 157

Specifying expected host name is not very straightforward and some aspects should be considered.
When configuring TLS on client side, expected host names are in most cases different for primary and
for backup connections. Though, on some virtualized environments, they can be the same. Users may
choose to use IP addresses instead of DNS host names, or use DNS names with wildcards. Either way,
expected host name must match one of names specified in server’s certificate and in extreme cases
it may not relate to actual host name at all. To account for these cases, setting expected host name is
not automated in Platform SDK and left for user code. Example code below shows how to set this
value to actual host name of target server.

According to X.509 specification, certificate may contain not just host name or IP address, but also
URI or email address. Platform SDK supports only host names and IP addresses, but host name may
use wildcard: a star symbol, “*”, can be used instead of any one level of domain name.

Examples:

TLSConfiguration tlsConfiguration = ...;

// Applicable to both clients and servers
// Passwords are not used, so set dummies:
tlsConfiguration.setKeyStoreCallbackHandler(

new DummyPasswordCallbackHandler());
tlsConfiguration.setTrustStoreCallbackHandler(

new DummyPasswordCallbackHandler());

// In case some real password is needed:
tlsConfiguration.setKeyStoreCallbackHandler(new CallbackHandler() {

public void handle(Callback[] callbacks) {
char[] password = new char[] {

'p', 'a', 's', 's', 'w', 'o', 'r', 'd'};
for (Callback c : callbacks) {

if (c instanceof PasswordCallback) {
((PasswordCallback) c).setPassword(password);

}
}

}
}

);

// Expected host name may contain exact host name, ...
tlsConfiguration.setExpectedHostname("someserver.ourdomain.com");
// wildcard host name, ...
tlsConfiguration.setExpectedHostname("*.ourdomain.com");
tlsConfiguration.setExpectedHostname("someserver.*.com");

// IPv4 address, ...
tlsConfiguration.setExpectedHostname("192.168.1.1");
// IPv6 address.
tlsConfiguration.setExpectedHostname("fe80::ffff:ffff:fffd");

Creating SSLContext

Platform SDK Commons has helper class – TLSConfigurationHelper, which creates SSLContext and
SSLExtendOptions based on TLSConfiguration object. TLSConfigurationHelper has two methods:

public static SSLContext createSslContext(TLSConfiguration config);

and

static SSLExtendedOptions createSslExtendedOptions(TLSConfiguration config);

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 158

Method createSSLContext() determines security provider type if it is not set explicitly, creates
necessary key store objects, key manager, trust manager, and finally wraps it all into SSLContext.

Method createSSLExtendedOptions() does not contain any logic, it just creates new
SSLExtendedOptions with the exact parameters taken from TLSConfiguration.

Usage of both methods is shown in code sample below.

Example:

// TLS preparation section follows
KVList tlsProps = new KeyValueCollection();
tlsProps.addObject("tls", "1");
tlsProps.addObject("certificate", "client-cert.pem");
TLSConfiguration tlsConf =

TLSConfigurationParser. parseClientTlsConfiguration(tlsProps);

boolean tlsEnabled = true;

SSLContext sslContext =
TLSConfigurationHelper.createSslContext(tlsConfiguration);

SSLExtendedOptions sslOptions =
TLSConfigurationHelper.createSslExtendedOptions(tlsConfiguration);

// The same as above, using shortcut methods:
sslContext = tlsConfiguration.createSslContext();
sslOptions = tlsConfiguration.createSslExtendedOptions();

Endpoint ep = new Endpoint(appName, host, port, null, tlsEnabled, sslContext, sslOptions);

TLSConfiguration Class

TLSConfiguration class is used as intermediate container to keep stronger-typed TLS parameters
extracted from a parameter source. It contains the following:

Properties

TLSConfiguration Properties List
Name Type Description

tlsEnabled boolean

Correspond to TLS parameters in
Configuration; please see the list
of TLS Parameters in
Configuration Manager for
details.

provider String
certificate String
certificateKey String
trustedCaCertificate String
mutual boolean
crl String
targetNameCheckEnabled boolean
cipherList String
fips140Enabled boolean

clientMode boolean
Should be set to true for client-
side of connection and false for
server-side.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 159

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters

Name Type Description
TLSConfigurationParser
specialized methods set it
automatically.

expectedHostname String

Host name to check against,
used when
targetNameCheckEnabled is
turned on. Typically is used by
client side and assigned to the
host/domain part of target URL.

keyStoreCallbackHandler CallbackHandler Please see Callback Handlers for
details.

trustStoreCallbackHandler CallbackHandler

version String

Defines security protocol version
(all previous version will be
accepted by default)
Note: By default, the following client-side
TLS Protocol versions are enabled in Java:

• Java 6, Java 7 - TLSv1
• Java 8 - TLSv1.2

enabledProtocols String
Limits supported security
protocol version list (space
separated list)

secProtocol

String
Possible values are "SSLv23", "SSLv3",
"TLSv1", "TLSv11", "TLSv12".

Example: "sec-protocol=TLSv1"

Defines security protocol version
(all previous version won’t be
accepted); available in Platform
SDK from release 8.5.102.

keyStoreEntryCallbackHandler CallbackHandler

It is used only for JKS provider. If
it isn’t assigned, then
trustStoreCallbackHandler
will be used as
keyStoreEntryCallbackHandler.

Methods

TLSConfiguration Methods List
Signature Description

SSLContext createSslContext()
A shortcut for
TLSConfigurationHelper.createSslContext
method. Creates and configures SSLContext object
based on the properties values.

SSLExtendedOptions createSslExtendedOptions()
A shortcut for
TLSConfigurationHelper.createSslExtendedOptions
method. Creates SSLExtendedOptions object
based on the properties values.

Constants

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 160

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingPSDKCommonsLibrary#Callback_Handlers

The following constants define supported values for a provider property:

• String TLS_PROVIDER_PEM_FILE;
• String TLS_PROVIDER_PKCS11;
• String TLS_PROVIDER_MSCAPI;

TLSConfigurationParser Class

TLSConfigurationParser class has methods that extract TLS parameters from different sources and
create TLSConfiguration instance containing the parameters. It uses interface PropertyReader and
several classes implementing this interface to read TLS parameters.

Methods

TLSConfiguration Methods List
Signature Description

public static TLSConfiguration
parseTlsConfiguration(final PropertyReader prop,
final boolean clientMode)

This is the main and most generic method. It reads
all possible TLS parameters (parameter names and
possible values are detailed in the list of TLS
Parameters in Configuration Manager), converts
them and assigns them to TLSConfiguration
properties.

public static TLSConfiguration
parseServerTlsConfiguration(KVList kvl)

These methods provide shortcuts to parse TLS
configuration from different source types.

public static TLSConfiguration
parseClientTlsConfiguration(KVList kvl)
public static TLSConfiguration
parseServerTlsConfiguration(Map<String, String>
map)
public static TLSConfiguration
parseClientTlsConfiguration(Map<String, String>
map)
public static TLSConfiguration
parseServerTlsConfiguration(Properties prop)
public static TLSConfiguration
parseClientTlsConfiguration(Properties prop)
public static TLSConfiguration
parseServerTlsConfiguration(String
transportParams)
public static TLSConfiguration
parseClientTlsConfiguration(String
transportParams)

Interface PropertyReader and Implementing Classes

Interface PropertyReader contains just one method:

String getProperty(String key)

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 161

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters

Here, key argument contains name of parameter to extract. Implementing classes contain code that
actually extract and return value corresponding to the key. Currently there are five implementations:

1. GConfigTlsPropertyReader - This class belongs to Application Template and is used to extract TLS
parameters from a set of related Configuration objects. It cannot be included to Commons library since
it would cause circular references between the Commons and Application Template.

2. KVListPropertyReader - Extracts String value from a KVList instance.
3. MapPropertyReader - Extracts value from a Map<String, String> instance.
4. PropertiesReader - Extracts value from a Properties instance.
5. TransportParamsPropertyReader - Parses transport parameters as they appear in Configuration

Manager, for example:

“tls=1;certificate=c:/cert/cert.pem;mutual=1”.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 162

TLS and the Application Template
Application Block

Platform SDK for Java

Warning
If the certificate or CA certificate are not set, then using the tls option flag in a client
application will create an unauthenticated connection with encryption only. To
ensure TLS authentication and certificate validation are performed, you must first
configure those parameters correctly.

Introduction

Instead of using the Platform SDK Commons Library to configure TLS connections with hard-coded
values, you can use the Platform SDK Application Template Application Block to retrieve configuration
objects from Configuration Server which contain parameters that are used to configure your TLS
settings.

The steps do accomplish this are as follows:

1. Parse a configuration object.
2. Create a TLSConfiguration object for the configuration object.
3. Customize your TLSConfiguration object:

• Add callback handlers.
• For clients, set the expected host names for primary and backup servers.

4. Create SSLContext and SSLExtendedOptions objects based on your TLSConfiguration object.
5. Use your SSLContext and SSLExtendedOptions objects to create Endpoints and/or

WarmStandbyConfiguration objects.
6. Use your Endpoints and/or WarmStandbyConfiguration objects to create Protocol instances.

The sections below describe these steps in more detail.

If you plan on using this method to configure TLS settings, be sure that related application objects in
Configuration Manager have been configured with TLS parameters.

If you aren't familiar with TLS configuration settings then please read Using the Platform SDK

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 163

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingPSDKCommonsLibrary
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingPSDKCommonsLibrary

Commons Library to gain a better understanding of what is required.

Parsing Configuration Objects

The Platform SDK Application Template has a helper class, GConfigTlsPropertyReader, which makes
it easy to extract TLS parameters from Configuration Server. When used in conjunction with
TLSConfigurationParser, TLSConfigurationHelper, ClientConfigurationHelper and
ServerConfigurationHelper classes, all of the connection-related options found in Configuration
Server are covered. They also provide other useful functionality.

TLSConfigurationParser has two constructors:

public GConfigTlsPropertyReader(
IGApplicationConfiguration appConfig,
IGApplicationConfiguration.IGPortInfo portConfig);

and

public GConfigTlsPropertyReader(
IGApplicationConfiguration appConfig,
IGApplicationConfiguration.IGAppConnConfiguration connConfig);

The first one is used for server-side connections while the second is for client-side connections.

For example:

// Client side
// Prepare configuration objects
String clientAppName = "<my-app-name>";
CfgAppType targetServerType = CfgAppType.CFGTServer;
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(clientAppName));
GCOMApplicationConfiguration appConfiguration =

new GCOMApplicationConfiguration(cfgApplication);
IGApplicationConfiguration.IGAppConnConfiguration connConfig =

appConfiguration.getAppServer(targetServerType);

// Parse TLS parameters
PropertyReader reader = new GConfigTlsPropertyReader(appConfiguration, connConfig);
TLSConfiguration tlsConfiguration =

TLSConfigurationParser.parseTlsConfiguration(reader, true);
// At this point, tlsConfiguration contains TLS parameters read from
// configuration objects

// Server side
// Prepare configuration objects
String serverAppName = "<my-app-name>";
String portID = "secure";
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(serverAppName));
GCOMApplicationConfiguration appConfiguration =

new GCOMApplicationConfiguration(cfgApplication);
IGApplicationConfiguration.IGPortInfo portConfig =

appConfiguration.getPortInfo(portID);

// Parse TLS parameters
PropertyReader reader = new GConfigTlsPropertyReader(appConfiguration, portConfig);

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 164

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingPSDKCommonsLibrary

TLSConfiguration tlsConfiguration =
TLSConfigurationParser.parseTlsConfiguration(reader, false);

Customizing TLS Configuration

When Configuration objects are used as a source of TLS parameters, they can also provide values for
expected host names.

Examples:

TLSConfiguration tlsConfiguration = ...;

// Client side
// Prepare configuration objects
String clientAppName = "<my-app-name>";
CfgAppType targetServerType = CfgAppType.CFGTServer;
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(clientAppName));
GCOMApplicationConfiguration appConfiguration =

new GCOMApplicationConfiguration(cfgApplication);
IGApplicationConfiguration.IGAppConnConfiguration connConfig =

appConfiguration.getAppServer(targetServerType);

// TLS-specific part
IGApplicationConfiguration.IGServerInfo primaryServer =

connConfig.getTargetServerConfiguration().getServerInfo();
IGApplicationConfiguration.IGServerInfo backupServer =

primaryServer.getBackup().getServerInfo();

tlsConfiguration.setExpectedHostname(primaryServer.getHost().getName());
// Or:
// tlsConfiguration.setExpectedHostname(backupServer.getHost().getName());

Creating SSLContext Objects

SSLContext and SSLExtendedOptions are created either using TLSConfigurationHelper or with
TLSConfiguration shortcut methods:

Examples:

SSLContext sslContext =
TLSConfigurationHelper.createSslContext(tlsConfiguration);

SSLExtendedOptions sslOptions =
TLSConfigurationHelper.createSslExtendedOptions(tlsConfiguration);

// The same as above, using shortcut methods:
sslContext = tlsConfiguration.createSslContext();
sslOptions = tlsConfiguration.createSslExtendedOptions();

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 165

Configuring TLS for Client Connections

Platform SDK has a helper class, ClientConfigurationHelper, that makes it easier to prepare
connections for client applications. This class has the following methods:

public static Endpoint createEndpoint(
IGApplicationConfiguration appConfig,
IGAppConnConfiguration connConfig,
IGApplicationConfiguration targetServerConfig);

public static Endpoint createEndpoint(
IGApplicationConfiguration appConfig,
IGAppConnConfiguration connConfig,
IGApplicationConfiguration targetServerConfig,
boolean tlsEnabled,
SSLContext sslContext,
SSLExtendedOptions sslOptions);

public static WarmStandbyConfiguration createWarmStandbyConfig(
IGApplicationConfiguration appConfig,
IGAppConnConfiguration connConfig);

public static WarmStandbyConfiguration createWarmStandbyConfig(
IGApplicationConfiguration appConfig,
IGAppConnConfiguration connConfig,
boolean primaryTLSEnabled,
SSLContext primarySSLContext,
SSLExtendedOptions primarySSLOptions,
boolean backupTLSEnabled,
SSLContext backupSSLContext,
SSLExtendedOptions backupSSLOptions);

Two of these methods simply accept TLS-specific parameters and pass them through to the Endpoint
and WarmStandbyConfiguration instances being created. A code sample using the
createEndpoint() method is shown here:

String clientAppName = "<my-app-name>";
CfgAppType targetServerType = CfgAppType.CFGTServer;
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(clientAppName));

GCOMApplicationConfiguration appConfiguration =
new GCOMApplicationConfiguration(cfgApplication);

IGAppConnConfiguration connConfig =
appConfiguration.getAppServer(targetServerType);

// TLS preparation section follows
PropertyReader reader = new GConfigTlsPropertyReader(appConfiguration, connConfig);
TLSConfiguration tlsConfiguration =

TLSConfigurationParser.parseTlsConfiguration(reader, true);

// TLS customization code goes here...
// As an example, host name verification is turned on
IGApplicationConfiguration.IGServerInfo targetServer =

connConfig.getTargetServerConfiguration().getServerInfo();
tlsConfiguration.setExpectedHostname(targetServer.getHost().getName());

// Get TLS configuration objects for connection
SSLContext sslContext = tlsConfiguration.createSslContext();
SSLExtendedOptions sslOptions = tlsConfiguration.createSslExtendedOptions();

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 166

boolean tlsEnabled = tlsConfiguration.isTlsEnabled();
// TLS preparation section ends

Endpoint epTSrv = ClientConfigurationHelper.createEndpoint(
appConfiguration, connConfig,
connConfig.getTargetServerConfiguration(),
tlsEnabled, sslContext, sslOptions);

TServerProtocol tsProtocol = new TServerProtocol(epTSrv);
tsProtocol.setClientName(clientName);
tsProtocol.open();

Configuring Warm Standby
In cases when the target server has a backup in warm standby mode, configuration requires a little
extra effort, as shown in the following code sample.

Note: Configuring TLS for primary and backup servers in Warm Standby mode has some specifics
that may not be obvious. Primary and backup servers typically share the same settings. Thus, when a
server is selected as a backup for another server (the primary server), Configuration Manager copies
settings from the primary server to the backup server to make them the same. This is also true of TLS
settings, and the same TLSConfiguration object can be used to configure both the primary and
backup connections. On the other hand, primary and backup servers usually reside on different hosts.
This means that if a hostname check is used, each of these servers must have different
expectedHostname parameter values. This is not hard to do, as the following code sample
demonstrates, but it is not always obvious.

String clientAppName = "<my-app-name>";
CfgAppType targetServerType = CfgAppType.CFGStatServer;
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(appName));

GCOMApplicationConfiguration appConfiguration =
new GCOMApplicationConfiguration(cfgApplication);

IGAppConnConfiguration connConfig =
appConfiguration.getAppServer(targetServerType);

// TLS preparation section follows
PropertyReader reader = new GConfigTlsPropertyReader(appConfiguration, connConfig);
TLSConfiguration tlsConfiguration =

TLSConfigurationParser.parseTlsConfiguration(reader, true);

IGApplicationConfiguration.IGServerInfo primaryServer =
connConfig.getTargetServerConfiguration().getServerInfo();

IGApplicationConfiguration.IGServerInfo backupServer =
primaryServer.getBackup().getServerInfo();

// Configure TLS for Primary
tlsConfiguration.setExpectedHostname(primaryServer.getHost().getName());
SSLContext primarySslContext = tlsConfiguration.createSslContext();
SSLExtendedOptions primarySslOptions = tlsConfiguration.createSslExtendedOptions();
boolean primaryTlsEnabled = tlsConfiguration.isTlsEnabled();

// Configure TLS for Backup
tlsConfiguration.setExpectedHostname(backupServer.getHost().getName());
SSLContext backupSslContext = tlsConfiguration.createSslContext();
SSLExtendedOptions backupSslOptions = tlsConfiguration.createSslExtendedOptions();
boolean backupTlsEnabled = tlsConfiguration.isTlsEnabled();
// TLS preparation section ends

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 167

WarmStandbyConfiguration wsConfig =
ClientConfigurationHelper.createWarmStandbyConfig(

appConfiguration, connConfig,
primaryTlsEnabled, primarySslContext, primarySslOptions,
backupTlsEnabled, backupSslContext, backupSslOptions);

StatServerProtocol statProtocol =
new StatServerProtocol(wsConfig.getActiveEndpoint());

statProtocol.setClientName(clientName);

WarmStandbyService wsService = new WarmStandbyService(statProtocol);
wsService.applyConfiguration(wsConfig);
wsService.start();
statProtocol.beginOpen();

Configuring TLS for Servers

Platform SDK has a helper class, ServerConfigurationHelper, that makes it easier to prepare
listening sockets for server applications. This class has the following methods:

public static Endpoint createListeningEndpoint(
IGApplicationConfiguration application,
IGApplicationConfiguration.IGPortInfo portInfo);

public static Endpoint createListeningEndpoint(
IGApplicationConfiguration application,
IGApplicationConfiguration.IGPortInfo portInfo,
boolean tlsEnabled,
SSLContext sslContext,
SSLExtendedOptions sslOptions);

The overloaded version of the createListeningEndpoint() method accepts TLS parameters and
passes them through to the Endpoint object that is being created. The following code sample shows
how this is done:

String serverAppName = "<my-app-name>";
String portID = "secure";
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(appName));
GCOMApplicationConfiguration appConfig =

new GCOMApplicationConfiguration(cfgApplication);
IGApplicationConfiguration.IGPortInfo portConfig =

appConfig.getPortInfo(portID);

// TLS preparation section follows
PropertyReader reader = new GConfigTlsPropertyReader(appConfiguration, portConfig);
TLSConfiguration tlsConfiguration =

TLSConfigurationParser.parseTlsConfiguration(reader, false);

// TLS customization code goes here...
// As an example, mutual TLS mode is turned on
tlsConfiguration.setMutual(true);

// Get TLS configuration objects for connection
SSLContext sslContext = tlsConfiguration.createSslContext();
SSLExtendedOptions sslOptions = tlsConfiguration.createSslExtendedOptions();
boolean tlsEnabled = tlsConfiguration.isTlsEnabled();
// TLS preparation section ends

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 168

Endpoint endpoint = ServerConfigurationHelper.createListeningEndpoint(
appConfig, portConfig,
tlsEnabled, sslContext, sslOptions);

ExternalServiceProtocolListener serverChannel =
new ExternalServiceProtocolListener(endpoint);

...

Platform SDK for .NET

Tip
The contents of this page only apply to Java implementations.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 169

Configuring TLS Parameters in
Configuration Manager

Introduction

As described earlier, the Platform SDK Application Template Application Block allows both client and
server applications to read TLS parameters from configuration objects. This page describes how to
set TLS parameters correctly in those configuration objects.

Configuration objects that will be used, and their relations, are shown in the diagram below:

To edit TLS-related parameters for these objects, you will need to have access to the Annex tab in
Configuration Manager.

Precedence of Configuration Objects
Platform SDK uses different sets of configuration objects to configure client- and server-side TLS
settings. For TLS parameters, these objects are searched from the most specific object to the most
general one. Parameters found in specific objects take precedence over those in more general
objects.

Note: This search occurs independently for each supported TLS parameter.

Location of specific TLS parameters can differ for each object, but is detailed in the appropriate
section on this page.

Configuration Object Precedence

Application type Configuration Objects Used, in Order of
Precedence

Client 1. Connection from the client application to the
server.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 170

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingApplicationTemplateAB

Application type Configuration Objects Used, in Order of
Precedence

2. Application of the client.
3. Host where client application resides.
4. Port of the target server that client connects

to.[1]

Server
1. Port of the server application.
2. Application of the server.
3. Host where the server application resides.

1. If the tls parameter is not set to 1 in both the client Application and Connection objects, then the client
application will look to the Port object for the target server to determine if TLS should be turned on.
Configuration Manager does not automatically add the tls=1 parameter to Connection Transport
parameters when it is linked to a server's secure Port. This is the only case when a client application
considers settings in the server's configuration objects.

Displaying the Annex Tab in Configuration Manager
By default, Configuration Manager does not show Annex tab in Object Properties windows. This tab
can contain TLS parameters for Host and Application objects.

To show the Annex tab, select View > Options... from the main menu and ensure the Show Annex tab
in object properties and Show Advanced Security Information options are selected.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 171

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#1

Application Objects

Host Object
The properties window for a Host object includes most common TLS parameters on the General tab:

• Certificate
• Certificate Key
• Trusted CA

These fields allow copy/paste operations, so they can be set manually by copying and pasting the
"Thumbprint" field values from certificates in Windows Certificate Services (WCS) into the related
field in Configuration Manager.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 172

To select a certificate, use the button next to Certificate field. This opens the Select certificate
window, displaying a list of certificates installed in WCS under the Local Computer account for the
local machine.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 173

The Annex tab contains a security section that holds TLS settings for this object. Any change made to
TLS-related fields on the General tab are mirrored between the Annex tab automatically. You can also
specify additional TLS parameters here that aren't reflected on the General tab.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 174

Server Application Object
For the server Application object, TLS-related fields are located on the Server Info tab of the
properties window. Note the Certificate View controls group, where the server can be set to use Host
TLS parameters (generally recommended for Genesys Framework) or application-specific ones.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 175

If using application-specific TLS parameters, use the button next to the certificate information field to
open a certificate selection window where you can choose from a list of certificates installed for the
Local Computer account or manually enter certificate information:

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 176

Port Object
For port objects, TLS-related fields are located on the Server Info tab of the properties window. You
can see here whether a port is secured (TLS-enabled) or not, and have the option to edit existing
ports to update TLS parameters or to add new ports.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 177

When adding or editing a port, TLS parameters are specified on the following tabs:

• Port Info — Turn on Secured listening mode for the port (the same as adding the tls=1 string to
transport parameters).

• Certificate — Show certificate information, open a certificate selection window, or delete the current
certificate information.

• Advanced — Manually edit the Transport Protocol Parameters field. TLS parameters not reflected on the
Certificate tab can be added here.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 178

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 179

Client Application Object
For client Application objects, TLS-related fields are located under the security sections of both the
Options and Annex tabs. There is no certificate selection window provided, but TLS parameters can
be configured manually in either section.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 180

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 181

When processing a client Application object, Platform SDK looks at parameters from both sections. If
any parameters are specified in both places, then the values from the Options tab take precedence.

Connection Object
The properties window for all Application objects includes a Connection tab where connections to
servers can be added or edited. Each connection determines if TLS mode should be enabled based on
port settings for the target server.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 182

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 183

Similar to the Port properties window, the Certificate tab allows you to select from a list of certificates
or manually edit certificate properties. You can also use the Advanced tab to edit TLS settings not
included with the certificate. However, the Transport Protocol Parameters field behaves differently for
this object — which may result in lost or incorrect settings in some cases. See the Notes and Issues
section for details.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 184

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#Notes_and_Issues

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 185

List of TLS Parameters

The following table lists all TLS parameters supported by Platform SDK, with their valid value ranges
and purpose:

Parameter Name Acceptable Values Purpose Platform

tls

Boolean value.
Possible values are "1"/"0",
"yes"/"no", "on"/"off",
"true"/"false".

Example:

• "tls=1"

Client:
1 - perform TLS handshake
immediately after connecting
to server. 0 – do not turn on
TLS immediately but
autodetect can still work.

Java, .NET

provider

"PEM", "MSCAPI",
"PKCS11", "JKS"
Not case-sensitive.

Example:

Explicit selection of
security provider to be
used. For example,
MSCAPI and PKCS11
providers can contain all
other parameters in
their internal database.

Java

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 186

Parameter Name Acceptable Values Purpose Platform

• "provider=MSCAPI"
This parameter allow
configuration of TLS
through security
provider tools.

certificate

Java:
PEM provider: path to a X.509
certificate file in PEM format.
Path can use both forward and
backward slash characters.

MSCAPI provider: thumbprint
of a certificate – string with
hexadecimal SHA-1 hash code
of the certificate. Whitespace
characters are allowed
anywhere within the string.

PKCS11 provider: this
parameter is ignored.

JKS provider: path to a java
key store file. If ‘provider’
option isn’t specified implicitly
then the file must have ‘jks’
extension.

Examples:

• "certificate=
C:\certs\client-
cert-3-cert.pem"

• "certificate=A4 7E
A6 E4 7D 45 6A A6
2F 15 BE 89 FD 46
F0 EE 82 1A 58 B9"

• “certificate=
C:\certs\
mykeystore.jks”

.NET:

Thumbprint of a certificate –
string with hexadecimal SHA-1
hash code of the certificate
(Whitespace characters are
allowed anywhere within the
string).

Specifies location of
X.509 certificate to be
used by application.
MSCAPI provider keeps
certificates in internal
database and can identify
them by hash code; so called
thumbprint.

In Java, PKCS#11 provider
does not allow selection of the
certificate; it must be
configured using provider
tools.

Note: When using autodetect
(upgrade) TLS connection, this
option MUST be specified in
application configuration,
otherwise Configuration
Server would return empty
TLS parameters even if other
options are set.

Java, .NET

certificate-key

PEM provider: path to a
PKCS#8 private key file
without password
protection in PEM
format. Path can use
both vforward and
backward slash
characters.

• MSCAPI provider: this

Specifies location of
PKCS#8 private key to
be used in pair with the
certificate by
application.
MSCAPI provider keeps private
keys paired with certificates in
internal database. In Java,
PKCS#11 provider does not
allow selection of the private

Java

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 187

Parameter Name Acceptable Values Purpose Platform

parameter is
ignored; key is taken
from the entry
identified by
"certificate" field.

• PKCS11 provider: this
parameter is
ignored.

• JKS provider: this
parameter must not
be used.

Examples:

• "certificate-key=
C:\certs\client-
cert-3-key.pem"

key; it must be configured
using provider tools.

trusted-ca

PEM provider: path to a
X.509 certificate file in
PEM format. Path can
use both forward and
backward slash
characters.
MSCAPI provider: thumbprint
of a certificate – string with
hexadecimal SHA-1 hash code
of the certificate. Whitespace
characters are allowed
anywhere within the string.
PKCS11 provider: this
parameter is ignored.

Examples:

• "trusted-ca=
C:\certs\ ca.pem"

• "trusted-ca=A4 7E
A6 E4 7D 45 6A A6
2F 15 BE 89 FD 46
F0 EE 82 1A 58 B9"

Specifies location of a
X.509 certificate to be
used by application to
validate remote party
certificates. The
certificate is designated
as Trusted Certification
Authority certificate and
application will only
trust remote party
certificates signed with
the CA certificate.
MSCAPI provider keeps CA
certificates in internal
database and can identify
them by hash code; so called
thumbprint. In Java, PKCS#11
provider does not allow
selection of the CA certificate;
it must be configured using
provider tools.

Java

tls-mutual

Boolean value.
Possible values are "1"/"0",
"yes"/"no", "on"/"off",
"true"/"false".

Example:

• "tls-mutual=1"

Has meaning only for
server application.
Client applications
ignore this value. When
turned on, server will
require connecting
clients to present their
certificates and validate
the certificates the
same way as client
applications do.

Java, .NET

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 188

Parameter Name Acceptable Values Purpose Platform

tls-crl

Java:
All providers: path to a
Certificate Revocation List file
in PEM format. Path can use
both forward and backward
slash characters.

Example:

• "tls-crl= C:\certs\
crl.pem"

.NET:

Boolean value. Enable/disable
to check of certificate's
revocation.

Possible values are "1"/"0",
"yes"/"no", "on"/"off",
"true"/"false".

Example:

• "tls-crl=1"

Applications will use
CRL during certificate
validation process to
check if the (seemingly
valid) certificate was
revoked by CA. This
option is useful to stop
usage of leaked
certificates by
unauthorized parties.

Java, .NET

tls-target-name-check

"host" or none. Not
case-sensitive.
Example:

• "tls-target-name-
check=host"

When set to "host",
enables matching of
certificate’s Alternative
Subject Name or
Subject fields against
expected host name.
PSDK supports DNS
names and IP addresses
as expected host
names.

Java, .NET

cipher-list

String consisting of
space-separated cipher
suit names. Information
on cipher names can be
found online.
Example:

• "cipher-list=
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA"

Used to calculate
enabled cipher suites.
Only ciphers present in
both the cipher suites
supported by security
provider and the cipher-
list parameter will be
valid.

Java

fips140-enabled

Boolean value.
Possible values are "1"/"0",
"yes"/"no", "on"/"off",
"true"/"false".

Example:

• "fips140-enabled=1"

PSDK Java: when set to
true, effectively is the
same as setting
"provider=PKCS11"
since only PKCS11
provider can support
FIPS-140. If set to true
while using other

Java

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 189

Parameter Name Acceptable Values Purpose Platform
provider type, PSDK will
throw exception.

sec-protocol

String value.
Possible values are "SSLv23",
"SSLv3", "TLSv1", "TLSv11",
"TLSv12".

Example:

• "sec-protocol=
TLSv1"

Starting with PSDK
release 8.5.1, an
application can specify
the exact protocol to
send and accept secure
connection requests on
one or more of its
connections.

Java, .NET

tls-version

String value.
This value is the algorithm
name used to get an instance
of Java SSLContext. It is used
to create the Java SSLEngine
used to handle a security
protocol.

Standard algorithm names
supported by standard java
security provider are available
in the official Java
documentation.

This parameter must be used
together with the protocol-
list option, and was a legal
and powerful way to choose a
provider before the sec-
protocol parameter was
available.

Examples:

tls-version=TLSv1.2
protocol-list=
TLSv1.2

tls-version=TLSv1.2
protocol-list= SSLv3
TLSv1.1 TLSv1.2

tls-version=TLSv1.2
protocol-list= TLSv1

Together with the
protocol-list
parameter, this value
helps to specify one or
more security protocols
that can be used (if the Java
platform supports it).

This option specifies a Java
security protocol name that is
used to select an appropriate
Java security provider. The
actual list of security protocols
that can be used depends on:

• Which Java security
provider will be
selected.

• Which security
protocols are
supported by the
security provider.
Sometimes this can
be customizable,
such as by using the
Windows Control
Panel > Java >
Advanced tab.

• Which security
protocols are
enabled for use. This
is specified in the
protocol-list
parameter.

The default value depends on
version of Java in use, and its
configuration.

• “TLSv1” for Java 6
and 7

• “TLSv1.2” for Java 8

Java

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 190

Parameter Name Acceptable Values Purpose Platform

protocol-list

String

Java:

A space-separated list of
security protocols that can be
used. This value is passed to
the setEnabledProtocols
method of the Java
SSLEngine, and is the
standard way to choose a
security provider that
supports the requested
protocol version from the
system providers list.

This parameter must be used
together with the tls-
version option, and was a
legal and powerful way to
choose a provider before the
sec-protocol parameter was
available.

Examples:

tls-version=TLSv1.2
protocol-list=
TLSv1.2

tls-version=TLSv1.2
protocol-list= SSLv3
TLSv1.1 TLSv1.2

tls-version=TLSv1.2
protocol-list= TLSv1

.NET:

A comma-separated list of
security protocols that can be
used.

Together with the tls-
version, helps to
specify one or more
security protocols that
can be used (if the Java
platform supports it).
Restricts use of supported
security protocols by the
selected security provider.

Java, .NET

Warning
Currently there is no support for options that store JKS keystore, entry and truststore
passwords. Thus configuration of the passwords has to be completed
programmatically using the following TLSConfiguration methods:

• setKeyStoreCallBackHandler

• setKeyStoreEntryCallBackHandler

• setTrustStoreCallback

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 191

Notes and Issues

• Key/value pairs in Transport Protocol Parameters fields should be separated only with a single semicolon
character. Adding space characters to improve readability can cause applications, including those
based on Platform SDK, unable to parse these parameters correctly.

• Transport Protocol Parameters fields in Configuration Manager are limited to 256 characters in length.
Be sure to keep your parameter list as short as possible. For example: certificate thumbprints for
MSCAPI provider take 40 characters without spaces and 49 characters with them, and long paths to
certificate files can easily eat up all available space.

• The Connection properties window behaves differently from the Port properties window, as described
below. Be sure to double-check TLS settings for Connection objects.
• It does not save content of the Transport Protocol Parameters field unless a certificate was selected

using UI controls on the Certificate tab.
• If certificate information is deleted from the Certificate tab, then all transport protocol parameters

are also erased (including those entered manually).
• In some cases it does not save additional TLS parameters that were entered manually.

• Configuration Server reads its own TLS parameters from Application or from Host object only during
startup. If you use an Application or Host object as a source of TLS parameters for Configuration Server,
be sure to restart the server after any changes to the parameters.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 192

Using and Configuring Security Providers

Java

Tip
The contents of this page only apply to Java implementations.

Introduction

This page deals with Security Providers — an umbrella term describing the full set of cryptographic
algorithms, data formats, protocols, interfaces, and related tools for configuration and management
when used together. The primary reasons for bundling together such diverse tools are: compatibility,
support for specific standards, and implementation restrictions.

The security providers listed here were tested with the Platform SDK 8.1.1 implementation of TLS,
and found to work reliably when used with the configuration described below.

Java Cryptography Architecture Notes
Java Cryptography Architecture (JCA) provides a general API, and a pluggable architecture for
cryptography providers that supply the API implementation.

Some JCA providers (Sun, SunJSSE, SunRSA) come bundled with the Java platform and contain actual

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 193

algorithm implementations, they are named PEM provider since they are used when working with
certificates in PEM files. Some other (SunPKCS11, SunMSCAPI) serve as a façade for external
providers. SunPKCS11 supports PKCS#11 standard for pluggable security providers, such as hardware
cryptographic processors, smartcards or software tokens. Mozilla NSS/JSS is an example of pluggable
software token implementation. SunMSCAPI provides access to Microsoft Cryptography API (MSCAPI),
in particular, to Windows Certificate Services (WSC).

PEM Provider: OpenSSL

Note: Working with certificates and keys is also covered in the Genesys 8.1 Security Deployment
Guide.

PEM stands for "Privacy Enhanced Mail", a 1993 IETF proposal for securing email using public-key
cryptography. That proposal defined the PEM file format for certificates as one containing a
Base64-encoded X.509 certificate in specific binary representation with additional metadata headers.
Here, the term is used to refer to Java built-in security providers that are used in conjunction with
certificates and private keys loaded from X.509 PEM files.

One of the most popular free tools for creating and manipulating PEM files is OpenSSL. Instructions
for installing and configuring OpenSSL are provided below.

Installing OpenSSL

OpenSSL is available two ways:

• distributed as a source code tarball: http://www.openssl.org/source/
• as a binary distribution (specific links are subject to change): http://www.openssl.org/related/

binaries.html

The installation process is very easy when using a binary installer; simply follow the prompts. The
only additional step required is to add the <OpenSSL-home>\bin folder to your Path system variable
so that OpenSSL can run from command line directly with the openssl command.

Configuring OpenSSL

The OpenSSL configuration file contains settings for OpenSSL itself, and also many field values for
the certificates being generated including issuer and subject names, host names and URIs, and so on.
You will need to customize your OpenSSL file with your own values before using the tool. An example
of a customized configuration file is available here.

The OpenSSL database consists of a set of files and folders, similar to the sample database described
in the table below. To start using OpenSSL, this structure should be created manually except for files
marked as "Generated by OpenSSL". Other files can be left empty as long as they exist in the
expected location.

OpenSSL database file/folder structure
File or Folder Generated by OpenSSL? Description

openssl-ca\
openssl-ca\openssl.cfg OpenSSL configuration file

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 194

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSOpenSSLConfigurationFile

File or Folder Generated by OpenSSL? Description

openssl-ca\.rnd Yes File filled with random data, used
in key generation process.

openssl-ca\ca-password.txt

Stores the password for the CA
private key.
Reduces typing required, but is very
insecure. Should only be used for testing
and development.

openssl-ca\export-password.txt

Stores the password used to
encrypt the private keys when
exporting PKCS#12 files.
Reduces typing required, but is very
insecure. Should only be used for testing
and development.

openssl-ca\ca\ CA root folder.

openssl-ca\ca\certs\
All generated certificates are
copied here.
Folder contents can be safely deleted.

openssl-ca\ca\crl\
Generated CRLs stored here.
Folder contents can be safely deleted.

openssl-ca\ca\newcerts\

Certificates being generated are
stored here.
Folder contents can be safely deleted
once generation process is finished.

openssl-ca\ca\private\ CA private files.

openssl-ca\ca\private\cakey.pem Yes
CA private key.
Must be kept secret.

openssl-ca\ca\crlnumber Serial number of last exported
CRL.

openssl-ca\ca\serial Serial number of last signed
certificate.

openssl-ca\ca\cacert.pem Yes CA certificate.

openssl-ca\ca\index.txt Textual database of all
certificates.

Short Command Line Reference

• This section assumes that the OpenSSL bin folder was added to the local PATH environment variable,
and that openssl-ca is the current folder for all issued commands.

• Placeholders for parameters are shown in the following form: "<param-placeholder>".
• The frequently used parameter "<request-name>" should be a unique name that identifies the

certificate files.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 195

Task Description Command

Create a CA Certificate/Key

This is performed in three steps:

1. Create CA Private Key
2. Create CA Certificate
3. Export CA Certificate

1. openssl genrsa -des3 -out
ca\private\cakey.pem 1024
-passin file:ca-
password.txt

2. openssl req -config
openssl.cfg -new -x509
-days <days-ca-cert-is-
valid> -key ca\private\
cakey.pem -out ca\
cacert.pem -passin
file:ca-password.txt

3. openssl x509 -in ca\
cacert.pem -outform PEM
-out ca.pem

Create a Leaf Certificate/Key Pair

This is performed in three steps:

1. Create certificate request.
Certificate fields and
extensions are defined during
this step, and the certificate's
public and private keys are
created in the process.

2. Sign the request.
3. Export the certificate.

1. openssl req -new -nodes
-out requests\<request
name>-req.pem -keyout
requests\<request name>-
key.pem -days 3650
-config openssl.cfg

2. openssl ca -out
requests\<request-name>-
signed.pem -days 3650
-config openssl.cfg
-passin file:ca-
password.txt -infiles
requests\<request-name>-
req.pem

3. openssl pkcs12 -export
-in requests\<request-
name>-signed.pem -inkey
requests\<request-name>-
key.pem -certfile ca\
cacert.pem -name "<entry-
name-in-p12-file>" -out
<request-name>.p12
-passout file:export-
password.txt
openssl x509 -in
requests\<request-name>-
signed.pem -outform PEM
-out <request-name>-
cert.pem
openssl pkcs8 -topk8
-nocrypt -in
requests\<request-name>-
key.pem -out <request-
name>-key.pem

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 196

Task Description Command

Revoke a Certificate
openssl ca -revoke
<certificate-pem-file>
-config openssl.cfg -passin
file:ca-password.txt

Export the CRL
openssl ca -gencrl -crldays
<days-crl-is-valid> -out
crl.pem -config openssl.cfg
-passin file:ca-password.txt

MSCAPI Provider: Windows Certificate Services

Note: Working with Windows Certificate Services (WCS) is also covered in Genesys 8.1 Security
Deployment Guide.

MSCAPI stands for Microsoft CryptoAPI. This provider offers the following features:

• It is available only on Windows platform.
• It implies usage of WCS to store and retrieve certificates, private keys, and CA certificates.
• Every Windows account has its own WCS storage, including the System account.
• Depends heavily on OS configuration and system security policies.
• Has its own set of supported cipher suites, different from what is provided by Java.
• When used with Java, please use the latest available version of Java to run the application.
• Java does not support CRLs located in WCS. With Java MSCAPI, CRL should be specified as a file.
• Does not accept passwords from Java code programmatically via CallbackHandler. If private key is

password-protected or prompt-protected, OS popup dialog will be shown to user.
• Certificates in WCS are configured using the Certificates snap-in for Microsoft Management Console

(MMC).

Note: If the version of Java being used does not support MSCAPI, a "WINDOWS-MY KeyStore not
available" exception appears in the application log. If you receive such exceptions, please consider
switching to a newer version of Java.

Starting Certificates Snap-in
There are two methods for accessing the Certificates Snap-in:

• Enter "certmgr.msc" at the command line. (This only gives access to Certificates for the current user
account.)

• Launch the MMC console and add the Certificates Snap-in for a specific account using the following
steps:
1. Enter "mmc" at the command line.
2. Select File > Add/Remove Snap-in... from the main menu.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 197

3. Select Certificates from the list of available snap-ins and click Add.
4. Select the account to manage certificates for (see Account Selection for important notes) and click

Finish.
5. Click OK.

Account Selection

It is important to place certificates under the correct Windows account. Some applications are run as
services under the Local Service or System account, while others are run under user accounts. The
account chosen in MMC must be the same as the account used by the application that certificates are
configured for, otherwise the application will not be able to access this WCS storage.

Note: Currently, most Genesys servers do not clearly report this error so WCS configuration must be
checked every time there is a problem with the MSCAPI provider.

Note: Configuration Manager is also a regular application in this aspect and can access WCS only for
the Local Computer (System) account on the local machine. It will not show certificates configured for
different accounts or on remote machines. Please consult your system and/or security administrator
for questions related to certificate configuration and usage.

Importing Certificates
There are many folders within WCS where certificates can be placed. Only two of them are used by
Platform SDK:

• Personal/Certificates – Contains application certificates used by applications to identify themselves.
• Trusted Root Certification Authorities/Certificates – Contains CA certificates used to validate remote

party certificates.

To import a certificate, right-click the appropriate folder and choose All Tasks > Import... from the
context menu. Follow the steps presented by the Certificate Import Wizard, and once finished the
imported certificate will appear in the certificates list.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 198

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSSecurityProviders#Account_Selection

Although WCS can import X.509 PEM certificate files, these certificates cannot be used as application
certificates because they do not contain a private key. It is not possible to attach a private key from a
PKCS#7 PEM file to the imported certificate. To avoid this problem, import application certificates only
from PKCS#12 files (*.p12) which contain a certificate and private key pair.

CA certificates do not have private keys attached, so it is safe to import CA certificates from X.509
PEM files.

It is possible to copy and paste certificates between folders and/or user accounts in the Management
Console, but this approach is not recommended due to WCS errors which may result in the pasted
certificate having an inaccessible private key. This error is not visible in Console, but applications
would not be able to read the private key. A recommended and reliable workaround is to export the
certificate to a file and then import from that file.

If you encounter the following error in the application log: “The credentials supplied to the package
were not recognized”, the most likely cause is due to the private key being absent or inaccessible. In
this case try deleting the certificate from WCS and re-importing it.

Importing CRL Files
CRL files can be imported to the following folder in WCS:

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 199

• Trusted Root Certification Authorities/Certificate Revocation List

The import procedure is the same as for importing certificate. CRL file types are automatically
recognized by the import wizard.

Note: Although an MSCAPI provider may choose to use CRL while validating remote party
certificates, this functionality is not guaranteed and/or supported by Platform SDK. Platform SDK
implements its own CRL matching logic using CRL PEM files.

PKCS11 Provider: Mozilla NSS

PKCS11 stands for the PKCS#11 family of Public-Key Cryptography Standards (PKCS), published by
RSA Laboratories. These standards define platform-independent API-to-cryptographic tokens, such as
Hardware Security Modules (HSM) and smart cards, allowing you to connect to external certificate
storage devices and/or cryptographic engines.

In Java, the PKCS#11 interface is a simple pass-through and all processing is done externally. When
used together with a FIPS-certified security provider, such as Mozilla NSS, the whole provider chain is
FIPS-compliant.

Platform SDK uses PKCS11 because it is the only way to achieve FIPS-140 compliance with Java.

Installing Mozilla NSS
Currently Platform SDK only supports FIPS when used with the Mozilla NSS security provider. (Java has
FIPS certification only when working with a PKCS#11-compatible pluggable security provider, and the
only provider with FIPS certification and Java support is Mozilla NSS.)

Note: In theory, BSafe can be used since it supports JCA interfaces. However, Platform SDK was not
tested with RSA BSafe and such system would not be FIPS-certifiable as a while.

Generally, some security parameters and data must be configured on client host, requiring the
involvement of a system/security administrator. At minimum, the client host must have a copy of the
CA Certificate to be able to validate the Configuration Server certificate. The exact location of the CA
certificate depends on the security provider being used. It can be present as a PEM file, Java Keystore
file, a record in WCS, or as an entry in the Mozilla NSS database. Once the application is connected to
Configuration Server, the Application Template Application Block can be used to extract connection
parameters from Configuration Server and set up TLS.

Mozilla NSS is the most complex security provider to deploy and configure. In order to use NSS, the
following steps must be completed:

1. Deploy Mozilla NSS.
2. Create Mozilla NSS database (a "soft token" in terms of NSS), and set it to FIPS mode.
3. Adjust the Java security configuration, or implement dynamic loading for the Mozilla NSS provider.
4. Import the CA certificate to the Mozilla NSS database.
5. Use the Platform SDK interface to select PKCS11 as a provider (with no specific configuration options

required).

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 200

Configuring FIPS Mode in Mozilla NSS
To configure FIPS mode in Mozilla NSS, create a file named nss-client.cfg in Mozilla NSS deployment
folder with the following values configured:

• name - Name of a software token.
• nssLibraryDirectory - Library directory, located in the Mozilla NSS deployment folder.
• nssSecmodDirectory - Folder where the Mozilla NSS database for the listed software token is located.
• nssModule - Indicates that FIPS mode should be used.

An example is provided below:

name = NSSfips
nssLibraryDirectory = C:/nss-3.12.4/lib
nssSecmodDirectory = C:/nss-3.12.4/client
nssModule = fips

More information about configuring FIPS mode can be found using external resources:

• https://davidvaleri.wordpress.com/2010/10/19/using-nss-for-fips-140-2-compliant-transport-security-in-
cxf/ external sources

Configuring FIPS Mode in Java Runtime Environment (JRE)
To configure your Java runtime to use Mozilla NSS, the java.security file should be located in Java
deployment folder and edited as shown below:

(Changes are shown in bold red, insertions are shown in bold blue)

#
List of providers and their preference orders (see above):
#
security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=sun.security.ec.SunEC
#security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.4=com.sun.net.ssl.internal.ssl.Provider SunPKCS11-NSSfips
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider
security.provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.9=sun.security.smartcardio.SunPCSC
security.provider.10=sun.security.mscapi.SunMSCAPI
security.provider.11=sun.security.pkcs11.SunPKCS11 C:/nss-3.12.4/nss-client.cfg

After those updates are complete, the Java runtime instance works with FIPS mode, with only the
PKCS#11/Mozilla NSS security provider enabled.

Short Command Line Reference
Please refer to the following reference for more information:

• https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Tools

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 201

Task Command

Create CA Certificate
certutil -S -k rsa -n "<CA-cert-name>" -s
"CN=Test CA, OU=Miratech, O=Genesys,
L=Kyiv, C=UA" -x -t "CTu,u,u" -m 600 -v 24
-d ./client -f "<keystore-password-file>"

Import CA Certificate
certutil -A -a -n “<CA-cert-name>” -t
"CTu,u,u" -i <ca-cert-file> -d ./client -f
"<keystore-password-file>"

Create New Leaf Certificate

certutil -S -k rsa -n "<cert-name>" -s
"CN=Test CA, OU=Miratech, O=Genesys,
L=Kyiv, C=UA" -x -t "u,u,u" -m 666 -v 24 -d
./client -f "<keystore-password-file>" -z
"<noise-file>"

Import Leaf Certificate
pk12util -i <cert-file.p12> -n <cert-name>
-d ./client -v -h "NSS FIPS 140-2
Certificate DB" -K <keystore-password>

Create CRL
crlutil -d ./client -f "<keystore-password-
file>" -G -c "<crl-script-file>" -n "<CA-
cert-name>" -l SHA512

Modify CRL
crlutil -d ./client -f "<keystore-password-
file>" -M -c "<crl-script-file>" -n "<CA-
cert-name>" -l SHA512 -B

Show Certificate Information certutil -d ./client -f "<keystore-
password-file>" -L -n "<cert-name>"

Show CRL Information crlutil -d ./client -f "<keystore-password-
file>" -L -n "<CA-cert-name>"

List Certificates certutil -d ./client –L
List CRLs crlutil -L -d ./client

JKS Provider: Java Built-in

This provider is supported by the Platform SDK Commons library, but the Application Template
Application Block does not support this provider due to compatibility guidelines with Genesys
Framework Deployment.

This provider can only be used when TLS is configured programmatically by Platform SDK users.

Short Command Line Reference
Refer to the following references for more information:

• https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
• https://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html

Task Command
Creating and Importing - These commands allow you to generate a new Java Keytool keystore file,

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 202

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingPSDKCommonsLibrary

Task Command
create a Certificate Signing Request (CSR), and import certificates. Any root or intermediate certificates
will need to be imported before importing the primary certificate for your domain.

Generate a Java keystore and key pair keytool -genkey -alias mydomain -keyalg RSA
-keystore keystore.jks -keysize 2048

Generate a certificate signing request (CSR) for an
existing Java keystore

keytool -certreq -alias mydomain -keystore
keystore.jks -file mydomain.csr

Import a root or intermediate CA certificate to an
existing Java keystore

keytool -import -trustcacerts -alias root
-file Thawte.crt -keystore keystore.jks

Import a signed primary certificate to an existing
Java keystore

keytool -import -trustcacerts -alias
mydomain -file mydomain.crt -keystore
keystore.jks

Generate a keystore and self-signed certificate
keytool -genkey -keyalg RSA -alias
selfsigned -keystore keystore.jks
-storepass password -validity 360 -keysize
2048

Java Keytool Commands for Checking - If you need to check the information within a certificate, or
Java keystore, use these commands.
Check a stand-alone certificate keytool -printcert -v -file mydomain.crt
Check which certificates are in a Java keystore keytool -list -v -keystore keystore.jks

Check a particular keystore entry using an alias keytool -list -v -keystore keystore.jks
-alias mydomain

Other Java Keytool Commands

Delete a certificate from a Java Keytool keystore keytool -delete -alias mydomain -keystore
keystore.jks

Change a Java keystore password keytool -storepasswd -new new_storepass
-keystore keystore.jks

Export a certificate from a keystore keytool -export -alias mydomain -file
mydomain.crt -keystore keystore.jks

List Trusted CA Certs keytool -list -v -keystore $JAVA_HOME/jre/
lib/security/cacerts

Import New CA into Trusted Certs
keytool -import -trustcacerts -file /path/
to/ca/ca.pem -alias CA_ALIAS -keystore
$JAVA_HOME/jre/lib/security/cacerts

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 203

OpenSSL Configuration File
This page provides an example of a customized OpenSSL configuration file that has been edited to
work with the Platform SDK implementation of TLS. For more details about OpenSSL and how it
relates to the Platform SDK implementation of TLS, refer to the Using and Configuring Security
Providers page.

Sample File

Customized file content is listed below.

• Changes are marked with bold red.
• Added lines are marked with bold blue.

#
OpenSSL example configuration file.
This is mostly being used for generation of certificate requests.
#

This definition stops the following lines choking if HOME isn't
defined.
HOME = .
RANDFILE = $ENV::HOME/.rnd

Extra OBJECT IDENTIFIER info:
#oid_file = $ENV::HOME/.oid
oid_section = new_oids

To use this configuration file with the "-extfile" option of the
"openssl x509" utility, name here the section containing the
X.509v3 extensions to use:
extensions =
(Alternatively, use a configuration file that has only
X.509v3 extensions in its main [= default] section.)

[new_oids]

We can add new OIDs in here for use by 'ca', 'req' and 'ts'.
Add a simple OID like this:
testoid1=1.2.3.4
Or use config file substitution like this:
testoid2=${testoid1}.5.6

Policies used by the TSA examples.
tsa_policy1 = 1.2.3.4.1
tsa_policy2 = 1.2.3.4.5.6
tsa_policy3 = 1.2.3.4.5.7

##
[ca]
default_ca = CA_default # The default ca section

##

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 204

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSSecurityProviders

[CA_default]

dir = ./ca # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
#unique_subject = no # Set to 'no' to allow creation of

several ctificates with same subject.
new_certs_dir = $dir/newcerts # default place for new certs.

certificate = $dir/cacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crlnumber = $dir/crlnumber # the current crl number

must be commented out to leave a V1 CRL
crl = $dir/crl.pem # The current CRL
private_key = $dir/private/cakey.pem # The private key
RANDFILE = $dir/private/.rand # private random number file

x509_extensions = usr_cert # The extentions to add to the cert

Comment out the following two lines for the "traditional"
(and highly broken) format.
name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

Extension copying option: use with caution.
copy_extensions = copy

Extensions to add to a CRL. Note: Netscape communicator chokes on V2 CRLs
so this is commented out by default to leave a V1 CRL.
crlnumber must also be commented out to leave a V1 CRL.
crl_extensions = crl_ext

default_days = 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md = sha256 # SHA-1 is deprecated, so use SHA-2 instead
preserve = no # keep passed DN ordering

A few difference way of specifying how similar the request should look
For type CA, the listed attributes must be the same, and the optional
and supplied fields are just that :-)
policy = policy_anything

For the CA policy
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the 'anything' policy
At this point in time, you must list all acceptable 'object'
types.
[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 205

##
[req]
default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
x509_extensions = v3_ca # The extentions to add to the self signed cert

Passwords for private keys if not present they will be prompted for
input_password = secret
output_password = secret

This sets a mask for permitted string types. There are several options.
default: PrintableString, T61String, BMPString.
pkix : PrintableString, BMPString (PKIX recommendation before 2004)
utf8only: only UTF8Strings (PKIX recommendation after 2004).
nombstr : PrintableString, T61String (no BMPStrings or UTF8Strings).
MASK:XXXX a literal mask value.
WARNING: ancient versions of Netscape crash on BMPStrings or UTF8Strings.
string_mask = utf8only

req_extensions = v3_req # The extensions to add to a certificate request

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = UA
countryName_min = 2
countryName_max = 2

stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = None

localityName = Locality Name (eg, city)
localityName_default = Kyiv

0.organizationName = Organization Name (eg, company)
0.organizationName_default = Genesys

we can do this but it is not needed normally :-)
#1.organizationName = Second Organization Name (eg, company)
#1.organizationName_default = World Wide Web Pty Ltd

organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Engineering

commonName = Common Name (that is, server FQDN or YOUR name)
commonName_default = xpigors
commonName_max = 64

emailAddress = Email Address
emailAddress_max = 64

SET-ex3 = SET extension number 3

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 0
challengePassword_max = 20

unstructuredName = An optional company name

[usr_cert]

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 206

These extensions are added when 'ca' signs a request.

This goes against PKIX guidelines but some CAs do it and some software
requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

Here are some examples of the usage of nsCertType. If it is omitted
the certificate can be used for anything *except* object signing.

This is OK for an SSL server.
nsCertType = server

For an object signing certificate this would be used.
nsCertType = objsign

For normal client use this is typical
nsCertType = client, email

and for everything including object signing:
nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer

This stuff is for subjectAltName and issuerAltname.
Import the email address.
#subjectAltName=issue:copy
subjectAltName = @alt_names
An alternative to produce certificates that aren't
deprecated according to PKIX.
subjectAltName=email:move

Copy subject details
issuerAltName=issuer:copy

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem
#nsBaseUrl
#nsRevocationUrl
#nsRenewalUrl
#nsCaPolicyUrl
#nsSslServerName

This is required for TSA certificates.
extendedKeyUsage = critical,timeStamping

[v3_req]

Extensions to add to a certificate request

basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 207

DNS.1 = hostname.emea.int.genesyslab.com
DNS.2 = hostname
IP.1 = 192.168.1.1
IP.2 = fe80::21d:7dff:fe0d:682c
IP.3 = fe80::ffff:ffff:fffd
IP.4 = fe80::5efe:192.168.1.1
URI.1 = http://hostname/
URI.2 = https://hostname/
email.1 = UserName1@genesyslab.com
email.2 = UserName2@genesyslab.com

[v3_ca]

Extensions for a typical CA

PKIX recommendation.

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid:always,issuer

This is what PKIX recommends but some broken software chokes on critical
extensions.
#basicConstraints = critical,CA:true
So we do this instead.
basicConstraints = CA:true

Key usage: this is typical for a CA certificate. However since it will
prevent it being used as an test self-signed certificate it is best
left out by default.
keyUsage = cRLSign, keyCertSign

Some might want this also
nsCertType = sslCA, emailCA

Include email address in subject alt name: another PKIX recommendation
subjectAltName=email:copy
Copy issuer details
issuerAltName=issuer:copy

DER hex encoding of an extension: beware experts only!
obj=DER:02:03
Where 'obj' is a standard or added object
You can even override a supported extension:
basicConstraints= critical, DER:30:03:01:01:FF

[crl_ext]

CRL extensions.
Only issuerAltName and authorityKeyIdentifier make any sense in a CRL.

issuerAltName=issuer:copy
authorityKeyIdentifier=keyid:always

[proxy_cert_ext]
These extensions should be added when creating a proxy certificate

This goes against PKIX guidelines but some CAs do it and some software
requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 208

Here are some examples of the usage of nsCertType. If it is omitted
the certificate can be used for anything *except* object signing.

This is OK for an SSL server.
nsCertType = server

For an object signing certificate this would be used.
nsCertType = objsign

For normal client use this is typical
nsCertType = client, email

and for everything including object signing:
nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer

This stuff is for subjectAltName and issuerAltname.
Import the email address.
subjectAltName=email:copy
An alternative to produce certificates that aren't
deprecated according to PKIX.
subjectAltName=email:move

Copy subject details
issuerAltName=issuer:copy

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem
#nsBaseUrl
#nsRevocationUrl
#nsRenewalUrl
#nsCaPolicyUrl
#nsSslServerName

This really needs to be in place for it to be a proxy certificate.
proxyCertInfo=critical,language:id-ppl-anyLanguage,pathlen:3,policy:foo

##
[tsa]

default_tsa = tsa_config1 # the default TSA section

[tsa_config1]

These are used by the TSA reply generation only.
dir = ./demoCA # TSA root directory
serial = $dir/tsaserial # The current serial number (mandatory)
crypto_device = builtin # OpenSSL engine to use for signing
signer_cert = $dir/tsacert.pem # The TSA signing certificate

(optional)
certs = $dir/cacert.pem # Certificate chain to include in reply

(optional)
signer_key = $dir/private/tsakey.pem # The TSA private key (optional)

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 209

default_policy = tsa_policy1 # Policy if request did not specify it
(optional)

other_policies = tsa_policy2, tsa_policy3 # acceptable policies (optional)
digests = md5, sha1 # Acceptable message digests (mandatory)
accuracy = secs:1, millisecs:500, microsecs:100 # (optional)
clock_precision_digits = 0 # number of digits after dot. (optional)
ordering = yes # Is ordering defined for timestamps?

(optional, default: no)
tsa_name = yes # Must the TSA name be included in the reply?

(optional, default: no)
ess_cert_id_chain = no # Must the ESS cert id chain be included?

(optional, default: no)

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 210

Use Cases

Introduction

This page examines TLS functionality as a series of common use cases. Use cases are broken into two
categories: server or application.

Examples and explanations are provided for some use cases, while others simply provide links to the
related TLS documentation needed to understand the functionality.

Genesys Server Use Cases

Opening a TLS Port
Code snippets explaining how to open a basic TLS port are provided both with, and without using the
Application Template Application Block:

• Opening a TLS port using the Platform SDK Commons Library
• Opening a TLS port using the Application Template Application Block

Opening a Mutual TLS Port (With Expiration, Revocation and CA Checks)
This use case is an advanced variation on opening a simple TLS port. As such, it already has a CA and
expiration check, but needs additional parameters to turn on mutual mode and to enable a CRL
check.

Mutual Mode

If TLS is configured programmatically, then the mutualTLS parameter should be set to true when
creating an SSLExtendedOptions object:

SSLExtendedOptions sslOptions = new SSLExtendedOptions(true, (String) null);

If TLS is configured in Configuration Manager, then the tls-mutual parameter for the server port,
application or host should be set to 1. Please refer to the list of TLS parameters for details.

Revocation Check

If TLS is configured programmatically, then a valid path to the CRL file should be provided in the
crlFilePath parameter when creating a trust manager:

X509TrustManager tm = TrustManagerHelper.createPEMTrustManager(
"c:/cert/ca-cert.pem","c:/cert/crl.pem", null);

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 211

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingPSDKCommonsLibrary#Configuring_TLS_for_Servers
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingApplicationTemplateAB#Configuring_TLS_for_Servers
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters

If TLS is configured in Configuration Manager, then the tls-crl parameter for the server port,
application or host should contain the path to the CRL file located on server. Please refer to the list of
TLS parameters for details.

Opening a FIPS-Compliant Port
FIPS mode is not a property of a port or application; it is defined mostly by the type of security
provider in use and the OS/environment settings. For Java, the PKCS#11 security provider should be
used to support FIPS; for .Net, FIPS is configured at the OS level (http://technet.microsoft.com/en-us/
library/cc750357.aspx).

If TLS is configured programmatically, then a PKCS11 key/trust managers should be used:

X509TrustManager tm = TrustManagerHelper.createPKCS11TrustManager(
new DummyPasswordCallbackHandler(), (String) null);

X509ExtendedKeyManager km = KeyManagerHelper.createPKCS11KeyManager(
new DummyPasswordCallbackHandler());

If TLS is configured in Configuration Manager, then the fips140-enabled parameter for the server
port, application or host should be set to "1". Please refer to the list of TLS parameters for details.

Note: This parameter is used to detect the security provider type to use. If this setting conflicts with
other TLS parameters or points to a FIPS security provider that is not installed on host, then Platform
SDK will generate an exception when attempting to accept or open a connection.

Genesys Application Use Cases

Opening a TLS Connection to a TLS Autodetect Server Port
TLS autodetect ports (also called upgrade mode ports) allow you to establish an unsecured
connection to the server before specifying TLS settings. For details, please refer to Connecting to
Upgrade Mode Ports in the quick start instructions.

Opening a TLS Connection to a Backend Server (With Expiration, Revocation and
CA Checks)
Code snippets explaining how to open a basic TLS connection to a backend server are provided both
with, and without using the Application Template Application Block:

• Configuring TLS for Client Connections using the Platform SDK Commons Library
• Configuring TLS for Client Connections using the Application Template Application Block

Opening a FIPS-Compliant Connection to a FIPS-Compliant Port
In this use case, the application does not need to provide any special behavior because the server
will only handshake for FIPS-compliant ciphers. Details about setting up a FIPS-compliant port are
described above.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 212

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSQuickStart#Connecting_to_Upgrade_Mode_Ports
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSQuickStart#Connecting_to_Upgrade_Mode_Ports
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingPSDKCommonsLibrary#Configuring_TLS_for_Client_Connections
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingApplicationTemplateAB#Configuring_TLS_for_Client_Connections
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUseCases#Opening_a_FIPS-Compliant_Port

Ensuring the Certificate is Checked with CA
If TLS is configured programmatically, then a valid CA certificate data should be provided when
creating the trust manager:

X509TrustManager tm = TrustManagerHelper.createPEMTrustManager(
"c:/cert/ca-cert.pem","c:/cert/crl.pem", null);

If TLS is configured in Configuration Manager, then the trusted-ca parameter for the port, connection,
application or host should contain valid CA certificate data. Please refer to the list of TLS parameters
for details.

Note: CA certificates are configured differently for each type of security provider. Please refer to the
page on using and configuring security providers for detailed information.

Ensuring the Certificate Expiration is Checked
Certificate expiration is checked by default during the certificate validation process.

Note: If a server certificate is placed in a trusted certificates store on the client host, it will be
automatically trusted without any validation. A trust certificates store should not include application
certificates; instead, it should contain only CA certificates.

Handling a Certificate Revocation List
If TLS is configured programmatically, then a valid path to a CRL file should be provided in the
crlFilePath parameter when creating trust manager:

X509TrustManager tm = TrustManagerHelper.createPEMTrustManager(
"c:/cert/ca-cert.pem","c:/cert/crl.pem", null);

If TLS is configured in Configuration Manager, then the tls-crl parameter for the application
connection, application or host should contain the path to the CRL file located on the application's
host. Please refer to the list of TLS parameters for details.

Handling a User-Specified Cipher List
If TLS is configured programmatically, then the enabledCipherSuites constructor parameter should
contain a list of allowed ciphers when the SSLExtendedOptions object is being created:

SSLExtendedOptions sslOptions = new SSLExtendedOptions(
true, "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA " +
"TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA");

If TLS is configured in Configuration Manager, then the cipher-list parameter for the port, connection,
application or host should be set to contain list of allowed ciphers. Please refer to the list of TLS
parameters for details.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 213

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters

Using and Configuring TLS Protocol
Versions

Java

The primary goal of the TLS protocol is to provide privacy and data integrity between two
communicating applications. Since there are various versions of TLS (1.0, 1.1, 1.2, and any future
versions) and SSL (2.0 and 3.0), there needs to be a way to negotiate which specific protocol version
to use. The TLS protocol provides a built-in mechanism for version negotiation so as not to bother
other protocol components with the complexities of version selection.

Tip
By default, the following client-side TLS Protocol versions are enabled in Java:

• Java 6, Java 7 – TLSv1
• Java 8, Java 11 – TLSv1.2

Platform SDK for Java includes extended TLS support so that you can specify which version of TLS to
use. There are several ways to accomplish this, as described below.

1) Using the ConnectionConfiguration class:

KeyValueConfiguration config = new KeyValueConfiguration(new KeyValueCollection());
config.setTLSEnabled(true);
config.setTLSVersion(TLSConfiguration.TLS_VERSION_1_1);
Endpoint ep = new Endpoint(host, port, config);
ExternalServiceProtocol protocol = new ExternalServiceProtocol(ep);

2) Using the TLSConfiguration class:

String tlsVersion = TLSConfiguration.TLS_VERSION_1;
TLSConfiguration config = new TLSConfiguration();
config.setVersion(tlsVersion);
SSLContext sslContext = TLSConfigurationHelper.createSslContext(config);
SSLExtendedOptions sslOptions = TLSConfigurationHelper.createSslExtendedOptions(config);
ExternalServiceProtocol protocol = new ExternalServiceProtocol(new Endpoint("TLSClient",
host, port, connectionConfiguration, true, sslContext, sslOptions));

3) Using the SSLContextHelper and TLSConfigurationHelper classes:

KeyManager keyManager = new KeyManager() { };
KeyManager[] keyManagers = {keyManager};
TrustManager trustManager = new TrustManager() { };
TrustManager[] trustManagers = {trustManager};

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 214

SecureRandom secureRandom = new SecureRandom();
SSLContextHelper sslContextHelper = new SSLContextHelper();
SSLContext sslContext = sslContextHelper.createSSLContext(keyManagers, trustManagers,
secureRandom, TLSConfiguration.TLS_VERSION_DEFAULT);

4) Using system property settings:

System.setProperty("com.genesyslab.platform.commons.connection.tlsDefaultVersion",
TLSConfiguration.TLS_VERSION_1_1);

PsdkCustomization.setOption(PsdkOption.PsdkTlsDefaultVersion,
TLSConfiguration.TLS_VERSION_1_2);

.NET

The primary goal of the TLS protocol is to provide privacy and data integrity between two
communicating applications. Since there are various versions of TLS (1.0, 1.1, 1.2, and any future
versions) and SSL (2.0 and 3.0), there needs to be a way to negotiate which specific protocol version
to use. The TLS protocol provides a built-in mechanism for version negotiation so as not to bother
other protocol components with the complexities of version selection.

Tip
The list of available TLS protocol versions, with respect to .NET Framework versions, is
provided below:

1. .NET Framework 3.5, 4.0: Ssl2, Ssl3, Tls (TLS 1.0).
2. .NET Framework 4.5.x, 4.6.x, 4.7.x: Ssl2, Ssl3, Tls (TLS 1.0), Tls11 (TLS 1.1), Tls12 (TLS

1.2).

For all .NET Framework versions, setting the TLS protocol version to
SslProtocols.Default (which is the initial value) means that both SSL 3.0 and TLS
1.0 are acceptable for secure communications.

Platform SDK for .NET includes extended TLS support so that you can specify which version of TLS to
use. There are several ways to accomplish this, as described below.

1) Using the TlsSupport class.

Server side:

var serverSslProtocols = SslProtocols.Tls;
var server = new ServerChannel(new Endpoint(host, port), new
ExternalServiceProtocolFactory());
server.TlsProperties.EnabledSslProtocols = serverSslProtocols;

Client side:

var clientSslProtocols = SslProtocols.Tls12;
var protocol = new ExternalServiceProtocol(new Endpoint(host, port));
protocol.TlsProperties.EnabledSslProtocols = clientSslProtocols;

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 215

2) Using the application configuration file:

<configuration>
<appSettings>

<add key="DefaultClientTLSVersion" value="TLS12 , SSL3"/>
<add key="DefaultServerTLSVersion" value="tls11"/>

</appSettings>
</configuration>

3) Using the PsdkCustomization class:

PsdkCustomization.TLSServerVersion.Value = SslProtocols.Tls12;
PsdkCustomization.TLSClientVersion.Value = SslProtocols.Tls11;

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 216

Lazy Parsing of Message Attributes
This page provides:

• an overview and list of requirements for the lazy parsing feature
• design details explaining how this feature works
• code examples showing how to implement lazy parsing in your applications

Introduction to Lazy Parsing

Lazy parsing allows users to specify which attributes should always be parsed immediately, and
which attributes should be parsed only on demand.

Some complex attributes (such as the ConfObject attribute found in some Configuration Server
protocol messages) are large and very complex. Unpacking these attributes can be time-consuming
and, in cases when an application is not interested in that data, can affect program performance. This
issue is resolved by using the "lazy parsing" feature included with the Platform SDK 8.1 release,
which is described in this article.

When this feature is turned off, all message attributes are parsed immediately - which is normal
behavior for previous version of the Platform SDK. When lazy parsing is enabled, any attributes that
were tagged for lazy parsing are only parsed on demand. In this case, if the application does not
explicitly check the value of an attribute tagged for lazy parsing then that attribute is never parsed at
all.

Feature Overview

• Platform SDK includes configuration options to turn the lazy parsing functionality on or off for each
individual protocol that supports this feature.

• Potentially time-consuming attributes that are candidates for lazy parsing are selected and marked by
Platform SDK developers. Refer to your Platform SDK API Reference for details.

• To maintain backwards compatibility, there is no change in how user applications access attribute
values.

• Default values:
• In Platform SDK for Java, the lazy parsing feature is turned on by default.

Note: The default value changed in release 8.1.4; in earlier releases of Platform SDK for Java, lazy
parsing is turned off by default.

• In Platform SDK for .NET, the lazy parsing feature is turned off by default.

Advanced Platform SDK Topics Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 217

Java

Important
This feature requires Configuration SDK protocol release 8.1 or later, and is currently
only used with the EventObjectsRead.ConfObject property of the Configuration
Platform SDK.

Design Details

This section describes the main classes and interfaces you will need to be familiar with to implement
lazy parsing in your own application.

Enabling and Disabling the Lazy Parsing Feature
At any time, a running application can enable or disable lazy parsing for a specific protocol in just a
few lines of code. This is done in three easy steps:

1. Create a new KeyValueCollection object.
2. Set the appropriate value for the Connection.LAZY_PARSING_ENABLED_KEY field. A value of True

enables the feature, while False disables lazy parsing.
3. Use a KeyValueConfiguration object to apply that setting to the desired protocol(s).

Tip
Starting with release 8.1.4, the default value of the
Connection.LAZY_PARSING_ENABLED_KEY field is always True, with the lazy parsing
feature enabled.

Once lazy parsing mode is enabled for a protocol, the change is applied immediately. Every new
message that is received takes the lazy parsing setting into account: parsing entire messages if the
feature is disabled, or leaving some attributes unparsed until their values are requested if the feature
is enabled.

To enable lazy parsing for the Configuration Server protocol, an application would use the following
code:

[Java]

KeyValueCollection kv = new KeyValueCollection();
kv.addString(Connection.LAZY_PARSING_ENABLED_KEY, "true");
KeyValueConfiguration kvcfg = new KeyValueConfiguration(kv);
ConfServerProtocol cfgChannel = new ConfServerProtocol(endpoint);
cfgChannel.configure(kvcfg); //lazy parsing is immediately active after this line

Advanced Platform SDK Topics Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 218

To disable lazy parsing for the protocol only the second line of code is changed before re-applying the
configuration, as shown below:

[Java]

kv.addString(Connection.LAZY_PARSING_ENABLED_KEY, "false");

.NET

Important
This feature requires Configuration SDK protocol release 8.1 or later, and is currently
only used with the EventObjectsRead.ConfObject property of the Configuration
Platform SDK.

Design Details

This section describes the main classes and interfaces you will need to be familiar with to implement
lazy parsing in your own application.

Enabling and Disabling the Lazy Parsing Feature
At any time, a running application can enable or disable lazy parsing for a specific protocol in just a
few lines of code. This is done in three easy steps:

1. Create a new KeyValueCollection object.
2. Set the appropriate value for the CommonConnection.LazyParsingEnabledKey field. A value of True

enables the feature, while False disables lazy parsing.
3. Use a KeyValueConfiguration object to apply that setting to the desired protocol(s).

Tip
The default value of the CommonConnection.LazyParsingEnabledKey field is always
False, with the lazy parsing feature disabled.

Once lazy parsing mode is enabled for a protocol, the change is applied immediately. Every new
message that is received takes the lazy parsing setting into account: parsing entire messages if the
feature is disabled, or leaving some attributes unparsed until their values are requested if the feature
is enabled.

To enable lazy parsing for the Configuration Server protocol, an application would use the following

Advanced Platform SDK Topics Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 219

code:

[C#]

KeyValueCollection kvc = new KeyValueCollection();
kvc[CommonConnection.LazyParsingEnabledKey] = "true";
KeyValueConfiguration kvcfg = new KeyValueConfiguration(kvc);
ConfServerProtocol cfgChannel = new ConfServerProtocol(endpoint);
cfgChannel.Configure(kvcfg); //lazy parsing is immediately active after this line

To disable lazy parsing for the protocol only the second line of code is changed before re-applying the
configuration, as shown below:

[C#]

kvc[CommonConnection.LazyParsingEnabledKey] = "false";

Accessing Attribute Values
There is no difference in how applications access attribute values from returned messages. Whether
the lazy parsing feature is enabled or disabled, whether the attribute being access supports lazy
parsing or not, your code remains exactly the same.

However, you should consider differences in timing when accessing attribute values.

• When lazy parsing is disabled, the entire message is parsed immediately when it is received. Accessing
attribute values is very fast, as the requested information is already prepared.

• When lazy parsing is enabled, the delay to parse the message upon arrival is smaller but accessing any
attributes that support lazy parsing causes a slightly delay as that information must first be parsed.
Note that accessing the same attribute a second time will not result in the attribute information being
parsed a second time; Platform SDK saves parsed data.

Additional Notes

• XML Serialization — The XmlMessageSerializer class has been updated to support lazy parsing. If a
message that contains unparsed attributes is serialized, then XmlMessageSerializer will trigger
parsing before the serialization process begins.

• ToString method — Use of the ToString method does not trigger parsing of attributes that support
lazy parsing. In this case, each unparsed attribute has its name printed along with a value of: "<value
is not yet parsed>".

Advanced Platform SDK Topics Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 220

Log Filtering

Introduction

Debug Log Level in Platform SDK protocol may affect Application performance due to huge log
information output.

The aim is to introduce the ability to dynamically configure the verbosity of Platform SDK message
logging. This way, production applications will be able to provide appropriate traces for
troubleshooting without hurting performance with overly verbose logs.

This feature should provide ability to set message filtering, for defining which messages should be
logged and which should not.

Message filter can be executed only when Debug log level is enabled.

Create and assign message filter directly

Use setLogMessageFilter() to assign custom log filter implementation for the protocol objects:

protocol.setLogMessageFilter(new MessageFilter(){
public boolean isMessageAccepted(Message message) {

if(message.messageId()==123) {
return true;

}
else {

return false;
}

}
});

This filter allows to log messages with ID equals to 123.

It is possible to assign default filter implementation, see described below.

Use Application Template to setup filters

Application Template provides default filter implementations. This filter can read configuration and
handle updates from Configuration Server.

Default filter implementation should be wired with a client protocol using
FilterConfigurationHelper.bind() method.

User needs to provide application name where filter configuration was defined and Config Service (to
read application):

Advanced Platform SDK Topics Log Filtering

Platform SDK Developer's Guide 221

import com.genesyslab.platform.applicationblocks.com.ConfService;
import com.genesyslab.platform.applicationblocks.com.objects.CfgApplication;
import com.genesyslab.platform.applicationblocks.com.queries.CfgApplicationQuery;
import com.genesyslab.platform.apptemplate.configuration.ClientConfigurationHelper;
import com.genesyslab.platform.apptemplate.configuration.GCOMApplicationConfiguration;
import com.genesyslab.platform.apptemplate.configuration.IGApplicationConfiguration.IGAppConnConfiguration;
import com.genesyslab.platform.configuration.protocol.types.CfgAppType;
import com.genesyslab.platform.commons.protocol.Endpoint;
import com.genesyslab.platform.reporting.protocol.StatServerProtocol;

import com.genesyslab.platform.apptemplate.filtering.FilterConfigurationHelper;

public class MyApp {
public void init() {

...
//read application settings and create protocol
String appName = "my-app-name";
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(appName));
GCOMApplicationConfiguration appConfiguration =

new GCOMApplicationConfiguration(cfgApplication);
IGAppConnConfiguration connConfig = appConfiguration.getAppServer(CfgAppType.CFGStatServer);

Endpoint endpoint= ClientConfigurationHelper.createEndpoint(
appConfiguration, connConfig,
connConfig.getTargetServerConfiguration());

StatServerProtocol statProtocol = new StatServerProtocol(endpoint);
statProtocol.setClientName(clientName);

//assign message filters to the protocol
FilterConfigurationHelper.bind(statProtocol, appConfiguration, confService);

statProtocol.open();
}

}

Advanced Platform SDK Topics Log Filtering

Platform SDK Developer's Guide 222

Important
For manually created Endpoints the server host and port must match the server host
and port of the IGAppConnConfiguration object (corresponds to one of the
"Connections" tab entries in provided application). Otherwise the
ConfigurationException "No connection object was found in application for protocol
endpoint..." will be thrown. However this will not happen if the Endpoint has been
created using the ClientConfigurationHelper.createEndpoint() helper.

Helper method FilterConfigurationHelper.bind() reads application configuration, instantiates
filter objects, assigns them to protocol, subscribe for Configuration Server notifications, registers
handlers for protocol events and so on. When filters are not required anymore, release filtering
infrastructure:

FilterConfigurationHelper.unbind(statProtocol,confService);

Use Configuration Manager to define filters, as described below.

Define filter in Configuration Manager

Filters are defined in the application "options" tab in configuration manager.

Advanced Platform SDK Topics Log Filtering

Platform SDK Developer's Guide 223

Filter name must be preceded with "log-filter." prefix.

For example: "log-filter.my-filter"

Filter names cannot start with "-", "!", or space symbols. Names such as "log-filter.-somefilter" are not
allowed.

Filter options are specified under the "log-filter.name" section.

Example: Define filter for T-Server channel which will show only incoming events for DNs that are
types of Positions or Extension and match "2???". Events should have user data with key
"ROUTING_ERROR". Here is how configuration can be done:

Advanced Platform SDK Topics Log Filtering

Platform SDK Developer's Guide 224

Filter options can represent one or more message attribute conditions.

log-filter.simple
message-type = Event*
@DN = 2???
@AddressType = Position, Extension
@UserData.RoutingError = *

After the filter is defined, assign it to one or more protocols on the application’s "Connection" tab.

Advanced Platform SDK Topics Log Filtering

Platform SDK Developer's Guide 225

Advanced Platform SDK Topics Log Filtering

Platform SDK Developer's Guide 226

In Application Parameters it is possible to specify one or more filters for a protocol:

log-filter = simple, error-filter, other-filter

See Filter Chain for details.

Filter Syntax

It is possible to specify one or more conditions to filter messages by their names or (and) attribute
values.

List of elementary conditions evaluate with "AND" operation.

Message Type Conditions
Evaluates message name or message id.

message-type = constant value

Example:

Advanced Platform SDK Topics Log Filtering

Platform SDK Developer's Guide 227

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LogFiltering#Filter_Chain

Option Description
message-type = EventInfo Filter accepting only EventInfo message
message-type = 125,126,127 Filter accepting messages with id 125,126 and 127.
message-type = Event* Filter accepting all Events

Attribute conditions
Evaluates message attribute value.

@attribute-name = constant value

Example:

Option Description
@ReferenceId = 50 Matches ReferenceId attribute value with 50.

@DN = 2???
Matches DN attribute value with 4-character string
starting from "2". Attribute values like "2999" or
"2ef7" will be accepted. Value "299999" will not be
accepted.

@UserData.CustomerID = 87624FAC Matches "CustomerID" key of the complex
"UserData" attribute with "87624FAC" value.

@StatisticObject.ObjectId = place* Matches statistic object which name start from
"place"

Attribute names
Attribute name is specified after the "@" symbol. Attribute names should match getter name of the
corresponding message class. To find out attribute name, see API reference guide for the
corresponding message.

For example:

message.getStatisticObject().getObjectType().equals(...);

equals to filter condition

"@StatisticObject.ObjectType = ... "

To access sub element of the complex attribute (KeyValueCollection, CompoundValue), specify the
name of inner element. Names should be delimited with "." symbol:

@attribute-name.element-1.element-n.

Supported attribute types
Currently supported message attribute types:

• string,
• int,

Advanced Platform SDK Topics Log Filtering

Platform SDK Developer's Guide 228

• enum,
• KeyValueCollection,
• CompoundValue (complex attributes like StatisticObject.)

If attribute has complex type, it is possible to specify matching condition only for one of its inner
elements of a simple type: string, integer or enum. For example, here is how to specify condition for
"TenantName" element of the complex "StatisticObject" attribute:

@StatisticObject.TenantName = 101

Constant values
Condition can have one or more constant values, delimited with ",". If one of the specified constants

matching attribute value (or message name), condition will return true.

Constant values supports wildcards:

Symbol Description

*
Any sequence of symbols.
For example, "Event*" matching any message name, starting
from Event

?
Any symbol at specified position.
For example, 555?5 will match 555A5 or 55505 strings.

\
Escape symbol.
For example, 555\?5 will match only 555?5 string.

Constant examples:

@AgentPlace = place1000

@AgentPlace = place*

@AgentPlace = place100??

@AgentPlace = place110, place120, place2??

Inverted conditions
It is possible to invert attribute condition or message condition result by specifying "#not" prefix:

#not message-type = RequestAgentLogin

or

#not @DN = 10

Advanced Platform SDK Topics Log Filtering

Platform SDK Developer's Guide 229

Empty filters
Filter with empty options will return negative evaluation result. It can be used to deny all messages
for a protocol object.

Stateful filters

Sometimes user doesn't know what attribute value should be specified in a filter condition. For
example, in Statistic protocol, the ReferenceId attribute (which uniquely identifies EventInfo
message with statistic data), initializing at a runtime, during statistic opening. To find out
ReferenceId value, user needs to search corresponding RequestOpenStatistic in logs.

Use case: trace EventInfo messages with any statistic for "place100".

Default log filter implementation allows to save attribute value from one message and re-use it to
trace other messages.

Configuration sample:

log-filter.stat-filter
message-type = RequestOpenStatistic
@StatisticObject.ObjectId = place100
trace-on-attribute = ReferenceId
trace-until-message-type = EventStatisticClosed

When filter meets condition ("RequestOpenStatistic" message with "place100" statistic object), the
ReferenceId is added to the list of saved values.

When filter receives message ("EventInfo" in statistics protocol) with ReferenceId matching to any of
the saved values, it allows to log the messages. More then one statistics for "place100" could be
opened, so it is possible to store several ReferenceId values.

When filter receives "EventStatisticClosed" with ReferenceId matching to any of the previously
saved values, this value is removed from the list. When values list is empty, no messages could be
logged.

Note 1: Filters processing messages only when debug log level is enabled. In order to save
ReferenceId value, debug log level should be enabled before RequestOpenStatistic is sent to
server.

Note 2: Saved values are cleared upon protocol close.

Note 3: Number of saved values is limited to 1024 to prevent high memory consumption upon
incorrect filter conditions. It can be changed with system property
"com.genesyslab.platform.filtering.valuelist.capacity". Changing to greater value is not
recommended.

Advanced Platform SDK Topics Log Filtering

Platform SDK Developer's Guide 230

Filter Chain

List of filters on the "Connection tab" represent a filter chain. By default, filter chain evaluates filter
results as "OR" expression. If one of the filter accept message message will be logged and other
filters will not be evaluated. Filters can be of two types: "accept" and "deny" filters

Use cases
Filter type Use case

accept
(default)

User exactly knows criteria by which messages
should be logged. For example, log all Events and
Requests with "DN" attribute "2000".

deny
User see a lot of unneeded messages in log with
common data. User can specify "deny" filter to
truncate those messages.

Filter chain behavior
Filter type Message evaluation result Filter chain behavior

accept (default) TRUE\FALSE
If TRUE - allow log, do not
execute other filters. Otherwise,
execute next filter. Deny log if
last filter returned FALSE

deny TRUE\FALSE
If TRUE - deny log, do not
execute other filters. Otherwise,
execute next filter. Allow log if
last filter returned FALSE

Syntax
Filter name, prefixed with "-" means "deny" filter. Names without prefix mean "accept" filter.

Example:

"log-filter = -filter"

"log-filter = f1, f2, -f3".

Filter result negation
Optionally, it is possible to invert message evaluation result for a filter with "!" symbol.

Example:

"log-filter = !filter"

"log-filter = f1, !f2, f3"

Advanced Platform SDK Topics Log Filtering

Platform SDK Developer's Guide 231

"log-filter = f1, -f2, -!f3".

Special filters
While delivering message from TCP connection to the client's receiver (or in opposite direction),
Platform SDK can trace message on the different points of its way:

2014-07-31 15:07:38,168 [New I/O worker #1] DEBUG otocolMessagePackagerImpl - New message #2
....
2014-07-31 15:07:38,168 [New I/O worker #1] DEBUG ns.protocol.DuplexChannel - Complete
message handling: 2

It is possible to disable such log entries with special filter "skip-trace-msg". This filter can be specified
as a stand-alone filter, or can be used together with other filters in a filter chain:

Example:

log-filter = skip-trace-msg
log-filter = filter-1, filter-2, filter-n, skip-trace-msg

Advanced Platform SDK Topics Log Filtering

Platform SDK Developer's Guide 232

Hide or Tag Sensitive Data in Logs
The Genesys Security Deployment Guide describes common options to filter out or tag sensitive data
in logs (in KeyValueCollection entries).

• The default-filter-type option in the [log-filter] section defines the treatment for all Key-Value
pairs.

• The <key-name> options in the [log-filter-data] section define the treatment for specific keys in the
log, overriding the default treatment specified by default-filter-type.

Corresponding configurations can also be applied for the Platform SDK KeyValuePrinter:

KeyValuePrinter.setDefaultPrinter(new KeyValuePrinter(globalPrinterOpts,
individualKeyMapping));

where globalPrinterOpts and individualKeyMapping are KeyValueCollection objects with filter
names and filter options.

Using Default Filters

Most KeyValueCollection objects (CfgApplication configuration options) can be read from
Configuration Server and applied to the KeyValuePrinter directly:

CfgApplication application = ...;

KeyValueCollection options = application.getOptions();
KeyValueCollection globalPrinterOpts= options.getList("log-filter");
KeyValueCollection individualKeyMapping = options.getList("log-filter-data");
KeyValuePrinter.setDefaultPrinter(new KeyValuePrinter(globalPrinterOpts,
individualKeyMapping));

Prior to 8.5.102.00, standard tag filters configuration could not be applied as-is and required
additional parsing.

The table below demonstrates filter samples from the Genesys Security Deployment Guide and
corresponding KeyValuePrinter settings.

Masking Partial Values
Configuration options in Administrator Corresponding KeyValueCollection content

[log-filter]
default-filter-type=hide-first,3

[Java]

KeyValueCollection globalPrinterOpts = new
KeyValueCollection();
globalPrinterOpts.addString("default-filter-
type", "hide-first,3");
KeyValuePrinter.setDefaultPrinter(new
KeyValuePrinter(globalPrinterOpts , null));

Advanced Platform SDK Topics Hide or Tag Sensitive Data in Logs

Platform SDK Developer's Guide 233

https://docs.genesys.com/Documentation/System/latest/SDG/Welcome
https://docs.genesys.com/Documentation/System/latest/SDG/Welcome

Masking Partial Values

[.NET]

var globalPrinterOpts = new
KeyValueCollection();
globalPrinterOpts.Add("default-filter-
type", "hide-first,3");
KeyValuePrinter.DefaultPrinter = new
KeyValuePrinter(globalPrinterOpts , null);

KVList:
'DNIS' [str] = "***0"
'PASSWORD' [str] = "***111111"
'RECORD_ID' [str] = "***3427"

Using Default Tags
Configuration options in Administrator Corresponding KeyValueCollection content

[log-filter]
default-filter-type=tag()

[Java]

KeyValueCollection globalPrinterOpts = new
KeyValueCollection();
globalPrinterOpts.addString("default-filter-
type", "tag()");
KeyValuePrinter.setDefaultPrinter(new
KeyValuePrinter(globalPrinterOpts , null));

[Java, Prior to 8.5.102.00]

KeyValueCollection globalPrinterOpts = new
KeyValueCollection();
globalPrinterOpts.addString("default-filter-
type", "custom-filter");
globalPrinterOpts.addString("custom-filter-
type", "PrefixPostfixFilter");
KeyValueCollection filterOpts = new
KeyValueCollection();
filterOpts.addString("key-prefix-string",
"");
filterOpts.addString("key-postfix-string",
"");
filterOpts.addString("value-prefix-string",
"<#");
filterOpts.addString("value-postfix-
string", "#>");
globalPrinterOpts.addList("custom-filter-
options", filterOpts);
KeyValuePrinter.setDefaultPrinter(new
KeyValuePrinter(globalPrinterOpts, null));

[.NET]

var globalPrinterOpts = new
KeyValueCollection();
globalPrinterOpts.Add("default-filter-
type", "tag()");
KeyValuePrinter.DefaultPrinter = new
KeyValuePrinter(globalPrinterOpts , null);

Advanced Platform SDK Topics Hide or Tag Sensitive Data in Logs

Platform SDK Developer's Guide 234

Masking Partial Values

[.NET Prior to 8.5.102.00]

var globalPrinterOpts = new
KeyValueCollection();
globalPrinterOpts.Add("default-filter-
type", "custom-filter");
globalPrinterOpts.Add("custom-filter-type",

"Genesyslab.Platform.Commons.Collections.Filters.PrefixPostfixFilter");
var filterOpts = new KeyValueCollection();
filterOpts.Add("key-prefix-string", "");
filterOpts.Add("key-postfix-string", "");
filterOpts.Add("value-prefix-string", "<#");
filterOpts.Add("value-postfix-string",
"#>");
globalPrinterOpts.Add("custom-filter-
options", filterOpts);
KeyValuePrinter.DefaultPrinter = new
KeyValuePrinter(globalPrinterOpts, null);

KVList:
'DNIS' [str] = <#"8410"#>
'PASSWORD' [str] = <#"111111111"#>
'RECORD_ID' [str] = <#"8313427"#>

Using User-defined Tags for All Attributes
Configuration options in Administrator Corresponding KeyValueCollection content

[log-filter]
default-filter-type=tag(<**,**>)

[Java]

KeyValueCollection globalPrinterOpts = new
KeyValueCollection();
globalPrinterOpts.addString("default-filter-
type", "tag(<**,**>)");
KeyValuePrinter.setDefaultPrinter(new
KeyValuePrinter(globalPrinterOpts , null));

[Java, Prior to 8.5.102.00]

KeyValueCollection globalPrinterOpts = new
KeyValueCollection();
globalPrinterOpts.addString("default-filter-
type", "custom-filter");
globalPrinterOpts.addString("custom-filter-
type", "PrefixPostfixFilter");
KeyValueCollection filterOpts = new
KeyValueCollection();
filterOpts.addString("key-prefix-string",
"");
filterOpts.addString("key-postfix-string",
"");
filterOpts.addString("value-prefix-string",
"<**");
filterOpts.addString("value-postfix-
string", "**>");
globalPrinterOpts.addList("custom-filter-

Advanced Platform SDK Topics Hide or Tag Sensitive Data in Logs

Platform SDK Developer's Guide 235

Masking Partial Values

options", filterOpts);
KeyValuePrinter.setDefaultPrinter(new
KeyValuePrinter(globalPrinterOpts, null));

[.NET]

var globalPrinterOpts = new
KeyValueCollection();
globalPrinterOpts.Add("default-filter-
type", "tag(<**,**>)");
KeyValuePrinter.DefaultPrinter = new
KeyValuePrinter(globalPrinterOpts , null);

[.NET Prior to 8.5.102.00]

var globalPrinterOpts = new
KeyValueCollection();
globalPrinterOpts.Add("default-filter-
type", "custom-filter");
globalPrinterOpts.Add("custom-filter-type",

"Genesyslab.Platform.Commons.Collections.Filters.PrefixPostfixFilter");
var filterOpts = new KeyValueCollection();
filterOpts.Add("key-prefix-string", "");
filterOpts.Add("key-postfix-string", "");
filterOpts.Add("value-prefix-string",
"<**");
filterOpts.Add("value-postfix-string",
"**>");
globalPrinterOpts.Add("custom-filter-
options", filterOpts);
KeyValuePrinter.DefaultPrinter = new
KeyValuePrinter(globalPrinterOpts, null);

KVList:
'DNIS' [str] = <**"8410"**>
'PASSWORD' [str] = <**"111111111"**>
'RECORD_ID' [str] = <**"8313427"**>

Masking Individual Values in Selected KV Pairs
Configuration options in Administrator Corresponding KeyValueCollection content

[log-filter-data]
PASSWORD=hide

[Java]

KeyValueCollection individualKeyMapping =
new KeyValueCollection();
individualKeyMapping.addString("PASSWORD",
"hide");
KeyValuePrinter.setDefaultPrinter(new
KeyValuePrinter(null,
individualKeyMapping));

[.Net]

var individualKeyMapping = new
KeyValueCollection();
individualKeyMapping.Add("PASSWORD",

Advanced Platform SDK Topics Hide or Tag Sensitive Data in Logs

Platform SDK Developer's Guide 236

Masking Partial Values

"hide");
KeyValuePrinter.DefaultPrinter = new
KeyValuePrinter(null, individualKeyMapping);

KVList:
'DNIS' [str] = "8410"
'PASSWORD' [output suppressed]
'RECORD_ID' [str] = "8313427"

Masking Partial Values in Selected KV Pairs
Configuration options in Administrator Corresponding KeyValueCollection content

[log-filter-data]
PASSWORD=unhide-last,5

[Java]

KeyValueCollection individualKeyMapping =
new KeyValueCollection();
individualKeyMapping.addString("PASSWORD",
"unhide-last,5");
KeyValuePrinter.setDefaultPrinter(new
KeyValuePrinter(null,
individualKeyMapping));

[.NET]

var individualKeyMapping = new
KeyValueCollection();
individualKeyMapping.Add("PASSWORD",
"unhide-last,5");
KeyValuePrinter.DefaultPrinter = new
KeyValuePrinter(null, individualKeyMapping);

KVList:
'DNIS' [str] = "8410"
'PASSWORD' [str] = "****11111"
'RECORD_ID' [str] = "8313427"

Tagging Specific KV Pairs with Default Tags
Configuration options in Administrator Corresponding KeyValueCollection content

[log-filter-data]
PASSWORD=tag()

[Java]

KeyValueCollection individualKeyMapping =
new KeyValueCollection();
individualKeyMapping.addString("PASSWORD",
"tag()");
KeyValuePrinter.setDefaultPrinter(new
KeyValuePrinter(null,
individualKeyMapping));

[Java, Prior to 8.5.102.00]

KeyValueCollection customFilter = new
KeyValueCollection();

Advanced Platform SDK Topics Hide or Tag Sensitive Data in Logs

Platform SDK Developer's Guide 237

Masking Partial Values

customFilter.addString("custom-filter-
type", "PrefixPostfixFilter");
KeyValueCollection individualKeyMapping =
new KeyValueCollection();
individualKeyMapping.addList("PASSWORD",
customFilter);
KeyValueCollection filterOpts = new
KeyValueCollection();
filterOpts.addString("key-prefix-string",
"");
filterOpts.addString("key-postfix-string",
"");
filterOpts.addString("value-prefix-string",
"<#");
filterOpts.addString("value-postfix-
string", "#>");
customFilter.addList("custom-filter-
options", filterOpts);
KeyValuePrinter.setDefaultPrinter(new
KeyValuePrinter(null,
individualKeyMapping));

[.NET]

var individualKeyMapping = new
KeyValueCollection();
individualKeyMapping.Add("PASSWORD",
"tag()");
KeyValuePrinter.DefaultPrinter = new
KeyValuePrinter(null, individualKeyMapping);

[.NET, Prior to 8.5.102.00]

var customFilter = new KeyValueCollection();
customFilter.Add("custom-filter-type",

"Genesyslab.Platform.Commons.Collections.Filters.PrefixPostfixFilter");
var individualKeyMapping = new
KeyValueCollection();
individualKeyMapping.Add("PASSWORD",
customFilter);
var filterOpts = new KeyValueCollection();
filterOpts.Add("key-prefix-string", "");
filterOpts.Add("key-postfix-string", "");
filterOpts.Add("value-prefix-string", "<#");
filterOpts.Add("value-postfix-string",
"#>");
customFilter.Add("custom-filter-options",
filterOpts);
KeyValuePrinter.DefaultPrinter = new
KeyValuePrinter(null, individualKeyMapping);

KVList:
'DNIS' [str] = "8410"
'PASSWORD' [str] = <#"111111111"#>
'RECORD_ID' [str] = "8313427"

Tagging Individual KV Pairs with Different Tags

Advanced Platform SDK Topics Hide or Tag Sensitive Data in Logs

Platform SDK Developer's Guide 238

Masking Partial Values
Configuration options in Administrator Corresponding KeyValueCollection content

[log-filter-data]
PASSWORD=tag() RECORD_ID=tag(<**,**>)

[Java]

KeyValueCollection individualKeyMapping =
new KeyValueCollection();
individualKeyMapping.addString("PASSWORD",
"tag(<!--,-->)");
individualKeyMapping.addString("RECORD_ID",
"tag(<**,**>)");
KeyValuePrinter.setDefaultPrinter(new
KeyValuePrinter(null,
individualKeyMapping));

[Java prior to 8.5.102.00]

KeyValueCollection opts1 = new
KeyValueCollection();
opts1.addString("key-prefix-string", "");
opts1.addString("key-postfix-string", "");
opts1.addString("value-prefix-string", "<!--
");
opts1.addString("value-postfix-string", "--
>");

KeyValueCollection opts2 = new
KeyValueCollection();
opts2.addString("key-prefix-string", "");
opts2.addString("key-postfix-string", "");
opts2.addString("value-prefix-string",
"<**");
opts2.addString("value-postfix-string",
"**>");

KeyValueCollection filter1 = new
KeyValueCollection();
filter1.addString("custom-filter-type",
"PrefixPostfixFilter");
filter1.addList("custom-filter-options",
opts1);
KeyValueCollection filter2 = new
KeyValueCollection();
filter2.addString("custom-filter-type",
"PrefixPostfixFilter");
filter2.addList("custom-filter-options",
opts2);

KeyValueCollection individualKeyMapping =
new KeyValueCollection();
individualKeyMapping.addList("PASSWORD",
filter1);
individualKeyMapping.addList("RECORD_ID",
filter2);
KeyValuePrinter.setDefaultPrinter(new
KeyValuePrinter(null,
individualKeyMapping));

[.NET]

var individualKeyMapping = new

Advanced Platform SDK Topics Hide or Tag Sensitive Data in Logs

Platform SDK Developer's Guide 239

Masking Partial Values

KeyValueCollection();
individualKeyMapping.Add("PASSWORD",
"tag(<!--,-->)");
individualKeyMapping.Add("RECORD_ID",
"tag(<**,**>)");
KeyValuePrinter.DefaultPrinter = new
KeyValuePrinter(null, individualKeyMapping);

[.NET prior to 8.5.102.00]

var opts1 = new KeyValueCollection();
opts1.Add("key-prefix-string", "");
opts1.Add("key-postfix-string", "");
opts1.Add("value-prefix-string", "<!--");
opts1.Add("value-postfix-string", "-->");

var opts2 = new KeyValueCollection();
opts2.Add("key-prefix-string", "");
opts2.Add("key-postfix-string", "");
opts2.Add("value-prefix-string", "<**");
opts2.Add("value-postfix-string", "**>");

var filter1 = new KeyValueCollection();
filter1.Add("custom-filter-type",
"Genesyslab.Platform.Commons.Collections.Filters.PrefixPostfixFilter");
filter1.Add("custom-filter-options", opts1);
var filter2 = new KeyValueCollection();
filter2.Add("custom-filter-type",
"Genesyslab.Platform.Commons.Collections.Filters.PrefixPostfixFilter");
filter2.Add("custom-filter-options", opts2);

var individualKeyMapping = new
KeyValueCollection();
individualKeyMapping.Add("PASSWORD",
filter1);
individualKeyMapping.Add("RECORD_ID",
filter2);
KeyValuePrinter.DefaultPrinter = new
KeyValuePrinter(null, individualKeyMapping);

KVList:
'DNIS' [str] = "8410"
'PASSWORD' [str] = <!--"111111111"-->
'RECORD_ID' [str] = <**"8313427"**>

Note that the KeyValuePrinter class has predefined String constants. For example,
KeyValuePrinter.DEF_FILTER_OPTION is equivalent to default-filter-type. See the
KeyValuePrinter documentation in the Platform SDK API Reference guide for details.

Implement Custom Filter

It is possible to write your own filter implementation. To do that, extend the
KeyValueAbstractOutputFilter class and register it in KeyValuePrinter using the custom-

Advanced Platform SDK Topics Hide or Tag Sensitive Data in Logs

Platform SDK Developer's Guide 240

https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome

filter-type option.

A sample filter implementation is provided below:

public class SimpleHideFilter extends KeyValueAbstractOutputFilter {
private KeyValueCollection opts;
public void configure(final KeyValueCollection options) {

this.opts = options;
}
@Override
protected String doAppendPairValue(final StringBuffer buf,

final String key, final Object value,
final KeyValuePrinterContext context) {

if (opts != null && "true".equals(opts.getString("enabled"))) {
buf.append("*** Hidden by simple filter ***");

} else {
super.doAppendPairValue(buf, key, value, context);

}
return null;

}
}

And here is some code showing how to register your filter:

KeyValueCollection filterOpts = new KeyValueCollection();
filterOpts.addString("enabled", "true");

KeyValueCollection customFilterDef = new KeyValueCollection();
customFilterDef.addString(KeyValuePrinter.CUSTOM_FILTER_TYPE,
SimpleHideFilter.class.getName());
customFilterDef.addList(KeyValuePrinter.CUSTOM_FILTER_OPTIONS, filterOpts);

KeyValueCollection individualKeyMapping = new KeyValueCollection();
individualKeyMapping.addList("PASSWORD", customFilterDef);
KeyValuePrinter.setDefaultPrinter(new KeyValuePrinter(null, individualKeyMapping));

The resulting log might look like this:

'EventPartyInfo' (109) attributes:
AttributeCallType [int] = 4 [Consult]
AttributeConnID [long] = 008b012ece62c8be
AttributeUserData [bstr] = KVList:

'DNIS' [int] = 8410
'PASSWORD' [str] = *** Hidden by simple filter ***
'RECORD_ID' [int] = 8313427

AttributeThisDN [str] = "8899"

Advanced Platform SDK Topics Hide or Tag Sensitive Data in Logs

Platform SDK Developer's Guide 241

Profiling and Performance Services

Java

Using JMX Agent

Java Management Extensions (JMX) provide built-in profiling and management options, including an
API for monitoring Java applications. This API provides access to information such as:

• Number of classes loaded and threads running
• Virtual machine uptime, system properties, and JVM input arguments
• Thread state, thread contention statistics, and stack trace of live threads
• Memory consumption
• Garbage collection statistics
• Low memory detection
• On-demand deadlock detection
• Operating system information

To enable monitoring for a Java application, first launch the JVM with the default JMX agent turned on
using the com.sun.management.jmxremote.port=<portNum> system property.

-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.port=portNum

Once these system properties are set, you can use jconsole to monitor the intended Java application.
First use the appropriate system tools to determine the process ID for your running application. For
example, on Windows systems you can use Task Manager to find the process ID of the java or javaw
process. Once the process ID is known you can start jconsole from the jdk/bin directory:

jconsole <processID>

Heap memory is the runtime data area from which the JVM allocates memory for all class instances
and arrays. The heap may be of a fixed or variable size. The garbage collector is an automatic
memory management system that reclaims heap memory for objects.

Non-heap memory includes a method area shared among all threads and memory required for the
internal processing or optimization for the JVM. It stores per-class structures such as a runtime
constant pool, field and method data, and the code for methods and constructors. The method area is
logically part of the heap but, depending on implementation, a JVM may not garbage collect or
compact it. Like the heap, the method area may be of fixed or variable size. The memory for the
method area does not need to be contiguous

Advanced Platform SDK Topics Profiling and Performance Services

Platform SDK Developer's Guide 242

Platform SDK MBeans

There are three types of Platform SDK MBeans available:

• ClientChannel Monitor
• ServerChannel Monitor
• ThreadHeartbeatMonitor

Descriptions of each MBean and a sample JConsole screenshot showing what they might look like are
provided below.

ClientChannel Monitor
The ClientChannel MBean object represents a single instance of an opened client protocol connection.

It exposes several properties of the client connection for monitoring/debugging purposes, such as:

• protocol type
• protocol ID (that is, the unique ID of the protocol instance)
• a string representation of the client connection endpoint
• connection configuration
• counters for the number of sent and received messages

The ReceiverInputSize property reflects the number of asynchronous incoming messages which
were received by the protocol connection, but were not retrieved by the application. If this property
has a large value during runtime then it may indicate that there was an overload, hang-up, or

Advanced Platform SDK Topics Profiling and Performance Services

Platform SDK Developer's Guide 243

memory leak in the application.

The only property that you can modify (using JMX) in the ClientChannel MBean is ProtocolTimeout.

ServerChannel Monitor
The ServerChannel MBean object represents a single instance of the Platform SDK ServerChannel.

This MBean exposes similar information to the ClientChannel Monitor, but also includes counters for
the number of accepted and active client collections.

ThreadHeartbeatMonitor
ThreadHeartbeatMonitor is designed to support the Genesys Management Framework Hang-up
Detection feature.

Platform SDK provides this class for server-type applications to allow integration with the Hang-up
Detection feature. Developers may create instances of this class in their applications to act as a
heartbeat for functional threads, and then add "ticking" calls in their code. An opened LCA connection
with proper configuration will then allow Genesys Management Framework to collect information
about the heartbeats. If the heartbeat counter stops and specific configuration options are enabled,
then Solution Control Server may request that LCA restart the application as hanged up.

Platform SDK exposes the following internal threads: PSDK Timer, and workers of SingleTreadInvoker
instances. Other internal Platform SDK threads (including connection layer and Netty executors) do
not use the heartbeat functionality.

.NET

Thread Monitoring

Thread Monitoring Functionality in Platform SDK for .NET
All threads (both user thread and internal Platform SDK threads) for any user application built with
Genesys Platform SDK can be monitored, and run-time information for each thread can be gathered
at any time. This information gathering and accessibility are supported by standard .NET framework
technology related to PerformanceCounters. See http://msdn.microsoft.com/en-us/library/
system.diagnostics.performancecounter.aspx for details.

PerformanceCounter Name Constants

String constants (names) which are used for managing PerformanceCounters are as follows:

public const string CategoryName = "Genesyslab PSDK .NET";
public const string HeartbeatCounterName = "Thread Heartbeat";
public const string StateCounterName = "Thread State";
public const string ProcessIdCounterName = "ProcessId";

Advanced Platform SDK Topics Profiling and Performance Services

Platform SDK Developer's Guide 244

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport

public const string OsThreadIdCounterName = "OsThreadId";

These constants are defined in the ThreadMonitoring class. In addition to these custom Platform
SDK performance counters, users can also use standard counters. For example, both "% Processor
Time" and "% User Time" are defined in the Thread category.

Tip
To enable monitoring and performance profiling feature the application configuration
file has to contain the following section:
<configuration>

<appSettings>
<add key="ProfilingEnabled" value="true"/>

</appSettings>
</configuration>

Other Diagnostic and Monitoring Tools in Platform SDK

Messages Sent/Received
Platform SDK automatically collects information about the number of messages which were sent and
received for each individual channel, along with a total for all channels. String constants (names)
which are used for managing PerformanceCounters are as follows:

public const string CategoryName = "Genesyslab PSDK .NET Messages";
public const string MessagesSentCounterName = "Messages Sent/sec";
public const string MessagesReceivedCounterName = "Messages Received/sec";

And the name of the instance which collects total information is:

public const string TotalInstanceName = "_Total";

They all are defined in MessagesMonitoring class in the
Genesyslab.Platform.Commons.Protocols.Diagnostics namespace.

Viewing Genesys Platform SDK Diagnostic Data Using
'perfmon.exe'

Performance Monitor Tool
The Performance Monitor tool ('perfmon.exe' included in Windows OS starting with NT 3.0) can be
used to view and monitor all of the Genesys Platform SDK diagnostic values described above.

Advanced Platform SDK Topics Profiling and Performance Services

Platform SDK Developer's Guide 245

To start 'perfmon.exe', press Start > Run…, type "perfmon" into the opened window, and than press
Ok. The following application will be opened:

Then you can add Genesyslab PSDK counters. Press 'Add Counters…' (or press Ctrl+I), choose the
host where you want to see counters, and then select 'Genesyslab PSDK .NET' performance object in
the appropriate combo-box:

Advanced Platform SDK Topics Profiling and Performance Services

Platform SDK Developer's Guide 246

After that you can select the exact performance counters and which instances they are related to.
Now 'perfmon' will show the selected values, for example in 'Report' view as following:

Advanced Platform SDK Topics Profiling and Performance Services

Platform SDK Developer's Guide 247

IPv6 Resolution

Java

Overview

Platform SDK provides two connection configuration options that control IPv4/IPv6 address resolution:

Option Name Java Constant Values Description

enable-ipv6 Connection.ENABLE_IPV6_KEY
0 (default)
1

This option enables and
disables IPv6 support.
When set to 0, IPv6 support is
disabled, even if IPv6 is
supported by the platform.

ip-version Connection.IP_VERSION_KEY
4,6 (default)
6,4

Defines the order in
which connection
attempts will be made
to IPv6 and IPv4
addresses. Option
values do not contain
spaces.
This option has no effect if the
option enable-ipv6 is set to
0.

Note: This option only applies
to clients.

Note: In Java you can use the
predefined value constants:
Connection.IP_VERSION_4_6
or
Connection.IP_VERSION_6_4

To enable the use of a Netty connection with OIO transport, use one of the following methods:

• start your Java application with the follow JVM option:
-Dcom.genesyslab.platform.commons.connection.impl.netty.transport=OIO

• include the following code at the beginning of your application, before any Platform SDK classes are
used:

System.setProperty(NettyConnectionFactory.TRANSPORT_TYPE_PARAMETER, "OIO");

For additional information about working with IPv6, refer to the Networking IPv6 User Guide
(https://docs.oracle.com/javase/8/docs/technotes/guides/net/ipv6_guide/index.html).

Advanced Platform SDK Topics IPv6 Resolution

Platform SDK Developer's Guide 248

Code Samples
[+] Genesys Server needs to open the IPv6-only port for listening
PropertyConfiguration cfg = new PropertyConfiguration();
cfg.setIPv6Enabled(true); // cfg.setBoolean(Connection.ENABLE_IPV6_KEY, true) OR
cfg.setOption("enable-ipv6", "1")

Endpoint endpoint = new Endpoint("testServer", "::", 1234, cfg);
ServerChannel server = new ServerChannel(endpoint, new SomeProtocolFactory());
server.open();

[+] Genesys Server needs to open IPv4-only port for listening
PropertyConfiguration cfg = new PropertyConfiguration();
cfg.setIPv6Enabled(false); // cfg.setBoolean(Connection.ENABLE_IPV6_KEY, false) OR
cfg.setOption("enable-ipv6", "0")

Endpoint endpoint = new Endpoint("testServer", "0.0.0.0", 1234, cfg);
ServerChannel server = new ServerChannel(endpoint, new SomeProtocolFactory());
server.open();

[+] Genesys Server needs to open IPv4/IPv6 dual stack port for listening
PropertyConfiguration cfg = new PropertyConfiguration();
cfg.setIPv6Enabled(true); // cfg.setBoolean(Connection.ENABLE_IPV6_KEY, true) OR
cfg.setOption("enable-ipv6", "1")

Endpoint endpoint = new WildcardEndpoint("testServer", 1234, cfg);
ServerChannel server = new ServerChannel(endpoint, new SomeProtocolFactory());
server.open();

[+] Genesys application needs to open connection to IPv6 network
interface of backend server
PropertyConfiguration cfg = new PropertyConfiguration();
cfg.setIPv6Enabled(true); // cfg.setBoolean(Connection.ENABLE_IPV6_KEY, true) OR
cfg.setOption("enable-ipv6", "1")
cfg.setIPVersion(Connection.IP_VERSION_6_4); // cfg.setOption(Connection.IP_VERSION_KEY,
Connection.IP_VERSION_6_4) OR cfg.setOption("ip-version", "6,4")

Endpoint endpoint = new Endpoint("testServer", 1234, cfg);
SomeProtocol protocol = new SomeProtocol(endpoint);
protocol.open();

[+] Genesys application needs to open connection to IPv4 network
interface of backend server
PropertyConfiguration cfg = new PropertyConfiguration();

Advanced Platform SDK Topics IPv6 Resolution

Platform SDK Developer's Guide 249

cfg.setIPv6Enabled(false); // cfg.setBoolean(Connection.ENABLE_IPV6_KEY, false) OR
cfg.setOption("enable-ipv6", "0")

Endpoint endpoint = new Endpoint("testServer", 1234, cfg);
SomeProtocol protocol = new SomeProtocol(endpoint);
protocol.open();

[+] Genesys application needs to open connection to IPv6 or IPv4
network interface of backend server, with explicit order of preference
(try IPv4 then IPv6)
PropertyConfiguration cfg = new PropertyConfiguration();
cfg.setIPv6Enabled(true); // cfg.setBoolean(Connection.ENABLE_IPV6_KEY, true) OR
cfg.setOption("enable-ipv6", "1")
cfg.setIPVersion(Connection.IP_VERSION_4_6); // cfg.setOption(Connection.IP_VERSION_KEY,
Connection.IP_VERSION_4_6) OR cfg.setOption("ip-version", "4,6")

Endpoint endpoint = new Endpoint("testServer", 1234, cfg);
SomeProtocol protocol = new SomeProtocol(endpoint);
protocol.open();

Using the Application Template Application Block

Refer to the Using the Application Template Application Block article for details about defining the
IPv6 options in Configuration Manager or loading connection configuration details.

.NET

Overview

Platform SDK provides two connection configuration options that control IPv4/IPv6 address resolution:

Option Name C# Constant Values Description

enable-ipv6 CommonConnection.EnableIPv6Key
0 (default)
1

This option enables and
disables IPv6 support.
When set to 0, IPv6 support is
disabled, even if IPv6 is
supported by the platform.

ip-version CommonConnection.IpVersionKey
4,6 (default)
6,4

Defines the order in
which connection
attempts will be made
to IPv6 and IPv4
addresses. Option
values do not contain

Advanced Platform SDK Topics IPv6 Resolution

Platform SDK Developer's Guide 250

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingAppTemplateAB

Option Name C# Constant Values Description
spaces.
This option has no effect if the
option enable-ipv6 is set to
0.

Note: This option only applies
to clients.

Code Samples
[+] Genesys Server needs to open IPv6-only port for listening
PropertyConfiguration cfg = new PropertyConfiguration();
cfg.IPv6Enabled = true; // cfg.SetBoolean(CommonConnection.EnableIPv6Key, true) OR
cfg.SetOption("enable-ipv6", "1")

Endpoint endpoint = new Endpoint("testServer", "::", 1234, cfg);
ServerChannel server = new ServerChannel(endpoint, new SomeProtocolFactory());
server.Open();

[+] Genesys Server needs to open IPv4-only port for listening
PropertyConfiguration cfg = new PropertyConfiguration();
cfg.IPv6Enabled = false; // cfg.SetBoolean(CommonConnection.EnableIPv6Key, false) OR
cfg.SetOption("enable-ipv6", "0")

Endpoint endpoint = new Endpoint("testServer", "::", 1234, cfg);
ServerChannel server = new ServerChannel(endpoint, new SomeProtocolFactory());
server.Open();

[+] Genesys Server needs to open IPv4/IPv6 dual stack port for listening
PropertyConfiguration cfg = new PropertyConfiguration();
cfg.IPv6Enabled = true; // cfg.SetBoolean(CommonConnection.EnableIPv6Key, true) OR
cfg.SetOption("enable-ipv6", "1")

Endpoint endpoint = new WildcardEndpoint("testServer", 1234, cfg);
ServerChannel server = new ServerChannel(endpoint, new SomeProtocolFactory());
server.Open();

[+] Genesys application needs to open connection to IPv6 network
interface of backend server
PropertyConfiguration cfg = new PropertyConfiguration();
cfg.IPv6Enabled = true; // cfg.SetBoolean(CommonConnection.EnableIPv6Key, true) OR
cfg.SetOption("enable-ipv6", "1")
cfg.IPVersion = "6,4"; // cfg.SetOption(CommonConnection.IpVersionKey, "6,4") OR

Advanced Platform SDK Topics IPv6 Resolution

Platform SDK Developer's Guide 251

cfg.SetOption("ip-version", "6,4")

Endpoint endpoint = new Endpoint("testServer", 1234, cfg);
SomeProtocol protocol = new SomeProtocol(endpoint);
protocol.Open();

[+] Genesys application needs to open connection to IPv4 network
interface of backend server
PropertyConfiguration cfg = new PropertyConfiguration();
cfg.IPv6Enabled = false; // cfg.SetBoolean(CommonConnection.EnableIPv6Key, false) OR
cfg.SetOption("enable-ipv6", "0")

Endpoint endpoint = new Endpoint("testServer", 1234, cfg);
SomeProtocol protocol = new SomeProtocol(endpoint);
protocol.Open();

[+] Genesys application needs to open connection to IPv6 or IPv4
network interface of backend server, with explicit order of preference
(try IPv4 then IPv6)
PropertyConfiguration cfg = new PropertyConfiguration();
cfg.IPv6Enabled = true; // cfg.SetBoolean(CommonConnection.EnableIPv6Key, true) OR
cfg.SetOption("enable-ipv6", "1")
cfg.IPVersion = "4,6"; // cfg.SetOption(CommonConnection.IpVersionKey, "4,6") OR
cfg.SetOption("ip-version", "4,6")

Endpoint endpoint = new Endpoint("testServer", 1234, cfg);
SomeProtocol protocol = new SomeProtocol(endpoint);
protocol.Open();

Advanced Platform SDK Topics IPv6 Resolution

Platform SDK Developer's Guide 252

Managing Protocol Configuration
Even after a protocol object has been created, you can still manage and update the configuration for
that protocol. This article gives an overview of how to manage protocol configuration, including code
samples and a list of properties that can be changed.

Managed Configuration

Starting with Platform SDK release 8.5, each protocol tracks configuration changes and applies them
in any state. Some properties (such as running timer) have a deferred effect, while others are applied
immediately.

The following code samples show Genesys recommendations for changing a protocol's configuration
in any state. You do not need to directly set the new configuration to an Endpoint.

[+] Java Code Sample
// Example 1
ConnectionConfiguration cfg = protocol.getEndpoint().getConfiguration();
if (cfg instanceof ClientConnectionOptions) {

ClientConnectionOptions options =
(ClientConnectionOptions)protocol.getEndpoint().getConfiguration();

options.setUseAddp(true);
options.setAddpClientTimeout(5000);
options.setAddpServerTimeout(5000);
options.setAddpTraceMode(AddpTraceMode.Local);

}

// Example 2
ConnectionConfiguration cfg = protocol.getEndpoint().getConfiguration();
cfg.setOption(Interceptor.PROTOCOL_NAME_KEY, AddpInterceptor.NAME);
cfg.setOption(AddpInterceptor.TIMEOUT_KEY, "5");
cfg.setOption(AddpInterceptor.REMOTE_TIMEOUT_KEY, "5");
cfg.setOption(AddpInterceptor.TRACE_KEY, "1");

[+] .NET Code Sample
// Example 1
var configuration = protocol.Endpoint.GetConfiguration() as IClientConnectionOptions;
if (configuration != null)
{

configuration.AddpClientTimeout = 15;
configuration.AddpServerTimeout = 20;
configuration.AddpTraceMode = AddpTraceMode.Both;
configuration.UseAddp = true;

}

// Example 2
var configuration = protocol.Endpoint.GetConfiguration();
if (configuration != null)
{

Advanced Platform SDK Topics Managing Protocol Configuration

Platform SDK Developer's Guide 253

configuration.SetOption(AddpInterceptor.TimeoutKey,"15");
configuration.SetOption(AddpInterceptor.RemoteTimeoutKey, "20");
configuration.SetOption(AddpInterceptor.TraceKey, AddpTraceMode.Both.ToString("F"));
configuration.SetOption(CommonConnection.ProtocolNameKey,AddpInterceptor.Name);

}

// Example 3
var configuration = protocol.Endpoint.GetConfiguration();
if (configuration != null)
{

configuration.SetOption("addp-timeout","15");
configuration.SetOption("addp-remote-timeout", "20");
configuration.SetOption("addp-trace", "both");
configuration.SetOption("protocol","addp");

}

Managed Properties

The following tables list properties that can be changed at any time.

Properties that relate to all protocols:

Property Name Property Type Mnemonic Constant
in Java

Mnemonic Constant
in .NET

protocol string (protocol name) Interceptor.PROTOCOL_NAME_KEYCommonConnection.ProtocolNameKey
addp-timeout float (in seconds) AddpInterceptor.TIMEOUT_KEYAddpInterceptor.TimeoutKey
addp-remote-timeout float (in seconds) AddpInterceptor.REMOTE_TIMEOUT_KEYAddpInterceptor.RemoteTimeoutKey
addp-trace int AddpInterceptor.TRACE_KEYAddpInterceptor.TraceKey
string-attribute-
encoding string Connection.STR_ATTR_ENCODING_NAME_KEYConnectionBase.StringAttributeEncodingK

Properties that are supported by the Voice protocol:

Property Name Property Type Mnemonic Constant
in Java

Mnemonic Constant
in .NET

tspAppName string TServerProtocol.APP_NAME_KEYTServerProtocol.ApplicationNameKey
tspPassword string TServerProtocol.PASS_KEY TServerProtocol.PassKey
tspSwitchoverTimeout long TServerProtocol.SWITCHOVER_TIMEOUT_KEYTServerProtocol.SwitchoverTimeoutKey
tspBackupReconnectIntervallong TServerProtocol.BACKUP_RECONNECT_INTERVAL_KEYTServerProtocol.BackupReconnectIntervalK

Properties that are supported by the WebMedia protocol:

Property Name Property Type Mnemonic Constant
in Java

Mnemonic Constant
in .NET

replace-illegal-unicode-
chars boolean WebmediaChannel.OPTION_NAME_REPLACE_ILLEGAL_UNICODE_CHARSWebmediaChannel.OptionNameReplaceIllegalUnicodeChars

illegal-unicode-chars-
replacement string WebmediaChannel.OPTION_NAME_ILLEGAL_UNICODE_CHARS_REPLACEMENTWebmediaChannel.OptionNameIllegalUnicodeCharsR

Advanced Platform SDK Topics Managing Protocol Configuration

Platform SDK Developer's Guide 254

Managing Configuration Prior to Release 8.5

For releases prior to 8.5, the configuration of an existing protocol object can still be changed.
However, any configuration changes made will only take effect if the protocol object is in a "Closed"
state; otherwise the changes are applied the next time that protocol is opened.

The following code examples show how Genesys recommends managing protocol configuration:

[+] Java Code Sample
// Example 1
ConnectionConfiguration cfg = protocol.getEndpoint().getConfiguration();
if (cfg instanceof ClientConnectionOptions) {

ClientConnectionOptions options = (ClientConnectionOptions)cfg;
options.setUseAddp(true);
options.setAddpClientTimeout(5000);
options.setAddpServerTimeout(5000);
options.setAddpTraceMode(AddpTraceMode.Local);
protocol.configure(cfg); // method configure is deprecated

}

// Example 2
ConnectionConfiguration cfg = protocol.getEndpoint().getConfiguration();
cfg.setOption(Interceptor.PROTOCOL_NAME_KEY, AddpInterceptor.NAME);
cfg.setOption(AddpInterceptor.TIMEOUT_KEY, "5");
cfg.setOption(AddpInterceptor.REMOTE_TIMEOUT_KEY, "5");
cfg.setOption(AddpInterceptor.TRACE_KEY, "1");
protocol.configure(cfg); // method configure is deprecated

// Example 3
ConnectionConfiguration cfg = protocol.getEndpoint().getConfiguration();
cfg.setOption("protocol", "addp");
cfg.setOption("addp-timeout", "5");
cfg.setOption("addp-remote-timeout", "5");
cfg.setOption("addp-trace", "1");
protocol.configure(cfg); // method configure is deprecated

[+] .NET Code Sample
// Example 1
var configuration = protocol.Endpoint.GetConfiguration() as IClientConnectionOptions;
if (configuration != null)
{

configuration.UseAddp = true;
configuration.AddpClientTimeout = 15;
configuration.AddpServerTimeout = 20;
configuration.AddpTraceMode = AddpTraceMode.Both;
protocol.Configure(configuration as IConnectionConfiguration); // method Configure is

obsolete
}

// Example 2
var configuration = protocol.Endpoint.GetConfiguration();
if (configuration != null)
{

configuration.SetOption(CommonConnection.ProtocolNameKey,AddpInterceptor.Name);;
configuration.SetOption(AddpInterceptor.TimeoutKey,"15");
configuration.SetOption(AddpInterceptor.RemoteTimeoutKey, "20");

Advanced Platform SDK Topics Managing Protocol Configuration

Platform SDK Developer's Guide 255

configuration.SetOption(AddpInterceptor.TraceKey, AddpTraceMode.Both.ToString("F"));
protocol.Configure(configuration); // method Configure is obsolete

}

// Example 3
var configuration = protocol.Endpoint.GetConfiguration();
if (configuration != null)
{

configuration.SetOption("protocol","addp");;
configuration.SetOption("addp-timeout","15");
configuration.SetOption("addp-remote-timeout", "20");
configuration.SetOption("addp-trace", "both");
protocol.Configure(configuration); // method Configure is obsolete

}

Advanced Platform SDK Topics Managing Protocol Configuration

Platform SDK Developer's Guide 256

Friendly Reaction to Unsupported
Messages

Java

Overview

This feature allows Platform SDK to deliver protocol messages which are unknown for the current
protocol version (that is, messages with an unsupported message ID). This allows a user application
to receive and react to "abstract" messages from the server which have no corresponding protocol
Event class.

Note: Prior to release 8.5.0 of Platform SDK, there was no way to receive or react to unsupported
messages.

Unsupported messages can be received as an asynchronous or unsolicited event by calling
MessageHandler.onMessage(). The received message only has one protocol attribute declared: a
protocol-specific Reference ID. It is also possible to use this attribute to receive unsupported
messages with a synchronous request as shown below:

Message response = protocol.request(req);

Providing a friendly reaction to unsupported messages is optional. The feature is enabled by default,
but may be disabled for all protocol types or for particular protocols in case of backward compatibility
issues.

Tip
This feature is implemented for protocols based on Genesys-proprietary protocols
messages. This includes most of the Platform SDK protocols, excluding the following
XML-based ones: Chat/Callback/Email, and ESP-based UCS/EspEmail protocols).

Tip
This feature is designed to receive "unknown messages" from a server, not for
sending these unsupported messages to a server.

Advanced Platform SDK Topics Friendly Reaction to Unsupported Messages

Platform SDK Developer's Guide 257

The Protocol Unknown Message

A new Platform SDK internal "protocol unknown message" class was introduced in Platform SDK
release 8.5.0 to represent unsupported messages.

Genesys recommends that users do not rely on this specific class, its specific attributes or properties
when handling the message. In this case, the following basic Message attributes are valuable:

• MessageId

• ProtocolId

• Endpoint

• ProtocolDescription

This base API will help provide "forward compatibility", when user application gets newer Platform
SDK version which is extended with a particular message support. To ensure backwards compatibility
in the future, this message does not support any protocol attributes except for ReferenceId.

Previously, the scenario for adding support of new protocol messages to Platform SDK required the
following steps:

1. collecting technical details of new protocol message(s)
2. making a feature request to Genesys for the Platform SDK to be extended
3. waiting for development and testing to be completed
4. getting the extended version of Platform SDK and using it to update your application

This feature allows your applications to support unknown events without waiting for this process to
be completed.

In this case, the attribute subscription functionality may be helpful. Your application should subscribe
for needed attributes on specific message(s) using AttributeSubscriptionList. For example:

// Initialize protocol:
<AnyServer>Protocol protocol = new <AnyServer>Protocol();
protocol.set...

// Initialize attribute subscription:
final int unsupportedMessageId = 123;
final String attrId = "9";
AttributeSubscriptionList subscriptionList = new AttributeSubscriptionList();
subscriptionList.addAttribute(unsupportedMessageId, attrId);
subscriptionList.applyToContext(protocol.connectionContext());

// Initialize MessageHandler:
protocol.setMessageHandler(new MessageHandler() {

public void onMessage(final Message message) {
if (message.messageId() == unsupportedMessageId) {

Object valAttr9 = message.getMessageAttribute(attrId);
// do something with raw value of the attribute

}
// ...

}
});

Advanced Platform SDK Topics Friendly Reaction to Unsupported Messages

Platform SDK Developer's Guide 258

// Open protocol connection:
protocol.open();

// Send some request to the server to initiate responding:
protocol.send(rq);

This code is designed to let your application behave in the same way after Platform SDK is updated to
include message support for the added messages.

Backward Compatibility

Automatically enabling this feature may cause a change in behavior for some Platform SDK protocols.

Genesys servers usually maintain backwards compatibility, so receiving unsupported messages is not
expected in normal situations. However, this feature may have an effect in scenarios when your
application tries to open a protocol client connection to a server of the wrong type. So there may be
some cases where you need to disable this feature to keep your applications working as expected.
This section describes how to disable the feature for such cases.

In Platform SDK for Java, there is a new PsdkCustomization utility class that contains an option to
enable or disable this feature. Option values for this class can be configured in three ways:

• a specific configuration file
• JVM system properties
• explicit calls to the PsdkCustomization API

The flag to enable this feature is "branchable" for particular protocols. This means that it is possible
to disable the feature for specific protocol types, while keep the default value of enabled for all
others. Or it is possible to disable the feature for all protocols, and then enable it only for specific
types.

The following example shows how to disable the feature by default and then enables it for
StatServerProtocol objects using two of the available methods:

Using PsdkCustomization API

PsdkCustomization.setOption(PsdkOption.DisableUnknownProtocolMessageDelivery, "true");
PsdkCustomization.setOption(PsdkOption.DisableUnknownProtocolMessageDelivery,

"Reporting.StatServer", "false");

Using JVM System Properties

-Dcom.genesyslab.platform.disable-unknown-incoming-messages=true
-Dcom.genesyslab.platform.Reporting.StatServer.disable-unknown-incoming-messages=false

.NET

Advanced Platform SDK Topics Friendly Reaction to Unsupported Messages

Platform SDK Developer's Guide 259

Overview

This feature allows Platform SDK to deliver protocol messages which are unknown for the current
protocol version (that is, messages with an unsupported message ID). This allows a user application
to receive and react to "abstract" messages from the server which have no corresponding protocol
Event class.

Note: Prior to release 8.5.0 of Platform SDK, there was no way to receive or react to unsupported
messages.

Unsupported messages can be received as an asynchronous or unsolicited event using the Received
event. The received message only has one protocol attribute declared: a protocol-specific Reference
ID. It is also possible to use this attribute to receive unsupported messages with a synchronous
request as shown below:

IMessage response = protocol.Request(req);

Providing a friendly reaction to unsupported messages is optional. The feature is enabled by default,
but may be disabled for all protocol types or for particular protocols in case of backward compatibility
issues.

Tip
This feature is implemented for protocols based on Genesys-proprietary protocols
messages. This includes most of the Platform SDK protocols, excluding the following
XML-based ones: Chat/Callback/Email, and ESP-based UCS/EspEmail protocols).

Tip
This feature is designed to receive "unknown messages" from a server, not for
sending these unsupported messages to a server.

The Protocol Unknown Message

A new Platform SDK internal "protocol unknown message" class was introduced in Platform SDK
release 8.5.0 to represent unsupported messages.

Genesys recommends that users do not rely on this specific class, its specific attributes or properties
when handling the message. In this case, the following basic Message attributes are valuable:

• MessageId

• ProtocolId

• Endpoint

Advanced Platform SDK Topics Friendly Reaction to Unsupported Messages

Platform SDK Developer's Guide 260

• ProtocolDescription

This base API will help provide "forward compatibility", when user application gets newer Platform
SDK version which is extended with a particular message support. To ensure backwards compatibility
in the future, this message does not support any protocol attributes except for ReferenceId.

Previously, the scenario for adding support of new protocol messages to Platform SDK required the
following steps:

1. collecting technical details of new protocol message(s)
2. making a feature request to Genesys for the Platform SDK to be extended
3. waiting for development and testing to be completed
4. getting the extended version of Platform SDK and using it to update your application

This feature allows your applications to support unknown events without waiting for this process to
be completed.

In this case, it may be helpful to add a message handler to identify unknown messages. For example:

protocol.Received += (sender, e) => // assign message handler
{

var args = e as MessageEventArgs;
if ((args != null) && (args.Message != null))
{

switch (args.Message.Id){
case 2854:{ // unknown message is handled by identifier

// TODO: process message with id 2854
break;

}
default:{

// TODO: do something with others incoming messages
break;

}
}

}
};

This code is designed to let your application behave in the same way after Platform SDK is updated to
include message support for the added messages.

Backward Compatibility

Automatically enabling this feature may cause a change in behavior for some Platform SDK protocols.

Genesys servers usually maintain backwards compatibility, so receiving unsupported messages is not
expected in normal situations. However, this feature may have an effect in scenarios when your
application tries to open a protocol client connection to a server of the wrong type. So there may be
some cases where you need to disable this feature to keep your applications working as expected.
This section describes how to disable the feature for such cases.

Backwards compatibility can be preserved in .NET by using an application configuration file. The
example below shows how to disable this feature for Configuration Protocol:

Advanced Platform SDK Topics Friendly Reaction to Unsupported Messages

Platform SDK Developer's Guide 261

<configuration>
<appSettings>

<add key="ConfServerProtocolUnknownMessageEnabled" value="false"/>
</appSettings>

</configuration>

Each protocol has an individual key which can be added into the application configuration file with a
value of "false" to restore behavior to the way it was in earlier versions of Platform SDK. The key
name can be formed using the following rules:

<key name> ::= <protocol name><suffix>
<protocol name> ::= "ConfServer" | "MessageServer" | "TServer" | ... | etc.
(equal to IProtocolDescriptionSupport.ProtocolDescription.ProtocolName)
<suffix> := "ProtocolUnknownMessageEnabled"

To disable this feature for all protocols used in your application, update the configuration file and
assign a value of false to the ProtocolUnknownMessageEnabled key, as shown here:

<configuration>
<appSettings>

<add key="ProtocolUnknownMessageEnabled" value="false"/>
</appSettings>

</configuration>

Advanced Platform SDK Topics Friendly Reaction to Unsupported Messages

Platform SDK Developer's Guide 262

Creating Custom Protocols

Java

Overview

The External Service Protocol (ESP) was developed to simplify creation of custom protocols. It
contains a minimal set of messages for exchanging information between a client and server. All
messages contain a reference field to correlate the response with the request. The payload of
messages is contained in key-value structures which are used as message properties. Because key-
value collections can be used recursively, the total number of properties depends on the message.
The custom protocol implements binary transport and obeys common rules for Genesys protocols.

Set of Messages
Message Description

Class Request3rdServer

The Request3rdServer class holds requests for
your custom server. This class extends the Message
class and adds three additional fields:

• ReferenceId - This integer type (32-bit) field is
used to correlate this request with related
events received as a server response.

• Request - This KeyValueCollection type field
is designed to contain a request for the server.
Some ESP-based protocols such as
UniversalContactServer protocol can parse
and bind content of this structure with some
classes to have more convenient representation
of the data. Custom protocols can use this field
as desired.

• UserData - This KeyValueCollection type
fields is designed to have additional information
related to the request. Most known protocols
leave this field as is; custom protocols can use
this field as desired.

Class Event3rdServerResponse
The Event3rdServerResponse class is used to
send a response to clients. This class extends the
Message class and adds three additional fields:

Advanced Platform SDK Topics Creating Custom Protocols

Platform SDK Developer's Guide 263

Message Description

• ReferenceId field - This integer type (32-bit)
field is used to correlate this event with the
related client request.

• Request field - This KeyValueCollection type
field is designed to contain the server response
to a client request. Some ESP-based protocols
such as UniversalContactServer protocol can
parse and bind content of this structure with
some classes to have more convenient
representation of the data. Custom protocols
can use this field as desired.

• UserData field - This KeyValueCollection type
fields is designed to have additional information
related to the request. Most known protocols
leave this field as is; custom protocols can use
this field as desired.

Class Event3rdServerFault

The Event3rdServerFault class is sent to clients if
the request cannot be processed for some reason.
This class extends the Message class and adds two
additional fields:

• ReferenceId field - This integer type (32-bit)
field is used to correlate this server response
with the related client request.

• Request field - This KeyValueCollection type
field is designed to contain a reason why the
error occurred. Some ESP-based protocols such
as UniversalContactServer protocol can
parse and bind content of this structure with
some classes to have more convenient
representation of the data. Custom protocols
can use this field as desired.

Using ESP on the Client Side

Creating a Custom Protocol
To create the simplest ESP-based protocol, all you need to do is create a class inherited from the
ExternalServiceProtocol class. However, this protocol only provides a way to send data. Your
custom protocol still has to handle incoming and outgoing messages.

For example:

public class MessageProcessor {
private static final String PROTOCOL_DESCRIPTION = "CustomESPProtocol";

Advanced Platform SDK Topics Creating Custom Protocols

Platform SDK Developer's Guide 264

/**
* Processes message which is has to be sent.
* @param msg message to be sent.
* @param clientSide flag indicates that the message is processing on a client side
* @return message instance if message was processed successfully otherwise null.
*/

static Message processSendingMessage(String msg, boolean clientSide)
{

Message outMsg = clientSide ? Request3rdServer.create() :
Event3rdServerResponse.create();

KeyValueCollection request = new KeyValueCollection();
request.addString("Protocol", PROTOCOL_DESCRIPTION);
request.addString("Request", msg);

if (outMsg instanceof Request3rdServer) {
((Request3rdServer)outMsg).setRequest(request);

}
else if (outMsg instanceof Event3rdServerResponse) {

((Event3rdServerResponse)outMsg).setRequest(request);
}
return outMsg;

}

/**
* Handles incoming message.
* @param message Incoming message.
* @return Message instance if message was processed successfully otherwise null
*/

static String processEvent(Message message)
{

KeyValueCollection request = null;
if (message instanceof Event3rdServerResponse) {

request = ((Event3rdServerResponse)message).getRequest();
}
else if (message instanceof Request3rdServer) {

request = ((Request3rdServer)message).getRequest();
}
if (request == null) {

return null;
}
String requestString = request.getString("Request");
if (requestString == null) {

return null;
}
String protocolDescr = request.getString("Protocol");
return PROTOCOL_DESCRIPTION.equals(protocolDescr) ? requestString : null;

}
}

public class EspExtension extends ExternalServiceProtocol {

private static ILogger log = Log.getLogger(EspExtension.class);

public EspExtension(Endpoint endpoint) {
super(endpoint);

}

public String request(String message) throws ProtocolException
{

Message newMessage = MessageProcessor.processSendingMessage(message, true);
if (newMessage != null) {

return MessageProcessor.processEvent(request(newMessage));
}

Advanced Platform SDK Topics Creating Custom Protocols

Platform SDK Developer's Guide 265

if (log.isDebug()) {
log.debugFormat("Cannot send message: '{0}'", message);

}
return null;

}
}

Using ESP on the Server Side

Class ExternalServiceProtocolListener
The ExternalServiceProtocolListener class provides server-side functionality based on the
Platform SDK ServerChannel class, and implements External Service Protocol. The simplest server
side logic is shown in the following example:

public class EspServer {

private static final ILogger log = Log.getLogger(EspServer.class);

private final ExternalServiceProtocolListener listener;

public EspServer(Endpoint settings)
{

listener = new ExternalServiceProtocolListener(settings);

listener.setClientRequestHandler(new ClientRequestHandler() {

@Override
public void processRequest(RequestContext context) {

try {
EspServer.this.processRequest(context);

} catch (ProtocolException e) {
if (log.isError()) {

log.error("Message processing error:\n" +
context.getRequestMessage(), e);

}
}

}
});

}

public ExternalServiceProtocolListener getServer() {
return listener;

}

private void processRequest(RequestContext context) throws ProtocolException {
//TODO: Return to client reversed source request

Message requestMessage = context.getRequestMessage();
if (requestMessage == null) {

return;
}
if (log.isDebug()) {

log.debugFormat("Request: {0}", requestMessage);
}
String msg = MessageProcessor.processEvent(requestMessage);
if (msg != null)

Advanced Platform SDK Topics Creating Custom Protocols

Platform SDK Developer's Guide 266

{
String reversedMsg = new StringBuilder(msg).reverse().toString();
Message outMsg = MessageProcessor.processSendingMessage(reversedMsg, false);
if (outMsg instanceof Referenceable

&& requestMessage instanceof Referenceable) {

((Referenceable)outMsg).updateReference(((Referenceable)requestMessage).retreiveReference());
}
if (log.isDebug()) {

log.debugFormat("Request: {0}", requestMessage);
}
context.respond(outMsg); // or context.getClientChannel().send(outMsg);

}
}

}

Testing Your Protocol

A simple test example is shown below:

public class TestEsp {

final String REQUEST = "Hello world!!!";

@Test
public void testMirrorSerializedMessage() throws ChannelNotClosedException,

ProtocolException, InterruptedException
{

String response = null;
ExternalServiceProtocolListener server = new EspServer(new

WildcardEndpoint(0)).getServer();
server.open();
InetSocketAddress ep = server.getLocalEndPoint();
if (ep != null) {

EspExtension client = new EspExtension(new Endpoint("localhost", ep.getPort()));
client.open();

response = client.request(REQUEST);
client.close();

}
server.close();

System.out.println("Request: \n" + REQUEST);
System.out.println("Response: \n" + response);
Assert.assertNotNull(response);

String expected = new StringBuilder(REQUEST).reverse().toString();
Assert.assertEquals(response, expected);

}
}

.NET

Advanced Platform SDK Topics Creating Custom Protocols

Platform SDK Developer's Guide 267

Overview

The External Service Protocol (ESP) was developed to simplify creation of custom protocols. It
contains a minimal set of messages for exchanging information between a client and server. All
messages contain a reference field to correlate the response with the request. The payload of
messages is contained in key-value structures which are used as message properties. Because key-
value collections can be used recursively, the total number of properties depends on the message.
The custom protocol implements binary transport and obeys common rules for Genesys protocols.

Set of Messages
Message Description

Class Request3rdServer

The Request3rdServer class serves for request the
server. This class contains the base set of
properties inherent to the IMessage interface and
three additional fields.

• ReferenceId field - This integer type (32-bit)
field is used to correlate this request with
related events received as a server response.

• Request field - This KeyValueCollection type
field is designed to contain a request to server.
Some ESP-based protocols such as
UniversalContactServer protocol can parse
and bind content of this structure with some
classes to have more convenient representation
of the data. Custom protocols can use this field
as desired.

• UserData field - This KeyValueCollection type
field is designed to have additional information
related to the request. Most known protocols
leave it as is; custom protocols can use this
field as desired.

Class Event3rdServerResponse

The Event3rdServerResponse class is used to
send a response to clients. This class contains the
base set of properties inherent to the IMessage
interface and three additional fields:

• ReferenceId field - This integer type (32-bit)
field is used to correlate this event with the
related client request.

• Request field - This KeyValueCollection type
field is designed to contain a server response to
a client request. Some ESP-based protocols
such as UniversalContactServer protocol can
parse and bind content of this structure with
some classes to have more convenient
representation of the data. Custom protocols

Advanced Platform SDK Topics Creating Custom Protocols

Platform SDK Developer's Guide 268

Message Description

can use this field as desired.
• UserData field - This KeyValueCollection type

field is designed to have additional information
of request. Most known protocols leave it as is;
custom protocols can use this field as desired.

Class Event3rdServerFault

The Event3rdServerFault class is sent to clients if
the request cannot be processed for some reasons.
This class contains the base set of properties
inherent to the IMessage interface and two
additional fields:

• ReferenceId field - This integer type (32-bit)
field is used to correlate this server response
with the related client request.

• Request field - This KeyValueCollection type
field is designed to contain a reason why the
error occurred. Some ESP-based protocols such
as UniversalContactServer protocol can
parse and bind content of this structure with
some classes to have more convenient
representation of the data. Custom protocols
can use this field as desired.

Using ESP on the Client Side

Creating a Custom Protocol
To create the simplest ESP-based protocol, all you need to do is create a class inherited from the
ExternalServiceProtocol class. However, this protocol only provides a way to send data. Your
custom protocol still has to handle incoming and outgoing messages.

For example:

internal static class MessageProcessor
{

private const string ProtocolDescriptionStr = "CustomESPProtocol";

/// <summary>
/// Processes message which is has to be sent.
/// </summary>
/// <param name="msg">message to be sent</param>
/// <param name="clientSide">flag indicates that message is processing on client

side</param>
/// <returns>IMessage instance if message was processed successfuly otherwise

null</returns>
internal static IMessage ProcessSendingMessage(string msg, bool clientSide)
{

IMessage outMsg = clientSide ? Request3rdServer.Create() :

Advanced Platform SDK Topics Creating Custom Protocols

Platform SDK Developer's Guide 269

Event3rdServerResponse.Create() as IMessage;
var request = new KeyValueCollection {{"Protocol", ProtocolDescriptionStr}, {"Request",

msg}};
var req = outMsg as Request3rdServer;
if (req != null) req.Request = request;
var evt = outMsg as Event3rdServerResponse;
if (evt != null) evt.Request = request;
return outMsg;

}
/// <summary>
/// Handles incoming message
/// </summary>
/// <param name="message">Incoming message</param>
/// <returns>IMessage instance if message was processed successfuly otherwise

null</returns>
internal static string ProcessEvent(IMessage message)
{

var response = message as Event3rdServerResponse;
var req = message as Request3rdServer;
KeyValueCollection request = null;
if ((response != null) && (response.Request != null))
{

request = response.Request;
}
else
{

if ((req != null) && (req.Request != null))
request = req.Request;

}
if (request == null) return null;
var requestStr = request["Request"] as String;
if (String.IsNullOrEmpty(requestStr)) return null;
var protocolDescr = request["Protocol"] as string;
return (ProtocolDescriptionStr.Equals(protocolDescr))?requestStr:null;

}
}

public class EspExtension : ExternalServiceProtocol
{

public EspExtension(Endpoint endPoint) : base(endPoint) { }
public string Request(string message)
{

var newMessage = MessageProcessor.ProcessSendingMessage(message, true);
if (newMessage != null)
{

return MessageProcessor.ProcessEvent(Request(newMessage));
}
if ((Logger != null) && (Logger.IsDebugEnabled))

Logger.DebugFormat("Cannot send message: '{0}'", message);
return null;

}
}

Advanced Platform SDK Topics Creating Custom Protocols

Platform SDK Developer's Guide 270

Using ESP on the Server Side

Class ExternalServiceProtocolListener
The ExternalServiceProtocolListener class provides server-side functionality based on the
Platform SDK ServerChannel class, and implements External Service Protocol. The simplest server
side logic is shown in the following example:

public class EspServer
{

private readonly ExternalServiceProtocolListener _listener;
public EspServer(Endpoint settings)
{

_listener = new ExternalServiceProtocolListener(settings);
_listener.Received += ListenerOnReceived;

}
public ExternalServiceProtocolListener Server { get { return _listener; } }

private void ListenerOnReceived(object sender, EventArgs eventArgs)
{

//TODO: Return to client source request
var duplexChannel = sender as DuplexChannel;
var args = eventArgs as MessageEventArgs;
if ((duplexChannel == null) || (args == null)) return;
Console.WriteLine(args.Message);
var msg = MessageProcessor.ProcessEvent(args.Message);
if (msg != null)
{

var outMsg = MessageProcessor.ProcessSendingMessage(new
string(msg.Reverse().ToArray()), false);

var source = args.Message as IReferenceable;
var dest = outMsg as IReferenceable;
if ((source!=null) && (dest!=null))
dest.UpdateReference(source.RetrieveReference());

Console.WriteLine(outMsg);
duplexChannel.Send(outMsg);

}
}

}

Testing Your Protocol

A simple test example is shown below:

[TestClass]
public class TestEsp
{

[TestMethod]
public void TestMirrorSerializedMessage()
{

const string request = "Hello world!!!";
string response = null;
var server = new EspServer(new WildcardEndpoint(0)).Server;
server.Open();
var ep = server.LocalEndPoint as IPEndPoint;
if (ep != null)

Advanced Platform SDK Topics Creating Custom Protocols

Platform SDK Developer's Guide 271

{
var client = new EspExtension(new Endpoint("localhost", (server.LocalEndPoint as

IPEndPoint).Port));
client.Open();
response = client.Request(request);
client.Close();

}
server.Close();

Console.WriteLine("Request: \n{0}", request);
Console.WriteLine("Response: \n{0}", response);
Assert.IsNotNull(response);
Assert.IsTrue(request.Equals(new string(response.Reverse().ToArray()))); }

}

Advanced Platform SDK Topics Creating Custom Protocols

Platform SDK Developer's Guide 272

JSON Support

Java

Starting with release 8.5.201.04, Platform SDK for Java has been extended with functionality for
serialization and deserialization of protocol messages to JSON string representation. (For older
8.5.201.x releases, refer to the Legacy Content section at the bottom of this article.)

Design

The serializer supports two different types of JSON representations for Platform SDK protocol
messages: with MessageName attribute, and without it.

Adding the MessageName attribute helps users to deserialize a protocol message when its type is not
known from context. Deserialization without the inner MessageName attribute can be used to support
existing solutions, or to avoid duplicating some request context data in order to optimize network
traffic, CPU, and memory usage.

Important
Each serializer instance should work with one protocol type. If you need to process
different types (such as UCS and StatServer) then you must create one serializer per
protocol.

Examples

Using the Platform SDK JSON Message Serializer

Tip
This serializer is designed to work with Platform SDK messages only. Serialization of
other custom classes is not supported.

Example 1: Message Deserialization (with messageName in JSON)

PsdkJsonSerializer ser = PsdkJsonSerializer.createContactServerSerializer();

Advanced Platform SDK Topics JSON Support

Platform SDK Developer's Guide 273

String json = "{ \"messageName\":\"RequestRefresh\", "
+ "\"query\":\"test-Query-4\", \"file\":\"test-File-3\",\"indexName\":\"Contact\",

\"persistents\":\"test-Persistents-2\"}";

Message message = ser.deserialize(json);

Example 2: Message Deserialization (Without messageName in JSON)

PsdkJsonSerializer ser = PsdkJsonSerializer.createContactServerSerializer();

String json = "{ \"query\":\"test-Query-4\", \"file\":\"test-
File-3\",\"indexName\":\"Contact\", \"persistents\":\"test-Persistents-2\"}";

Message message = ser.deserialize(json, "RequestRefresh");
// RequestRefresh message = ser.deserialize(json, RequestRefresh.class);

Example 3: Message Serialization (With messageName in JSON)

PsdkJsonSerializer ser = PsdkJsonSerializer.createContactServerSerializer();

RequestRefresh request = RequestRefresh.create();
request.setQuery("test-Query-4");
request.setFile("test-File-3");
request.setIndexName(IndexNameType.Contact);
request.setPersistents("test-Persistents-2");

String json = ser.serialize(request);

Using the Jackson Framework
Example 1: Message Deserialization (with messageName in JSON)

ObjectMapper m = new ObjectMapper();
m.registerModule(new ContactServerModule(true));

String json = "{ \"messageName\":\"RequestRefresh\", "
+ "\"query\":\"test-Query-4\", \"file\":\"test-File-3\",\"indexName\":\"Contact\",

\"persistents\":\"test-Persistents-2\"}";

Message message = (Message)m.readValue(json, ContactServerMessage.class);

Example 2: Message Deserialization (Without messageName in JSON)

ObjectMapper m = new ObjectMapper();
PSDKCommonModule mod = new ContactServerModule();
m.registerModule(mod);

String json = "{ \"query\":\"test-Query-4\", \"file\":\"test-
File-3\",\"indexName\":\"Contact\", \"persistents\":\"test-Persistents-2\"}";

Message message = m.readValue(json, mod.getMessageClass("RequestRefresh"));
//RequestRefresh message = m.readValue(json, RequestRefresh.class);

Example 3: Message Serialization (Without messageName in JSON)

ObjectMapper m = new ObjectMapper();
m.registerModule(new ContactServerModule());

RequestRefresh request = RequestRefresh.create();

Advanced Platform SDK Topics JSON Support

Platform SDK Developer's Guide 274

request.setQuery("test-Query-4");
request.setFile("test-File-3");
request.setIndexName(IndexNameType.Contact);
request.setPersistents("test-Persistents-2");

String json = m.writeValueAsString(request);

// We expect to get JSON like the following:
// "{ "\"query\":\"test-Query-4\", \"file\":\"test-File-3\",\"indexName\":\"Contact\",
\"persistents\":\"test-Persistents-2\"}";

Example 4: Message Serialization (With messageName in JSON)

ObjectMapper m = new ObjectMapper();
m.registerModule(new ContactServerModule(true));

RequestRefresh request = RequestRefresh.create();
request.setQuery("test-Query-4");
request.setFile("test-File-3");
request.setIndexName(IndexNameType.Contact);
request.setPersistents("test-Persistents-2");

String json = m.writeValueAsString(request);

// We expect to get JSON like the following:
// "{ \"messageName\":\"RequestRefresh\", "
// + "\"query\":\"test-Query-4\", \"file\":\"test-File-3\",\"indexName\":\"Contact\",
\"persistents\":\"test-Persistents-2\"}";

Legacy Content

Prior to release 8.5.201.04, Platform SDK for Java did not offer native support for JSON - only XML
serialization was supported. This section describes how provide JSON support within your Platform
SDK for Java applications for legacy applications that use JSON format for data.

[+] Display Legacy Content

Overview
In most Genesys projects, the Jackson framework is used for serialization/deserialization of plain old
Java objects (POJO) in/from JSON. Not all Platform SDK messages are POJO that can be transformed in/
from JSON automatically, however.

So to provide full JSON support Platform SDK for Java, a Jackson module is included with your
distribution. This module is a separate JAR library; no dependency to the Jackson library has been
added directly within Platform SDK.

Using the Module
This section contains code snippets that illustrate how to use the new module.

Example 1: Using the ConfServerModule

// create Jackson's JSONizator

Advanced Platform SDK Topics JSON Support

Platform SDK Developer's Guide 275

ObjectMapper mapper = new ObjectMapper();
// register our new Platform SDK module
mapper.registerModule(new ConfServerModule());
// create Platform SDK message
RequestCreateObject request= RequestCreateObject.create();
// serialize message
String json = mapper.writeValueAsString(msg);
// deserialize message
RequestCreateObject msg = objectMapper.readValue(json, RequestCreateObject.class);

Example 2: Using a specified set of metadata from Configuration Server

This approach is useful when you are connecting to a more recent version of Configuration Server
then Platform SDK supports.

Configuration Server messages that are deserialized using the metadata included with your release
of Platform SDK can be sent to older releases of Configuration Server, but in this scenario the
unknown (new) attributes for Configuration Server will be ignored while sending the message.

ConfServerProtocol c= new ...;
c.open();
CfgMetadata metadata =
((ConfServerContext)c.connectionContext().serverContext()).getMetadata();
// create Jackson's JSONizator
ObjectMapper mapper = new ObjectMapper();
// register our new Platform SDK module
mapper.registerModule(new ConfServerModule(metadata));
// create Platform SDK message
RequestCreateObject request= RequestCreateObject.create();
// serialize message
String json = mapper.writeValueAsString(msg);
// deserialize message
RequestCreateObject msg = objectMapper.readValue(json, RequestCreateObject.class);

Example 3: Configuring Jackson ObjectMapper to support multiple Platform SDK protocols

// create Jackson's JSONizator
ObjectMapper mapper = new ObjectMapper();
// register our new Platform SDK modules
mapper.registerModules(new ConfServerModule(), new ContactServerModule());
mapper.registerModule(new StatServerModule());

Notable Jackson Features
Jackson has many configurable features. This section describes a few features that are particularly
noteworthy for Platform SDK developers.

Property Naming

Use this feature carefully, because if you change property naming for serialization then anyone who
wants to deserialize content must use the same configuration or else the deserialization will fail. An
example of setting a custom property naming strategy is included below:

ObjectMapper mapper = new ObjectMapper();
mapper.setPropertyNamingStrategy(PropertyNamingStrategy.LOWER_CASE);

Advanced Platform SDK Topics JSON Support

Platform SDK Developer's Guide 276

Handling Unknown Properties

By default, Jackson fails if a unknown property occurs during deserialization. It is possible to change
this behavior so that unknown properties can be ignored, as shown below:

ObjectMapper mapper = new ObjectMapper();
mapper.disable(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES);
mapper.enable(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES);

Relation to Platform SDK ObjectMapper

All Jackson modules included with Platform SDK make changes to the ObjectMapper configuration
while registering, as shown here:

mapper.setSerializationInclusion(Include.NON_NULL);
mapper.configure(SerializationFeature.FAIL_ON_EMPTY_BEANS, false);
mapper.setDateFormat(new ISO8601DateFormatWithMilliseconds());

If you want to customer how the ObjectMapper will be configured, be sure to apply your changes
after the Jackson module has registered.

JSON Format Examples
Several examples of the resulting JSON format are provided here for illustrative purposes.

JSON Representation of KVList
[{

"key" : "int1",
"type" : "int",
"value" : 1

}, {
"key" : "string1",
"type" : "str",
"value" : "string-value1"

}, {
"key" : "utf-string1",
"type" : "utf",
"value" : "utf-string-value1"

}, {
"key" : "binary1",
"type" : "byte[]",
"value" : "AQIECP8="

}, {
"key" : "kv1",
"type" : "kvlist",
"value" : [{

"key" :"int2",
"type" : "int",
"value" : 2

}, {
"key" : "string2",
"type" : "str",
"value" : "string-value2"

}, {
"key" : "utf-string2",
"type" : "utf",
"value" : "utf-string-value2"

Advanced Platform SDK Topics JSON Support

Platform SDK Developer's Guide 277

}, {
"key" : "binary2",
"type" : "byte[]",
"value" : "AwQFBr8="

}]

Notes:

• KeyValuePair property "type" can be skipped for the following types: int, str, kvlist
(KeyValueCollection). Platform SDK will deserialize similar data by determining the type heuristically.

JSON Representation of RequestInsertInteraction
{

"interactionAttributes" : {
"id" : "some-id",
"entityTypeId" : "Chat",
"lang" : "en"

},
"interactionContent" : {

"mimeType" : "text/plain",
"text" : "some text"

},
"entityAttributes" : {

"$type" : ".ChatEntityAttributes",
"establishedDate" : "2015-07-24",
"nullAttributes" : ["ReleasedDate"]

}
}

Notes:

• $type supports the following values:
• ".ChatEntityAttributes"
• ".EmailInEntityAttributes"
• ".EmailOutEntityAttributes"
• ".CoBrowseEntityAttributes"
• ".PhoneCallEntityAttributes"

JSON Representation of RequestContactListGet
{

"contactCount" : true,
"tenantId" : 15,
"attributeList" : ["attr-1", "attr-5", "attr-a"],
"sortCriteria" : [{

"$type" : ".SimpleSearchCriteria",
"attrName" : "attr-1",
"sortIndex" : 0,
"sortOperator" : "Ascending"

}, {
"$type" : ".SimpleSearchCriteria",
"attrName" : "attr-a",
"sortIndex" : 1,
"sortOperator" : "Descending"

Advanced Platform SDK Topics JSON Support

Platform SDK Developer's Guide 278

}],
"searchCriteria" : [{

"$type" : ".ComplexSearchCriteria",
"prefix" : "And",
"criterias" : [{

"$type" : ".SimpleSearchCriteria",
"attrName" : "a",
"operator" : "Greater",
"attrValue" : "5"

}]
}, {

"$type" : ".ComplexSearchCriteria",
"prefix" : "And",
"criterias" : [{

"$type" : ".SimpleSearchCriteria",
"attrName" : "b",
"operator" : "Lesser",
"attrValue" : "2"

}]
}, {

"$type" : ".ComplexSearchCriteria",
"prefix" : "And",
"criterias" : [{

"$type" : ".SimpleSearchCriteria",
"attrName" : "c",
"operator" : "Equal",
"attrValue" : "11"

}]
}, {

"$type" : ".ComplexSearchCriteria",
"prefix" : "And",
"criterias" : [{

"prefix" : "Or",
"criterias" : [{

"$type" : ".SimpleSearchCriteria",
"attrName" : "e",
"operator" : "Lesser",
"attrValue" : "1"

}]
}, {

"$type" : ".ComplexSearchCriteria",
"prefix" : "Or",
"criterias" : [{

"$type" : ".SimpleSearchCriteria",
"attrName" : "k",
"operator" : "GreaterOrEqual",
"attrValue" : "0"

}]
}]

}]
}

Notes:

• $type supports the following values:
• ".SimpleSearchCriteria"
• ".ComplexSearchCriteria"

Advanced Platform SDK Topics JSON Support

Platform SDK Developer's Guide 279

Frequently Asked Questions
Q: The KV lists can contain pointers to outer KVlists, creating circular dependencies. Will such
structures be serialized/deserialized?
A: No. Platform SDK does not support sending or receiving such structures.

Q: In what format are binary values serialized? Base64 or something else?
A: Base64

Q: Why is the "type" attribute is optional?
A: The attribute is only optional for the following types: integer, string and key-value collection (it can
be skipped when you type JSON requests manually). The Platform SDK Jackson module will always
serialize the type attribute to JSON, but can deserialize it without the optional attribute "type"
attribute.

Q: Is GEnum serialization/deserialization supported?
A: Yes. As you can see the example above where the GEnum EntityTypes is serialized as simple
string value "chat".

Q: Does the module perform direct serialization/deserialization or does it use intermediate XML?
A: It performs direct serialization from Platform SDK messages to JSON (and vice versa) using Jackson
objectmapper with registered PSDKModule.

.NET

Starting with release 8.5.201.04, Platform SDK for .NET has been extended with functionality for
serialization and deserialization of protocol messages to JSON string representation.

Design

The serializer supports two different types of JSON representations for Platform SDK protocol
messages: with MessageName attribute, and without it.

Adding the MessageName attribute helps users to deserialize a protocol message when its type is not
known from context. Deserialization without the inner MessageName attribute can be used to support
existing solutions, or to avoid duplicating some request context data in order to optimize network
traffic, CPU, and memory usage.

Important
Each serializer instance should work with one protocol type. If you need to process
different types (such as UCS and StatServer) then you must create one serializer per
protocol.

Advanced Platform SDK Topics JSON Support

Platform SDK Developer's Guide 280

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/JSONSupport#entityTypeId

Examples

Example 1: Bi-directional JSON Serialization

public void TestRequestGetContacts()
{

var req = RequestGetContacts.Create();
req.ReferenceId = 1;
req.SearchCriteria = new SearchCriteriaCollection();
req.SortCriteria = new SortCriteriaCollection();
var json = PsdkJsonSerializer.Serialize(req);
Console.WriteLine(json);
var newRq = PsdkJsonSerializer.Deserialize(req.GetType(), json);
var json2 = PsdkJsonSerializer.Serialize(newRq);
Console.WriteLine(json2);
Assert.IsTrue(json.Equals(json2));

}

Example 2: Using Platform SDK JSON Serializer for UCS Protocol

public void TestRequestGetVersion()
{

var request = RequestGetVersion.Create();
request.ReferenceId = 1;
Console.WriteLine(request);
var serializer = JsonSerializationFactory.GetSerializer<UniversalContactServerProtocol>();
var json = serializer.Serialize(request);
Console.WriteLine(json);
var deserializedMessage = serializer.Deserialize(json);
Console.WriteLine(deserializedMessage);
Assert.IsTrue(request.Equals(deserializedMessage));

}

Example 3: Sample JSON Object

Message:

'RequestRefresh' ('60')
message attributes:
Query = test-Query-4
File = test-File-3
IndexName = Contact
Persistents = test-Persistents-2

JSON Representation:

{"messageName":"RequestRefresh","query":"test-Query-4","file":"test-
File-3","indexName":"Contact","persistents":"test-Persistents-2"}

Java and .NET Compatibility Note

The internal implementation of messages from the Configuration Server protocol differs for .NET and
Java platforms. Data objects in .NET messages are based on the XDocument class, while Java

Advanced Platform SDK Topics JSON Support

Platform SDK Developer's Guide 281

message use data classes for mapping of data objects. This means that the result of serialization for
the same messages from Java and .NET platforms will be different for the Configuration Server
protocol (although bi-directional serialization is supported for both platforms).

All other Platform SDK protocols support cross-platform serialization.

Advanced Platform SDK Topics JSON Support

Platform SDK Developer's Guide 282

Working with Custom Servers

Java

The ServerChannel class was designed to give you the ability to develop custom servers using
Platform SDK. A ServerChannel instance can accept incoming connections, receive and handle
incoming messages, and send responses to the clients.

Creating a ServerChannel Instance

Before creating a ServerChannel instance, your application should define an instance of some class
which implements the ProtocolFactory interface. You can use any of the existing Platfrom SDK
message factories, although most of these classes cannot follow the logic of existing servers because
the messages used in the handshake procedure are hidden.

The most flexible protocol for any extension is ExternalServiceProtocol, because it does not
require any handshake by default. The following example will use this protocol to create an instance
of ServerChannel:

final ServerChannel server = new ServerChannel(new WildcardEndpoint(11111),
new ExternalServiceProtocolFactory());

Defining Handlers to Process Incoming (Closed) Connections

ServerChannel generates two events to manage client connections. When a new client tries to
connect, ServerChannel raises the onClientChannelOpened event, and when a client disconnects
ServerChannel raises an onClientChannelClosed event. Your code can then process these events,
as shown in the example below:

server.addChannelListener(new ServerChannelListener() {
public void onClientChannelOpened(OutputChannel channel) { /* … */ }
public void onClientChannelClosed(ChannelClosedEvent event) { /* … */ }
public void onChannelOpened(EventObject event) { /* … */ }
public void onChannelError(ChannelErrorEvent event) { /* … */ }
public void onChannelClosed(ChannelClosedEvent event) { /* … */ }

});

Starting the Server
server.open();

Advanced Platform SDK Topics Working with Custom Servers

Platform SDK Developer's Guide 283

Processing Incoming Messages

ServerChannel supports multiple ways to receive and process incoming messages:

• receiveRequest Method
• External Receiver
• Message Handler

More details about each approach are explored below.

Using the receiveRequest Method
Using this method allows your to define exactly when messages are read. However, you should
remember that the internal queue which contains incoming messages is not unlimited. The maximum
capacity of this queue will be equal to 4k elements, and once that capacity is filled each new
incoming message will cause the oldest one to be lost.

The most popular way of using the receiveRequest method is inside a dedicated thread, as shown
here:

new Thread() {
@Override
public void run() {

while (running) {
RequestContext request = server.receiveRequest();
if (request != null) {

Message requestMessage = request.getRequestMessage();
Message respondMessage;
// TODO generate respondMessage
if (respondMessage != null) {

request.respond(respondMessage);
}

}
Thread.yield();

}
}

}.start();

Using an External Receiver
To use an external receiver, your should create a class which implements the
RequestReceiverSupport interface, and then use the
ServerChannel.setReceiver(RequestReceiverSupport receiver) method to assign this receiver
to ServerChannel.

The simplest implementation to process incoming messages is shown below:

RequestReceiverSupport receiver = new RequestReceiverSupport() {

public void onChannelOpened(EventObject event) { /* ... */}
public void onChannelError(ChannelErrorEvent event) { /* ... */}
public void onChannelClosed(ChannelClosedEvent event) { /* ... */}

Advanced Platform SDK Topics Working with Custom Servers

Platform SDK Developer's Guide 284

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ServerChannel#receiveRequest_Java
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ServerChannel#externalReceiver_Java
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ServerChannel#messageHandler_Java

public void setInputSize(int inputSize) { /* ... */}
public void releaseReceivers() { /* ... */}
public int getInputSize() { return 0; }
public void clearInput() { /* ... */}
public RequestContext receiveRequest(long timeout) { return null; }
public RequestContext receiveRequest() { return null; }

public void processRequest(RequestContext request) {

Message requestMessage = request.getRequestMessage();
Message respondMessage;
// TODO generate respondMessage
if (respondMessage != null) {

request.respond(respondMessage);
}

}
};

server.setReceiver(receiver);

Using Message Handler
Starting with release 8.5.1, Platform SDK has included a new mechanism to handle incoming
messages. ServerChannel was extended with a new method setClientRequestHandler, that can be
used as shown in the following example:

server.setClientRequestHandler(new ClientRequestHandler() {

@Override
public void processRequest(RequestContext context) {

Message requestMessage = request.getRequestMessage();
Message respondMessage;
// TODO generate respondMessage
if (respondMessage != null) {

request.respond(respondMessage);
}

}
});

Closing ServerChannel

Closing the server channel causes all active incoming connections to be closed also. To close server
channel use the ServerChannel.close() method.

server.close();

.NET

The ServerChannel class was designed to give you the ability to develop custom servers using
Platform SDK. A ServerChannel instance can accept incoming connections, receive and handle
incoming messages, and send responses to the clients.

Advanced Platform SDK Topics Working with Custom Servers

Platform SDK Developer's Guide 285

Creating a ServerChannel Instance

Before creating a ServerChannel instance, your application should define an instance of some class
which implements the IMessageFactory interface. You can use any of the existing Platfrom SDK
message factories, although most of these classes cannot follow the logic of existing servers because
the messages used in the handshake procedure are hidden.

The most flexible protocol for any extension is ExternalServiceProtocol, because it does not
require any handshake by default. The following example will use this protocol to create an instance
of ServerChannel:

const int portNumber = 22222;
var server = new ServerChannel(new WildcardEndpoint(portNumber),

new ExternalServiceProtocolFactory());

Defining Handlers to Process Incoming (Closed) Connections

ServerChannel generates two events to manage client connections. When a new client tries to
connect, ServerChannel raises the ClientChannelOpened event, and when a client disconnects
ServerChannel raises an ClientChannelClosed event. Your code can then process these events, as
shown in the example below:

server.ClientChannelOpened += (sender, args) =>
{

var arg = args as NewChannelEventArgs;
if (arg != null)
{

var incomingChannel = arg.Channel;
// TODO: do something with incoming channel

}
};
server.ClientChannelClosed += (sender, args) =>
{

var closedChannel = sender as DuplexChannel;
var arg = args as ClosedEventArgs;
var cause = (arg != null)?arg.Cause:null;
// TODO: process closed channel with known arguments and reason of closing

};

Starting the Server
server.Open();

Processing Incoming Messages

ServerChannel supports multiple ways to receive and process incoming messages:

• ReceiveRequest Method

Advanced Platform SDK Topics Working with Custom Servers

Platform SDK Developer's Guide 286

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ServerChannel#receiveRequest_Net

• External Receiver
• Message Handler

More details about each approach are explored below.

Using the ReceiveRequest Method
Using this method allows your to define exactly when messages are read. However, you should
remember that the internal queue which contains incoming messages is not unlimited. If messages
are kept in the queue for a long time (5 seconds by default, although this value can be changed by
setting the PsdkCustomization.ReceiveQueueTimeLimit property) without being read, then the
maximum capacity of this queue will be equal to 4k elements and each new incoming message will
lead to lose the eldest one.

The most popular way of using the ReceiveRequest method is inside a dedicated thread, as shown
here:

var processMessagesThreadActiveFlag = new ManualResetEvent(false);
var processMessagesThread = new Thread(() =>
{

while (!processMessagesThreadActiveFlag.WaitOne(100))
{

var request = server.ReceiveRequest(TimeSpan.FromMilliseconds(0));
if (request == null) continue; // nothing to do
var message = request.RequestMessage;
IMessage respond = null;
// TODO: respond = result of process request
if (respond != null)
request.Respond(respond);

}
});
processMessagesThread.Start();

// TODO:

processMessagesThreadActiveFlag.Set();
processMessagesThread.Join();

Using an External Receiver
To use an external receiver, your should create a class which implements the
IRequestReceiverSupport interface, and then use the
ServerChannel.SetReceiver(IRequestReceiverSupport receiver) method to assign this receiver
to ServerChannel.

One implementation to process incoming messages is shown below:

class ServerRequestReceiver : IRequestReceiverSupport
{

public void ClearInput(){}
public int InputSize { get; set; }
public void ReleaseReceivers(){}
public IRequestContext ReceiveRequest(){ return null; }
public IRequestContext ReceiveRequest(TimeSpan timeout){ return null; }

Advanced Platform SDK Topics Working with Custom Servers

Platform SDK Developer's Guide 287

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ServerChannel#externalReceiver_Net
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ServerChannel#messageHandler_Net

public void ProcessRequest(IRequestContext request)
{

if (request == null) return; // nothing to do
var message = request.RequestMessage;
IMessage respond = null;
// TODO: respond = result of process request
if (respond != null)

request.Respond(respond);
}

}
server.SetReceiver(new ServerRequestReceiver());

Using Message Handler
Starting with release 8.5.1, Platform SDK has included a new mechanism to handle incoming
messages. ServerChannel was extended with a new event called Received, that can be used as
shown in the following example:

server.Received += (sender, args) =>
{

var channel = sender as DuplexChannel;
var arg = args as MessageEventArgs;
if (arg == null) return;
var incomingMessage = arg.Message;
IMessage outgoingMessage = null;
// TODO: outgoingMessage = result of processing incomingMessage
if ((outgoingMessage != null) && (channel != null))

channel.Send(outgoingMessage);
};

Closing ServerChannel

Closing the server channel causes all active incoming connections to be closed also. To close server
channel use the ServerChannel.Close() method.

server.Close();

Advanced Platform SDK Topics Working with Custom Servers

Platform SDK Developer's Guide 288

Bidirectional Messaging
The primary function of Platform SDK is to provide client protocols for communication with Genesys
servers, where your applications would send requests for information and receive related events.

However, the introduction of bidirectional messaging provides an opportunity for client applications
to send their own "events" and receive "requests" from the server. Reversing the direction of
messages in this way allows your application to implement server side logic - which allows you to
implement new servers or emulating existing servers.

Java

Existing Server Side Support

Releases of Platform SDK prior to 8.5.3 functionality allowed some server-side functionality to be
implemented, but server-side code had to implement all custom preprocessing of incoming and
outgoing messages. This could be inconvenient for server development, especially for complex
protocols which act as containers for inner protocols.

To make this easier, the bidirectional messaging feature takes responsibility for preprocessing
incoming and outgoing messages. For complex protocols, this increases transport protocol
transparency and allows you to work with concrete protocols.

Bidirectional Messaging Support

Starting with Platform SDK 8.5.302, customized server channels are available for the following
protocols:

Protocol Client Handler Class Name
ConfServer com.genesyslab.platform.configuration.protocol.ConfServerProtocolListener
Basic Chat com.genesyslab.platform.webmedia.protocol.ChatProtocolListener
Flex Chat com.genesyslab.platform.webmedia.protocol.ChatProtocolListener
Email com.genesyslab.platform.webmedia.protocol.EmailProtocolListener
UCS com.genesyslab.platform.contacts.protocol.UniversalContactServerP
ESP Email com.genesyslab.platform.webmedia.protocol.EspEmailProtocolListener
BasicChat + FlexChat com.genesyslab.platform.webmedia.protocol.ChatProtocolListener
Callback com.genesyslab.platform.webmedia.protocol.CallbackProtocolListener
ESP com.genesyslab.platform.openmedia.protocol.ExternalServiceProtocolListener

Advanced Platform SDK Topics Bidirectional Messaging

Platform SDK Developer's Guide 289

Protocol Client Handler Class Name
InteractionServer com.genesyslab.platform.openmedia.protocol.InteractionServerProtocolListener

Important
Platform SDK provides class
com.genesyslab.platform.webmedia.protocol.ChatProtocolListener that can recognize
the dialect of BasiChat and FlexChat protocols.

Using Bidirectional Messaging

The following example shows how to create and use a custom server channel for UCS.

UniversalContactServerProtocolListener Example

ManagedConfiguration cfg = new ManagedConfiguration(new PropertyConfiguration());
cfg.setBoolean(UniversalContactServerProtocol.USE_UTF_FOR_RESPONSES, false); // do not change
string encoding
cfg.setBoolean(TKVCodec.UTF_STRING_KEY, false);
UniversalContactServerProtocolListener listener =

new UniversalContactServerProtocolListener(new WildcardEndpoint(0, cfg)); // creates server
channel. Port is unknown before opened.
UniversalContactServerProtocol client = new UniversalContactServerProtocol(); // creates
client channel. Endpoint is unknown before server opens.
final AtomicReference messageReference = new AtomicReference();
try{

listener.setClientRequestHandler(new ClientRequestHandler() {
@Override
public void processRequest(RequestContext context){

try {
Message msg = context.getRequestMessage();
context.respond(msg); // return message to sender
messageReference.set(msg); // save link to the received message

}catch (Exception e){}
}

});
listener.open();
int port = listener.getLocalEndPoint().getPort();
client.setEndpoint(new Endpoint("localhost",port, cfg));
client.open();

EventSearch request = EventSearch.create(); // create request
DocumentList documentList = new DocumentList(); // fill request data
DocumentData documentData = new DocumentData();
KeyValueCollection data = new KeyValueCollection();
data.addObject("E-mail","email@email.com");
documentData.setDocumentIndex(0);
documentData.setFields(data);
documentList.add(documentData);
request.setDocuments(documentList);
client.send(request);
Message received = client.receive(10000);
/*

Advanced Platform SDK Topics Bidirectional Messaging

Platform SDK Developer's Guide 290

Correct conditions:
1. received!=null
2. request.equals(received)
3. received.equals(messageReference.get())
4. received!=request

*/
}finally {

client.close();
if (listener.getState()== ChannelState.Opened)

listener.close();
}

Handshake issues
Platform SDK offers no server-side handshake procedure. Even if most protocols have a simple
"unconditional" registration, your application is responsible for validating the clients itself.

.NET

Existing Server Side Support

Releases of Platform SDK prior to 8.5.3 provide specific server channel classes for ESP and Custom
Routing Protocol (ExternalServiceProtocolListener and UrsCustomProtocolListener
respectively). There is also an unspecified base implementation of server channel with the
ServerChannel class.

However, these classes have some restrictions, such as being unable to switch transport layers for
incoming connections, that make them unusable with Web Media Protocols.

Bidirectional Messaging Support

Starting with Platform SDK release 8.5.201, an additional server channel class was available:
ServerChannel<T> (where T extends the ClientChannelHandler abstract class).

Platform SDK also includes extensions of ClientChannelHandler for all supported protocols. These
extensions have server side messaging logic, and are responsible for substitution of XML transport
instead of binary transport for Web Media Protocols.

Platform SDK .NET 8.5.3 provides extensions for the following protocols:

Protocol Client Handler Class Name
ConfServer Genesyslab.Platform.Configuration.Protocols.ConfServerProtocol.ClientHandler
Basic Chat Genesyslab.Platform.WebMedia.Protocols.BasicChatProtocol.ClientHandler
Flex Chat Genesyslab.Platform.WebMedia.Protocols.FlexChatProtocol.ClientHandler
Email Genesyslab.Platform.WebMedia.Protocols.EmailProtocol.ClientHandler

Advanced Platform SDK Topics Bidirectional Messaging

Platform SDK Developer's Guide 291

Protocol Client Handler Class Name
Callback Genesyslab.Platform.WebMedia.Protocols.CallbackProtocol.ClientHandler
ESP Genesyslab.Platform.OpenMedia.Protocols.ExternalServiceProtocol.ClientHandler
InteractionServer Genesyslab.Platform.OpenMedia.Protocols.InteractionServerProtocol.ClientHandler
UCS Genesyslab.Platform.Contacts.Protocols.UniversalContactServerProtocol.ClientHandler
ESP Email Genesyslab.Platform.WebMedia.Protocols.EspEmail.EspEmailProtocol.ClientHandler
BasicChat + FlexChat Genesyslab.Platform.WebMedia.Protocols.ChatServerClientHandler
Stat Server Genesyslab.Platform.Reporting.Protocols.StatServerProtocol.ClientHandler
TServer Genesyslab.Platform.Voice.Protocols.TServerProtocol.ClientHandler

Important
Platform SDK provides the
Genesyslab.Platform.WebMedia.Protocols.ChatServerClientHandler class that
can recognize the dialect of BasicChat and FlexChat protocols. Using this class
together with ServerChannel<T> allows the following ChatServer logic.

Using Bidirectional Messaging

The following example shows how to create and use a custom server channel for Basic Chat Protocol.

ServerChannel<T> Example

var cfg = new ManagedConnectionConfiguration(null) { WrapUtfString = true, }; // allows to
use utf values in KvLists
server = new ServerChannel<BasicChatProtocol.ClientHandler>(new WildcardEndpoint(0,cfg)); //
creates server channel. Port is unknown before opened.
server.Received += (sender, args) =>
{

var msgArg = args as MessageEventArgs;
if (msgArg == null) return; // wrong arguments (in general it's impossible with

ServerChannel<>)
var channel = sender as DuplexChannel;
if (channel == null) return; // wrong client (in general it's impossible with

ServerChannel<>)
var incomingMessage = msgArg.Message; // gets incoming message
IMessage outgoingMessage= null;
// TODO: handle incoming message...
if (outgoingMessage!=null) channel.Send(outgoingMessage); // sends response to client

};
server.Open(); // opens server
client = new BasicChatProtocol(new Endpoint("localhost", (server.LocalEndPoint as
IPEndPoint).Port, cfg)); // create client
// client has to be created only after server will be opened for case of unknown port
client.AutoRegister = false; // skip handshake
client.Open(); // opens client

var msg = RequestMessage.Create("12345",Visibility.All, MessageText.Create(null));
client.Send(msg); // send message

Advanced Platform SDK Topics Bidirectional Messaging

Platform SDK Developer's Guide 292

var response = client.Receive(TimeSpan.FromSeconds(5)); // receive response
// TODO: handle response...

Handshake Issues

Platform SDK offers no server-side handshake procedure. Even if most protocols have a simple
"unconditional" registration, your application is responsible for validating the clients itself.

Advanced Platform SDK Topics Bidirectional Messaging

Platform SDK Developer's Guide 293

Hide Message Attributes in Logs
This article describes how to hide message attributes on logs generated by your Platform SDK
applications.

The new ToStringHelper class described here was introduced in release 8.5.300.02 of Platform SDK.

How to Configure Hidden Attributes

There are two ways to configure hidden attributes within log files generated by Platform SDK,
depending on what type of protocols you are working with.

Working With ESP Protocols

The UCS and EspEmail protocols use Request3rdServer and Event3rdServerResponse messages
from the underlying ESP protocol to transport their messages. Thus, Request3rdServer and
Event3rdServerResponse are printed to logs and KeyValuePrinter must be configured to hide any
sensitive data in logs.

For example:

KeyValueCollection defaultCfg = new KeyValueCollection();
KeyValueCollection specificCfg = new KeyValueCollection();
specificCfg.addString("StructuredText","hide");
KeyValuePrinter defaultKVPrinter = new KeyValuePrinter(defaultCfg, specificCfg);
KeyValuePrinter.setDefaultPrinter(defaultKVPrinter);

This is the standard Genesys [log-filter-data] implementation described by the Hide or Tag
Sensitive Data in Logs article.

In cases where UCS protocol messages are printed out directly (for example, by calling
interactionContent.toString() in your application code) it is possible to hide sensitive data by
using the new ToStringHelper class:

/// Declare hidden attributes for Protocol message or structure
ToStringHelper.hideAttribute("ContactServer", "InteractionContent", "StructuredText");

Working With Non-ESP Protocols

To hide specific keys from message attributes of KVLists type in the logs, configure KeyValuePrinter.

To hide protocol messages attributes in logs, use the new ToStringHelper class. For example:

ToStringHelper.hideAttribute("FlexChat", "EventInfo", "Text");

Using the Application Template Helper to Read Configuration

Advanced Platform SDK Topics Hide Message Attributes in Logs

Platform SDK Developer's Guide 294

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LogSensitiveData
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LogSensitiveData

from Config Manager

The Application Template will process the CfgApplication configuration, received from Config
Server, and pass that information to ToStringHelper.setHiddenAttributes();.

Important
There is no standard format for defining log hidden attributes in Config Manger; only a
format for KVLists structure exists).

The example below shows how to specify hidden attributes for log files that can be parsed by the
Platform SDK AppTemplate mini-helper. However, you can specify settings in any other suitable
format and parse them on your own.

[log-hidden-attributes]
<ProtocolName>.<Message Name | Complex Attribute Name> = <Attributes List>

For example:

[log-hidden-attributes]
ContactServer.InteractionContent = "Text, StructuredText"
ContactServer.SomeMessage = "Attr1, Attr2, Attr-n"
TServer.SomeEvent = "Attr-x"

Usage Sample
//Read application from ConfServer and set new log hidden attributes configuration:
String sectionName = "log-hidden-attributes"; //name of config section in the app options
CfgApplication app = confService.retrieveObject(CfgApplication.class, new
CfgApplicationQuery("AppName"));
MessagePrinterHelper.setHiddenAttributes(app.getOptions().getList(sectionName));
...

//Handle updates from Config Server:
if (cfgEvent.getCfgObject() instanceof CfgDeltaApplication) {

CfgDeltaApplication delta = (CfgDeltaApplication) cfgEvent.getCfgObject();

//update application configuration state
app.update(delta);
...

//set new configuration, if "log-hidden-attributes" section has been added\changed\removed
if(MessagePrinterHelper.isConfigurationChanged(delta, sectionName)) {

MessagePrinterHelper.setHiddenAttributes(app.getOptions().getList(sectionName));
}

...
}

Advanced Platform SDK Topics Hide Message Attributes in Logs

Platform SDK Developer's Guide 295

Resources Releasing in an Application
Container
To improve performance, Platform SDK only releases internal resources (such as threads) after a
slight delay so that they can be reused in the near future if beneficial.

This delay in releasing resources can lead to warnings about memory leaks from application
containers like Tomcat, because Tomcat checks if all application threads are stopped immediately
without taking into account that Platform SDK intentionally holds resources for a short time.

Starting with release 8.5.300.02, Platform SDK for Java includes a PSDKRuntime class that allows your
applications to stop gracefully. When used in your application, this class does the following things:

• wait until all Platform SDK resources are released
• reduce time required to release PSDK resources

Design Notes

The PSDKRuntime class provides two methods:

• awaitTermination with timeout
• awaitTermination without timeout

PSDKRuntime.java

public final class PSDKRuntime {

public static void awaitTermination() throws InterruptedException { ... } // It is similar
to call of awaitTermination(Long.MAX_VALUE, TimeUnit.MILLISECONDS)

public static void awaitTermination(long timeout, TimeUnit timeUnit) throws
InterruptedException, TimeoutException { ... }

}

Important
These two methods wait until all Platform SDK resources are released, and reduce the
release time for Platform SDK resources.

To initiate Platform SDK resources releasing:

• all Platform SDK channels have to be closed;

Advanced Platform SDK Topics Resources Releasing in an Application Container

Platform SDK Developer's Guide 296

• if Platform SDK invokers were requested using InvokerFactory.namedInvoker(String) or
InvokerFactory.namedInvoker(String, int), then those invokers must be released (as many times
as they were requested) using InvokerFactory.releaseInvoker(String);

• if SingleThreadInvoker instances were created by user then these invokers have to be released using
SingleThreadInvoker.release() ;

• if you scheduled timer actions by using Scheduler.schedule(long, long, TimerAction) then these
timer actions have to be canceled using TimerActionTicket.cancel().

Code Sample

The following sample provides an example of how you can correctly finalize a Platform SDK-based
application in J2EE containers.

TestServlet.java

@WebServlet("/TestServlet")
public class TestServlet extends HttpServlet {

ConfServerProtocol protocol;
AsyncInvoker myInvoker;
SingleThreadInvoker myInvoker2;
TimerActionTicket ticket;

@Override
public void init(ServletConfig config) throws ServletException {

super.init(config);

String name = "Case0001731406Test";
String host = "host";
String clientName = "clientName";
String userName = "userName";
String password = "password";
int port = 2020;

// creates PSDK channel
protocol = new ConfServerProtocol(new Endpoint(name, host, port));
protocol.setClientName(clientName);
protocol.setUserName(userName);
protocol.setUserPassword(password);
protocol.setTimeout(Long.MAX_VALUE);

// request PSDK named invoker
myInvoker = InvokerFactory.namedInvoker("myInvoker");
protocol.setInvoker(myInvoker);

// request it 2nd time (it increases its reference counter)
InvokerFactory.namedInvoker("myInvoker");

// request PSDK invoker
myInvoker2 = new SingleThreadInvoker();

// open PSDK channel
try {

protocol.open();
} catch (Exception e) { /*...*/ }

// creates PSDK timer action

Advanced Platform SDK Topics Resources Releasing in an Application Container

Platform SDK Developer's Guide 297

TimerAction action = new TimerAction() {
public void onTimer() { /* ... */ }

};

// schedule the periodic timer action
ticket = TimerFactory.getTimer().schedule(500, 1000, action);

}

public void destroy() {

// stop periodic timer action scheduled before in PSDK timer
if (ticket != null) {

ticket.cancel();
ticket = null;

}

// close all opened PSDK channels
if (protocol != null) {

try {
protocol.close();

} catch (Exception e) { /*...*/ }
protocol.setInvoker(null);
protocol = null;

}

// release 1st invoker
if (myInvoker != null) {

myInvoker = null;
InvokerFactory.releaseInvoker("myInvoker");
InvokerFactory.releaseInvoker("myInvoker"); // named invoker have to be released

as many times as it was requested before
}

// release 2nd invoker
if (myInvoker2 != null) {

myInvoker2.release();
myInvoker2 = null;

}

// wait until all PSDK resources are stopped
try {

PSDKRuntime.awaitTermination(20000, TimeUnit.MILLISECONDS);
} catch (InterruptedException e) { /*...*/ }

}

protected void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException { /* ... */ }

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException { /* ... */ }

// ...
}

Advanced Platform SDK Topics Resources Releasing in an Application Container

Platform SDK Developer's Guide 298

Transport Layer Substitution

Java

The Transport Layer Substitution feature, introduced with Platform SDK release 8.5.300.02, allows you
to isolate the transport layer and provide alternative ways of transporting messages. It is up to your
code to exchange messages and manage connections. Goals of this feature are:

• Simulation of different server behavior in test scenarios.
• Replacement of binary protocol with any other; that is, allowing alternative message delivery sub-

systems such as AMQP, MQTT, or STOMP.
• Creation of proxies, hubs etc.

Design Notes

The injected transport layer has to implement the following interface:

ExternalTransport API

package com.genesyslab.platform.commons.protocol;

/** Describes API of external transport. */
public interface ExternalTransport {

/**
* Connects to a specified destination asynchronously.
* This method is called during the protocol is opening.
* Method has to notify {@link ExternalTransportListener#onConnected()}
* otherwise it must notify {@link ExternalTransportListener#onDisconnected(Throwable)}
* @param endpoint Endpoint which describes destination address and contains

configuration.
*/

void connect(Endpoint endpoint);

/**
* Disconnects from destination.
* Method has to notify {@link ExternalTransportListener#onDisconnected(Throwable)}
*/

void disconnect();

/**
* Sends message to the destination.
* @param message which has to be sent.
*/

void sendMessage(Message message);

/**
* Set external transport listener.
* @param listener that will handle the transport events.
*/

Advanced Platform SDK Topics Transport Layer Substitution

Platform SDK Developer's Guide 299

void setTransportListener(ExternalTransportListener listener);
}

ExternalTransportListener API

package com.genesyslab.platform.commons.protocol;

/**
* API for external transport events handling.
* <p>
* All events have to be notified within some transport notification thread.
*
* Any events can't be notified by transport inside of calls of
* {@link ExternalTransport#connect(Endpoint)},
* {@link ExternalTransport#disconnect()} or
* {@link ExternalTransport#sendMessage(Message)}
* or {@link RecursiveCallException} will be thrown.
* </p>
*/

public interface ExternalTransportListener {

/**
* The method is called (using channel's invoker)
* as soon as the external transport connected to the destination.
* @throws RecursiveCallException when it is notified inside calls of the methods
* {@link ExternalTransport#connect(Endpoint)},
* {@link ExternalTransport#disconnect()},
* {@link ExternalTransport#sendMessage(Message)}
* or {@link ExternalTransport#setTransportListener(ExternalTransportListener)}
*/

void onConnected();

/**
* The method is called (using channel's invoker)
* as soon as the external transport disconnected from the destination.
* @param cause of disconnection. It is null if the disconnection happened due to call
* of {@link ExternalTransport#disconnect()}.
* @throws RecursiveCallException when it is notified inside calls of the methods
* {@link ExternalTransport#connect(Endpoint)},
* {@link ExternalTransport#disconnect()},
* {@link ExternalTransport#sendMessage(Message)}
* or {@link ExternalTransport#setTransportListener(ExternalTransportListener)}
*/

void onDisconnected(Throwable cause);

/**
* The method is called (using channel's invoker)
* for each message received by the external transport.
* @param message that is received by the external transport.
* @throws RecursiveCallException when it is notified inside calls of the methods
* {@link ExternalTransport#connect(Endpoint)},
* {@link ExternalTransport#disconnect()},
* {@link ExternalTransport#sendMessage(Message)}
* or {@link ExternalTransport#setTransportListener(ExternalTransportListener)}
*/

void onMessageReceived(Message message);
}

/**
* Used to control caller thread and prevent some recursive calls.
*/

public class RecursiveCallException extends RuntimeException {

Advanced Platform SDK Topics Transport Layer Substitution

Platform SDK Developer's Guide 300

public RecursiveCallException(String message) {
super(message);

}
}

To substitute the transport layer used for a protocol instance in your application, you must complete
the following steps:

1. Set either the system property com.genesyslab.common.protocol.transport.factory or
PsdkCustomization.PsdkOption.TransportFactoryImpl to be equal to a fully qualified
ExternalTransportFactory implementation class name. This helps to control which transport layer
will be used for a specified pair (protocol description and endpoint) of arguments.

2. Use the DuplexChannel.setExternalTransport(ExternalTransport transport) method. This helps
to substitute the transport layer for a specified instance of a channel. An external transport layer (non-
null) that is set using DuplexChannel.setExternalTransport has more priority then the previous
method of substitution.

ExternalTransportFactory API

package com.genesyslab.platform.commons.protocol;

/**
* Factory of external transport for a specified protocol description and an endpoint.
*/

public interface ExternalTransportFactory {

/**
* Gets external transport for a specified protocol description and an endpoint.
* @param protocolDescription specifies a protocol.
* @param endpoint specifies host, port and configuration.
* @return external transport instance
* or null if PSDK have to use the default implementation.
*/

ExternalTransport getTransport(ProtocolDescription protocolDescription, Endpoint
endpoint);
}

Notes:

• The Connect operation uses an active Endpoint of the channel, which has its own configuration. Using
the settings for encoding, ADDP, TLS and other values is the responsibility of the injected transport
layer.

• Sending Connected, Disconnected, and ReceivedMessage events is the responsibility of the injected
transport layer. All transport layer implementations notify a listener, but if the notifications are
performed directly inside calls to the connect, disconnect, send, or setTransportListener methods
then RecursiveCallException is thrown.

.NET

The Transport Layer Substitution feature, introduced with Platform SDK release 8.5.300.02, allows you
to isolate the transport layer and provide alternative ways of transporting messages. It is up to your
code to exchange messages and manage connections. Goals of this feature are:

• Simulation of different server behavior in test scenarios.

Advanced Platform SDK Topics Transport Layer Substitution

Platform SDK Developer's Guide 301

• Replacement of binary protocol with any other; that is, allowing alternative message delivery sub-
systems such as AMQP, MQTT, or STOMP.

• Creation of proxies, hubs etc.

Design Notes

The injected transport layer has to implement the following interface:

API of External Transport

/// <summary>
/// Describes API of external transport
/// </summary>
public interface IExternalTransport
{

/// <summary>
/// Returns state of connection to the destination.
/// </summary>
ConnectionState State { get; }
/// <summary>
/// Connects to destination.
/// This method is called during the protocol is opening.
/// Method has to raise event <see cref="Connected"/> if connection was successful,
/// otherwise it must raise event <see cref="Disconnected"/>.
/// <param name="endpoint">Endpoint which describes destination address
/// and contains configuration.</param>
/// </summary>
void Connect(Endpoint endpoint);

/// <summary>
/// Disconnects from destination.
/// Method has to raise event <see cref="Disconnected"/> when connection disconnected.
/// </summary>
void Disconnect();

/// <summary>
/// Fired, when connection to the destination becomes opened.
/// </summary>
event EventHandler Connected;

/// <summary>
/// Fired, when connection to the destination becomes closed.
/// </summary>
event EventHandler<ConnectionEventArgs> Disconnected;

/// <summary>
/// Sends message to the destination
/// </summary>
/// <param name="message">Message which has to be sent</param>
void SendMessage(IMessage message);

/// <summary>
/// This event hast to be fired when received IMessage is ready for user.
/// </summary>
event EventHandler<MessageEventArgs> ReceivedMessage;

}

The injection of a new transport layer is made by using the public method of DuplexChannel class. Its

Advanced Platform SDK Topics Transport Layer Substitution

Platform SDK Developer's Guide 302

signature is:

public void SetExternalTransport(IExternalTransport transport)

Notes:

• The Connect operation uses an active Endpoint of the channel, which has its configuration. Using
settings of encoding, ADDP, TLS etc. becomes a responsibility of the injected transport layer.

• Sending Connected, Disconnected, and ReceivedMessage events is the responsibility of the injected
transport layer.

Abstract Implementation

Platform SDK may provide base abstract implementation in order to simplify the 3rd-party code which
uses an external transport layer. It may have the following signature:

Abstract Implementation of Basic Functionality

/// <summary>
/// Abstract implementation of basic functionality of the
/// <see cref="IExternalTransport"/> interface.
/// </summary>
public abstract class ExternalTransportBase:AbstractLogEnabled, IExternalTransport
{

/// <summary>
/// Returns state of connection to the destination.
/// </summary>
public ConnectionState State { get; protected set; }

/// <summary>
/// Sends message to the destination
/// </summary>
/// <param name="message">Message which has to be sent</param>
public abstract void SendMessage(IMessage message);

/// <summary>
/// Connects to the destination. No need to raise any events.
/// After successful connection property <see cref="State"/> has to be set to <see

cref="ConnectionState.Opened"/> state.
/// </summary>
/// <param name="endpoint">Endpoint which describes destination address
/// and contains configuration.</param>
/// <exception cref="Exception">If connection is unsuccessful.</exception>
public abstract void DoConnect(Endpoint endpoint);

/// <summary>
/// Disconnects from the destination.
/// </summary>
public abstract void DoDisconnect();

/// <summary>
/// Fired, when connection to the destination becomes opened.
/// </summary>
public event EventHandler Connected;

/// <summary>

Advanced Platform SDK Topics Transport Layer Substitution

Platform SDK Developer's Guide 303

/// Fired, when connection to the destination becomes closed.
/// </summary>
public event EventHandler<ConnectionEventArgs> Disconnected;

/// <summary>
/// This event hast to be fired when received IMessage is ready for user.
/// </summary>
public event EventHandler<MessageEventArgs> ReceivedMessage;

/// <summary>
/// Simulates receiving message.
/// </summary>
/// <param name="message">Message which is received.</param>
public void OnMessageReceived(IMessage message) {…}

void IExternalTransport.Disconnect() {…}

void IExternalTransport.Connect(Endpoint endpoint) {…}

/// <summary>
/// Raise <see cref="Disconnected"/> event.
/// </summary>
/// <param name="args"><see cref="ConnectionEventArgs"/> parameter.</param>
protected void FireDisconnect(ConnectionEventArgs args) {…}

/// <summary>
/// Raise <see cref="Disconnected"/> event.
/// </summary>
/// <param name="args"><see cref="ConnectionEventArgs"/> parameter.</param>
protected void FireConnect(EventArgs args) {…}

}

Usage of this implementation allows end-user simplify own implementation.

Code Sample

Example of External Transport Implementation

internal class TheNewTransport : IExternalTransport
{

private readonly IMessageFactory _factory = new ConfServerProtocolFactory();
public ConnectionState State { get; private set; }
public void Connect(Endpoint endpoint)
{

State = ConnectionState.Opening;
Console.WriteLine("Connecting to: {0}", endpoint.ToString());
ThreadPool.QueueUserWorkItem(state =>
{

Thread.Sleep(100); //
// TODO: do something to connect to destination
var handler = Connected;
State = ConnectionState.Opened;
if (handler != null) handler(this, null);

});
}
public void Disconnect()
{

State = ConnectionState.Closing;
Console.WriteLine("Dicsonnecting");

Advanced Platform SDK Topics Transport Layer Substitution

Platform SDK Developer's Guide 304

ThreadPool.QueueUserWorkItem(state =>
{

Thread.Sleep(100);
// TODO: do something to disconnect from destination
var handler = Disconnected;
State = ConnectionState.Closed;
if (handler != null) handler(this, null);

});
}
public event EventHandler Connected;
public event EventHandler<ConnectionEventArgs> Disconnected;
public void SendMessage(IMessage message)
{

Console.WriteLine("Sending message: {0}", message);
if (message.Id == 49) // request ‘RequestProtocolVersion’
{

var msg = _factory.CreateMessage(50);
// response ‘EventProtocolVersion’
msg["ReferenceId"] = message["ReferenceId"];
msg["OldProtocolVersion"] = message["ProtocolVersion"];
ReceiveMessage(msg);

}
if (message.Id == 3) // request ‘RequestRegisterClient’
{

var msg = _factory.CreateMessage(19);
// response ‘EventClientRegistered’
msg["ReferenceId"] = message["ReferenceId"];
msg["OldProtocolVersion"] = message["ProtocolVersion"];
msg["ProtocolVersion"] = message["ProtocolVersion"];
ReceiveMessage(msg);

}
}
private void ReceiveMessage(IMessage message)
{

var handler = ReceivedMessage;
if (handler != null)
{

var args = new MessageEventArgs(message);
handler(this, args);

}
}
public event EventHandler<MessageEventArgs> ReceivedMessage;

}

Using Injected Transport (Test Method Snippet)

var client = new ConfServerProtocol(new Endpoint("localhost", 56789))
client.Timeout = TimeSpan.FromSeconds(3);
client.SetExternalTransport(new TheNewTransport());
client.Open();
Assert.IsTrue(client.State == ChannelState.Opened);
client.Close();
Assert.IsTrue(client.State == ChannelState.Closed);

Example Using Base Implementation

internal class CustomExternalTransport : ExternalTransportBase
{

public override void SendMessage(IMessage message)
{

Console.WriteLine("Message received: {0}",message); // log to console
IMessage returnMessage = null;

Advanced Platform SDK Topics Transport Layer Substitution

Platform SDK Developer's Guide 305

// TODO: process handshake and other logic
if (returnMessage!=null)

OnMessageReceived(returnMessage); // returns message to sender
}
public override void DoConnect(Endpoint endpoint)
{

// TODO: connect (or do nothing if there is no need to connect anywhere)
State = ConnectionState.Opened;

}
public override void DoDisconnect()
{

// TODO: disconnect
}

}

[TestMethod]
public void TestExternalTransport()
{

var protocol = new ConfServerProtocol(new Endpoint("localhost",12345));
protocol.SetExternalTransport(new CustomExternalTransport());
protocol.Open();
Assert.IsTrue(protocol.State == ChannelState.Opened);
var request = RequestReadLocale.Create(123);
var response = protocol.Request(request);
Assert.AreSame(request,response);
protocol.Close();
Assert.IsTrue(protocol.State==ChannelState.Closed);

}

Dynamically Linked Factory

An external transport layer may be linked to an existing application dynamically by using the factory
interface implementation contained in the external assembly. This interface has the following
description:

IExternalTransportFactory description

/// <summary>
/// Describes API of external transport factory.
/// It may be dynamically linked and used by ClientChannel before opening.
/// </summary>
public interface IExternalTransportFactory
{

/// <summary>
/// Creates instance of external transport for given endpoint.
/// </summary>
/// <param name="protocolDescription">Description of protocol</param>
/// <param name="endpoint">Endpoint which is used as key to create external

transport</param>
/// <returns>Instance of external transport, or null if it is not needed</returns>
IExternalTransport GetTransport(ProtocolDescription protocolDescription, Endpoint endpoint);

}

The public class which implements this interface must have a public constructor with no parameters.
Otherwise it won't load correctly.

This factory provides allows you to create different implementations - not only for different protocols,
but also even for different instances of the same protocol - by using the protocolDescription and

Advanced Platform SDK Topics Transport Layer Substitution

Platform SDK Developer's Guide 306

endpoint parameters.

The location of your assembly and class name should be defined in the app.config file before your
application starts:

App.Config Configuration File

<?xml version="1.0"?>
<configuration>

<appSettings>
<add key="ExternalTransport.AssemblyFileName" value="[path]\..."/>
<add key="ExternalTransport.ClassName" value="..."/>

</appSettings>
</configuration>

Advanced Platform SDK Topics Transport Layer Substitution

Platform SDK Developer's Guide 307

Server-Specific Overviews
• Telephony (T-Server)

• Introduction to TLib Functions and Data

• Configuration
• Connecting Using the UTF-8 Enconding
• Change Password On Next Login
• Getting the Last Login Info
• Using the Configuration Object Model Application Block
• Introduction to Configuration Layer Objects

• Stat Server
• Custom Statistics: Getting Agent State for All Channels

• Interaction Server
• Universal Contact Server

• Creating an E-Mail

• Chat
• E-Mail Server
• Outbound
• Management Layer

• LCA Protocol Usage Samples
• LCA Hang-Up Detection Support
• Handle Application "Graceful Stop" with the LCA Protocol

• Routing Server

Server-Specific Overviews Transport Layer Substitution

Platform SDK Developer's Guide 308

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/T-Server
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/IntroTLib
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConfigurationServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectUsingUTF8Enconding
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ChangePasswordOnNextLogin
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/GettingLastLoginInfo
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheCOMAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/IntrotoConfigLayerObjects
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/StatServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/GetAgentState
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/InteractionServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UniversalContactServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/CreatinganE-Mail
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/WebMediaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/E-MailServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/OutboundContactServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ManagementServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAProtocolUsageSamples
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/HandleGracefulStopWithLCA
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UniversalRoutingServer

Telephony (T-Server)

Java

You can use the Voice Platform SDK to write Java or .NET applications that monitor and handle voice
interactions from a traditional or IP-based telephony device. These applications can range from the
simple to the advanced. This document shows how to implement the basic functions you will need to
write a simple voice application. It is organized to show the kind of structure you will probably use to
write your own applications.

Setting Up a TServerProtocol Object

The first thing you need to do to use the Voice Platform SDK is instantiate a TServerProtocol object.
To do that, you must supply information about the T-Server you want to connect with. This example
provides the server's name, host, and port information:

[Java]

TServerProtocol tServerProtocol =
new TServerProtocol(

new Endpoint(
tServerName, host, port));

After instantiating the TServerProtocol object, you need to open the connection to the T-Server:

[Java]

tServerProtocol.open();

Registering an Address

Now you need to register a DN for your agent to use. To do this, you must send a
RequestRegisterAddress request to the server.

Here is how to create this request:

[Java]

RequestRegisterAddress requestRegisterAddress =
RequestRegisterAddress.create(

thisDn,
RegisterMode.ModeShare,
ControlMode.RegisterDefault,
AddressType.DN);

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 309

The thisDn argument refers to the DN you want to associate with your agent, while
RegisterMode.ModeShare tells the T-Server to share information about the DN with other
applications. The next argument asks to use the switch's default value for deciding whether to let the
switch know that you have registered this DN. And finally, you are specifying that the object you are
registering is a DN.

After you create the request, you will need to send it to the T-Server:

[Java]

Message response =
tServerProtocol.request(requestRegisterAddress);

Remember that the request() method is synchronous. If you use this method, your application will
block until you hear back from the server. When you get the response, you can execute code to
handle the response. In this case, you probably don't need to do anything if the request is successful:

[Java]

switch(response.messageId())
{

case EventRegistered.ID:
case EventUnregistered.ID:

break;
.
.
.

}

Logging in an Agent

Once you have registered a DN to your agent, you can log him or her in. To do this, you need to
create a RequestAgentLogin request:

[Java]

RequestAgentLogin requestAgentLogin =
RequestAgentLogin.create(

thisDn,
AgentWorkMode.AutoIn);

After you create the request, you will need to indicate the queue the agent will be using, and you
may need to supply the agent's user name and password. Once you have done this, you can send the
request to the server:

[Java]

requestAgentLogin.setThisQueue(thisQueue);
// Your switch may not need a user name and password:
requestAgentLogin.setAgentID(userName);
requestAgentLogin.setPassword(password);
Message response = tServerProtocol.request(requestAgentLogin);

If your request is successful, the server will respond with an EventAgentLogin event. At that point,
you may need to update the state of your user interface to indicate that the agent can no longer log
in, but that, for example, he or she can now log out.

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 310

Answering a Call

Now that your agent is logged in, he or she can handle calls. Let's start by answering a call.

When a call comes in, your application will receive an EventRinging message. When you get this
message, you will probably want to enable an answer button. Here is how to do that:

[Java]

switch(response.messageId())
{

.

.

.
case EventRinging.ID:

EventRinging eventRinging = (EventRinging) response;
connId = eventRinging.getConnID();
if (eventRinging.getThisDN() == thisDn)
{

AnswerButton.enabled = true;
}
break;

.

.

.
}

It is important to note that an EventRinging event will also be triggered when you are sending an
outbound call. So this particular snippet is only enabling the answer button if the call is ringing on
thisDN. As you can also see, when you receive an EventRinging you will want to store the ConnID of
the call associated with it.

After the agent clicks the answer button, you need to send a request to answer the call, using your
DN and the ConnID of the call:

[Java]

RequestAnswerCall requestAnswerCall =
RequestAnswerCall.create(
thisDn,
connId);

Message response = tServerProtocol.request(requestAnswerCall);

If the request is successful, you will receive an EventEstablished.

Releasing a Call

When your agent is finished with the call, he or she will need to release it:

[Java]

RequestReleaseCall requestReleaseCall =
RequestReleaseCall.create(

thisDn,
connId);

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 311

Message response = tServerProtocol.request(requestReleaseCall);

If the request is successful, you will receive an EventReleased.

Making a Call

Here is how to make a call:

[Java]

RequestMakeCall requestMakeCall =
RequestMakeCall.create(

thisDn,
thatDn,
MakeCallType.DirectAgent);

Message response = tServerProtocol.request(requestMakeCall);

If the request is successful, you will receive an EventDialing message, an EventRinging message,
and then, when your party responds, an EventEstablished message.

Setting up a Conference Call

After you make or answer a call, you can add another party to the call. Here is how to perform an
ordinary two-step conference call.

To start off, you need to initiate a conference call, supplying your own DN, the connection ID of the
existing call, and the DN of the party you want to add to the call:

[Java]

RequestInitiateConference requestInitiateConference =
RequestInitiateConference.create(

thisDn,
connId,
otherDn);

Message response = tServerProtocol.request(requestInitiateConference);

Tip
In a real telephony application, the events you would receive in response to the kinds
of conferencing requests shown here could also be generated by other requests. For
example, you might receive an EventDialing or an EventEstablished in response to
a RequestMakeCall or RequestInitiateTransfer. Because of this, a real-world
application will need to keep track of the requests that initiate these events in order to
interpret them correctly.

If the initiate request is successful, you will receive an EventDialing message and an EventHeld
message. When your party picks up the call, you will also receive an EventEstablished message.

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 312

Now you need to complete the conference call.

When you received the EventDialing message from the RequestInitiateConference, you were
given a new connection ID associated with the party you want to establish the conference call with.
You will need that connection ID, in addition to your own DN and the original connection ID, in order
to complete the conference call:

[Java]

RequestCompleteConference requestCompleteConference =
RequestCompleteConference.create(

thisDn,
connId,
secondConnId);

response = tServerProtocol.request(requestCompleteConference);

If the completion request is successful, you will receive EventReleased, EventRetrieved,
EventPartyAdded, and EventAttachedDataChanged messages.

Transferring a Call

After you make or answer a call, you may also want to transfer that call. Here is how to perform an
ordinary two-step transfer.

To start off, you need to initiate a transfer, supplying your own DN, the connection ID of the existing
call, and the DN of the party you want to transfer the call to.

[Java]

RequestInitiateTransfer requestInitiateTransfer =
RequestInitiateTransfer.create(

thisDn,
connId,
otherDn);

Message response = tServerProtocol.request(requestInitiateTransfer);

Tip
In a real telephony application, the events you would receive in response to the kinds
of transfer requests shown here could also be generated by other requests. For
example, you might receive an EventDialing or an EventEstablished in response to
a RequestMakeCall or RequestInitiateConference. Because of this, a real-world
application will need to keep track of the requests that initiate these events in order to
interpret them correctly.

If the initiate request is successful, you will receive an EventDialing message and an EventHeld
message. When the party you want to transfer to picks up the call, you will also receive an
EventEstablished message.

Now you need to complete the transfer.

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 313

When you received the EventDialing message from the RequestInitiateTransfer, you were given
a new connection ID associated with the party you want to transfer the call to. You will need that
connection ID, in addition to your own DN and the original connection ID, in order to complete the
transfer:

[Java]

RequestCompleteTransfer requestCompleteTransfer =
RequestCompleteTransfer.create(

thisDn,
connId,
secondConnId);

response = tServerProtocol.request(requestCompleteTransfer);

If the completion request is successful, you will receive two EventReleased messages and you will no
longer be a party to the call.

Closing the Connection

Finally, when you are finished communicating with the T-Server, you should close the connection to
minimize resource utilization:

[Java]

tServerProtocol.close();

.NET

You can use the Voice Platform SDK to write Java or .NET applications that monitor and handle voice
interactions from a traditional or IP-based telephony device. These applications can range from the
simple to the advanced. This document shows how to implement the basic functions you will need to
write a simple voice application. It is organized to show the kind of structure you will probably use to
write your own applications.

Setting Up a TServerProtocol Object

The first thing you need to do to use the Voice Platform SDK is instantiate a TServerProtocol object.
To do that, you must supply information about the T-Server you want to connect with. This example
uses the URI of the T-Server, but you can also use name, host, and port information:

[C#]

TServerProtocol tServerProtocol =
new TServerProtocol(

new Endpoint(
tServerUri));

After instantiating the TServerProtocol object, you need to open the connection to the T-Server:

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 314

[C#]

tServerProtocol.Open();

Registering an Address

Now you need to register a DN for your agent to use. To do this, you must send a
RequestRegisterAddress request to the server.

Here is how to create this request:

[C#]

RequestRegisterAddress requestRegisterAddress =
RequestRegisterAddress.Create(
thisDn,
RegisterMode.ModeShare,
ControlMode.RegisterDefault,
AddressType.DN);

The thisDn argument refers to the DN you want to associate with your agent, while
RegisterMode.ModeShare tells the T-Server to share information about the DN with other
applications. The next argument asks to use the switch's default value for deciding whether to let the
switch know that you have registered this DN. And finally, you are specifying that the object you are
registering is a DN.

After you create the request, you will need to send it to the T-Server:

[C#]

IMessage response = tServerProtocol.Request(requestRegisterAddress);

Remember that the Request() method is synchronous. If you use this method, your application will
block until you hear back from the server. When you get the response, you can execute code to
handle the response. In this case, you probably don't need to do anything if the request is successful:

[C#]

switch(response.Id)
{

case EventRegistered.MessageId:
case EventUnregistered.MessageId:

break;
.
.
.

}

Logging in an Agent

Once you have registered a DN to your agent, you can log him or her in. To do this, you need to
create a RequestAgentLogin request:

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 315

[C#]

RequestAgentLogin requestAgentLogin =
RequestAgentLogin.Create(
thisDn,
AgentWorkMode.AutoIn);

After you create the request, you will need to indicate the queue the agent will be using, and you
may need to supply the agent's user name and password. Once you have done this, you can send the
request to the server:

[C#]

requestAgentLogin.ThisQueue = thisQueue;
// Your switch may not need a user name and password:
requestAgentLogin.AgentID = userName;
requestAgentLogin.Password = password;
IMessage response = tServerProtocol.Request(requestAgentLogin);

If your request is successful, the server will respond with an EventAgentLogin event. At that point,
you may need to update the state of your user interface to indicate that the agent can no longer log
in, but that, for example, he or she can now log out.

Answering a Call

Now that your agent is logged in, he or she can handle calls. Let's start by answering a call.

When a call comes in, your application will receive an EventRinging message. When you get this
message, you will probably want to enable an answer button. Here is how to do that:

[C#]

switch(response.Id)
{

.

.

.
case EventRinging.MessageId:

EventRinging eventRinging = (EventRinging) response;
connId = eventRinging.ConnID;
if (eventRinging.ThisDN == thisDn)
{

AnswerButton.Enabled = true;
}
break;

.

.

.
}

It is important to note that an EventRinging event will also be triggered when you are sending an
outbound call. So this particular snippet is only enabling the answer button if the call is ringing on
thisDN. As you can also see, when you receive an EventRinging you will want to store the ConnID of
the call associated with it.

After the agent clicks the answer button, you need to send a request to answer the call, using your

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 316

DN and the ConnID of the call:

[C#]

RequestAnswerCall requestAnswerCall =
RequestAnswerCall.Create(
thisDn,
connId);

IMessage response = tServerProtocol.Request(requestAnswerCall);

If the request is successful, you will receive an EventEstablished.

Releasing a Call

When your agent is finished with the call, he or she will need to release it:

[C#]

RequestReleaseCall requestReleaseCall =
RequestReleaseCall.Create(
thisDn,
connId);

IMessage response = tServerProtocol.Request(requestReleaseCall);

If the request is successful, you will receive an EventReleased.

Making a Call

Here is how to make a call:

[C#]

RequestMakeCall requestMakeCall =
RequestMakeCall.Create(
thisDn,
thatDn,
MakeCallType.DirectAgent);

IMessage response = tServerProtocol.Request(requestMakeCall);

If the request is successful, you will receive an EventDialing message, an EventRinging message,
and then, when your party responds, an EventEstablished message.

Setting up a Conference Call

After you make or answer a call, you can add another party to the call. Here is how to perform an
ordinary two-step conference call.

To start off, you need to initiate a conference call, supplying your own DN, the connection ID of the
existing call, and the DN of the party you want to add to the call:

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 317

[C#]

RequestInitiateConference requestInitiateConference =
RequestInitiateConference.Create(
thisDn,
connId,
otherDn);

IMessage response = tServerProtocol.Request(requestInitiateConference);

Tip
In a real telephony application, the events you would receive in response to the kinds
of conferencing requests shown here could also be generated by other requests. For
example, you might receive an EventDialing or an EventEstablished in response to
a RequestMakeCall or RequestInitiateTransfer. Because of this, a real-world
application will need to keep track of the requests that initiate these events in order to
interpret them correctly.

If the initiate request is successful, you will receive an EventDialing message and an EventHeld
message. When your party picks up the call, you will also receive an EventEstablished message.

Now you need to complete the conference call.

When you received the EventDialing message from the RequestInitiateConference, you were
given a new connection ID associated with the party you want to establish the conference call with.
You will need that connection ID, in addition to your own DN and the original connection ID, in order
to complete the conference call:

[C#]

RequestCompleteConference requestCompleteConference =
RequestCompleteConference.Create(
thisDn,
connId,
secondConnId);

response = tServerProtocol.Request(requestCompleteConference);

If the completion request is successful, you will receive EventReleased, EventRetrieved,
EventPartyAdded, and EventAttachedDataChanged messages.

Transferring a Call

After you make or answer a call, you may also want to transfer that call. Here is how to perform an
ordinary two-step transfer.

To start off, you need to initiate a transfer, supplying your own DN, the connection ID of the existing
call, and the DN of the party you want to transfer the call to.

[C#]

RequestInitiateTransfer requestInitiateTransfer =

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 318

RequestInitiateTransfer.Create(
thisDn,
connId,
otherDn);

IMessage response = tServerProtocol.Request(requestInitiateTransfer);

Tip
In a real telephony application, the events you would receive in response to the kinds
of transfer requests shown here could also be generated by other requests. For
example, you might receive an EventDialing or an EventEstablished in response to
a RequestMakeCall or RequestInitiateConference. Because of this, a real-world
application will need to keep track of the requests that initiate these events in order to
interpret them correctly.

If the initiate request is successful, you will receive an EventDialing message and an EventHeld
message. When the party you want to transfer to picks up the call, you will also receive an
EventEstablished message.

Now you need to complete the transfer.

When you received the EventDialing message from the RequestInitiateTransfer, you were given
a new connection ID associated with the party you want to transfer the call to. You will need that
connection ID, in addition to your own DN and the original connection ID, in order to complete the
transfer:

[C#]

RequestCompleteTransfer requestCompleteTransfer =
RequestCompleteTransfer.Create(
thisDn,
connId,
secondConnId);

response = tServerProtocol.Request(requestCompleteTransfer);

If the completion request is successful, you will receive two EventReleased messages and you will no
longer be a party to the call.

Closing the Connection

Finally, when you are finished communicating with the T-Server, you should close the connection to
minimize resource utilization:

[C#]

tServerProtocol.Close();

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 319

Introduction to TLib Functions and Data
This page provides a flat list of TLib functions, datatypes, and unstructured data that you should be
familiar with during development.

For detailed descriptions and additional information, please see the TLib Reference Guide.

List of TLib Functions

The following table provides a convenient list of TLib Functions that are available.

TAgentLogin

TAgentLogout

TAgentSetIdleReason

TAgentSetNotReady

TAgentSetReady

TAlternateCall

TAnswerCall

TApplyTreatment

TAttachUserData

TCallCancelForward

TCallSetForward

TCancelMonitoring

TCancelReqGetAccessNumber

TClearCall

TCloseServer

TCloseVoiceFile

TCollectDigits

TCompleteConference

TCompleteTransfer

TCopyEvent

TDeleteAllUserData

TDeleteFromConference

TDeleteUserData

TDispatch

TEventGetStringAttr

TFreeEvent

TGetAccessNumber

TGetMessageTypeName

TGetReferenceID

TGetRouteTypeNames

TGetTreatmentTypeNames

TGetXCaps

TGiveMusicTreatment

TGiveRingBackTreatment

TGiveSilenceTreatment

THoldCall

TInitiateConference

TInitiateTransfer

TLibSetCompatibMode

TListenDisconnect

TListenReconnect

TLoginMailBox

TLogoutMailBox

TMakeCall

TMakePredictiveCall

TMergeCalls

TMonitorNextCall

TMuteTransfer

TNetworkMerge

TNetworkPrivateService

TNetworkReconnect

TNetworkSingleStepTransfer

TNetworkTransfer

TOpenServer

TOpenServerEx

TOpenServerX

TOpenVoiceFile

TPlayVoice

TPrivateService

TQueryAddress

TQueryCall

TQueryLocation

TQueryServer

TQuerySwitch

TReconnectCall

TRedirectCall

TRegisterAddress

TReleaseCall

TReserveAgent

TRetrieveCall

TRouteCall

TScanServer

TSendEvent

TSendEventEx

TSendUserEvent

TSetCallAttributes

TSetDNDOff

TSetDNDOn

TSetInputMask

TSetMessageWaitingOff

TSetMessageWaitingOn

TSetMuteOff

TSetMuteOn

TSetParamHA

TSetRefIDLimit

TSetReferenceID

TSetSocketChangeCallback

TSingleStepConference

TSingleStepTransfer

TSockInfoStructure

TSyncIsSet

TSyncSetSelectMask

TUnregisterAddress

TUpdateUserData

TXCapsSupported

connid_to_decimal

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 320

https://docs.genesys.com/Documentation/PSDK/latest/TlibRef/Welcome

TEventGetConnID

TEventGetIntAttr

TNetworkAlternate

TNetworkConsult

TScanServerEx

TSendDTMF

connid_to_str

decimal_to_connid

str_to_connid

List of TLib Datatypes

The following table provides a convenient list of TLib Datatypes that are available.

Important
The names of most of these datatypes start with a "T", but the Voice Platform SDK
uses names that do not contain an initial "T". For example, the TRegisterMode
datatype mentioned in this section is known to the Voice Platform SDK as
RegisterMode.

AddressStatusInfoType

AssociationInfoType

MsgWaitingInfoType

TAddressInfoStatus

TAddressInfoType

TAddressType

TAgentID

TAgentPassword

TAgentType

TAgentWorkMode

TAttribute

TCallHistoryInfo

TCallID

TCallInfoType

TCallState

TCallType

TClearFlag

TConnectionID

TControlMode

TDNRole

TDirectoryNumber

TEvent

TEventMask

TFile

TForwardMode

TInterruptFlag

TKVList

TKVPair

TKVResult

TKVType

TLocationInfoType

TMakeCallType

TMediaType

TMergeType

TMessageType

TMonitorNextCallType

TNetworkCallState

TNetworkDestState

TNetworkPartyRole

TOpenMode

TPartyState

TPrivateMsgType

TRegisterMode

TReliability

TRemoteParty

TRouteType

TScanServerMode

TServer

TServerRole

TSetOpType

TSwitchInfoType

TTime

TTimeStamp

TTreatmentType

TXCaps

TXRouteType

List of TLib Unstructured Data

The following table provides a convenient list of TLib Unstructured Data functions that are available.

These functions deal exclusively with transaction-related user data on the client side and allow you to

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 321

work with all three categories of unstructured data: User Data, Extensions, and Reasons. None of
these functions generate any requests to T-Server. The result of the function execution is confirmed
by the value that the function returns.

TKVListAddBinary

TKVListAddInt

TKVListAddList

TKVListAddString

TKVListAddUnicode

TKVListBinaryLength

TKVListBinaryValue

TKVListCreate

TKVListDeleteAll

TKVListDeletePair

TKVListDup

TKVListFree

TKVListGetBinaryValue

TKVListGetIntValue

TKVListGetListValue

TKVListGetStringValue

TKVListGetUnicodeValue

TKVListInitScanLoop

TKVListIntValue

TKVListKey

TKVListListValue

TKVListNextPair

TKVListPrint

TKVListStringValue

TKVListType

TKVListUnicodeValue

TVKListGetPair

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 322

Configuration
You can use the Configuration Platform SDK to write Java or .NET applications that access and update
information from the Genesys Configuration Layer. These applications can range from the simple to
the advanced.

This article shows how to implement the basic functions you will need to write a simple Configuration
Layer application.

Once you have reviewed the information in this document, you should familiarize yourself with
Configuration Layer Objects. Since the Configuration Platform SDK uses these objects for nearly
everything it does, you will need to understand them before you start using this SDK.

Tip
The Platform SDK includes the Configuration Object Model (COM) Application Block,
which is a high-performance component you can use to query on, and to create,
update, and delete, Configuration Layer objects. Genesys recommends that you use
this application block for most of the work you do with Configuration Layer objects.

When you are ready to write more complicated applications, take a look at the classes and methods
described in the Platform SDK API Reference.

Java

Setting Up a ConfServerProtocol Object

The first thing you need to do to use the Configuration Platform SDK is instantiate a
ConfServerProtocol object. To do that, you must supply information about the Configuration Server
you want to connect with. This example uses the URI of the Configuration Server, but you can also
use the server's name, host, and port information:

ConfServerProtocol confServerProtocol =
new ConfServerProtocol(

new Endpoint(
confServerUri));

Configuration Server needs some additional information in order to create a successful connection.
This information includes the type of client you wish to create, your client's name, and your user
name and password:

confServerProtocol.setClientApplicationType(CfgAppType.CFGSCE.asInteger());

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 323

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/IntrotoConfigLayerObjects
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheCOMAB
https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome

confServerProtocol.setClientName("default");
confServerProtocol.setUserName(userName);
confServerProtocol.setUserPassword(password);

After instantiating the ConfServerProtocol object, you need to open the connection to the
Configuration Server:

confServerProtocol.open();

Creating a Query

Now that you have opened a connection, you can create a query and send it to Configuration Server.
Starting with release 8.1.4, there are two types of queries supported:

• Filter-based Queries (using RequestReadObjects)
• XPath-based Queries (using RequestReadObjects2)

If the request is successful, you will receive an EventObjectsRead message with the matching data.

Tip
When you send a RequestReadObjects message, Configuration Server may send more
than one EventObjectsRead messages in response, depending on whether there is
too much data to be handled by a single EventObjectsRead. Once you have received
all of the EventObjectsRead messages, Configuration Server will also send an
EventObjectsSent, which confirms that it has completed your request. For more
information, refer to the article on event handling.

Examples of both query types are shown below, showing how you could retrieve information about a
particular agent.

Filter-based Queries
For this type of query, you will need to supply the agent's user name using a filter key. The filter key
tells Configuration Server to narrow your query to a specific agent, rather than retrieving information
about all of the persons in your contact center:

KeyValueCollection filterKey = new KeyValueCollection();
filterKey.addObject("user_name", userName);

You can find the names of the filter keys for Person objects by looking in the Filter Keys section of the
CfgPerson entry.

Tip

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 324

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling
https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/CfgPerson

A similar reference page is available for each Configuration Layer object.

Now you are ready to create the request. For filter-based queries, this is done using
RequestReadObjects.

As you may know, Configuration Server considers agents to be objects of type CfgPerson. So you will
need to create a request for information about a Person who has the user name you specified in the
filter key:

CfgObjectType objectType = CfgObjectType.CFGPerson;
int intPerson = objectType.asInteger();
RequestReadObjects requestFilterQuery =

RequestReadObjects.create(
intPerson,
filterKey);

Important
While the Configuration Layer supports the full character set in defining object names,
using certain characters can cause problems in the behavior of some Genesys
applications. Avoid using spaces, dashes, periods, or special characters in object
names. Consider using underscores where you might normally use spaces or dashes.

After you have created your request, you can send it to Configuration Server, as shown here:

confServerProtocol.send(requestFilterQuery);

XPath-based Queries
Submitting XPath-based queries is similar to filter-based queries, but does not require any filters or
additional objects - instead an XPath search expression is passed to RequestReadObjects2 as a
string.

As in the example above, Configuration Server considers agents to be objects of type CfgPerson. So
you will need to create a request for information about a Person who has the user name you are
looking for:

CfgObjectType objectType = CfgObjectType.CFGPerson;
int intPerson = objectType.asInteger();
RequestReadObjects2 requestXpathQuery =

RequestReadObjects2.create(
intPerson,
"CfgPerson[@firstName='John']");

Important
While the Configuration Layer supports the full character set in defining object names,

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 325

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/IntrotoConfigLayerObjects
https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/CfgPerson
https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/CfgPerson

using certain characters can cause problems in the behavior of some Genesys
applications. Avoid using spaces, dashes, periods, or special characters in object
names. Consider using underscores where you might normally use spaces or dashes.

After you have created your request, you can send it to Configuration Server, as shown here:

confServerProtocol.send(requestXpathQuery);

Interpreting the Response

The 8.5.0 release of Platform SDK introduces new structures for handling configuration object data,
instead of the heavyweight DOM trees used in previous Platform SDK releases.

Information that you request is returned by invoking the getObjects method of the
EventObjectsRead message. This method returns a ConfObject collection that may contain one or
more configuration objects depending on the request query filter.

The ConfObject structure is represented as a set of object properties linked with the actual object
type metadata description (that is, the schema definition for the configuration server objects).

Using the toString() method to dump a sample application object might result in the following:

ConfObject(CfgApplication) {
"DBID" = 631
"name" = "SampleServerApp-SV-B"
"type" = 107
"version" = "8"
"isServer" = 2
"serverInfo" = ConfStructure(CfgServerInfo) {

"hostDBID" = 123
"port" = "7007"
"backupServerDBID" = 0
"timeout" = 10
"attempts" = 1

}
"state" = 1
"appPrototypeDBID" = 177
"workDirectory" = "C:\GCTI\SampleServerApp-2\"
"commandLine" = "SampleServerApp.cmd"
"autoRestart" = 1
"startupTimeout" = 90
"shutdownTimeout" = 90
"redundancyType" = 2
"isPrimary" = 1
"startupType" = 1
"portInfos" = ConfStructureCollection[1 item(s)] = {

[0]: ConfStructure(CfgPortInfo) {
"id" = "default"
"port" = "7007"
"longField1" = 0
"longField2" = 0
"longField3" = 0
"longField4" = 0

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 326

}
}
"componentType" = 0

}

Actual property values can be get or set using this property schema name, as shown below:

Integer objDbid = (Integer) confObject.getPropertyValue("DBID");
String objName = (String) confObject.getPropertyValue("name");

confObject.setPropertyValue("name", objNewName);

Configuration protocol metadata descriptions for a configuration object or its properties may be
received using the following code:

CfgDescriptionObject classInfo = confObject.getClassInfo();
CfgDescriptionAttribute attrInfo = confObject.getPropertyInfo("workDirectory");

This API is designed as low-level protocol structures with the ability to support different protocol/
schema versions, including forward compatibility features. That is, you can connect to some "future"
version of Configuration Server, load its schema information with new objects types and/or with new
objects properties, and handle its data in the same way.

Updating an Object

The Configuration Server protocol to update a configuration object uses a special kind of data
structure - a "delta object". Delta objects contain object identification (DBID) and new values for
changed properties.

Delta objects may be created and filled directly, or with the help of a delta utility (see the
ConfDeltaUtility class, included in the configuration protocol library).

ConfObjectDelta delta0 = new ConfObjectDelta(metadata, CfgObjectType.CFGApplication);
ConfObject inDelta = (ConfObject) delta0.getOrCreatePropertyValue("deltaApplication");
inDelta.setPropertyValue("DBID", objCreated.getObjectDbid());
inDelta.setPropertyValue("name", "ConfObject-new-name");

ConfIntegerCollection delTenants = (ConfIntegerCollection)
delta0.getOrCreatePropertyValue("deletedTenantDBIDs");

delTenants.add(105);

RequestUpdateObject reqUpdate = RequestUpdateObject.create();
reqUpdate.setObjectDelta(delta0);

Message resp = protocol.request(reqUpdate);
if (resp == null) {

// timeout
} else if (resp instanceof EventObjectUpdated) {

// the object has been updated
} else if (resp instanceof EventError) {

// fail((EventError) resp);
} else {

// unexpected server response
}

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 327

Creating a New Object

The new Platform SDK Configuration Protocol data structures allow users to create objects on
Configuration Server without using the COM application, as shown below:

ConfObject obj0 = new ConfObject(metadata, CfgObjectType.CFGApplication);
obj0.setPropertyValue("name", "ConfObject-App-create-test");
obj0.setPropertyValue("type", CfgAppType.CFGGenericServer.asInteger());
obj0.setPropertyValue("version", "8.5.000.00");

obj0.setPropertyValue("workDirectory", ".");
obj0.setPropertyValue("commandLine", ".");

ConfIntegerCollection tenants = (ConfIntegerCollection)
obj0.getOrCreatePropertyValue("tenantDBIDs");

tenants.add(101);
tenants.add(105);

ConfStructureCollection connInfos = (ConfStructureCollection)
obj0.getOrCreatePropertyValue("appServerDBIDs");

ConfStructure connInfo = connInfos.createStructure();
connInfo.setPropertyValue("id", "conn1");
connInfo.setPropertyValue("appServerDBID", getSomeAppDbid(CfgAppType.CFGStatServer));
connInfo.setPropertyValue("connProtocol", "addp");
connInfo.setPropertyValue("timoutLocal", 5);
connInfo.setPropertyValue("timoutRemote", 7);
connInfo.setPropertyValue("mode", 3);
connInfo.setPropertyValue("transportParams", "strings-attr-encoding=utf-8");
connInfo.setPropertyValue("longField1", 0);
connInfos.add(connInfo);

RequestCreateObject reqCreate = RequestCreateObject.create();
reqCreate.setObject(obj0);

Message resp = protocol.request(reqCreate);
if (resp == null) {

// timeout
} else if (resp instanceof EventObjectCreated) {

ConfObject objCreated = ((EventObjectCreated) resp).getObject();
// here we have created object from the server side with assigned DBID

} else if (resp instanceof EventError) {
// fail((EventError) resp);

} else {
// error: unexpected server response

}

Closing the Connection

Finally, when you are finished communicating with the Configuration Server, you should close the
connection, in order to minimize resource utilization:

confServerProtocol.close();

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 328

Working with Delta Objects

When using the Configuration Platform SDK to change attribute values of a configuration object, it is
important to understand how "delta structures" work.

A delta structure contains values for each attribute in the configuration object. When a change is
requested, a delta object is created that contains values for each attribute. Delta values are
initialized to either zero (for integer values) or a null string - defaults that indicate no change should
be made for that attribute. To change attributes of a configuration object, you first set the delta value
for that attribute and then send the request to Configuration Server to be processed. Only attribute
values that are changing should be specified in the delta structure for that object.

Any attributes with a delta value set to zero are left unchanged, so there are two special cases to
remember when updating integer values in a configuration object:

• leaving the integer as 0 (zero) means that attribute does not change;
• setting a delta value to the current value of the configuration object attribute will change that attribute

value to zero.

For example, if an Agent skill level is currently set to 5, then the following table illustrates the effect
of various delta structure values:

Initial Attribute Value Delta Structure Value Updated Attribute
Value Comment

5 3 3

Setting the delta
structure value to a
non-zero integer will
change the attribute to
that value.

5 0 5
Leaving the delta
structure value as zero
will leave the attribute
unchanged.

5 5 0

Setting the delta
structure value to the
current attribute value
will change the attribute
to zero.

Requests sent by SOAP clients and formed in an XML format do not use delta structures, because
these types of request do not require all attributes to be present. The COM application block (which is
shipped with the Platform SDKs) provides a "non-delta" interface and uses delta objects internally to
help users update objects, as shown in the following code snippet:

//retrieve an agent that has a single skill, with skill level set to 5
CfgPersonQuery query = new CfgPersonQuery();
query.setUserName("userName");
CfgPerson person = confService.retrieveObject(CfgPerson.class, query);

//Setting the skill level to 5 again will NOT result in a change in skill level (ie: it will
remain 5).
((List<CfgSkillLevel>)person.getAgentInfo().getSkillLevels()).get(0).setLevel(5);
person.save();

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 329

//Setting the skill level to 0 will actually change the current skill level value.
((List<CfgSkillLevel>)person.getAgentInfo().getSkillLevels()).get(0).setLevel(0);
person.save();

To aid you in working with delta objects, Configuration SDK provides the ConfDeltaUtility helper
class, which contains two public methods:

• public ConfObjectDelta createDelta(ConfObject actualObj, ConfObject changedObj);

• public void applyDelta(ConfObject theObject, ConfObjectDelta delta);

An instance of this helper class can be created using the actual configuration metadata from an open
Configuration Server protocol connection:

ConfDeltaUtility deltaUtil = new
ConfDeltaUtility(csProtocol.getServerContext().getMetadata());

ConfObject objects are cloneable, so it is possible to use the delta utility in the following manner:

ConfObject someObject = ...; // get some object from config server
ConfObject objClone = (ConfObject) someObject.clone(); // create a copy

objClone.setPropertyValue("name", "ConfObject-new-name"); // change some property(-ies)
objClone.set...(...);

ConfObjectDelta delta = deltaUtil.createDelta(someObject, objClone);
// use 'delta' to update the object on config server with RequestUpdateObject

.NET

Setting Up a ConfServerProtocol Object

The first thing you need to do to use the Configuration Platform SDK is instantiate a
ConfServerProtocol object. To do that, you must supply information about the Configuration Server
you want to connect with. This example uses the URI of the Configuration Server, but you can also
use the server's name, host, and port information:

ConfServerProtocol confServerProtocol =
new ConfServerProtocol(

new Endpoint(
confServerUri));

Configuration Server needs some additional information in order to create a successful connection.
This information includes the type of client you wish to create, your client's name, and your user
name and password:

confServerProtocol.ClientApplicationType = (int) CfgAppType.CFGSCE;
confServerProtocol.ClientName = clientName;
confServerProtocol.UserName = userName;
confServerProtocol.UserPassword = password;

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 330

After instantiating the ConfServerProtocol object, you need to open the connection to the
Configuration Server:

confServerProtocol.Open();

Creating a Query

Now that you have opened a connection, you can create a query and send it to Configuration Server.
Starting with release 8.1.4, there are two types of queries supported:

• Filter-based Queries (using RequestReadObjects)
• XPath-based Queries (using RequestReadObjects2)

If the request is successful, you will receive an EventObjectsRead message with the matching data.

Tip
When you send a RequestReadObjects message, Configuration Server may send more
than one EventObjectsRead messages in response, depending on whether there is
too much data to be handled by a single EventObjectsRead. Once you have received
all of the EventObjectsRead messages, Configuration Server will also send an
EventObjectsSent, which confirms that it has completed your request. For more
information, refer to the article on event handling.

Examples of both query types are shown below, showing how you could retrieve information about a
particular agent.

Filter-based Queries
For this type of query, you will need to supply the agent's user name using a filter key. The filter key
tells Configuration Server to narrow your query to a specific agent, rather than retrieving information
about all of the persons in your contact center:

KeyValueCollection filterKey = new KeyValueCollection();
filterKey.Add("user_name", userName);

You can find the names of the filter keys for Person objects by looking in the Filter Keys section of the
CfgPerson entry.

Tip
A similar reference page is available for each Configuration Layer object.

Now you are ready to create the request. For filter-based queries, this is done using

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 331

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling
https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/CfgPerson
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/IntrotoConfigLayerObjects

RequestReadObjects.

As you may know, Configuration Server considers agents to be objects of type CfgPerson. So you will
need to create a request for information about a Person who has the user name you specified in the
filter key:

RequestReadObjects requestFilterQuery =
RequestReadObjects.Create(

(int) CfgObjectType.CFGPerson,
filterKey);

Important
While the Configuration Layer supports the full character set in defining object names,
using certain characters can cause problems in the behavior of some Genesys
applications. Avoid using spaces, dashes, periods, or special characters in object
names. Consider using underscores where you might normally use spaces or dashes.

After you have created your request, you can send it to Configuration Server, as shown here:

confServerProtocol.Send(requestFilterQuery);

XPath-based Queries
Submitting XPath-based queries is similar to filter-based queries, but does not require any filters or
additional objects - instead an XPath search expression is passed to RequestReadObjects2 as a
string.

As in the example above, Configuration Server considers agents to be objects of type CfgPerson. So
you will need to create a request for information about a Person who has the user name you are
looking for:

RequestReadObjects2 requestXpathQuery =
RequestReadObjects2.Create(

(int) CfgObjectType.CFGPerson,
"CfgPerson[@firstName='John']");

Important
While the Configuration Layer supports the full character set in defining object names,
using certain characters can cause problems in the behavior of some Genesys
applications. Avoid using spaces, dashes, periods, or special characters in object
names. Consider using underscores where you might normally use spaces or dashes.

After you have created your request, you can send it to Configuration Server, as shown here:

confServerProtocol.Send(requestXpathQuery);

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 332

https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/CfgPerson
https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/CfgPerson

Interpreting the Response

The information you asked for is returned in the ConfObject property of the EventObjectsRead
message.

Here is a sample of how you might print the XML document:

EventObjectsRead objectsRead = theMessage;

StringBuilder xmlAsText = new StringBuilder();
XmlWriterSettings xmlSettings = new XmlWriterSettings();
xmlSettings.Indent = true;

using (XmlWriter xmlWriter =
XmlWriter.Create(xmlAsText, xmlSettings))

{
XDocument resultDocument = objectsRead.ConfObject;
resultDocument.WriteTo(xmlWriter);

}

Console.WriteLine("This is the response:\n"
+ xmlAsText.ToString() + "\n\n");

And this is what the XML document might look like:

<ConfData>
<CfgPerson>

<DBID value="105"/>
<tenantDBID value="101"/>
<lastName value="agent1"/>
<firstName value="Agent"/>
<employeeID value="agent1"/>
<userName value="agent1"/>
<password value="204904E461002B28511D5880E1C36A0F"/>
<isAgent value="2"/>
<CfgAgentInfo>

<placeDBID value="102"/>
<skillLevels>

<CfgSkillLevel>
<skillDBID value="101"/>
<level value="9"/>

</CfgSkillLevel>
</skillLevels>
<agentLogins>

<CfgAgentLoginInfo>
<agentLoginDBID value="103"/>
<wrapupTime value="0"/>

</CfgAgentLoginInfo>
</agentLogins>
<capacityRuleDBID value="127"/>

</CfgAgentInfo>
<isAdmin value="1"/>
<state value="1"/>
<userProperties>

<list_pair key="desktop-redial">
<str_pair key="phone-number0" value="5551212"/>
<str_pair key="phone-number1" value=""/>
<str_pair key="phone-number2" value=""/>
<str_pair key="phone-number3" value=""/>
<str_pair key="phone-number4" value=""/>

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 333

<str_pair key="phone-number5" value=""/>
<str_pair key="phone-number6" value=""/>
<str_pair key="phone-number7" value=""/>
<str_pair key="phone-number8" value=""/>
<str_pair key="phone-number9" value=""/>

</list_pair>
<list_pair key="multimedia">

<str_pair key="last-media-logged"
value="voice,email"/>

</list_pair>
</userProperties>
<emailAddress value="agent1@techpubs3"/>

</CfgPerson>
</ConfData>

This XML document contains information about a Person. To interpret the information contained in the
document, look at the Parameters section of the CfgPerson entry in the list of Configuration Objects.

If you compare the elements in this XML document to the CfgPerson entry, you can see that some of
them contain information that is explained in detail in another entry. For example, the CfgAgentInfo
element contains information that is described in the CfgAgentInfo entry. Similarly, the
CfgAgentLoginInfo element contains information described in the CfgAgentLoginInfo entry.

Updating an Object

You can update a Configuration Layer object by passing in an XML document (of type XDocument)
containing the appropriate information about that object:

RequestUpdateObject requestUpdateObject =
RequestUpdateObject.Create(

(int) CfgObjectType.CFGPerson,
xDocument);

Creating a New Object

You can also create a new Configuration Layer object by sending an XML Document (of type
XDocument) to Configuration Server, as shown here:

RequestCreateObject requestCreateObject =
RequestCreateObject.Create(

(int) CfgObjectType.CFGPerson,
xDocument);

Closing the Connection

Finally, when you are finished communicating with the Configuration Server, you should close the
connection, in order to minimize resource utilization:

confServerProtocol.Close();

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 334

https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/CfgPerson
https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/CfgPerson
https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/CfgAgentInfo
https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/CfgAgentLoginInfo

Working with Delta Objects

When using the Configuration Platform SDK to change attribute values of a configuration object, it is
important to understand how "delta structures" work.

A delta structure contains values for each attribute in the configuration object. When a change is
requested, a delta object is created that contains values for each attribute. Delta values are
initialized to either zero (for integer values) or a null string - defaults that indicate no change should
be made for that attribute. To change attributes of a configuration object, you first set the delta value
for that attribute and then send the request to Configuration Server to be processed. Only attribute
values that are changing should be specified in the delta structure for that object.

Any attributes with a delta value set to zero are left unchanged, so there are two special cases to
remember when updating integer values in a configuration object:

• leaving the integer as 0 (zero) means that attribute does not change;
• setting a delta value to the current value of the configuration object attribute will change that attribute

value to zero.

For example, if an Agent skill level is currently set to 5, then the following table illustrates the effect
of various delta structure values:

Initial Attribute Value Delta Structure Value Updated Attribute
Value Comment

5 3 3

Setting the delta
structure value to a
non-zero integer will
change the attribute to
that value.

5 0 5
Leaving the delta
structure value as zero
will leave the attribute
unchanged.

5 5 0

Setting the delta
structure value to the
current attribute value
will change the attribute
to zero.

Note that requests sent by SOAP clients and formed in an XML format do not use delta structures,
because these types of request do not require all attributes to be present. The COM application block
(which is shipped with the Platform SDKs) provides a "non-delta" interface and uses delta objects
internally to help users update objects, as shown in the following code snippet:

//retrieve a particular agent whose last name is "Jones"
CfgPersonQuery query = new CfgPersonQuery();
query.UserName = "userName";
query.LastName = "Jones";
CfgPerson person = myConfService.RetrieveObject<CfgPerson>(query);

//Setting the last name to the same value will NOT result in a change
person.LastName = "Jones";
person.Save();

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 335

//Setting the last name to a different value will change the actual value
person.LastName = "Smith";
person.Save();

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 336

Connecting Using UTF-8 Character
Encoding

Java

Scenarios

Genesys Configuration Server 8.1.2 added the ability to be configured to support multiple languages
at a same time using UTF-8 encoding. Once Configuration Server is installed, configured and started
in multilingual (UTF-8) mode it cannot be switched to regular mode. If Configuration Server is
installed and started in normal mode, then it cannot be switched to multilingual (UTF-8) mode later.

One known issue is that the UTF-enabled protocol breaks backward compatibility, so users must add
their own code for connection reconfiguration. The following samples describe connection scenarios
with Platform SDK:

Scenario 1
Configuration Server is release 8.1.2 or later and is NOT configured as multilingual (without UTF-8
transport), or is an earlier version without support for the UTF-8 feature.

In this scenario, Platform SDK connections can be created in the usual way.

Scenario 2
Configuration Server is release 8.1.2 or later and configured as multilingual (with UTF-8 transport),
with:

A) Platform SDK release 8.1.3 in use.

Reconfiguration for encoding is automatically handled by Platform SDK as described in the section
below – no user action is required.

B) Platform SDK release 8.1.1 or 8.1.2 in use.

Platform SDK provides information that Configuration Server is UTF-8, so, the connection can be
reopened using new connection configuration with following user code.

PropertyConfiguration config = new PropertyConfiguration();
config.setUseAddp(true);
config.setAddpClientTimeout(11);
config.setAddpServerTimeout(21);

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint(name, host, port, config));

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 337

protocol.setClientName(clientName);
protocol.setClientApplicationType(clientType.ordinal());
protocol.setUserName(username);
protocol.setUserPassword(password);

protocol.open();

Integer cfgServerEncoding = protocol.getServerContext().getServerEncoding();
if (cfgServerEncoding != null && cfgServerEncoding.intValue() == 1) {

protocol.close();
config.setStringsEncoding("UTF-8");
protocol.setEndpoint(new Endpoint(name, host, port, config));
protocol.open();

}

It may be more comfortable to move the flag value evaluation to a separated method where a
temporary ConfServerProtocol instance may be created - especially in the case of
ChannelListeners usage, messages handlers, etc.

Important
This is not the best solution for wide usage. The ServerEncoding value evaluation
method may fail if non-ASCII symbols are found inside the username or password,
which may lead to a handshake procedure error such as "invalid username/password".
This issue may be resolved with an additional test connection retry with UTF-8
enabled, but this workaround is not a best practice solution.

C) Platform SDK release 8.0.1 through 8.1.1 in use:

Platform SDK does NOT indicate whether Configuration Server is using UTF-8 mode or not, so user
application should take care to evaluate this information (or have it defined by the design or
configuration of the application).

In this case we have no protocol.getServerContext().getServerEncoding(), but we are able to
configure the connection for Unicode usage.

It may be recommended to add one more property to the application configuration/parameters (along
with the existing Configuration Server host and port) such as a boolean "isCSUTF8" value.

PropertyConfiguration config = new PropertyConfiguration();
if (isCSUTF8) {

config.setOption(Connection.STR_ATTR_ENCODING_NAME_KEY, "UTF-8");
}

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint(name, host, port, config));
protocol.setClientName(clientName);
protocol.setClientApplicationType(clientType.ordinal());
protocol.setUserName(username);
protocol.setUserPassword(password);

protocol.open();

D) Platform SDK release of 8.0.0 or earlier in use.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 338

No support if provided for string encoding of connection configuration options. The only way is to use
this feature is to upgrade your release of Platform SDK.

Automatic UTF-8 Character Encoding Set Up on Handshake

Starting in Platform SDK Release 8.1.3 (which incorporates Configuration Protocol Release 3.79),
support for UTF-8 encoding can be automatically detected.

The process for this features is described here:

1. The first handshake message, EventProtocolVersion, now includes the extra ServerEncoding
attribute. If this attribute is 1 then Platform SDK updates string encoding for that connection to the
server as UTF-8.

2. The next message from the client requests authentication from the server. These messages
(RequestRegisterClient or RequestRegisterClient2) have been expanded with the
ClientEncoding attribute, which must have the same value as the ServerEncoding attribute received
previously.

3. After the handshake is complete, string encoding for this channel may be different from the string
encoding specified in the original configuration parameters. You can access the current value through
Endpoint.GetConfiguration() of the ConfServerProtocol instance.

.NET

Scenarios

Genesys Configuration Server 8.1.2 added the ability to be configured to support multiple languages
at a same time using UTF-8 encoding. Once Configuration Server is installed, configured and started
in multilingual (UTF-8) mode it cannot be switched to regular mode. If Configuration Server is
installed and started in normal mode, then it cannot be switched to multilingual (UTF-8) mode later.

One known issue is that the UTF-enabled protocol breaks backward compatibility, so users must add
their own code for connection reconfiguration. The following samples describe connection scenarios
with Platform SDK:

Scenario 1
Configuration Server is release 8.1.2 or later and is NOT configured as multilingual (without UTF-8
transport), or is an earlier version without support for the UTF-8 feature.

In this scenario, Platform SDK connections can be created in the usual way.

Scenario 2
Configuration Server is release 8.1.2 or later and configured as multilingual (with UTF-8 transport),

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 339

with:

A) Platform SDK release 8.1.3 in use.

Reconfiguration for encoding is automatically handled by Platform SDK as described in the section
below – no user action is required.

B) Platform SDK release 8.1.1 or 8.1.2 in use.

Platform SDK provides information that Configuration Server is UTF-8, so, the connection can be
reopened using new connection configuration with following user code.

PropertyConfiguration config = new PropertyConfiguration();
config.UseAddp = true;
config.AddpClientTimeout = 11;
config.AddpServerTimeout = 21;

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint(_name, _host, _port,
config));
protocol.ClientName = _clientName;
protocol.ClientApplicationType = _clientType;
protocol.UserName = _userName;
protocol.UserPassword = _password;

protocol.Open();

int? cfgServerEncoding = protocol.Context.ServerEncoding;
if (cfgServerEncoding != null && cfgServerEncoding.Value == 1)
{

protocol.Close();
config.StringsEncoding = "UTF-8";
protocol.Endpoint = new Endpoint(_name, _host, _port, config);
protocol.Open();

}

It may be more comfortable to move the flag value evaluation to a separated method where a
temporary ConfServerProtocol instance may be created - especially in the case of
ChannelListeners usage, messages handlers, etc.

Important
This is not the best solution for wide usage. The ServerEncoding value evaluation
method may fail if non-ASCII symbols are found inside the username or password,
which may lead to a handshake procedure error such as "invalid username/password".
This issue may be resolved with an additional test connection retry with UTF-8
enabled, but this workaround is not a best practice solution.

C) Platform SDK release 8.0.1 through 8.1.1 in use:

Platform SDK does NOT indicate whether Configuration Server is using UTF-8 mode or not, so user
application should take care to evaluate this information (or have it defined by the design or
configuration of the application).

In this case we have no protocol.Context.ServerEncoding property, but we are able to configure

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 340

the connection for Unicode usage.

It may be recommended to add one more property to the application configuration/parameters (along
with the existing Configuration Server host and port) such as a boolean "isCSUTF8" value.

PropertyConfiguration config = new PropertyConfiguration();
if (_isCsutf8)
{

config.SetOption(CommonConnection.StringAttributeEncodingKey, "UTF-8");
}

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint(_name, _host, _port,
config));
protocol.ClientName = _clientName;
protocol.ClientApplicationType = _clientType;
protocol.UserName = _userName;
protocol.UserPassword = _password;

protocol.Open();

D) Platform SDK release of 8.0.0 or earlier in use.

No support if provided for string encoding of connection configuration options. The only way is to use
this feature is to upgrade your release of Platform SDK.

Automatic UTF-8 Character Encoding Set Up on Handshake

Starting in Platform SDK Release 8.1.3 (which incorporates Configuration Protocol Release 3.79),
support for UTF-8 encoding can be automatically detected.

The process for this features is described here:

1. The first handshake message, EventProtocolVersion, now includes the extra ServerEncoding
attribute. If this attribute is 1 then Platform SDK updates string encoding for that connection to the
server as UTF-8.

2. The next message from the client requests authentication from the server. These messages
(RequestRegisterClient or RequestRegisterClient2) have been expanded with the
ClientEncoding attribute, which must have the same value as the ServerEncoding attribute received
previously.

3. After the handshake is complete, string encoding for this channel may be different from the string
encoding specified in the original configuration parameters. You can access the current value through
Endpoint.GetConfiguration() of the ConfServerProtocol instance.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 341

Change Password On Next Login
This page shows examples of how a Configuration Server connection can be opened, using either a
standard login or with a forced password change on login.

Java

Scenario: Standard Login

The following code shows a standard login process, without this feature enabled:

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint("cfgsrv", csHost, csPort));
protocol.setClientName(clientAppName);
protocol.setClientApplicationType(clientAppType.ordinal());
protocol.setUserName(userName);
protocol.setUserPassword(userPasswd);
protocol.open();

Scenario: Change Password on Next Login

When the user has enabled the Change Password on Next Login feature, protocol.open() throws
ChangePasswordException. This exception should be caught and handled to force the password
update.

So the resulting code may look like:

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint("cfgsrv", csHost, csPort));
protocol.setClientName(clientAppName);
protocol.setClientApplicationType(clientAppType.ordinal());
protocol.setUserName(userName);
protocol.setUserPassword(userPasswd);
try {

protocol.open();
} catch (ChangePasswordException e) {

String newPasswd = ...; // obtain new user password
protocol.useChangePasswordRegistration(newPasswd);
protocol.open();

}

After a successful open procedure, the new password value will be accepted and
protocol.getUserPassword() will be set to the newPasswd value that was specified during login.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 342

.NET

Scenario: Standard Login

The following code shows a standard login process, without this feature enabled:

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint("cfgsrv", csHost, csPort));
protocol.ClientName = clientAppName;
protocol.ClientApplicationType = clientAppType;
protocol.UserName = userName;
protocol.UserPassword = userPassword;
protocol.Open();

Scenario: Change Password on Next Login

When the user has enabled the Change Password on Next Login feature, protocol.open() throws
ChangePasswordException. This exception should be caught and handled to force the password
update.

So the resulting code may look like:

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint("cfgsrv", csHost, csPort));
protocol.ClientName = clientAppName;
protocol.ClientApplicationType = clientAppType;
protocol.UserName = userName;
protocol.UserPassword = userPassword;
try
{

protocol.Open();
}catch(ChangePasswordException)
{

string newPassword= ...; // obtain new user password
protocol.UseChangePasswordRegistration(newPassword);
protocol.Open();

}

After a successful open procedure, the new password value will be accepted and
protocol.UserPassword will be set to the newPasswd value that was specified during login.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 343

Getting the Last Login Info

Java

Tip
The appropriate Configuration Server version is required to use this feature, and so is
the correct security configuration. For details, refer to Chapter 11 (Last Logged In
Display) in Genesys 8.0 Security Deployment Guide.

Configuration Server provides last login information during the user authentication (handshake)
procedure, and the Platform SDK Configuration Protocol provides it "as-is" in the form of a
KeyValueCollection:

• ConfServerProtocol.getServerContext().getLastLoginInfo()

An example of the resulting KeyValueCollection could look like:

KVList:
'LAST_LOGIN_PERSON' [int] = 100
'LAST_LOGIN_TIME' [int] = 1259161588

Tip
This information is only available while the connection is opened.

Note that "last login" is configured on Configuration Server through the confserv.cfg file:

[confserv]
...
last-login = true
last-login-synchronization = true

Platform SDK obtains the information using the EventClientRegister message:

2012-08-21 10:05:49,306 [New I/O client worker #4-4] DEBUG ns.protocol.DuplexChannel null -
Handling message: 'EventClientRegistered' (19) attributes:

IATRCFG_SESSIONNUMBER [int] = 22
IATRCFG_CFGSERVERDBID [int] = 99
SATRCFG_PROTOCOL [str] = "CfgProtocol 5.1.3.54"
IATRCFG_EXTERNALAUTH [int] = 0
SATRCFG_PARAMETERS [KvListString] = KVList:

'LAST_LOGIN_PERSON' [int] = 1227
'LAST_LOGIN_TIME' [int] = 1345532749
'LAST_LOGIN_APPLICATION' [str] = "PSDK_CFGSCI"

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 344

IATRCFG_BACKUPCFGSERVERDBID [int] = 0
IATRCFG_UNSOLEVENTNUM [int] = 73770
IATRCFG_CRYPTPASSW [int] = 1
SATRCFG_SCHEMAVERSION [str] = "8.1.100.05"
IATRCFG_REQUESTID [int] = 6
SATRCFG_PROTOCOLEX [str] = "CfgProtocol 5.1.3.77"

There are two methods available in Platform SDK for retrieving last login details:

• protocol.getServerContext().getLastLoginInfo()

• protocol.getServerContext().getCfgLastLogin() (deprecated, not recommended for use)

If these methods return null, then you need to check whether Configuration Server gave the required
info by looking in the debug logs for either Platform SDK or Configuration Server.

.NET

Tip
The appropriate Configuration Server version is required to use this feature, and so is
the correct security configuration. For details, refer to Chapter 11 (Last Logged In
Display) in Genesys 8.0 Security Deployment Guide.

Configuration Server provides last login information during the user authentication (handshake)
procedure, and the Platform SDK Configuration Protocol provides it "as-is" in the form of a
KeyValueCollection:

• protocol.Context.LastLoginInfo

An example of values from the KeyValueCollection could look like:

KVList:
'LAST_LOGIN_PERSON' [int] = 100
'LAST_LOGIN_TIME' [int] = 1259161588

Tip
This information is only available while the connection is opened.

Note that "last login" is configured on Configuration Server through the confserv.cfg file:

[confserv]
...
last-login = true
last-login-synchronization = true

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 345

Platform SDK obtains the information using the EventClientRegister message:

2012-08-21 10:05:49,306 [New I/O client worker #4-4] DEBUG ns.protocol.DuplexChannel null -
Handling message: 'EventClientRegistered' (19) attributes:

IATRCFG_SESSIONNUMBER [int] = 22
IATRCFG_CFGSERVERDBID [int] = 99
SATRCFG_PROTOCOL [str] = "CfgProtocol 5.1.3.54"
IATRCFG_EXTERNALAUTH [int] = 0
SATRCFG_PARAMETERS [KvListString] = KVList:

'LAST_LOGIN_PERSON' [int] = 1227
'LAST_LOGIN_TIME' [int] = 1345532749
'LAST_LOGIN_APPLICATION' [str] = "PSDK_CFGSCI"

IATRCFG_BACKUPCFGSERVERDBID [int] = 0
IATRCFG_UNSOLEVENTNUM [int] = 73770
IATRCFG_CRYPTPASSW [int] = 1
SATRCFG_SCHEMAVERSION [str] = "8.1.100.05"
IATRCFG_REQUESTID [int] = 6
SATRCFG_PROTOCOLEX [str] = "CfgProtocol 5.1.3.77"

There are two properties available in Platform SDK for retrieving last login details, shown below with
related code snippets:

• protocol.Context.LastLoginInfo

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint(_name, _host, _port));
protocol.ClientName = _clientName;
protocol.ClientApplicationType = _clientType;
protocol.UserName = _userName;
protocol.UserPassword = _password;
protocol.Open();
if (protocol.Context.LastLoginInfo!=null)
{

object lastLoginPerson = protocol.Context.LastLoginInfo["LAST_LOGIN_PERSON"];
object lastLoginTime = protocol.Context.LastLoginInfo["LAST_LOGIN_TIME"];
// TODO ... use obtained data ...

}

• protocol.Context.CfgLastLogin (deprecated, not recommended for use)

protocol.ClientName = _clientName;
protocol.ClientApplicationType = _clientType;
protocol.UserName = _userName;
protocol.UserPassword = _password;
protocol.Open();
if (protocol.Context.CfgLastLogin != null)
{

// TODO parse XDocument to obtain data
}

If these methods return null, then you need to check whether Configuration Server gave the required
info by looking in the debug logs for either Platform SDK or Configuration Server.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 346

Using the Configuration Object Model
Application Block

Important
This application block is a reusable production-quality component. It has been
designed using industry best practices and provided with source code so it can be
used "as is," extended, or tailored if you need to. Please see the License Agreement
for details.

The Configuration Object Model Application Block provides developers with a consistent and intuitive
object model for working with Configuration Server objects.

Java

Architecture and Design

The Configuration Platform SDK allows you to work with objects in the Genesys Configuration Layer
by using the interface provided by Configuration Server. Unfortunately, this interface can be difficult
to work with. For example, in order to update or create Configuration Layer objects, you have to use
special “delta” objects that are distinct from the objects used to retrieve information about
Configuration Layer objects.

The Configuration Object Model Application Block provides a consistent and intuitive object model
that hides many of the complexities involved in working with Configuration Layer objects. This object
model is implemented by way of an event subscription/delivery model, which hides key-value details
of the current protocol, and is integrated with the rest of the object model.

The architecture of the Configuration Object Model Application Block consists of three functional
components:

• Configuration Objects
• Configuration Service
• Query Objects
• Cache Objects

These components are shown below.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 347

Configuration Objects
Classes and Structures

The Configuration Object Model Application Block supports two types of configuration objects:

• Classes, which can be retrieved directly from Configuration Server using queries.
• Structures, which only exist as properties of classes, and cannot be retrieved directly from Configuration

Server.

Classes and structures are different in many ways, but in order to determine whether a given object
is a class or a structure, all you need to do is check to see whether the object has a “DBID” property.
Classes have this property, while structures do not.

Classes and structures are also different in the following ways:

• Each structure is a property of another class or structure, and therefore must have a “parent” class.
• Classes can be changed and saved to the Configuration Server and structures can only be saved

through their “parent” classes.
• Clients can subscribe to events on changes in a class, but not in a structure. To retrieve events on

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 348

changes in a structure, clients have to subscribe to changes in its parent class.

Property Types

Both classes and structures have properties. Each property has its own getter and setter methods,
and each property is an instance of one of the following types:

• Simple — A property that is represented by a value type. Configuration Server supports two types of
simple properties - string and integer. For example, the CfgPerson object has FirstName and
LastName properties, both of the string type.

• KV-list — Tree-like properties that are represented by the KeyValueCollection class in the
Configuration Object Model. Examples of this property include userProperties and CfgPerson.

• Structure — A complex property that includes one or more properties. In the Configuration Object
Model, structures are represented by instances of classes that are similar to configuration objects, but
cannot be created directly. For example, in the CfgPerson class, its AgentInfo property contains
simple, kv-list and other property types.

• List of structures — A property that represents more than one structure. In Configuration Object Model,
lists of structures are represented by a generic type IList<structure_type>, so that the collection is
typed, and clients can easily iterate through the collection.

• Links to a single object — In Configuration Server, these properties are stored as DBIDs of external
objects. The Configuration Object Model automatically resolves these DBIDs into the real objects, which
can be manipulated in the same way as the objects directly retrieved from Configuration Server. Links
are initialized at the time of the initial request to one of its properties.

Tip
For each link, there are two ways to set the new value of a link. There is a setter
method of the property, which uses an object reference to set a new value of a link.
There is also a Set...DBID method, which uses an integer DBID value.

• Links to multiple objects — A property that contains more than one link. In the Configuration Object
Model, lists of structures are represented by a generic type IList<class_type>, so that the collection
is typed, and clients can easily iterate through the collection.

Creating Instances

One way to create an instance of an object in the Configuration Object Model is to invoke a
Retrieve... method of a ConfService class. This set of methods returns instances of objects that
already exist in Configuration Server.

To create a new object in Configuration Server, a client must create a new instance of a COM or
"detached" object. The detached object does not correspond to any objects in Configuration Server
until it is saved. The detached object is created using the regular Object-Oriented language object
instantiation. For example, a new detached CfgPerson object is created using the following
construction:

[Java]

CfgPerson person = new CfgPerson(confService);

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 349

An object instance can also be created by using links to external objects. The Component Object
Model creates a new object instance whenever the link is called, or any of the properties of a linked
object are called. For example, you can write:

[Java]

// person has already been retrieved from Configuration Server.
CfgTenant tenant = person.getTenant(); // this is a link to an external object. It is
initialized internally right now
CfgAddress address = tenant.getAddress();

Common Methods

Each configuration class contains the following methods:

• Generic GetProperty(string propertyName) — Retrieves the property value by its name.
• Generic SetProperty(string propertyName) — Sets the new value of the property by its name.
• Save() — Commits all changes previously made to the object to Configuration Server. If the object was

created detached from Configuration Server and has never been saved, a new object is created in
Configuration Server using the RequestCreateObject method. If the object has been saved or has
been retrieved from Configuration Server, a delta-object, which contains all changes to the object, is
formed and sent to Configuration Server by means of the RequestUpdateObject method.

• Delete() — Deletes the object from the Configuration Server Database.
• Refresh() — Retrieves the latest version of the object and refreshes the value of all its properties.

Tip
In this release, all configuration objects are “static,” which means that if the object
changes in the Configuration Server, the instance of a class is not automatically
changed in the Configuration Object Model. Clients must subscribe to the
corresponding event and manually refresh the COM object in order for these changes
to take effect.

Configuration Service

Tip
The IConfService interface was added to COM in release 8.0. All applications should
now use this interface to work with the configuration service instead of the old
ConfService class. This change is an example of how all COM types in the interface
are now referred to by interface; for instance, if a method previously returned
CfgObject it now returns ICfgObject. This is not compatible with existing code, but
upgrading should not be difficult as the new interfaces support the same methods as
the implementing types.

The Configuration Service (IConfService) interface provides services such as retrieval of objects and

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 350

subscription to events from Configuration Server. Each connection to a Configuration Server
(represented by a ConfServerProtocol class of Platform SDK) requires its own instance of the
IConfService interface.

The protocol class should be created and initialized in the client code prior to IConfService
initialization.

The ConfServiceFactory class is used to create the IConfService. This class uses the following
syntax:

[Java]

IConfService service = ConfServiceFactory.CreateConfService(protocol);

Retrieving Objects

Objects can be retrieved from Configuration Service by using one of the following methods:

• RetrieveObject — Accepts a query that returns one object. If multiple objects are returned, an
exception is thrown.

• RetrieveMultipleObjects — Accepts a query that returns one or more objects. A collection of objects
is returned.

Each of the Retrieve... methods can be either specific (by using generic criteria entries, an object
of a specified type is returned) or general (a general object is returned).

Handling Events

The following methods must be called before receiving events from Configuration Server:

1. Register - The application must register its callback by calling the Register method from the
Configuration Service. This method supplies the client’s filter, which enables the client to receive only
requested events.

2. Subscribe - The application must subscribe to events from Configuration Server by calling the
Subscribe method from the Configuration Service. This method provides a notification query object as
a parameter.

The NotificationQuery object determines whether the object (or set of objects) to which the
client wants to subscribe has changed. The NotificationQuery object contains such parameters
as object type, object DBID and tenant DBID.

After calling the Subscribe method, Configuration Server starts sending events to the client. These
events are objects, which contain information such as:

• which object (ID and type) is affected
• the type of event sent to the client
• any additional information

There are three types of events that the client might receive:

• ObjectCreated — A new object has been added to Configuration Server.
• ObjectChanged — Some of the object properties have been modified in Configuration Server.
• ObjectDeleted — The object has been removed from Configuration Server.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 351

Releasing a Configuration Service

Whenever a ConfService instance is no longer needed, the ReleaseConfService method can be
used to remove it from the internal list.

[Java]

ConfServiceFactory.ReleaseConfService(service);

Query Objects
A query object is an instance of a class that contains information required for a successful query to a
Configuration Server. This information includes an object type and its attributes (such as name and
tenant), which are used in the search process.

The inheritance structure of configuration server queries is designed to allow for future expansion.
The CfgQuery object is the base class for all query objects. Other classes extend CfgQuery to provide
more specific functionality for different types of queries - for example, all filter-based queries use the
CfgFilterBasedQuery class. This allows room for future query types (such as XPath) to implemented
in this Application Block.

A list of currently available query types is provided below:

• CfgFilterBasedQuery — Contains mapped attribute name-value pairs, as well as the object type.

A special query class is supplied for each configuration object type, in order to facilitate the process
of making queries to Configuration Server. For each searchable attribute, the query class has a
property that can be set. All of these classes inherit attributes from the CfgQuery object, and can be
supplied as parameters to the Retrieve… methods which are used to perform searches in
Configuration Server.

Cache Objects
The cache functionality is intended to enhance the Configuration Object Model by allowing
configuration objects to be stored locally, thereby minimizing requests to configuration server, as well
as enhancing ease of use by providing automatic synchronization between locally stored objects and
their server-side counterparts.

The cache functionality was designed with the following principles in mind:

• The cache functionality is designed to be extendable with custom implementations of provided
interfaces and not via inheritance.

• The cache component is not designed to replicate the Configuration Server query engine or other
Configuration Server functionality on the client side.

• Caching must be an optional feature. Work with Configuration Server should not be affected if caching is
not used.

Use Cases

Analysis of use cases provides insight into the requirements for applications likely to require
configuration cache functionality. The use cases described in the following table were selected for

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 352

analysis in order to highlight different functional requirements. There are several possible actors
which are referenced in the use cases. The actors are as follows:

• Application - Any application which uses the Configuration Object Model application block
• User - Human (or software) user who may perform actions upon objects in the configuration which are

separate from the Application

Use Case Description Actor Steps

PLACE OBJECT INTO
CACHE

Place a configuration
object into the
configuration cache
(note the object must
have been saved — ie
must have a DBID in
order to exist in the
cache).

Application 1. Application adds
object to the cache

PLACE OBJECT INTO
CACHE ON SAVE

Place a newly created
configuration object into
the configuration cache
when it is saved.

Application

1. Application creates
object

2. Application saves
object

3. Configuration Object
Model Application
Block adds object to
the cache

PLACE OBJECT INTO
CACHE ON RETRIEVE

Allow for automatic
insertion of
configuration objects
into the cache upon
retrieval from
configuration server.

Application

1. Application retrieves
configuration object

2. Configuration Object
Model Application
Block retrieves the
configuration object
from the server

3. Configuration Object
Model Application
Block places the
configuration object
into the cache

4. Configuration Object
Model Application
Block returns the
object to the
application

OBJECT REMOVED IN
CONFIGURATION
SERVER

When configuration
objects are deleted in
the configuration server,
the cache can delete
the local representation
of the object as well.

User
1. User deletes object

in the Configuration
Server

2. Cache removes

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 353

Use Case Description Actor Steps

corresponding local
object upon
receiving delete
notification

3. Cache sends
notification of object
deletion to
Application

SYNCHRONIZE OBJECT
PROPERTIES WITH
CONFIGURATION
SERVER

When an object stored
in the cache is updated
in the Configuration
Server the object must
be updated locally as
well.

User

1. User updates a
configuration object

2. Cache receives
notification about
object update

3. Cache updates the
object based on the
received delta

4. Cache fires event
informing any
subscribers of object
change

FIND OBJECT IN CACHE

The cache must support
the ability to find a
specific configuration
object in the cache
using object DBID and
type as the criteria for
the search.

Application

1. Application retrieves
object from cache.

2. If object is in the
cache, the cache
returns the object.
Otherwise the
application is
notified that the
requested object is
not in the cache.

ACCESS CACHED
OBJECTS

The cache must provide
its full object collection
to the application.

Application

1. Application requests
a complete list of
objects from the
cache.

2. The cache returns a
collection of all
cached objects.

RETRIEVE LINKED
OBJECT FROM CACHE

If caching is turned on,
object links which the
Configuration Object
Model currently resolves
through lazy

Application
1. Application accesses

a property which
requires link
resolution

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 354

Use Case Description Actor Steps

initialization (i.e. if a
property linking to
another object is
accessed, we retrieve
the referred-to object
from configuration
server) must be
resolvable through
cache access.

2. Configuration Object
Model Application
Block retrieves the
linked object from
configuration server
and stores it in the
cache before
returning to the
application

3. Application again
accesses the
property and this
time the
Configuration Object
Model Application
Block retrieves the
object from the
cache

PROVIDE CACHE
TRANSPARENCY ON
RETRIEVE

A cache search should
be performed on
attempt to retrieve an
object from
Configuration Server. If
the requested object is
found in the cache then
the Configuration Object
Model should return the
cached object rather
than accessing
Configuration Server.

1. Application creates
query to retrieve
configuration object

2. Application executes
query using the
Configuration Object
Model

3. Configuration Object
Model Application
Block searches the
cache
• If object present,

return the object
• If object not

present, query
configuration
server for the
object

CACHE SERIALIZATION The cache should
support serialization. Application

1. Application provides
a stream to the
cache

2. The cache serializes
itself into the stream
in an XML format

3. Application restarts
4. Application provides

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 355

Use Case Description Actor Steps

the cache a stream
of cache data in the
same XML format as
in step 2

5. Cache restores itself
6. Cache subscribes for

updates on the
restored objects

Implementation Overview

Two new interfaces for cache management have been added to the Configuration Object Model: the
IConfCache interface and a default cache implementation (DefaultConfCache). Note that the
ConfCache also implements the Subscriber interface from MessageBroker so that the user can
subscribe to notifications from Configuration Server, as discussed in Notification And Delta Handling.

The IConfCache interface provides methods for basic functionality such as adding, updating,
retrieving, and removing objects in the cache. It also includes a Policy property that defines cache
behavior and affects method implementation. (For more details about policies, see Cache Policy).

The DefaultConfCache component provides a default implementation of the IConfCache interface. It
serializes and deserializes cache objects using the XML format described in the XML Format section,
below.

To enable and configure caching functionality, and to specify ConfService policy, there are three
CreateConfService methods available from ConfServiceFactory. The original CreateConfService
method (not shown here) creates a ConfService instance that uses the default policy and does not
use caching.

[Java]

public static IConfService createConfService(Protocol protocol, boolean enableCaching)

This method creates an instance of a Configuration Service based on the specified protocol. If caching
is enabled, the default caching policy will be used. If enableCaching is set to true, caching
functionality will be turned on. If caching is disabled, all policy flags related to caching will be false.

[Java]

public static IConfService createConfService(Protocol protocol,
IConfServicePolicy confServicePolicy, IConfCache cache)

This method creates a configuration service with the specified policy information. The created service
will have caching enabled if a cache object (implementing the IConfCache interface) is passed as a
parameter.

[Java]

public static IConfService createConfService(Protocol protocol,
IConfServicePolicy confServicePolicy, IConfCachePolicy confCachePolicy)

This method creates a configuration service with the specified policy information. The created service

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 356

will have caching enabled by default with the cache using the specified cache policy.

XML Format

The "Cache" node will be the root of the configuration cache XML, while "ConfData" is a child of the
"Cache" node. The ConfData node contains a collection of XML representations for each configuration
object in the cache. The XML format of each object is identical to that which is returned by the ToXml
method supported by each the Configuration Object Model configuration object.

The "CacheConfiguration" element is a child of the "Cache" node. There can only be one instance of
this node and it contains all cache configuration parameters, as follows:

• CONFIGURATIONSERVER NODE — There can be 1..n instances of this element. Each one will represent a
configuration server for which the cache is applicable (a cache can be applicable to multiple
configuration servers if they are working with the same database as in the case of a primary and
backup configuration server pair). Each ConfigurationServer element will have a URI attribute
specifying the unique URI identifying the Configuration Server, as well as a Name attribute specifying
the name associated with the endpoint.

The example provided below shows a cache that is applicable for the configuration server at
"server:2020" with some policy details specified. There are two objects in the cache for this example:
a CfgDN and a CfgService object.

[XML]

<Cache>
<CacheConfiguration>

<ConfigurationServer name="serverName" uri="tcp://server:2020"/>
</CacheConfiguration>
<ConfData>

<CfgDN>
<DBID value="267" />
<switchDBID value="111" />
<tenantDBID value="1" />
<type value="3" />
<number value="1111" />
<loginFlag value="1" />
<registerAll value="2" />
<groupDBID value="0" />
<trunks value="0" />
<routeType value="1" />
<state value="1" />
<name value="DNAlias" />
<useOverride value="2" />
<switchSpecificType value="1" />
<siteDBID value="0" />
<contractDBID value="0" />
<accessNumbers />
<userProperties />

</CfgDN>

<CfgService>
<DBID value="102" />
<name value="Solution1" />
<type value="2" />
<state value="1" />
<solutionType value="1" />
<components>

<CfgSolutionComponent>

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 357

<startupPriority value="3" />
<isOptional value="2" />
<appDBID value="153" />

</CfgSolutionComponent>
</components>
<SCSDBID value="102" />
<assignedTenantDBID value="101" />
<version value="7.6.000.00" />
<startupType value="2" />
<userProperties />
<componentDefinitions />
<resources />

</CfgService>
</ConfData>

</Cache>

Cache Policy

The configuration cache can be assigned a policy represented by a Policy interface. A default
implementation of the interface will be provided in the DefaultConfCachePolicy class.

The IConfCache interface interprets the policy as follows:

1. CacheOnCreate — When an object is created in the configuration server, the policy will be checked with
the created object as the parameter. If the method returns true, the object will be added to the cache, if
it is false, the object will not be added. Default implementation will always return false.

2. RemoveOnDelete — When an object is deleted in the configuration server, the policy will be checked
with the deleted object as the parameter. If the method returns true, the object will be deleted in the
cache, if it is false, the notification will be ignored. Default implementation will always return true.

3. TrackUpdates — When an object is updated in the configuration server, the policy will be checked with
the current version of the object as the parameter. If the method returns true, the object will be
updated with the received delta, if it is false, the notification will be ignored. Default implementation
will always return true.

4. ReturnCopies — Determines whether the cache should return copies of objects when they are retrieved
from the cache, or the original, cached versions. False by default.

IConfServicePolicy Interface

The IConfServicePolicy interface can be used to define the policy settings for the ConfService.
Two default implementations are available:

1. DefaultConfServicePolicy contains the settings for a non-caching configuration service. That is, all of
the cache-related policy flags will always return false.

2. CachingConfServicePolicy defines the default behavior for a configuration service with caching
enabled. (Note that when referring to the "default" value below, we will be referring to this
implementation.)

The policy interface settings are interpreted as follows:

• AttemptLinkResolutionThroughCache — Whenever a link resolution attempt is made, this policy will be
checked for the type of object the link refers to. If this method returns true, the link resolution attempt
will first be made through the cache. If the method returns false, or if the object has not been found in
the cache, the server will queried. Default value is always true.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 358

• CacheOnRetrieve — This method will be called for each object retrieved from the configuration. If the
return value is "true" the object will be added to the cache. Default value is always true.

• CacheOnSave — This method will be called for each object that is being saved. If the return value is true,
the object will be added to the cache. If the object is already in the cache, it will not be overwritten.
Default value is always true.

• ValidateBeforeSave — This is a property from the ConfService which will be moved to the policy
interface and is not related to caching. It is used to indicate whether property values are checked for
valid values against the schema before a save attempt is made. Default value is true.

• QueryCacheOnRetrieve — This method will be called every time a retrieve operation is performed using
a query. The ConfService will first check the cache for the existence of the requested configuration
object. If the object exists, it will be returned and no configuration server request will be made. If there
are no values returned, the ConfService will query the configuration server (see Query Engine).
Default value is always false.

• QueryCacheOnRetrieveMultiple — This method will be called every time a retrieve multiple operation
is performed. The ConfService will first execute the query against cache. If the returned object count
is greater than 0 the found object collection will be returned and no configuration server request will be
made. If there are no values returned, the ConfService will query the configuration server (see Query
Engine). Default value is always false.

Note that the RetrieveMultiple operation is NOT implemented in the default query engine, so
providing a policy where this method returns true will require a new query engine implementation.

Cache Extendability

Consistent with the design principles outlined above, the configuration cache is extendable via
custom implementations of provided interfaces. The two areas of the cache which can be extended
are the cache storage and the cache query engine.

Cache Storage

The storage interface defines the method by which objects are stored in the cache. When an instance
of an implementing object is provided to the cache, the cache will store all cached objects in the
storage component.

The default storage implementation stores cached objects using the object type and DBID as keys.
Note that this means that objects in the cache are assumed to be from one configuration database.
The default implementation is also thread safe using a reader/writer lock which allows for multiple
concurrent readers and one writer. The storage methods are as follows:

• Add — Adds a new object to the storage. If object already exists in the storage, the default
implementation thrown an exception.

• Update — Overwrites an existing object in the storage. If the object is not found in the storage, the
default implementation creates a new version of the object.

• Remove — Removes an object from the storage.
• Retrieve — Retrieves an enumerable list of all objects in the storage (filtered by type), and possibly

influenced by an optional helper parameter. Note that the helper parameter is not meant to provide
querying logic — that should be done in the query engine. Because the query engine is to some degree
dependent on the storage implementation, the helper parameter allows for some flexibility in the way
stored objects are enumerated for the query engine. The default implementation can take a

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 359

CfgObjectType as a helper parameter.
• Clear — Removes all objects in the storage.

Query Engine

The query engine provides the ability to define the method by which objects are located in the cache.

Depending on the IConfService policy, Retrieve requests as well as link resolution can first be
attempted through the cache. If the requested object is found in the cache, then that cached object is
returned instead of sending a request to Configuration Server. If the object is not present in the
cache, a request to Configuration Server is made.

A user-definable query engine module exists inside the cache to achieve this functionality. A query
engine must implement the IConfCacheQueryEngine interface, which provides methods to retrieve
objects (either individually, or as a list) and to test a query and determine if it can be executed.

If enabled by the policy, IConfService will attempt a query to its cache using the cache's query
engine interface. If a result is returned, the IConfService will not query the Configuration Server. By
following this contract, the Configuration Object Model user is then able to create a custom
implementation of the IConfCacheQueryEngine with any extended search capabilities which may be
missing from the simple default implementation.

Two implementations of the IConfCacheQueryEngine interface are provided in the Configuration
Object Model, as described below:

• DEFAULTCONFCACHEQUERYENGINE CLASS - The DefaultConfCacheQueryEngine class is a default
implementation of the IConfCacheQueryEngine interface.

• COMPOSITECONFCACHEQUERYENGINE CLASS - This class is a more advanced implementation of the
query engine which allows child query engine modules to be registered in order to interpret different
types of queries. It does not have a default query engine implementation, only the mechanism for
working with multiple child query engines.

Notification and Delta Handling

The default configuration cache will implement the Subscriber<ConfEvent> interface which will
allow the cache to be subscribed to receive configuration events. When a cache instance is
associated with a Configuration Service, it will automatically be subscribed for configuration events
from that service (note that if a custom cache implementation also implements this interface it will
be subscribed for events as well). The way the cache is updated based on these notifications is
determined by the cache policy.

In addition, a new filter class will be added in order to allow the subscriber to filter the cache events.
The ConfCacheFilter will implement the MessageBroker's Predicate interface, allowing for the filter
to be passed during registration for events via SubscriptionService. The ConfCacheFilter's
properties will specify the parameters by which the events will be filtered. Initially, the supported
parameters will be object type, object DBID, and update type, allowing the user to filter events by
one or a combination of these parameters assuming an AND relationship between the parameters
specified.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 360

Using the Application Block

Installing the Configuration Object Model Application Block
Before you install the Configuration Object Model Application Block, it is important to review the
software requirements established in the Genesys Supported Operating Environment Reference
Manual.

Building the Configuration Object Model Application Block

Tip
Starting with release 8.5.0, the common interfaces for COM Application Block and
Message Broker code have been moved to an individual commonsappblock.jar file.

To build the Configuration Object Model Application Block:

1. Open the <Platform SDK Folder>\applicationblocks\com folder.
2. Run either build.bat or build.sh, depending on your platform.

This will create the commonsappblock.jar file, located within the <Platform SDK
Folder>\applicationblocks\com\dist\lib directory.

Using the QuickStart Application
The easiest way to start using the Configuration Object Model Application Block is to use the bundled
QuickStart application. This application ships in the same folder as the application block.

Configuring the QuickStart Application

In order to use the QuickStart application, you will need to change some lines of code in the
quickstart.properties file, located in the <Platform SDK Folder>\applicationblocks\com\
quickstart directory. Change the following lines to point to your Configuration Server, and then save
the updated file:

ConfServerUri = tcp://:

ConfServerUser =
ConfServerPassword =

ConfServerClientName = default
ConfServerClientType = CFGSCE

Building the QuickStart Application

1. Open the <Platform SDK Folder>\applicationblocks\com\quickstart folder.
2. Run either build.bat or build.sh, depending on your platform.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 361

https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK

Running the QuickStart Application

1. Open a Command Prompt or Terminal window.
2. Navigate to the <Platform SDK Folder>\applicationblocks\com\quickstart directory.
3. Run either quickstart.bat or quickstart.sh, depending on your platform.

How to Properly Initialize the ConfService Instance

To work with Configuration Server, the ConfService instance needs ConfServerProtocol.

Platform SDK protocol connections allow users to manage connections, setup custom asynchronus
MessageHandler objects, substitute message receivers, and subscribe for protocol messages and
channel events. So, to maintain Platform SDK flexibility, the Configuration Object Model Application
Block does not manage a ConfServerProtocol connection inside of the ConfService - this must be
done by the user. Instead users may create a simple instance and initialize it with
WarmStandbyService.

It is important to note that asycnhronous protocol events may be configured for delivery to a single
destination, with only one MessageHandler or MessageReceiver for one protocol instance. Starting
from Platform SDK release 8.1.1, ConfService may be initialized without use of legacy Message
Broker Application Block. Starting from version 8.5, this is the only way to create ConfService.

If your application needs to receive asynchronous protocol messages from Configuration Server on
the protocol instance where ConfService is initialized, that can be done using
ConfService.setUserMessageHandler(messageHandler).

Protocol Initialization
A ConfServerProtocol instance is required for the creation of ConfService. It should be initialized
with an Endpoint and handshake properties, but without setting either
confServerProtocol.setMessageHandler() or confServerProtocol.setReceiver().

// Initialize ConfService:
PropertyConfiguration config;
ConfServerProtocol confServerProtocol;
IConfService confService;

config = new PropertyConfiguration();
config.setUseAddp(true);
config.setAddpClientTimeout(15);

confServerProtocol = new ConfServerProtocol(new Endpoint("ConfigServer", csHost, csPort,
config));
confServerProtocol.setUserName(userName);
confServerProtocol.setUserPassword(password);
confServerProtocol.setClientName(clientName);
confServerProtocol.setClientApplicationType(clientType.ordinal());

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 362

Important
Do not open the protocol before ConfService is created. ConfService sets its own
internal MessageHandler, and this operation can only be done on a closed channel.

ConfService Initialization
confService = ConfServiceFactory.createConfService(confServerProtocol);
confServerProtocol.open();

ConfService Shutdown
confServerProtocol.close();
ConfServiceFactory.releaseConfService(confService);
confService = null;

Application Components Usage Notes
Older releases of ProtocolManagementService do not support using ConfService without the
Message Broker service - an exception raised when users try to create the ConfService object on a
protocol instance initialized by the Protocol Manager Application Block. To migrate away from Protocol
Manager Application Block usage, we recommend creating and configuring ConfServerProtocol
without Protocol Manager Application Block usage, as shown above.

MessageHandler is not compatible with the deprecated MessageReceiver; it is only possible to use
one of these components on a protocol instance. Specific to Platform SDK for Java is the limitation
that one protocol instance may have only one instance of MessageHandler. So, if an application uses
a custom MessageHandler on a protocol used for ConfService, then only one handler will be able to
receive asynchronous protocol events.

If application overwrites the ConfService object after creation, then that service will be unable to
receive Configuration Server notifications or to perform multiple objects reading operations - a
timeout exception will occur. If there is a need to get those protocol messages separately from
ConfService logic, it is possible to initialize custom MessageHandler with
confService.setUserMessageHandler(messageHandler).

Notes for Previous Releases of Platform SDK
'''[+] Platform SDK 8.1.0 Specific Notes'''
Platform SDK 8.1.0 included some improvements to the Message Broker Application Block.

There was a new EventReceivingBrokerService class that implements the receiver interface, which
can be used as an external receiver for Platform SDK protocols. When this class is in use, protocol
messages will be handled a little bit faster (compared to the older Message Broker service) with no
redundant intermediate queue, and there is no additional thread sleeping/waiting.

EventReceivingBrokerService broker = new EventReceivingBrokerService();
broker.setInvoker(new SingleThreadInvoker("COMBrokerService-" + cfgsrvEndpointName));

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 363

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheCOMAB#protoinit

ConfServerProtocol protocol = new ConfServerProtocol(endpoint);
protocol.setReceiver(broker);
protocol.setUserName(...);
protocol.set...();
protocol.open();

IConfService confService = ConfServiceFactory.createConfService(protocol, broker);

To shutdown the Configuration Object Model Application Block, you can use the following code:

protocol.close();
ConfServiceFactory.releaseConfService(confService);

'''[+] Platform SDK 8.0, 7.6 Specific Notes'''
In earlier releases of Platform SDK, the initialization logic could look like this:

ConfServerProtocol protocol = new ConfServerProtocol(endpoint);
protocol.setUserName(...);
protocol.set...();
protocol.open();

EventBrokerService broker = BrokerServiceFactory.CreateEventBroker(protocol);
IConfService confService = ConfServiceFactory.createConfService(protocol, broker);

If the protocol has an external receiver initialized (for example, with Protocol Manager usage), then
the EventBrokerService should be initialized on that receiver instead of the protocol itself:

EventBrokerService broker =
BrokerServiceFactory.CreateEventBroker(protocolManager.getReceiver());

To shutdown the Configuration Object Model Application Block, you can use the following code:

protocol.close();
broker.dispose();
ConfServiceFactory.releaseConfService(confService);

Important
Legacy EventBrokerService objects need to be disposed on shutdown because they
include an internal reading thread which should be stopped.

Editing Capacity Rules

The Configuration Object Model Application Block includes the CapacityRuleHelper class (introduced
in release 8.1.4) which allows you to edit and update Capacity Rules. This helper class presents an
XML representation for CfgScript objects of type CfgScriptType.CFGCapacityRule, which can be
updated and saved to edit existing Capacity Rules.

An example of how to edit capacity rules is provided below.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 364

IConfService service = (IConfService)ConfServiceFactory.createConfService(protocol);
service.getProtocol().open();
CfgScriptQuery query = new CfgScriptQuery(service);
CfgScript script = (CfgScript)service.retrieveObject(query);

An instance of the CapacityRuleHelper class can now be created with static method create. This
method validates the input script object and can throw an exception: ConfigException if the script
has an invalid format, or IllegalArgumentException if the script is null or the script type is not
valid. Once the instance is created, getXMLPresentation() allows you access to Capacity Rules.

CapacityRuleHelper helper = CapacityRuleHelper.create(script);
Document doc = helper.getXMLPresentation();
// edit xml document here

The setXMLPresentation() method allows you to save changes to the XML into the
CapacityRuleHelper class instance. Once changes have been made to the XML document, apply
your changes using the following code:

helper.setXMLPresentation(doc);
helper.getCfgScript().save();
service.getProtocol().close();
ConfServiceFactory.releaseConfService(service);

.NET

Architecture and Design

The Configuration Object Model Application Block provides a consistent and intuitive object model for
working with Configuration Server objects, as well as a straightforward object model for queries with
different filters. This Application Block hides the complexities of object creation and changing by
means of "delta" objects. It also creates an event subscription/delivery model, which hides key-value
details of the current protocol, and is integrated with the rest of the object model.

The architecture of the Configuration Object Model Application Block consists of three functional
components:

• Configuration Objects
• Configuration Service
• Query Objects
• Cache Objects

These components are shown in the figure below.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 365

Configuration Objects
Classes and Structures

There are two types of configuration objects are supported by the Configuration Object Model
Application Block:

• Classes, which can be retrieved directly from Configuration Server using queries.
• Structures, which only exist as properties of classes, and cannot be retrieved directly from Configuration

Server.

The main differences between classes and structures are as follows:

1. Each structure is a property of another class or structure, and therefore must have a "parent" class.
2. Classes can be changed and saved to the Configuration Server and structures can only be saved

through their "parent" classes.
3. Clients can subscribe to events on changes in a class, but not in a structure. To retrieve events on

changes in a structure, clients have to subscribe to changes in a parent class.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 366

Property Types

Both classes and structures have properties. For each property, the object has getter and setter
methods which retrieve the value of the property and set a new value correspondingly. However,
some properties are read-only and therefore will only have a getter method. For each object, its
properties can be one of the following types:

• Simple — A property that is represented by a value type. Configuration Server supports two types of
simple properties - string and integer. For example, the CfgPerson object has FirstName and
LastName properties, both of the string type.

• KV-list — Tree-like properties that are represented by the KeyValueCollection class in the
Configuration Object Model. Examples of this property include userProperties of CfgPerson.

• Structure — A complex property that includes one or more properties. In the Configuration Object
Model, structures are represented by instances of classes that are similar to configuration objects, but
cannot be created directly. For example, in the CfgPerson class, its AgentInfo property contains
simple, kv-list and other property types.

• List of structures — A property that represents more than one structure. In Configuration Object Model,
lists of structures are represented by a generic type IList<structure_type>, so that the collection is
typed, and clients can easily iterate through the collection.

• Links to a single object — In Configuration Server, these properties are stored as DBIDs of external
objects. The Configuration Object Model automatically resolves these DBIDs into the real objects, which
can be manipulated in the same way as the objects directly retrieved from Configuration Server. Links
are initialized at the time of the initial request to one of its properties.

Tip
For each link, there are two ways to set the new value of a link. There is a setter
method of the property, which uses an object reference to set a new value of a link.
There is also a Set DBID method, which uses an integer DBID value.

• Links to multiple objects — A property that contains more than one link. In the Configuration Object
Model, lists of structures are represented by a generic type IList<class_type>, so that the collection
is typed, and clients can easily iterate through the collection.

Creating Instances

One way to create an instance of an object in the Configuration Object Model is to invoke one of the
Retrieve methods of the ConfService class. This set of methods returns instances of objects that
already exist in Configuration Server.

To create a new object in Configuration Server, a client must create a new instance of a COM or
"detached" object. The detached object does not correspond to any objects in Configuration Server
until it is saved. The detached object is created using the regular object-oriented language object
instantiation. For example, a new detached CfgPerson object is created using the following
construction:

[C#]

CfgPerson person = new CfgPerson(confService);

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 367

An object instance can also be created by using links to external objects. The Component Object
Model creates a new object instance whenever the link is called, or any of the properties of a linked
object are called. For example, you can write:

[C#]

// Person has already been retrieved from Configuration Server.
CfgTenant tenant = person.Tenant;
// This is a link to an external object. It is initialized internally right now...
CfgAddress address = tenant.Address;

Common Methods

Each configuration class contains the following methods:

• Generic GetProperty(string propertyName) — Retrieves the property value by its name.
• Generic SetProperty(string propertyName) — Sets the new value of the property by its name.
• Save() — Commits all changes previously made to the object to Configuration Server. If the object was

created detached from Configuration Server and has never been saved, a new object is created in
Configuration Server using the RequestCreateObject method. If the object has been saved or has
been retrieved from Configuration Server, a delta-object, which contains all changes to the object, is
formed and sent to Configuration Server by means of the RequestUpdateObject method.

• Delete() — Deletes the object from the Configuration Server Database.
• Refresh() — Retrieves the latest version of the object and refreshes the value of all its properties.

Tip
In this release, all configuration objects are "static," which means that if the object
changes in the Configuration Server, the instance of a class is not automatically
changed in the Configuration Object Model. Clients must subscribe to the
corresponding event and manually refresh the COM object in order for these changes
to take effect.

Configuration Service

Important
The IConfService interface was added to COM in release 8.0. All applications should
now use this interface to work with the configuration service instead of the old
ConfService class. This change is an example of how all COM types in the interface
are now referred to by interface; for instance, if a method previously returned
CfgObject it now returns ICfgObject. This is not compatible with existing code, but
upgrading should not be difficult as the new interfaces support the same methods as
the implementing types.

The Configuration Service (IConfService) interface provides services such as retrieval of objects and

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 368

subscription to events from Configuration Server. Each connection to a Configuration Server
(represented by a ConfServerProtocol class of Platform SDK) requires its own instance of the
IConfService interface.

The protocol class should be created and initialized in the client code prior to IConfService
initialization.

The ConfServiceFactory class is used to create the IConfService. This class uses the following
syntax:

[C#]

IConfService service = ConfServiceFactory.CreateConfService(protocol);

Retrieving Objects

Objects can be retrieved from Configuration Service by using one of the following methods:

• RetrieveObject — Accepts a query that returns one object. If multiple objects are returned, an
exception is thrown.

• RetrieveMultipleObjects — Accepts a query that returns one or more objects. A collection of objects
is returned.

Each of the Retrieve methods can be can be strongly typed (with use of generics, an object of a
specified type is returned) or general (a general object is returned).

Handling Events

The following methods must be called before receiving events from Configuration Server:

1. Register

The application must register its callback by calling the Register method from the Configuration
Service. This method supplies the client's filter, which enables the client to receive only requested
events.

2. Subscribe

The application must subscribe to events from Configuration Server by calling the Subscribe method
from the Configuration Service. This method provides a notification query object as a parameter.

The NotificationQuery object determines whether the object (or set of objects) to which the client
wants to subscribe has changed. The NotificationQuery object contains such parameters as object
type, object DBID and tenant DBID.

After calling the Subscribe method, Configuration Server starts sending events to the client. These
events are objects, which contain information such as:

• which object (ID and type) is affected
• the type of event sent to the client
• any additional information

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 369

There are three types of events that the client might receive:

• ObjectCreated — A new object has been added to Configuration Server.
• ObjectChanged — Some of the object properties have been modified in Configuration Server.
• ObjectDeleted — The object has been removed from Configuration Server.

Logging Messages

Configuration Object Model Application Block supports logging through the standard Platform SDK
logging interfaces. The IConfService interface inherits the EnableLogging method that provides the
ability to log messages through the provided ILogger interface.

Releasing a Configuration Service

Whenever a ConfService instance is no longer needed, the ReleaseConfService method can be
used to remove it from the internal list.

[C#]

ConfServiceFactory.ReleaseConfService(service);

Query Objects
A query object is an instance of a class that contains information required for a successful query to a
Configuration Server. This information includes an object type and its attributes (such as name and
tenant), which are used in the search process.

The inheritance structure of configuration server queries is designed to allow for future expansion.
The CfgQuery object is the base class for all query objects. Other classes extend CfgQuery to provide
more specific functionality for different types of queries - for example, all filter-based queries use the
CfgFilterBasedQuery class. This allows room for future query types (such as XPath) to be
implemented in this Application Block.

A list of currently available query types is provided below:

• CfgFilterBasedQuery — Contains mapped attribute name-value pairs, as well as the object type.

A special query class is supplied for each configuration object type, in order to facilitate the process
of making queries to Configuration Server. For each searchable attribute, the query class has a
property that can be set. All of these classes inherit attributes from the CfgQuery object, and can be
supplied as parameters to the Retrieve methods which are used to perform searches in
Configuration Server.

Cache Objects
The cache functionality is intended to enhance the Configuration Object Model by allowing
configuration objects to be stored locally, thereby minimizing requests to configuration server, as well
as enhancing ease of use by providing automatic synchronization between locally stored objects and
their server-side counterparts.

The cache functionality was designed with the following principles in mind:

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 370

• The cache functionality is designed to be extendable with custom implementations of provided
interfaces and not via inheritance.

• The cache component is not designed to replicate the Configuration Server query engine or other
Configuration Server functionality on the client side.

• Caching must be an optional feature. Work with Configuration Server should not be affected if caching is
not used.

Use Cases

Analysis of use cases provides insight into the requirements for applications likely to require
configuration cache functionality. The use cases described in the following table were selected for
analysis in order to highlight different functional requirements. There are several possible actors
which are referenced in the use cases. The actors are as follows:

• Application - Any application which uses the Configuration Object Model application block
• User - Human (or software) user who may perform actions upon objects in the configuration which are

separate from the Application

Use Case Description Actor Steps

PLACE OBJECT INTO
CACHE

Place a configuration
object into the
configuration cache
(note the object must
have been saved — ie
must have a DBID in
order to exist in the
cache).

Application 1. Application adds
object to the cache

PLACE OBJECT INTO
CACHE ON SAVE

Place a newly created
configuration object into
the configuration cache
when it is saved.

Application

1. Application creates
object

2. Application saves
object

3. Configuration Object
Model Application
Block adds object to
the cache

PLACE OBJECT INTO
CACHE ON RETRIEVE

Allow for automatic
insertion of
configuration objects
into the cache upon
retrieval from
configuration server.

Application

1. Application retrieves
configuration object

2. Configuration Object
Model Application
Block retrieves the
configuration object
from the server

3. Configuration Object
Model Application
Block places the
configuration object

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 371

Use Case Description Actor Steps

into the cache
4. Configuration Object

Model Application
Block returns the
object to the
application

OBJECT REMOVED IN
CONFIGURATION
SERVER

When configuration
objects are deleted in
the configuration server,
the cache can delete
the local representation
of the object as well.

User

1. User deletes object
in the Configuration
Server

2. Cache removes
corresponding local
object upon
receiving delete
notification

3. Cache sends
notification of object
deletion to
Application

SYNCHRONIZE OBJECT
PROPERTIES WITH
CONFIGURATION
SERVER

When an object stored
in the cache is updated
in the Configuration
Server the object must
be updated locally as
well.

User

1. User updates a
configuration object

2. Cache receives
notification about
object update

3. Cache updates the
object based on the
received delta

4. Cache fires event
informing any
subscribers of object
change

FIND OBJECT IN CACHE

The cache must support
the ability to find a
specific configuration
object in the cache
using object DBID and
type as the criteria for
the search.

Application

1. Application retrieves
object from cache.

2. If object is in the
cache, the cache
returns the object.
Otherwise the
application is
notified that the
requested object is
not in the cache.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 372

Use Case Description Actor Steps

ACCESS CACHED
OBJECTS

The cache must provide
its full object collection
to the application.

Application

1. Application requests
a complete list of
objects from the
cache.

2. The cache returns a
collection of all
cached objects.

RETRIEVE LINKED
OBJECT FROM CACHE

If caching is turned on,
object links which the
Configuration Object
Model currently resolves
through lazy
initialization (i.e. if a
property linking to
another object is
accessed, we retrieve
the referred-to object
from configuration
server) must be
resolvable through
cache access.

Application

1. Application accesses
a property which
requires link
resolution

2. Configuration Object
Model Application
Block retrieves the
linked object from
configuration server
and stores it in the
cache before
returning to the
application

3. Application again
accesses the
property and this
time the
Configuration Object
Model Application
Block retrieves the
object from the
cache

PROVIDE CACHE
TRANSPARENCY ON
RETRIEVE

A cache search should
be performed on
attempt to retrieve an
object from
Configuration Server. If
the requested object is
found in the cache then
the Configuration Object
Model should return the
cached object rather
than accessing
Configuration Server.

1. Application creates
query to retrieve
configuration object

2. Application executes
query using the
Configuration Object
Model

3. Configuration Object
Model Application
Block searches the
cache
• If object present,

return the object
• If object not

present, query
configuration

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 373

Use Case Description Actor Steps

server for the
object

CACHE SERIALIZATION The cache should
support serialization. Application

1. Application provides
a stream to the
cache

2. The cache serializes
itself into the stream
in an XML format

3. Application restarts
4. Application provides

the cache a stream
of cache data in the
same XML format as
in step 2

5. Cache restores itself
6. Cache subscribes for

updates on the
restored objects

Implementation Overview

Two new interfaces for cache management have been added to the Configuration Object Model: the
IConfCache interface and a default cache implementation (DefaultConfCache). Note that the
ConfCache also implements the ISubscriber interface from MessageBroker. The cache implements
ISubscriber in order to allow the user to subscribe to notifications from Configuration Server, as
discussed in Notification And Delta Handling.

The IConfCache interface provides methods for basic functionality such as adding, updating,
retrieving, and removing objects in the cache. It also includes a Policy property that defines cache
behavior and affects method implementation. (For more details about policies, see Cache Policy).

The DefaultConfCache component provides a default implementation of the IConfCache interface. It
serializes and deserializes cache objects using the XML format described in the XML Format section,
below.

To enable and configure caching functionality, and to specify ConfService policy, there are three
CreateConfService methods available from ConfServiceFactory. The original CreateConfService
method (not shown here) creates a ConfService instance that uses the default policy and does not
use caching.

[C#]

public static IConfService CreateConfService(IProtocol protocol, bool enableCaching)

This method creates an instance of a Configuration Service based on the specified protocol. If caching
is enabled, the default caching policy will be used. If enableCaching is set to true, caching

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 374

functionality will be turned on. If caching is disabled, all policy flags related to caching will be false.

[C#]

public static IConfService CreateConfService(IProtocol protocol,
IConfServicePolicy confServicePolicy, IConfCache cache)

This method creates a configuration service with the specified policy information. The created service
will have caching enabled if a cache object (implementing the IConfCache interface) is passed as a
parameter.

[C#]

public static IConfService CreateConfService(IProtocol protocol,
IConfServicePolicy confServicePolicy, IConfCachePolicy confCachePolicy)

This method creates a configuration service with the specified policy information. The created service
will have caching enabled by default with the cache using the specified cache policy.

XML Format

The "Cache" node will be the root of the configuration cache XML, while "ConfData" is a child of the
"Cache" node. The ConfData node contains a collection of XML representations for each configuration
object in the cache. The XML format of each object is identical to that which is returned by the ToXml
method supported by each the Configuration Object Model configuration object.

The "CacheConfiguration" element is a child of the "Cache" node. There can only be one instance of
this node and it contains all cache configuration parameters, as follows:

• CONFIGURATIONSERVER NODE – There can be 1..n instances of this element. Each one will represent a
configuration server for which the cache is applicable (a cache can be applicable to multiple
configuration servers if they are working with the same database as in the case of a primary and
backup configuration server pair). Each ConfigurationServer element will have a URI attribute
specifying the unique URI identifying the Configuration Server, as well as a Name attribute specifying
the name associated with the endpoint.

The example provided below shows a cache that is applicable for the configuration server at
"server:2020" with some policy details specified. There are two objects in the cache for this example:
a CfgDN and a CfgService object.

[XML]

<Cache>
<CacheConfiguration>

<ConfigurationServer name="serverName" uri="tcp://server:2020"/>
</CacheConfiguration>

<ConfData>
<CfgDN>

<DBID value="267" />
<switchDBID value="111" />
<tenantDBID value="1" />
<type value="3" />
<number value="1111" />
<loginFlag value="1" />
<registerAll value="2" />
<groupDBID value="0" />
<trunks value="0" />

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 375

<routeType value="1" />
<state value="1" />
<name value="DNAlias" />
<useOverride value="2" />
<switchSpecificType value="1" />
<siteDBID value="0" />
<contractDBID value="0" />
<accessNumbers />
<userProperties />

</CfgDN>

<CfgService>
<DBID value="102" />
<name value="Solution1" />
<type value="2" />
<state value="1" />
<solutionType value="1" />
<components>

<CfgSolutionComponent>
<startupPriority value="3" />
<isOptional value="2" />
<appDBID value="153" />

</CfgSolutionComponent>
</components>
<SCSDBID value="102" />
<assignedTenantDBID value="101" />
<version value="7.6.000.00" />
<startupType value="2" />
<userProperties />
<componentDefinitions />
<resources />

</CfgService>
</ConfData>

</Cache>

Cache Policy

The configuration cache can be assigned a policy represented by a Policy interface. A default
implementation of the interface will be provided in the DefaultConfCachePolicy class.

The IConfCache interface will interpret the policy as follows:

1. CacheOnCreate – When an object is created in the configuration server, the policy will be checked with
the created object as the parameter. If the method returns true, the object will be added to the cache, if
it is false, the object will not be added. Default implementation will always return false.

2. RemoveOnDelete – When an object is deleted in the configuration server, the policy will be checked with
the deleted object as the parameter. If the method returns true, the object will be deleted in the cache,
if it is false, the notification will be ignored. Default implementation will always return true.

3. TrackUpdates – When an object is updated in the configuration server, the policy will be checked with
the current version of the object as the parameter. If the method returns true, the object will be
updated with the received delta, if it is false, the notification will be ignored. Default implementation
will always return true.

4. ReturnCopies – Determines whether the cache should return copies of objects when they are retrieved
from the cache, or the original, cached versions. False by default.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 376

IConfServicePolicy Interface

The IConfServicePolicy interface can be used to define the policy settings for the ConfService.
Two default implementations are available:

1. DefaultConfServicePolicy contains the settings for a non-caching configuration service. That is, all of
the cache-related policy flags will always return false.

2. CachingConfServicePolicy defines the default behavior for a configuration service with caching
enabled. (Note that when referring to the "default" value below, we will be referring to this
implementation.)

The policy interface settings are interpreted as follows:

• AttemptLinkResolutionThroughCache – Whenever a link resolution attempt is made, this policy will be
checked for the type of object the link refers to. If this method returns true, the link resolution attempt
will first be made through the cache. If the method returns false, or if the object has not been found in
the cache, the server will queried. Default value is always true.

• CacheOnRetrieve – This method will be called for each object retrieved from the configuration. If the
return value is "true" the object will be added to the cache. Default value is always true.

• CacheOnSave – This method will be called for each object that is being saved. If the return value is true,
the object will be added to the cache. If the object is already in the cache, it will not be overwritten.
Default value is always true.

• ValidateBeforeSave – This is a property from the ConfService which will be moved to the policy
interface and is not related to caching. It is used to indicate whether property values are checked for
valid values against the schema before a save attempt is made. Default value is true.

• QueryCacheOnRetrieve – This method will be called every time a retrieve operation is performed using
a query. The ConfService will first check the cache for the existence of the requested configuration
object. If the object exists, it will be returned and no configuration server request will be made. If there
are no values returned, the ConfService will query the configuration server (see Query Engine).
Default value is always false.

• QueryCacheOnRetrieveMultiple – This method will be called every time a retrieve multiple operation
is performed. The ConfService will first execute the query against cache. If the returned object count is
greater than 0 the found object collection will be returned and no configuration server request will be
made. If there are no values returned, the ConfService will query the configuration server (see Query
Engine). Default value is always false.

Note that the RetrieveMultiple operation is NOT implemented in the default query engine, so
providing a policy where this method returns true will require a new query engine implementation.

Cache Extendability

Consistent with the design principles outlined above, the configuration cache is extendable via
custom implementations of provided interfaces. The two areas of the cache which can be extended
are the cache storage and the cache query engine.

Cache Storage

The storage interface defines the method by which objects are stored in the cache. When an instance
of an implementing object is provided to the cache, the cache will store all cached objects in the
storage component.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 377

The default storage implementation stores cached objects using the object type and DBID as keys.
Note that this means that objects in the cache are assumed to be from one configuration database.
The default implementation is also thread safe using a reader/writer lock which allows for multiple
concurrent readers and one writer. The storage methods are as follows:

• Add – Adds a new object to the storage. If object already exists in the storage, the default
implementation thrown an exception.

• Update – Overwrites an existing object in the storage. If the object is not found in the storage, the
default implementation creates a new version of the object.

• Remove – Removes an object from the storage.
• Retrieve – Retrieves an enumerable list of all objects in the storage (filtered by type), and possibly

influenced by an optional helper parameter. Note that the helper parameter is not meant to provide
querying logic – that should be done in the query engine. Because the query engine is to some degree
dependent on the storage implementation, the helper parameter allows for some flexibility in the way
stored objects are enumerated for the query engine. The default implementation can take a
CfgObjectType as a helper parameter.

• Clear–Removes all objects in the storage.

Query Engine

The query engine provides the ability to define the method by which objects are located in the cache.

Depending on the IConfService policy, Retrieve requests as well as link resolution can first be
attempted through the cache. If the requested object is found in the cache, then that cached object is
returned instead of sending a request to Configuration Server. If the object is not present in the
cache, a request to Configuration Server is made.

A user-definable query engine module exists inside the cache to achieve this functionality. A query
engine must implement the IConfCacheQueryEngine interface, which provides methods to retrieve
objects (either individually, or as a list) and to test a query and determine if it can be executed.

If enabled by the policy, IConfService will attempt a query to its cache using the cache's query
engine interface. If a result is returned, the IConfService will not query the Configuration Server. By
following this contract, the Configuration Object Model user is then able to create a custom
implementation of the IConfCacheQueryEngine with any extended search capabilities which may be
missing from the simple default implementation.

Two implementations of the IConfCacheQueryEngine interface are provided in the Configuration
Object Model, as described below:

• DEFAULTCONFCACHEQUERYENGINE CLASS - The DefaultConfCacheQueryEngine class is a default
implementation of the IConfCacheQueryEngine interface.

• COMPOSITECONFCACHEQUERYENGINE CLASS - This class is a more advanced implementation of the
query engine which allows child query engine modules to be registered in order to interpret different
types of queries. It does not have a default query engine implementation, only the mechanism for
working with multiple child query engines.

Notification and Delta Handling

The default configuration cache will implement the ISubscriber<ConfEvent> interface which will
allow the cache to be subscribed to receive configuration events. When a cache instance is

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 378

associated with a Configuration Service, it will automatically be subscribed for configuration events
from that service (note that if a custom cache implementation also implements this interface it will
be subscribed for events as well). The way the cache is updated based on these notifications is
determined by the cache policy.

In addition, a new filter class will be added in order to allow the subscriber to filter the cache events.
The ConfCacheFilter will implement the MessageBroker's IPredicate interface, allowing for the
filter to be passed during registration for events via ISubscriptionService. The ConfCacheFilter's
properties will specify the parameters by which the events will be filtered. Initially, the supported
parameters will be object type, object DBID, and update type, allowing the user to filter events by
one or a combination of these parameters assuming an AND relationship between the parameters
specified.

The Configuration Object Model Application Block Interface

The following figures show the relationships among many of the classes that make up this application
block.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 379

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 380

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 381

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 382

Using the Application Block

Installing the Configuration Object Model Application Block
Before you install the Configuration Object Model Application Block, it is important to review the
software requirements established in the Genesys Supported Operating Environment Reference
Manual.

Configuring the Configuration Object Model Application Block

In order to use the QuickStart application, you will need to set up the XML configuration file that
comes with the application block. This file is located at Quickstart\app.config. This is what the
contents look like:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<appSettings>
<add key="Uri" value="tcp://yourhost:yourport"/>

<add key="ClientName" value="StarterApp"/>

<add key="ClientType" value="CFGAgentDesktop"/>

<add key="UserName" value="default"/>

<add key="Password" value="password"/>

</appSettings>
</configuration>

Follow the instructions in the comments and save the file.

Building the Configuration Object Model Application Block

Tip
Starting with release 8.5.0, the common interfaces for COM Application Block and
Message Broker have been moved to an individual
Genesyslab.Platform.ApplicationBlocks.Commons.dll file.

The Platform SDK distribution includes a Genesyslab.Platform.ApplicationBlocks.Commons.dll
file that you can use as is. This file is located in the bin directory at the root level of the Platform SDK
directory. To build your own copy of this application block, follow the instructions below:

To build the Configuration Object Model Application Block:

1. Open the <Platform SDK Folder>\ApplicationBlocks\Com folder.
2. Double-click Com.sln.
3. Build the solution.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 383

https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK

Using the QuickStart Application
The easiest way to start using the Configuration Object Model Application Block is to use the bundled
QuickStart application. This application ships in the same folder as the application block.

To run the QuickStart application:

1. Open the <Platform SDK Folder>\ApplicationBlocks\Com folder.
2. Double-click ComQuickStart.sln.
3. Build the solution.
4. Find the executable for the QuickStart application, which will be at <Platform SDK

Folder>\ApplicationBlocks\Com\QuickStart\bin\Debug\ComQuickStart.exe.
5. Double-click ComQuickStart.exe.

Editing Capacity Rules

The Configuration Object Model Application Block includes the CapacityRuleHelper class (introduced
in release 8.1.4) which allows you to edit and update Capacity Rules. This helper class presents an
XML representation for CfgScript objects of type CapacityRule, which can be updated and saved to
edit existing Capacity Rules.

An example of how to edit capacity rules is provided below.

IConfService service = ConfServiceFactory.CreateConfService(protocol);
service.Protocol.Open();
CfgScriptQuery query = new CfgScriptQuery(service);
CfgScript script = service.RetrieveObject(query);

An instance of the CapacityRuleHelper class can now be created with static method Create. This
method validates the input script object and can throw an exception (CapacityRuleException) if the
object is not valid. Once the instance is created, the XMLPresentation property allows you access to
Capacity Rules.

CapacityRuleHelper helper = CapacityRuleHelper.Create(script);
Document doc = helper.XMLPresentation;
// edit xml document here

The XMLPresentation property is able to be saved into the CapacityRuleHelper class instance.
Once changes have been made to the XML document, apply your changes using the following code:

helper.XMLPresentation = doc;
helper.Script.Save();
service.Protocol.Close();
ConfServiceFactory.ReleaseConfService(service);

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 384

Introduction to the Configuration Layer
Objects
Once you have reviewed the information in this section, you can look at the Configuration Layer
Objects Reference Guide for detailed descriptions of available objects and enumerations.

The Genesys Configuration Layer is a database containing information about the objects in your
contact center environment. You may need to get information about these objects. You may also want
to add, update, or delete them. The Configuration Platform SDK gives you the means to do that.

This article contains information that is common to all of these Configuration Layer objects.

General Parameters

The following parameters are common to objects of all types. They will not be described again in the
listings for individual objects.

• DBID — An identifier of this object in the Configuration Database. Generated by Configuration Server, it
is unique within an object type. Identifiers of deleted objects are not used again. Read-only.

• state — Current object state. Mandatory. Refer to CfgObjectState in section Variable Types.

Tip
Change in the state of a parent object will cause the states of all its child objects to
change accordingly. Configuration Server will provide a notification for each
elementary change. Changing the state of a parent object will not be allowed unless
the client application has privileges to change all of the child objects of this parent
object.

• userProperties — In objects, a pointer to the list of user-defined properties. In delta objects, a pointer
to a list of user-defined properties added to the existing list. Parameter userProperties has the
following structure: Each key-value pair of the primary list (TKVList *userProperties) uses the key
for the name of a user-defined section, and the value for a secondary list, that also has the TKVList
structure and specifies the properties defined within that section. Each key-value pair of the secondary
list uses the key for the name of a user-defined property, and the value for its current setting. User
properties can be defined as variables of integer, character, or binary type. Names of sections must be
unique within the primary list. Names of properties must be unique within the secondary list.

Tip

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 385

https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/ConfigLayerObjectsList
https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/ConfigLayerObjectsList

Configuration Server is not concerned with logical meanings of user-defined sections,
properties, or their values.

• deletedUserProperties — A pointer to the list of deleted user-defined properties. Has the same
structure as parameter userProperties above. A user-defined property is deleted by specifying the
name of the section that this property belongs to, and the name of the property itself with any value. A
whole section is deleted by specifying the name of that section and an empty secondary list.

• changedUserProperties — A pointer to the list of user-defined properties whose values have been
changed. Has the same structure as parameter userProperties above. A value of a user-defined
property is changed by specifying the name of the section that this property belongs to, the name of
the property itself, and a new value of that property.

• flexibleProperties — In objects, a pointer to the list of additional properties. In delta objects, a
pointer to a list of user-defined properties added to the existing list. This parameter has the following
structure: Each key-value pair of the primary list (TKVList * flexibleProperties) uses the key for
the name of the section, and the value for a secondary list, that also has the TKVList structure and
specifies either properties defined within that section or another section name. Each key-value pair of
the secondary list uses the key for the name of a property, and the value for its current setting.
Properties can be defined as variables of integer, character, or binary type or as the name of another
list of properties. Names of sections must be unique within the primary list. Names of properties must
be unique within the list. The data structure within the flexibleProperties property is object-type
specific and hard-coded within Configuration Server. Each key-value in the TKVList *
flexibleProperties is controlled and processed by Configuration Server only in the same manner as
any other property in contrast with user-properties the contents of which are not Configuration Server
concerned. If the structure of the property's Extension is not specified, the value is NULL. For more
information, see the detailed object descriptions in this document.

Configuration Object Association

Configuration Objects can be associated with each other in a number of different ways that can be
generally classified as follows:

• Parent-child relationship, where a child object cannot be created without a parent and will be deleted
automatically if its parent object is deleted. Most of the object types will have an explicit reference to
their parents which is marked with an asterisk in the specification below. For the object types that do
not have such a reference, it is implied that their parent is the Service Provider (that is, the imaginary
tenant with DBID = 1).

• Exclusive association, where an object cannot be associated in the same manner with more than one
other object.

• Non-exclusive association, where an object can be associated in the same manner with more than one
other object. Unless expressly noted otherwise, a reference to the DBID of another object without an
asterisk indicates a non-exclusive assignment.

The parameters of all object-related structures are optional unless otherwise noted. However, all
variables of character type must be initialized at the time an object is created. The variables of
character type that are not mandatory may be initialized with an empty string (the recommended
default value unless otherwise noted). The variables of character type that are mandatory may not

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 386

be initialized with an empty string. Variables of character type may accept values of up to 255
symbols in length unless otherwise noted. The recommended default value for optional parameters of
other types is zero or NULL, unless otherwise noted.

Filters

Filters are used to specify more precisely the kind of information that the client application is
interested in. Filters reduce both volumes of data communicated by Configuration Server and data-
processing efforts on the client side. Filters are structured as key-value pairs where the value of each
key defines a certain condition of data selection. Filter keys are defined as variables of integer type
unless otherwise noted.

Important
Although your application can use "and" to combine multiple filters when retrieving a
set of matching configuration objects, specifying a DBID value as one of the filters
causes all other filters in that request to be ignored. This is by design, as only a single
configuration object can match the specified DBID value. However, this behavior could
create unexpected results if your application intended to use filters as a method for
checking whether a known configuration object also matches additional filter values.

Here is a list of common filter types:

• folder_dbid — A unique identifier of a folder. If specified, Configuration Server will return information
only about objects of specific type located under specified folder. See also the description of the
ConfGetObjectInfo function.

• delegate_dbid — A unique identifier of an account on behalf of which current query is to be executed.
Produced result set will be calculated using a superposition of the registered account permissions and
that passed in delegate_dbid filter. Must be used in conjunction with delegate_type filter in order to
specify account type (CFGPerson or CFGAccessGroup).

• delegate_type — Object type of the account (CFGPerson or CFGAccessGroup) on behalf of which the
current query is to be executed. Must be used in conjunction with delegate_dbid.

• object_path — A flag that causes Configuration Server to return a full path of the object in the folder
hierarchy for every object in the result set. The path string will be returned in the cfgDescription field
of the CFGObjectInfo event.

• cmp_insensitive — A flag that causes Configuration Server to perform case-insensitive comparison of
string values in the filter. Supported from Configuration Server 7.2.000.00.

• read_folder_dbid — A flag that causes Configuration Server to return a Folder DBID for every object in
the result set. The folder will be returned in the cfgExtraInfo3 field of the CFGObjectInfo event.
Supported from Configuration Server 7.2.000.00.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 387

Stat Server
Stat Server tracks information about customer interaction networks (contact center, enterprise-wide,
or multi-enterprise telephony and computer networks). It also converts the data accumulated for
directory numbers (DNs), agents, agent groups, and non-telephony-specific object types, such as
email and chat sessions, into statistically useful information, and passes these calculations to other
software applications that request data. For example, Stat Server sends data to Universal Routing
Server (URS), because Stat Server reports on agent availability. You can also use Stat Server's
numerical statistical values as routing criteria.

Stat Server provides contact center managers with a wide range of information, allowing
organizations to maximize the efficiency and flexibility of customer interaction networks. For more
information about Stat Server, consult the Reporting Technical Reference 8.0 Overview and the Stat
Server 8.5 User's Guide.

You can use the Platform SDK to write Java or .NET applications that gather statistical information
from Stat Server. These applications may be fairly simple or quite advanced. This article shows how
to implement the basic functions you will need to write a simple Statistics application.

A Typical Statistics Application

There are many ways in which you might need to use data from Stat Server, but in most cases, you
will use three types of requests:

• RequestOpenStatistic and RequestOpenStatisticEx are used to ask Stat Server to start sending
statistical information to your application. RequestOpenStatistic allows you to request information
about a statistic that has already been defined in the Genesys Configuration Layer, while you can use
RequestOpenStatisticEx to define your own statistics dynamically.

• You can use RequestPeekStatistic to get the value of a statistic that has already been opened using
either RequestOpenStatistic or RequestOpenStatisticEx. Since it can take a while for certain types
of statistical information to be sent to your application, this can be useful if you are writing an
application—such as a wallboard application, for instance—for which you would like statistical values to
be displayed immediately.

• Use RequestCloseStatistic to tell Stat Server that you no longer need information about a particular
statistic.

Tip
When you use RequestOpenStatistic and RequestOpenStatisticEx, you have to
specify a ReferenceId, which is a unique integer that allows Stat Server and your
application to distinguish between different sets of statistical information. You must
also enter this integer in the StatisticId field for any request that refers to the
statistics generated on the basis of your Open request. For example, if you sent a
request for "TotalNumberInboundCalls" for agent 001, you might give the
RequestOpenStatistic a ReferenceId of 333001. A similar request for agent 002

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 388

might have a ReferenceId of 333002. When you want to peek at the value of
"TotalNumberInboundCalls" for agent 001, or close the statistic (or suspend or resume
reporting on the statistic), you need to specify a StatisticId of 333001 for each of
these requests.

Java

Connecting to Stat Server

As mentioned in the article on the architecture, the Platform SDKs uses a message-based
architecture to connect to Genesys servers. This section describes how to connect to Stat Server,
based on the material in the article on Connecting to a Server.

After you have set up your import statements, the first thing you need to do is create a
StatServerProtocol object:

[Java]

StatServerProtocol statServerProtocol =
new StatServerProtocol(

new Endpoint(
statServerEPName,
host,
port));

statServerProtocol.setClientName(clientName);

You can also configure your ADDP and warm standby settings at this point, following the example
shown in the Connecting to a Server article.

Once your configuration is complete, open the connection to Stat Server:

[Java]

try {
statServerProtocol.open();

} catch (InterruptedException e) {
e.printStackTrace();

} catch (ProtocolException e) {
e.printStackTrace();

}

Working with Statistics

The Stat Server application object in the Genesys Configuration Layer comes with many predefined
statistics. You can also define your own statistics using the options tab of this application object. The
Platform SDK allows you to get information about any of these statistics by using

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 389

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

RequestOpenStatistic. There may be times, however, when you want your application to be able to
create new types of statistics dynamically. The Platform SDK also supports this, with the use of
RequestOpenStatisticEx.

This section will show you how to use RequestOpenStatistic to get information on a predefined
statistic. After that, we will give an example of how to use RequestOpenStatisticEx.

The first thing you need to do to use RequestOpenStatistic is to create the request:

[Java]

RequestOpenStatistic requestOpenStatistic
= RequestOpenStatistic.create();

Now you need to describe the statistics object, that is, the object you are monitoring. This description
consists of the object's Configuration Layer ID and object type, and the tenant ID and password:

[Java]

StatisticObject object = StatisticObject.create();
object.setObjectId("Analyst001");
object.setObjectType(StatisticObjectType.Agent);
object.setTenantName("Resources");
object.setTenantPassword("");

Next, you will specify the StatisticType property, which must correspond to the name of the
statistic definition that appears in the options tab. In this case, we are asking for the total login time
for an agent identified as "Analyst001":

[Java]

StatisticMetric metric = StatisticMetric.create();
metric.setStatisticType("TotalLoginTime");

Now you can specify the desired Notification settings. The Statistics Platform SDK supports four
ways of gathering statistics:

1. NoNotification allows you to retrieve statistics when you want them.
2. Periodical means Stat Server reports on statistics based on the time period you request.
3. Immediate means Stat Server reports on statistics whenever a statistical value changes. For time-

related statistics, Immediate means that Stat Server will report the current value whenever a statistical
value changes, but it will also report that value periodically, using the specified notification frequency.

4. Reset means Stat Server reports the current value of a statistic right before setting the statistical value
to zero (0).

In this case, we are interested in receiving statistics on a regular basis, so we have asked for a
notification mode of Periodical, with updates every 5 seconds, using a GrowingWindow statistic
interval. For more information on notification modes, see the section on Notification Modes in the Stat
Server 8.5 User's Guide. For more information on statistic intervals, see the section on TimeProfiles in
the same guide.

[Java]

Notification notification = Notification.create();
notification.setMode(NotificationMode.Periodical);
notification.setFrequency(5);

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 390

At this point, you can add the information about the statistic object and your notification settings to
the request:

[Java]

requestOpenStatistic.setStatisticObject(object);
requestOpenStatistic.setStatisticMetric(metric);
requestOpenStatistic.setNotification(notification);

Before sending this request, you have to assign it an integer that uniquely identifies it, so that Stat
Server and your application can easily distinguish it from other sets of statistical information. Note
that you will also need to enter this integer in the StatisticId field for any subsequent requests
that refer to the statistics generated on the basis of the Open request.

Tip
ReferenceId is a unique integer that is specified for identification of requested
statistics. If no value is set then this property is assigned automatically just before
sending a message; however, if the property has already been assigned then it will
not be modified. If you specify this property on your own, you should guarantee its
uniqueness. StatServer's behavior was corrected (starting from releases 8.1.000.44
and 8.1.200.14 in corresponding families) so that if two requests are sent with the
same ReferenceId then an EventError message is returned for the second request.

[Java]

requestOpenStatistic.setReferenceId(2);

Now you can send the request:

[Java]

System.out.println("Sending:\n" + requestOpenStatistic);
statServerProtocol.send(requestOpenStatistic);

After Stat Server sends the EventStatisticOpened in response to this request, it will start sending
EventInfo messages every 5 seconds. You need to set up an event handler to receive these
messages, as discussed in the the Event Handling article.

This is what one such message might look like:

'EventInfo' ('2')
message attributes:
REQ_ID [int] = 4
USER_REQ_ID [int] = -1
TM_SERVER [int] = 1244412448
TM_LENGTH [int] = 0
LONG_VALUE [int] = 0
VOID_VALUE [object] = AgentStatus {

AgentId = Analyst001
AgentStatus = 23
Time = 1240840034
PlaceStatus = PlaceStatus = 23
Time = 1240840034
LoginId = LoggedOut

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 391

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

}

Creating Dynamic Statistics

As mentioned above, there may be times when you want to get statistical information that has not
already been defined in the Configuration Layer. In cases like that, you can use
RequestOpenStatisticEx. Before you do, however, you should make sure you understand several
topics covered in the Reporting Technical Reference 8.0 Overview and the Stat Server 8.5 User's
Guide, including the use of masks.

The first things you need to do in order to use RequestOpenStatisticEx are similar to what we did in
the previous section. You will start by creating the request and specifying the statistic object and
notification mode, which you will add to the request:

[Java]

RequestOpenStatisticEx request =
RequestOpenStatisticEx.create();

StatisticObject object = StatisticObject.create();
object.setObjectId("Analyst001");
object.setObjectType(StatisticObjectType.Agent);
object.setTenantName("Resources");
object.setTenantPassword("");

Notification notification = Notification.create();
notification.setMode(NotificationMode.Immediate);

request.setNotification(notification);
request.setStatisticObject(object);

Now, instead of requesting a pre-defined statistic type, you need to set up your own masks, as
described in the section on "Metrics: Their Composition and Definition" in the Reporting Technical
Reference 8.0 Overview. The following mask and statistic metric settings give the Current State for
the agent mentioned above:

[Java]

DnActionMask mainMask = ActionsMask.createDNActionsMask();
mainMask.setBit(DnActions.WaitForNextCall);
mainMask.setBit(DnActions.CallDialing);
mainMask.setBit(DnActions.CallRinging);
mainMask.setBit(DnActions.NotReadyForNextCall);
mainMask.setBit(DnActions.CallOnHold);
mainMask.setBit(DnActions.CallUnknown);
mainMask.setBit(DnActions.CallConsult);
mainMask.setBit(DnActions.CallInternal);
mainMask.setBit(DnActions.CallOutbound);
mainMask.setBit(DnActions.CallInbound);
mainMask.setBit(DnActions.LoggedOut);

DnActionMask relMask = ActionsMask.createDNActionsMask();

StatisticMetricEx metric = StatisticMetricEx.create();
metric.setCategory(StatisticCategory.CurrentState);
metric.setMainMask(mainMask);
metric.setRelativeMask(relMask);

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 392

metric.setSubject(StatisticSubject.DNStatus);

request.setStatisticMetricEx(metric);

Once you have set up the masks and the statistic metric, you can create a ReferenceId and send the
request:

[Java]

request.setReferenceId(anIntThatYouSpecify);

System.out.println("Sending:\n" + request);
Message response = statServerProtocol.request(request);
System.out.println("Received:\n" + response);

Current Target State Events

You can use RequestGetStatisticEx and RequestOpenStatisticEx to set up the same type of
current target state definitions that Universal Routing Server (URS) uses. (You can also set these up
using Configuration Manager.) When this type of request has been sent, Stat Server sends some
additional event types:

• EventCurrentTargetStateSnapshot
• EventCurrentTargetStateTargetUpdated
• EventCurrentTargetStateTargetAdded
• EventCurrentTargetStateTargetRemoved

The Snapshot event is returned in response to the open, while the Updated event is sent as state
changes occur. In a situation where you open a CurrentTargetState-based statistic against an agent
group, the Added and Removed messages occur when an agent is added to or removed from an agent
group — it would behave in a similar fashion for place groups.

Here is the output from a typical request:

'EventCurrentTargetStateSnapshot' (17) attributes:
TM_LENGTH [int] = 0
USER_REQ_ID [int] = -1
LONG_VALUE [int] = 0
CURRENT_TARGET_STATE_INFO [CurrentTargetState] = CurrentTargetStateSnapshot (size=1) [

[0] CurrentTargetStateInfo {
AgentId = Analyst001
AgentDbId = 101
LoginId = null
PlaceId = null
PlaceDbId = 0
Extensions = KVList:

'VOICE_MEDIA_STATUS' [int] = 0
'AGENT_VOICE_MEDIA_STATUS' [int] = 0

}
]

REQ_ID [int] = 5
TM_SERVER [int] = 1245182089

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 393

Peeking at a Statistic

There may be times when you need to get immediate information on a statistic you have opened. For
example, you may want to initialize a wallboard display. In that case, you can use
RequestPeekStatistic. Note that Stat Server does not send a handshake event when you use this
request, so you should use the send method rather than the request method when you use it. Note
also that you need to use the StatisticId property to provide the ReferenceId of the
RequestOpenStatistic or RequestOpenStatisticEx associated with the statistic you want
information on:

Tip
If you use the request method on a RequestPeekStatistic, your request will time out
and receive null, rather than retrieving the desired information from Stat Server.

[Java]

RequestPeekStatistic req = RequestPeekStatistic.create();
req.setStatisticId(2);

System.out.println("Sending:\n" + req);
statServerProtocol.send(req);

Suspending Notification

Because there are times when you do not need to collect information on a statistic for a while, the
Platform SDK has requests that allow you to suspend and resume notification. These requests are like
the peek request in that Stat Server does not send a handshake event when you use them, so you
should use the send method rather than the request method when you use these requests. Note also
that you need to use the StatisticId property of these requests to provide the ReferenceId of the
RequestOpenStatistic or RequestOpenStatisticEx associated with the statistic you want
information on. Here is how to suspend notification:

[Java]

RequestSuspendNotification req = RequestSuspendNotification.create();
req.setStatisticId(2);

System.out.println("Sending:\n" + req);
statServerProtocol.send(req);

Use code like this to resume notification:

[Java]

RequestResumeNotification req = RequestResumeNotification.create();
req.setStatisticId(2);

System.out.println("Sending:\n" + req);
statServerProtocol.send(req);

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 394

Closing the Statistic and the Connection

When you are finished communicating with Stat Server, you should close the statistics that you have
opened and close the connection, in order to minimize resource utilization:

[Java]

RequestCloseStatistic req = RequestCloseStatistic.create();
req.setStatisticId(2);

System.out.println("Sending:\n" + req);
statServerProtocol.send(req);

...

statServerProtocol.beginClose();

.NET

Connecting to Stat Server

As mentioned in the article on the architecture, the Platform SDKs uses a message-based
architecture to connect to Genesys servers. This section describes how to connect to Stat Server,
based on the material in the article on Connecting to a Server.

After you have set up using statements, the first thing you need to do is create a
StatServerProtocol object:

[C#]

StatServerProtocol statServerProtocol =
new StatServerProtocol(new Endpoint(statServerUri));

statServerProtocol.ClientId = clientID;
statServerProtocol.ClientName = clientName;

You can also configure your ADDP and warm standby settings at this point, as described in the
Connecting to a Server article.

Once you have finished configuring your protocol object, open the connection to Stat Server:

[C#]

statServerProtocol.Open();

Working with Statistics

The Stat Server application object in the Genesys Configuration Layer comes with many predefined
statistics. You can also define your own statistics using the options tab of this application object. The

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 395

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

Platform SDK allows you to get information about any of these statistics by using
RequestOpenStatistic. There may be times, however, when you want your application to be able to
create new types of statistics dynamically. The Platform SDK also supports this, with the use of
RequestOpenStatisticEx.

This section will show you how to use RequestOpenStatistic to get information on a predefined
statistic. After that, we will give an example of how to use RequestOpenStatisticEx.

The first thing you need to do to use RequestOpenStatistic is to create the request:

[C#]

var requestOpenStatistic = RequestOpenStatistic.Create();

Now you need to describe the statistics object, that is, the object you are monitoring. This description
consists of the object's Configuration Layer ID and object type, and the tenant ID and password:

[C#]

requestOpenStatistic.StatisticObject = StatisticObject.Create();
requestOpenStatistic.StatisticObject.ObjectId = "Analyst001";
requestOpenStatistic.StatisticObject.ObjectType = StatisticObjectType.Agent;
requestOpenStatistic.StatisticObject.TenantName = "Environment";
requestOpenStatistic.StatisticObject.TenantPassword = "";

Next, you will specify the StatisticMetric property for this statistic. A StatisticMetric contains
information including the StatisticType (which must correspond to the name of the statistic
definition that appears in the options tab), along with the required TimeRangeLeft and
TimeRangeRight parameters.

In this case, we are asking for the total login time for an agent identified as "Analyst001":

[C#]

requestOpenStatistic.StatisticMetric = StatisticMetric.Create();
requestOpenStatistic.StatisticMetric.StatisticType = "TotalLoginTime";
requestOpenStatistic.StatisticMetric.TimeProfile = "Default";
// Note: if no time profile is provided, then the default is used automatically

Finally, specify the desired Notification settings. The Statistics Platform SDK supports four ways of
gathering statistics:

• NoNotification allows you to retrieve statistics when you want them.
• Periodical means Stat Server reports on statistics based on the time period you request.
• Immediate means Stat Server reports on statistics whenever a statistical value changes. For time-

related statistics, Immediate means that Stat Server will report the current value whenever a statistical
value changes, but it will also report that value periodically, using the specified notification frequency.

• Reset means Stat Server reports the current value of a statistic right before setting the statistical value
to zero (0).

In this case, we are interested in receiving statistics on a regular basis, so we have asked for a
notification mode of Periodical, with updates every 5 seconds. For more information on notification
modes, see the section on Notification Modes in Stat Server 8.5 User's Guide.

[C#]

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 396

requestOpenStatistic.Notification = Notification.Create();
requestOpenStatistic.Notification.Mode = NotificationMode.Periodical;

requestOpenStatistic.Notification.Frequency = 5; // seconds

Before sending this request, you have to assign it an integer that uniquely identifies it, so that Stat
Server and your application can easily distinguish it from other sets of statistical information. Note
that you will also need to enter this integer in the StatisticId field for any subsequent requests
that refer to the statistics generated on the basis of the Open request.

Tip
ReferenceId is a unique integer that is specified for identification of requested
statistics. If no value is set then this property is assigned automatically just before
sending a message; however, if the property has already been assigned then it will
not be modified. If you specify this property on your own, you should guarantee its
uniqueness. StatServer's behavior was corrected (starting from releases 8.1.000.44
and 8.1.200.14 in corresponding families) so that if two requests are sent with the
same ReferenceId then an EventError message is returned for the second request.

[C#]

requestOpenStatistic.ReferenceId = 3; // Must be unique and is included as StatisticId in
// Peek/Close for the stat

Now you can send the request:

[C#]

Console.WriteLine("Sending:\n{0}", requestOpenStatistic);
var response =

statServerProtocol.Request(requestOpenStatistic);
Console.WriteLine("Received:\n{0}", response);

if (response == null || response.Id != EventStatisticOpened.MessageId)
{

// Open failed, proper error handling goes here
throw new Exception("RequestOpenStatistic failed.");

}

var @event = response as EventStatisticOpened;

After Stat Server sends the EventStatisticOpened in response to this request, it will start sending
EventInfo messages every 5 seconds. You need to set up an event handler to receive these
messages, as discussed in the the Event Handling article.

This is what one such message might look like:

[C#]

'EventInfo' ('2')
message attributes:
REQ_ID [int] = 4
USER_REQ_ID [int] = -1
TM_SERVER [int] = 1244412448

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 397

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

TM_LENGTH [int] = 0
LONG_VALUE [int] = 0
VOID_VALUE [object] = AgentStatus {

AgentId = Analyst001
AgentStatus = 23
Time = 1240840034
PlaceStatus = PlaceStatus = 23
Time = 1240840034
LoginId = LoggedOut

}

Creating Dynamic Statistics

As mentioned above, there may be times when you want to get statistical information that has not
already been defined in the Configuration Layer. In cases like that, you can use
RequestOpenStatisticEx. Before you do, however, you should make sure you understand several
topics covered in the Reporting Technical Reference 8.0 Overview and the Stat Server 8.5 User's
Guide, including the use of masks.

The first things you need to do in order to use RequestOpenStatisticEx are similar to what we did in
the previous section. You will start by creating the request and specifying the statistic object and
notification mode:

[C#]

var req = RequestOpenStatisticEx.Create();

req.StatisticObject = StatisticObject.Create();
req.StatisticObject.ObjectId = "Analyst001";
req.StatisticObject.ObjectType = StatisticObjectType.Agent;
req.StatisticObject.TenantName = "Resources";
req.StatisticObject.TenantPassword = "";

req.Notification = Notification.Create();
req.Notification.Mode = NotificationMode.Immediate;
req.Notification.Frequency = 15;

Now, instead of requesting a statistic type, you need to set up your own masks, as described in the
section on "Metrics: Their Composition and Definition" in the Reporting Technical Reference 8.0
Overview. The following mask and statistic metric settings give the Current State for the agent
mentioned above:

[C#]

var mainMask = ActionsMask.CreateDnActionMask();
mainMask.SetBit(DnActions.WaitForNextCall);
mainMask.SetBit(DnActions.CallDialing);
mainMask.SetBit(DnActions.CallRinging);
mainMask.SetBit(DnActions.NotReadyForNextCall);
mainMask.SetBit(DnActions.CallOnHold);
mainMask.SetBit(DnActions.CallUnknown);
mainMask.SetBit(DnActions.CallConsult);
mainMask.SetBit(DnActions.CallInternal);
mainMask.SetBit(DnActions.CallOutbound);
mainMask.SetBit(DnActions.CallInbound);
mainMask.SetBit(DnActions.LoggedOut);

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 398

var relMask = ActionsMask.CreateDnActionMask();

req.StatisticMetricEx = StatisticMetricEx.Create();
req.StatisticMetricEx.Category = StatisticCategory.CurrentState;
req.StatisticMetricEx.IntervalLength = 0;
req.StatisticMetricEx.MainMask = mainMask;
req.StatisticMetricEx.RelativeMask = relMask;
req.StatisticMetricEx.Subject = StatisticSubject.DNStatus;

Once you have set up the masks and the statistic metric, you can create a ReferenceId and send the
request:

[C#]

req.ReferenceId = referenceIdFromRequestOpenStatistic;

Console.WriteLine("Sending:\n{0}", req);
var response =

statServerProtocol.Request(req);
Console.WriteLine("Received:\n{0}", response);

Current Target State Events

You can use RequestGetStatisticEx and RequestOpenStatisticEx to set up the same type of
current target state definitions that Universal Routing Server (URS) uses. (You can also set these up
using Configuration Manager.) When this type of request has been sent, Stat Server sends some
additional event types:

• EventCurrentTargetStateSnapshot

• EventCurrentTargetStateTargetUpdated

• EventCurrentTargetStateTargetAdded

• EventCurrentTargetStateTargetRemoved

The Snapshot event is returned in response to the open, while the Updated event is sent as state
changes occur. In a situation where you open a CurrentTargetState-based statistic against an agent
group, the Added and Removed messages occur when an agent is added to or removed from an agent
group — it would behave in a similar fashion for place groups.

Here is the output from a typical request:

'EventCurrentTargetStateSnapshot' (17) attributes:
TM_LENGTH [int] = 0
USER_REQ_ID [int] = -1
LONG_VALUE [int] = 0
CURRENT_TARGET_STATE_INFO [CurrentTargetState] = CurrentTargetStateSnapshot (size=1) [

[0] CurrentTargetStateInfo {
AgentId = Analyst001
AgentDbId = 101
LoginId = null
PlaceId = null
PlaceDbId = 0
Extensions = KVList:

'VOICE_MEDIA_STATUS' [int] = 0
'AGENT_VOICE_MEDIA_STATUS' [int] = 0

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 399

}
]

REQ_ID [int] = 5
TM_SERVER [int] = 1245182089

Peeking at a Statistic

There may be times when you need to get immediate information on a statistic you have opened. For
example, you may want to initialize a wallboard display. In that case, you can use
RequestPeekStatistic. Note that Stat Server does not send a handshake event when you use this
request, so you should use the Send method rather than the Request method when you use it. Note
also that you need to use the StatisticId property to provide the ReferenceId of the
RequestOpenStatistic or RequestOpenStatisticEx associated with the statistic you want
information on:

Tip
If you use the Request method on a RequestPeekStatistic, your request will time
out and receive null, rather than retrieving the desired information from Stat Server.

[C#]

var requestPeekStatistic = RequestPeekStatistic.Create();
requestPeekStatistic.StatisticId = 3;

Console.WriteLine("Sending:\n{0}", requestPeekStatistic);
statServerProtocol.Send(requestPeekStatistic);

Suspending Notification

Because there are times when you do not need to collect information on a statistic for a while, the
Platform SDK has requests that allow you to suspend and resume notification. These requests are like
the peek request in that Stat Server does not send a handshake event when you use them, so you
should use the send method rather than the request method when you use these requests. Note also
that you need to use the StatisticId property of these requests to provide the ReferenceId of the
RequestOpenStatistic or RequestOpenStatisticEx associated with the statistic you want
information on. Here is how to suspend notification:

[C#]

var requestSuspendNotification = RequestSuspendNotification.Create();
requestSuspendNotification.StatisticId = 3;

Console.WriteLine("Sending:\n{0}", requestSuspendNotification);
statServerProtocol.Send(requestSuspendNotification);

Use code like this to resume notification:

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 400

[C#]

var requestResumeNotification = RequestResumeNotification.Create();
requestResumeNotification.StatisticId = 3;

Console.WriteLine("Sending:\n{0}", requestResumeNotification);
statServerProtocol.Send(requestResumeNotification);

Closing the Statistic and the Connection

When you are finished communicating with Stat Server, you should close the statistics that you have
opened and close the connection, in order to minimize resource utilization:

[C#]

var requestCloseStatistic = RequestCloseStatistic.Create();
requestCloseStatistic.StatisticId = 3;

Console.WriteLine("Sending:\n{0}", requestCloseStatistic);
statServerProtocol.Send(requestCloseStatistic);

...

statServerProtocol.BeginClose();

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 401

Custom Statistics: Getting Agent State for
All Channels
When working with Stat Server, you can configure custom statistics that allow your applications to
easily monitor information that might not otherwise be available.

In this article we will build a custom statistic that can be used to return the agent state for all
channels, and then look at what the returned EventInfo message might look like.

Configuring a Custom Statistic

Custom statistics can be configured by updating the Stat Server application object in your Genesys
environment. This means adding a new section to the application object, and then specifying values
for a set of options inside that section that determine how statistics are formed and reported.

Important
For details on how to build your own custom statistics, refer to the Stat Server
documentation.

To monitor the agent state for all channels, add the following section to your Stat Server application
object:

[Custom_CurrentAgentDNState]
Objects=Agent
Category=CurrentState
MainMask=*
Subject=DNAction

Resulting EventInfo Object

Once your custom statistic is defined in the Stat Server application object, your application can
receive EventInfo messages that give your application details about the agent state for all channels.
Code from the Working with Statistics section of the Stat Server article shows how to subscribe to a
statistic; the only change required is using the name defined as part of your custom statistic. (In the
example above, the custom statistic name is Custom_CurrentAgentDNState.)

A sample EventInfo message is provided below for reference:

'EventInfo' (2) attributes:
VOID_VALUE [object] = ObjectValue: AgentStatus {

AgentId = MCR_Agent0

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 402

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/StatServer

LoginId = 6000
Status = 9
Time = 1392641892
Place = PlaceStatus {

PlaceId = Place_6000_MCR
PlaceStatus = 9
Time = 1392641892
DnStatuses = DnStatusesCollection (size=7) [

[0] DnStatus {
DN Id = 6000
SwitchId = Simulator
GSW DN TYPES = 1
DN Status = 9
Time = 1392641892
Actions = DnActionCollection (size=3) [

[0] DnAction {
Action = Monitored
Time = 1392641870
ActionDataType = NoData
ConnectionId = null
DNIS = null
ANI = null
UserData = null

}
[1] DnAction {

Action = LoggedIn
Time = 1392641870
ActionDataType = CallData
ConnectionId = 0000000000000000
DNIS = null
ANI = null
UserData = KVList:

}
[2] DnAction {

Action = AfterCallWork
Time = 1392641892
ActionDataType = CallData
ConnectionId = 0000000000000000
DNIS = null
ANI = null
UserData = KVList:

}
]

}
[1] DnStatus {

DN Id = workitem
SwitchId = null
GSW DN TYPES = 0
DN Status = 8
Time = 1392641870
Actions = DnActionCollection (size=2) [

[0] DnAction {
Action = LoggedIn
Time = 1392641870
ActionDataType = CallData
ConnectionId = 0000000000000000
DNIS = null
ANI = null
UserData = KVList:
'MediaType' [str] = "workitem"

}
[1] DnAction {

Action = NotReadyForNextCall

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 403

Time = 1392641870
ActionDataType = CallData
ConnectionId = 0000000000000000
DNIS = null
ANI = null
UserData = KVList:
'MediaType' [str] = "workitem"

}
]

}
[2] DnStatus {

DN Id = email
SwitchId = null
GSW DN TYPES = 0
DN Status = 8
Time = 1392641870
Actions = DnActionCollection (size=2) [

[0] DnAction {
Action = LoggedIn
Time = 1392641870
ActionDataType = CallData
ConnectionId = 0000000000000000
DNIS = null
ANI = null
UserData = KVList:
'MediaType' [str] = "email"

}
[1] DnAction {

Action = NotReadyForNextCall
Time = 1392641870
ActionDataType = CallData
ConnectionId = 0000000000000000
DNIS = null
ANI = null
UserData = KVList:
'MediaType' [str] = "email"

}
]

}
[3] DnStatus {

DN Id = fax
SwitchId = null
GSW DN TYPES = 0
DN Status = 8
Time = 1392641870
Actions = DnActionCollection (size=2) [

[0] DnAction {
Action = LoggedIn
Time = 1392641870
ActionDataType = CallData
ConnectionId = 0000000000000000
DNIS = null
ANI = null
UserData = KVList:
'MediaType' [str] = "fax"

}
[1] DnAction {

Action = NotReadyForNextCall
Time = 1392641870
ActionDataType = CallData
ConnectionId = 0000000000000000
DNIS = null
ANI = null

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 404

UserData = KVList:
'MediaType' [str] = "fax"

}
]

}
[4] DnStatus {

DN Id = chat
SwitchId = null
GSW DN TYPES = 0
DN Status = 8
Time = 1392641870
Actions = DnActionCollection (size=2) [

[0] DnAction {
Action = LoggedIn
Time = 1392641870
ActionDataType = CallData
ConnectionId = 0000000000000000
DNIS = null
ANI = null
UserData = KVList:
'MediaType' [str] = "chat"

}
[1] DnAction {

Action = NotReadyForNextCall
Time = 1392641870
ActionDataType = CallData
ConnectionId = 0000000000000000
DNIS = null
ANI = null
UserData = KVList:
'MediaType' [str] = "chat"

}
]

}
[5] DnStatus {

DN Id = sms
SwitchId = null
GSW DN TYPES = 0
DN Status = 8
Time = 1392641870
Actions = DnActionCollection (size=2) [

[0] DnAction {
Action = LoggedIn
Time = 1392641870
ActionDataType = CallData
ConnectionId = 0000000000000000
DNIS = null
ANI = null
UserData = KVList:
'MediaType' [str] = "sms"

}
[1] DnAction {

Action = NotReadyForNextCall
Time = 1392641870
ActionDataType = CallData
ConnectionId = 0000000000000000
DNIS = null
ANI = null
UserData = KVList:
'MediaType' [str] = "sms"

}
]

}

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 405

[6] DnStatus {
DN Id = webform
SwitchId = null
GSW DN TYPES = 0
DN Status = 8
Time = 1392641870
Actions = DnActionCollection (size=2) [

[0] DnAction {
Action = LoggedIn
Time = 1392641870
ActionDataType = CallData
ConnectionId = 0000000000000000
DNIS = null
ANI = null
UserData = KVList:
'MediaType' [str] = "webform"

}
[1] DnAction {

Action = NotReadyForNextCall
Time = 1392641870
ActionDataType = CallData
ConnectionId = 0000000000000000
DNIS = null
ANI = null
UserData = KVList:
'MediaType' [str] = "webform"

}
]

}
]

}
}

TM_LENGTH [int] = 0
LONG_VALUE [int] = 0
USER_REQ_ID [int] = -1
TM_SERVER [int] = 1392641892
REQ_ID [int] = 520

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 406

Interaction Server
You can use the Open Media Platform SDK to write Java or .NET applications that handle third-party
work items in conjunction with the Genesys Interaction Server. You can also use it to work with
servers that implement the Genesys External Service Protocol.

This document shows how to implement the basic functions you will need to write simple Interaction
Server–based email applications. The first application is a simple media server that submits a new
third-party work item. The second application enables an agent to receive a third-party work item,
accept it for processing, and mark it done.

Java

Setting Up Interaction Server Protocol Objects

The first thing you need to do to use the Open Media Platform SDK is instantiate a Protocol object. To
do that, you must supply information about the server you want to connect with. This example uses
an InteractionServerProtocol object, supplying its URI, but you can also use name, host, and port
information:

[Java]

InteractionServerProtocol interactionServerProtocol =
new InteractionServerProtocol(

new Endpoint(
InteractionServerUri));

After instantiating the InteractionServerProtocol object, you need to open a connection to
Interaction Server:

[Java]

interactionServerProtocol.open();

Creating a Simple Media Server

The Open Media Platform SDK makes it easy to write a simple server that can submit third-party work
items to Interaction Server. To write one, start by entering configuration information:

[Java]

// Enter configuration information here:
private String interactionServerName = "<server name>";
private String interactionServerHost = "<host>";
private int interactionServerport = <port>;

Server-Specific Overviews Interaction Server

Platform SDK Developer's Guide 407

private int tenantId = 101;
private String inboundQueue = "<queue>";
private String mediaType = "<media type>";
// End of configuration information.

Now you will need to set up a protocol object:

[Java]

interactionServerUri = new Uri("tcp://"
+ interactionServerHost + ":"
+ interactionServerport);

InteractionServerProtocol interactionServerProtocol =
new InteractionServerProtocol(
new Endpoint(interactionServerName, interactionServerUri));

Once you have set up the protocol object, you can tell it the name of your application and let it know
that it is a media server:

[Java]

interactionServerProtocol.setClientName("EntityListener");
interactionServerProtocol.setClientType(

InteractionClient.MediaServer);

At this point, you can add user data associated with the new interaction:

[Java]

KeyValueCollection userData =
new KeyValueCollection();

userData.add("Subject",
"New Interaction Created by a Custom Media Server");

Now you can open the protocol object, and prepare the interaction to be submitted:

[Java]

try
{

interactionServerProtocol.open();

RequestSubmit requestSubmit = RequestSubmit.create(
inboundQueue,
mediaType,
"Inbound");

requestSubmit.setTenantId(tenantId);
requestSubmit.setInteractionSubtype("InboundNew");
requestSubmit.setUserData(userData);

If you use the Request method, you will receive a synchronous response containing a message from
Interaction Server:

[Java]

Message response =
interactionServerProtocol.request(requestSubmit);

System.out.println("Response: " + response.messageName() + ".\n\n");

Server-Specific Overviews Interaction Server

Platform SDK Developer's Guide 408

Closing the Connection

Finally, when you are finished communicating with Interaction Server, you should close the
connection to minimize resource utilization:

[Java]

interactionServerProtocol.close();

.NET

Setting Up Interaction Server Protocol Objects

The first thing you need to do to use the Open Media Platform SDK is instantiate a Protocol object. To
do that, you must supply information about the server you want to connect with. This example uses
an InteractionServerProtocol object, supplying its URI, but you can also use name, host, and port
information:

[C#]

InteractionServerProtocol interactionServerProtocol =
new InteractionServerProtocol(

new Endpoint(
InteractionServerUri));

After instantiating the InteractionServerProtocol object, you need to open a connection to
Interaction Server:

[C#]

interactionServerProtocol.Open();

Creating a Simple Media Server

The Open Media Platform SDK makes it easy to write a simple server that can submit third-party work
items to Interaction Server. To write one, start by entering configuration information:

[C#]

// Enter configuration information here:
private string interactionServerName = "<server name>";
private string interactionServerHost = "<host>";
private int interactionServerport = <port>;
private int tenantId = 101;
private string inboundQueue = "<queue>";
private string mediaType = "<media type>";
// End of configuration information.

Server-Specific Overviews Interaction Server

Platform SDK Developer's Guide 409

Now you will need to set up a protocol object:

[C#]

interactionServerUri = new Uri("tcp://"
+ interactionServerHost + ":"
+ interactionServerport);

InteractionServerProtocol interactionServerProtocol =
new InteractionServerProtocol(
new Endpoint(interactionServerName, interactionServerUri));

Once you have set up the protocol object, you can tell it the name of your application and let it know
that it is a media server:

[C#]

interactionServerProtocol.ClientName = "EntityListener";
interactionServerProtocol.ClientType =

InteractionClient.MediaServer;

At this point, you can add user data associated with the new interaction:

[C#]

KeyValueCollection userData =
new KeyValueCollection();

userData.Add("Subject",
"New Interaction Created by a Custom Media Server");

Now you can open the protocol object, and prepare the interaction to be submitted:

[C#]

try
{

interactionServerProtocol.Open();

RequestSubmit requestSubmit = RequestSubmit.Create(
inboundQueue,
mediaType,
"Inbound");

requestSubmit.TenantId = tenantId;
requestSubmit.InteractionSubtype = "InboundNew";
requestSubmit.UserData = userData;

If you use the Request method, you will receive a synchronous response containing a message from
Interaction Server:

[C#]

IMessage response =
interactionServerProtocol.Request(requestSubmit);

LogAreaRichTextBox.Text = LogAreaRichTextBox.Text
+ "Response: " + response.Name + ".\n\n";

Server-Specific Overviews Interaction Server

Platform SDK Developer's Guide 410

Closing the Connection

Finally, when you are finished communicating with Interaction Server, you should close the
connection to minimize resource utilization:

[C#]

interactionServerProtocol.Close();

Additional Topics

As support for the Platform SDKs continues to grow, new topics and examples that illustrate best-
practice approaches to common tasks are being added to the documentation. For more information
about using the Open Media Platform SDK, including functional code snippets, please read the
following topics:

• Creating an Email - This article discusses how to use the Open Media and Contacts Platform SDKs in
conjunction to create outgoing email messages. You can also apply the concepts illustrated here to
other types of Interactions.

Server-Specific Overviews Interaction Server

Platform SDK Developer's Guide 411

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/CreatinganE-Mail

Universal Contact Server
You can use the Contacts Platform SDK to write Java or .NET applications that interact with the
Genesys Universal Contact Server (UCS). This allows you to create applications that work with
contacts, interactions, and standard responses in a variety of ways - either to create a full-featured
agent desktop, or a simple application that forwards email messages.

This document shows how to implement the basic functions you will need to write simple UCS-based
applications.

When you are ready to write more complicated applications, take a look at the classes and methods
described in the Platform SDK API Reference.

Java

Using the Contacts Protocols

Before using the Contacts Platform SDK, you should include import statements that allow access to
the Platform SDK Commons and Contacts classes:

[Java]

import com.genesyslab.platform.commons.protocol.*;

import com.genesyslab.platform.contacts.protocol.*;
import com.genesyslab.platform.contacts.protocol.contactserver.*;
import com.genesyslab.platform.contacts.protocol.contactserver.events.*;
import com.genesyslab.platform.contacts.protocol.contactserver.requests.*;

Setting Up Universal Contact Server Protocol Objects

The first thing you need to do to use the Contacts Platform SDK is instantiate a
UniversalContactServerProtocol object. To do that, you must supply information about the
Universal Contact Server you want to connect with. This example uses the server's name, host, and
port information, but you can also use just the URI of your Universal Contact Server:

[Java]

UniversalContactServerProtocol ucsConnection = new UniversalContactServerProtocol(new
Endpoint(universalContactServerURI));

It is a good practice to always set the application name at the same time that you instantiate a new
protocol object. This application name will be used to identify where UCS requests came from.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 412

https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome

This is also a good time to add event handlers to the protocol object. See the Event Handling section
in this introductory material for code samples and details.

[Java]

// Set the ApplicationName property
ucsConnection.setClientName("IntroducingContactsPSDK");

After setting up your protocol object, the code to open a connection to the server is simple:

[Java]

ucsConnection.open();

Tip
Be sure to use proper error handling techniques in your code, especially when working
with the protocol connection. To save space, these error handling steps are not shown
in this example.

Inserting an Interaction

Now that the protocol connection is open, you are ready to start handling interactions. In this
example, we will start by creating a new, outbound email interaction using the
RequestInsertInteraction request.

Creating a new email interaction object takes a bit of planning. Before you can create and submit the
request object, you need to create and configure the following objects:

• InteractionAttributes - Sets common attributes for this interaction, specifying details such as the
media type and status. All interactions need these attributes to be configured.

• EmailOutEntityAttributes - Sets attributes that are specific to an outbound email interaction. For
outbound email interactions, this includes the sending and receiving addresses. (The type of interaction
you are creating will dictate which object to use here; for example, phone interactions require a
PhoneCallEntityAttributes object instead of EmailOutEntityAttributes.)

• InteractionContent - Specifies the actual interaction content. This can be Text, MIME, StructuredText,
or StructuredText with MIME content.

The following code snippet shows how each of these objects is configured for our simple outbound
email example:

[Java]

// Set common interaction attributes
InteractionAttributes attributes = new InteractionAttributes();
attributes.setTenantId(101);
attributes.setMediaTypeId("email");
attributes.setTypeId("Outbound");
attributes.setSubtypeId("OutboundRedirect");
attributes.setStatus(Statuses.Pending);

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 413

attributes.setSubject(subjectLine);
attributes.setQueueName(queueName);
attributes.setEntityTypeId(EntityTypes.EmailOut);

// Set entity-specific attributes
EmailOutEntityAttributes outEntityAttributes = new EmailOutEntityAttributes();
outEntityAttributes.setFromAddress(fromAddress);
outEntityAttributes.setToAddresses(forwardAddress);

// Set interaction content
InteractionContent content = new InteractionContent();
content.setText("Email message text...");

Tip
The InteractionAttributes class stores the StartDate property in UTC format. If no
value is provided, UCS uses the current date.

Once you have configured the attributes and content for the interaction, it is easy to create and
submit the new request:

[Java]

// Create the new interaction request
RequestInsertInteraction request = RequestInsertInteraction.create();
request.setInteractionAttributes(attributes);
request.setEntityAttributes(outEntityAttributes);
request.setInteractionContent(content);

// Submit the request
EventInsertInteraction eventInsertIxn = (EventInsertInteraction)
ucsConnection.request(request);

Adding an Attachment

Now that you know how to create new email interactions, it is the perfect time to learn how to add
attachments to existing interactions. The process for this is much easier than creating a new
interaction; you just need to create the request and specify the attachment properties as shown in
the code snippet below. Once the request is ready, submit it to your UCS protocol object.

[Java]

RequestAddDocument request = RequestAddDocument.create();
request.setInteractionId(eventInsertIxn.getInteractionId());
request.setDocumentId(strDocumentId);
request.setDescription(strDescription);
request.setMimeType(strMimeType);
request.setTheName(strName);
request.setTheSize(intSize);

EventAddDocument eventAddDocument = (EventAddDocument) ucsConnection.request(request);

Note that before adding an attachment, you need to have the Interaction ID available. In our

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 414

example, the Interaction ID was returned as part of the EventInsertInteraction from the previous
section. Otherwise we would need to submit a RequestGetInteractionContent request and then
take the Interaction ID from the resulting event.

Getting an Interaction from UCS

Now that we have created a new Interaction and submitted it to UCS, what happens next? The final
task we will cover in this introduction is how to return the Interaction and any of its attachments for
processing.

The structure of RequestGetInteractionContent is very basic: set the Interaction ID you are looking
for, and then use the IncludeAttachments and IncludeBinaryContent properties to specify what
type of content you want to be returned. In this example, we will return the attachment created
previously and store it in an Attachment object for later use.

[Java]

RequestGetInteractionContent request = RequestGetInteractionContent.create();
request.setInteractionId(interactionId);
request.setIncludeAttachments(true);

EventGetInteractionContent eventGetIxnContent = (EventGetInteractionContent)
ucsConnection.request(request);

String subject = eventGetIxnContent.getInteractionAttributes().getSubject();
String key = eventGetIxnContent.getInteractionAttributes().getId();
if (eventGetIxnContent.getAttachments() != null) {

Attachment attachedFile = eventGetIxnContent.getAttachments().get(0);
}

Closing the Connection

Finally, when you are finished communicating with the server, you should close the connection and
dispose of the object to minimize resource utilization:

[Java]

if (ucsConnection.getState() != ChannelState.Closed && ucsConnection.getState() !=
ChannelState.Closing)

{
ucsConnection.close();

}

.NET

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 415

Using the Contacts Protocols

Before using the Contacts Platform SDK, you should include using statements that allow access to the
Platform SDK Commons and Contacts namespaces:

[C#]

using Genesyslab.Platform.Commons.Protocols;
using Genesyslab.Platform.Contacts.Protocols;
using Genesyslab.Platform.Contacts.Protocols.ContactServer;
using Genesyslab.Platform.Contacts.Protocols.ContactServer.Requests;
using Genesyslab.Platform.Contacts.Protocols.ContactServer.Events;

Setting Up Universal Contact Server Protocol Objects

The first thing you need to do to use the Contacts Platform SDK is instantiate a
UniversalContactServerProtocol object. To do that, you must supply information about the
Universal Contact Server you want to connect with. This example uses the server's name, host, and
port information, but you can also use just the URI of your Universal Contact Server:

[C#]

UniversalContactServerProtocol ucsConnection;
ucsConnection = new UniversalContactServerProtocol(new Endpoint("UCS", ucsHost, ucsPort));

It is a good practice to always set the application name at the same time that you instantiate a new
protocol object. This application name will be used to identify where UCS requests came from.

This is also a good time to add event handlers to the protocol object. See the Event Handling article
for details.

[C#]

// Set the ApplicationName property
ucsConnection.ClientName = "IntroducingContactsPSDK";

// Add event handlers
ucsConnection.Opened += new EventHandler(ucsConnection_Opened);
ucsConnection.Error += new EventHandler(ucsConnection_Error);
ucsConnection.Closed += new EventHandler(ucsConnection_Closed);

After setting up your protocol object, the code to open a connection to the server is simple:

[C#]

ucsConnection.Open();

Tip
Be sure to use proper error handling techniques in your code, especially when working
with the protocol connection. To save space, these error handling steps are not shown

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 416

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

in this example.

Inserting an Interaction

Now that the protocol connection is open, you are ready to start handling interactions. In this
example, we will start by creating a new, outbound email interaction using the
RequestInsertInteraction request.

Creating a new email interaction object takes a bit of planning. Before you can create and submit the
request object, you need to create and configure the following objects:

• InteractionAttributes - Sets common attributes for this interaction, specifying details such as the
media type and status. All interactions need these attributes to be configured.

• EmailOutEntityAttributes - Sets attributes that are specific to an outbound email interaction. For
outbound email interactions, this includes the sending and receiving addresses. (The type of interaction
you are creating will dictate which object to use here; for example, phone interactions require a
PhoneCallEntityAttributes object instead of EmailOutEntityAttributes.)

• InteractionContent - Specifies the actual interaction content. This can be Text, MIME, StructuredText,
or StructuredText with MIME content.

The following code snippet shows how each of these objects is configured for our simple outbound
email example:

[C#]

// Set common interaction attributes
InteractionAttributes attributes = new InteractionAttributes();
attributes.TenantId = 101;
attributes.MediaTypeId = "email";
attributes.TypeId = "Outbound";
attributes.SubtypeId = "OutboundRedirect";
attributes.Status = new NullableStatuses(Statuses.Pending);
attributes.Subject = subjectLine;
attributes.QueueName = queueName;
attributes.EntityTypeId = new NullableEntityTypes(EntityTypes.EmailOut);

// Set entity-specific attributes
EmailOutEntityAttributes outEntityAttributes = new EmailOutEntityAttributes();
outEntityAttributes.FromAddress = fromAddress;
outEntityAttributes.ToAddresses = forwardAddress;

// Set interaction content
InteractionContent content = new InteractionContent();
content.Text = "Email message text...";

Tip
The InteractionAttributes class stores the StartDate property in UTC format. If no

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 417

value is provided, UCS uses the current date.

Once you have configured the attributes and content for the interaction, it is easy to create and
submit the new request:

[C#]

// Create the new interaction request
RequestInsertInteraction request = RequestInsertInteraction.Create();
request.InteractionAttributes = attributes;
request.EntityAttributes = outEntityAttributes;
request.InteractionContent = content;

// Submit the request
EventInsertInteraction eventInsertIxn = (EventInsertInteraction)
ucsConnection.Request(request);

Adding an Attachment

Now that you know how to create new email interactions, it is the perfect time to learn how to add
attachments to existing interactions. The process for this is much easier than creating a new
interaction; you just need to create the request and specify the attachment properties as shown in
the code snippet below. Once the request is ready, submit it to your UCS protocol object.

[C#]

RequestAddDocument request = RequestAddDocument.Create();
request.InteractionId = eventInsertIxn.InteractionId;
request.DocumentId = strDocumentId;
request.Description = strDescription;
request.MimeType = strMimeType;
request.TheName = strName;
request.TheSize = intSize;

EventAddDocument eventAddDocument = (EventAddDocument) ucsConnection.Request(request);

Note that before adding an attachment, you need to have the Interaction ID available. In our
example, the Interaction ID was returned as part of the EventInsertInteraction from the previous
section. Otherwise we would need to submit a RequestGetInteractionContent request and then
take the Interaction ID from the resulting event.

Getting an Interaction from UCS

Now that we have created a new Interaction and submitted it to UCS, what happens next? The final
task we will cover in this introduction is how to return the Interaction and any of its attachments for
processing.

The structure of RequestGetInteractionContent is very basic: set the Interaction ID you are looking
for, and then use the IncludeAttachments and IncludeBinaryContent properties to specify what

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 418

type of content you want to be returned. In this example, we will return the attachment created
previously and store it in an Attachment object for later use.

[C#]

RequestGetInteractionContent request = RequestGetInteractionContent.Create();
request.InteractionId = eventInsertIxn.InteractionId;
request.IncludeAttachments = true;

EventGetInteractionContent eventGetIxnContent = (EventGetInteractionContent)
ucsConnection.Request(request);

String subject = eventGetIxnContent.InteractionAttributes.Subject;
String key = eventGetIxnContent.InteractionAttributes.Id;
if (eventGetIxnContent.Attachments != null)
{

Attachment attachedFile = eventGetIxnContent.Attachments.Get(0);
}

Closing the Connection

Finally, when you are finished communicating with the server, you should close the connection and
dispose of the object to minimize resource utilization:

[C#]

if (ucsConnection.State != ChannelState.Closed && ucsConnection.State != ChannelState.Closing)
{

ucsConnection.Close();
ucsConnection.Dispose();

}

Usage Tips

This section provides tips and recommended usage details for the Contacts SDK.

Getting Categories Efficiently
Introduced in release 8.0.0

In many cases, the RequestGetAllCategories message should not be used because it returns an
excessive amount of attached information. Instead, this request can often be replaced by the
following combination of services:

1. Call GetRootCategories - This returns only the root categories (without including sub-categories) with a
limited amount of information attached: Name, Date, Type, Language

2. Manually filter categories - Decide your own filtering on root categories based on the attached
information.

3. Call GetCategory using the root ID - Options can be passed to return a summary of sub-category or sub-
Standard Response, making it possible to return a full tree without content.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 419

4. Call GetStandardResponse - To get content, after filtering from GetCategory which Standard Response
is interesting for your agent (again based on the category attributes).

This combination of services allows you to load the Knowledge Library in a more granular fashion.
Prior to release 8.0.0, it was only possible to filter based on Language.

Historically, the GetAllCategories was intended for 3-tier servers such as Genesys Desktop.
However, this request would cause the server to load the entire Category tree into memory in
KeyValueCollection form when preparing the response to a client. In cases where a large Knowledge
Library is mixed with a large number of GetAllCategories requests in parallel, consuming large
amounts of memory.

Additional Topics

As support for the Platform SDKs continues to grow, new topics and examples that illustrate best-
practice approaches to common tasks are being added to the documentation. For more information
about using the Contacts Platform SDK, including functional code snippets, please read the following
topics:

• Creating an Email - This article discusses how to use the Open Media and Contacts Platform SDKs in
conjunction to create outgoing email messages.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 420

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/CreatinganE-Mail

Creating an Email
This article discusses the general process used to create email messages, and provides suggestions
about how you should work with those protocols.

Java

Overview of Creating a New Email Message

To create a new email message, there are four basic steps you should follow:

1. Connect to Genesys Servers - Use the Protocol Manager Application Block to access the appropriate
Genesys Servers.

2. Create a new Interaction - Request a new Interaction that will be used to manage the email message
within Interaction Server.

3. Store email details in UCS - Once the Interaction is available, you can use the unique InteractionId
that is returned to create a new UCS entry that contains details and contents for the email message.

4. Place the Interaction in the appropriate queue - When both parts of the email message have been
stored, move the Interaction into the correct queue for processing.

A quick overview of these steps, and an outline of the key requests sent to Genesys servers, is shown
below.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 421

Tip
The order of the second and third steps can be reversed, if desired, as long as the
final UCS entry contains the correct InteractionId value. In this case you would need to
update the UCS entry after creating the new Interaction.

The following sections include code snippets that show one possible approach for handling each of
these steps. The snippets have been simplified to focus only on code related to Genesys-specific
functions.

Connecting to Genesys Servers
When creating and handling email interactions, it is important to remember how email messages are
stored within the Genesys environment, and which Genesys servers you are interacting with.

Each email message is stored as two separate pieces: an Interaction, and an entry in the Universal
Contact Server (UCS) database. The email is represented as an Interaction so that it can be sorted
and processed using queues that have defined behavior. Even though emails are managed through
Interaction Server, the actual contents and subject matter of each message must be stored in the
UCS database. Any attempt to create or handle email messages will require access to both Genesys
Servers: Interaction Server (using the Open Media protocol) and UCS (using the Contacts Platform
SDK protocol).

Before writing your email application, some fairly standard code must be added to allow access to
these Genesys servers. First, all necessary references and import statements must be added to your
project. This includes the two specific protocols mentioned above, together with some common
Genesys libraries and the Protocol Manager Application Block.

With those statements in place, we configure the Protocol Manager Application Block to handle
communication with Genesys servers using the ProtocolManagementServiceImpl object, which is
defined and configured as shown below.

[Java]

private InteractionServerProtocol interactionServerProtocol;
private UniversalContactServerProtocol contactServerProtocol;

public void connectToProtocols() throws URISyntaxException, ProtocolException
{

Endpoint interactionServerEndpoint = new Endpoint(new URI("tcp://ixnServer:7005"));
interactionServerProtocol = new InteractionServerProtocol(interactionServerEndpoint);
interactionServerProtocol.setClientName("EmailSample");
interactionServerProtocol.setClientType(InteractionClient.AgentApplication);

Endpoint contactServerEndpoint = new Endpoint(new URI("tcp://ucsServer:7006"));
contactServerProtocol = new UniversalContactServerProtocol(contactServerEndpoint);
contactServerProtocol.setClientName("EmailSample");

interactionServerProtocol.beginOpen();
contactServerProtocol.beginOpen();

}

For more information about the Protocol Manager Application Block, see the Connecting to a Server
article found in this guide.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 422

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

Creating an Interaction
With connections to the Genesys servers established, we are ready to request a new Interaction that
will represent our email message in Interaction Server. You accomplish this by creating a new
RequestSubmit, setting a few parameters to indicate that this Interaction represents an email
message, and then sending the request to Interaction Server with your ProtocolManagementService
object.

[Java]

public void createInteraction(String ixnType, String ixnSubtype, String queue) throws
Exception
{

RequestSubmit req = RequestSubmit.create();
req.setInteractionType(ixnType);
req.setInteractionSubtype(ixnSubtype);
req.setQueue(queue);
req.setMediaType("email");

Message response = interactionServerProtocol.request(req);
if(response == null || response.messageId() != EventAck.ID) {

// For this sample, no error handling is implemented
return;

}

EventAck event = (EventAck)response;
mInteractionId = event.getExtension().getString("InteractionId");

}

A full list of properties that need to be set is included in the table below. Note that the
InteractionType and InteractionSubtype properties must match existing business attributes, as
specified in Configuration Server.

Property Name Description

InteractionType
Interaction type for this email message. Must
match an Interaction Type Business Attribute, as
specified in Configuration Server.

InteractionSubtype
Interaction subtype for this email message. Must
match an Interaction Subtype Business Attribute,
as specified in Configuration Server.

Queue

Queue that this Interaction will be placed in
initially. Must be defined in Configuration Server.
When creating a new email Interaction, the initial
queue should not process the message (because
additional information needs to be stored in UCS
first).

MediaType
Primary media type of the interaction that is being
submitted to Interaction Server. Intended for Media
Server.

Once a response is received from Interaction Server, you can confirm that an EventAck response was
returned and that the request was processed successfully. If an EventError response is returned
instead, then you will need to implement some error handling code.

It is also important to save and track the InteractionId value of the newly created Interaction. This

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 423

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/CreatinganE-Mail#Other_Considerations

ID needs to be specified in UCS entries that hold details related to the email message, and is also
required for moving the Interaction to an appropriate queue when you are ready to process the email.
In this example we are storing the InteractionId value in a simple variable named
mInteractionId, which is assumed to be defined for your project. In larger samples (or full projects),
a more robust way of tracking and handling Interactions may be required.

Storing Email Details in UCS
With the ID of your newly created Interaction available, it is time to store details about the email you
are sending in the UCS database.

There are three types of information that must be stored in the UCS database:

• Interaction Attributes - Define details about the related Interaction for this information.
• Entity Attributes - Define where the email message is coming from and going to. You will use

EmailOutEntityAttributes for storing outbound email messages, and EmailInEntityAttributes for
storing inbound email messages.

• Interaction Content - Define the actual contents of the email message, including the main text and any
MIME attachments.

Creating and configuring a RequestInsertInteraction object with this information can be easily
accomplished, as shown below.

[Java]

public void storeDetails(String ixnType, String ixnSubtype) throws Exception
{

// Set Interaction Attributes
InteractionAttributes ixnAttributes = new InteractionAttributes();
ixnAttributes.setId(mInteractionId);
ixnAttributes.setMediaTypeId("email");
ixnAttributes.setTypeId(ixnType);
ixnAttributes.setSubtypeId(ixnSubtype);
ixnAttributes.setTenantId(101);
ixnAttributes.setStatus(Statuses.Pending);
ixnAttributes.setSubject("Sample email subject");
ixnAttributes.setEntityTypeId(EntityTypes.EmailOut);

// Set Entity Attributes
EmailOutEntityAttributes entityAttributes = new EmailOutEntityAttributes();
entityAttributes.setFromAddress("sending@email.com");
entityAttributes.setToAddresses("receiving@email.com");
entityAttributes.setCcAddresses("copying@email.com");
...

// Set Interaction Content
InteractionContent content = new InteractionContent();
content.setText("This is the email body.");
...

// Send the request
RequestInsertInteraction req = new RequestInsertInteraction();
req.setInteractionAttributes(ixnAttributes);
req.setEntityAttributes(entityAttributes);
req.setInteractionContent(content);

contactServerProtocol.send(req);

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 424

}

A list of InteractionAttributes properties that need to be set for an email message is provided in
the following table. The properties shown for EmailOutEntityAttributes and InteractionContent
represent some of those most commonly used with email. Please check the documentation provided
for each class to see a full list of available properties.

Interaction Attribute Name Description

EntityTypeId Indicates whether this is an outgoing or incoming
email.

Id Interaction ID of the related Interaction record,
created earlier.

MediaTypeId
Primary media type of the Interaction you are
submitting to Interaction Server. Intended for
Media Server.

Subject Subject line for this email message.

SubtypeId
Interaction subtype for this email message. Must
match an Interaction Subtype Business Attribute,
as specified in Configuration Server.

Status Current status of the email message.
TenantId ID of the Tenant where this email belongs.

TypeId
Interaction type for this email message. Must
match an Interaction Type Business Attribute, as
specified in Configuration Server.

Placing the Interaction in the Appropriate Queue
When an Interaction has been created to handle the email, and all content has been stored in the
UCS database, you are free to begin processing the message as you would process any normal
Interaction. This is accomplished by moving the Interaction that you created into the appropriate
queue for email processing, as defined in Interaction Routing Designer.

[Java]

public void placeInQueue(String queue) throws Exception
{

RequestPlaceInQueue req = RequestPlaceInQueue.create();
req.setInteractionId(mInteractionId);
req.setQueue(queue);

interactionServerProtocol.send(req);
}

Replying to an Email Message

Replying to an existing email message follows the same basic process outlined above, but requires a
few additional parameters to be set in your requests. These changes are described in the following
subsections.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 425

Changes to Creating an Interaction
When creating the Interaction, you need to specify one additional parameter before submitting your
RequestSubmit. Take the InteractionId of the Interaction that represents the original email
message, and use that value as the ParentInteractionId parameter in your request, as shown
below:

[Java]

RequestSubmit req = RequestSubmit.create();

...

req.setParentInteractionId = parentInteractionId;

The following table describes these additional attributes.

Attribute Name Description

ParentInteractionId
InteractionId of a parent email Interaction. Only
set this value when replying to an existing email
message.

Changes to Storing Email Details in UCS
When storing email details in UCS, you need to specify values for three additional interaction
attributes before sending your RequestInsertInteraction. These attributes (shown in the code
snippet below) provide a link between the parent entry in UCS and any related children, as well as
specifying a common thread ID.

[Java]

InteractionAttributes ixnAttributes = new InteractionAttributes();

...

ixnAttributes.setParentId(parentInteractionId);
ixnAttributes.setCanBeParent(False);
ixnAttributes.setThreadId(parentThreadId);

The table below describes these additional attributes.

Attribute Name Description

CanBeParent Boolean value that indicates whether this message
can be a parent.

ParentId Interaction ID for the parent email Interaction.

ThreadId Unique value that is shared between all UCS
entries in an email conversation.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 426

Other Considerations

Although this introduction to creating and handling email messages is not intended to be a
comprehensive guide, it is useful to quickly introduce some other considerations and basic concepts
regarding how requests are submitted and how errors should be handled.

• The first consideration to take into account is how you submit requests using the Protocol Management
Application Block. In the code provided here, a simple send method is used to submit most requests
without waiting for a response from the server. However, in more complicated samples or
implementations you may need to process responses, or store and use values returned (such as the
InteractionId in this example) once a request is processed.

Please read the article on Event Handling provided in this document for a better understanding of
how to handle incoming responses in both a synchronous and asynchronous fashion. This allows
better error handling to be implemented if a request fails.

• A second consideration to be aware of is how records in Interaction Server and UCS are related when
implementing error handling. If you have already created a new Interaction when your
RequestInsertInteraction fails, then you will need to either resubmit the UCS record or delete the
related Interaction by submitting a RequestStopProcessing. (If you reversed the steps shown here and
created a UCS record first, then the same concept applies for removing that record when a new
Interaction request fails.)

.NET

Overview of Creating a New Email Message

To create a new email message, there are four basic steps you should follow:

1. Connect to Genesys Servers - Use the Protocol Manager Application Block to access the appropriate
Genesys Servers.

2. Create a new Interaction - Request a new Interaction that will be used to manage the email message
within Interaction Server.

3. Store email details in UCS - Once the Interaction is available, you can use the unique InteractionId that
is returned to create a new UCS entry that contains details and contents for the email message.

4. Place the Interaction in the appropriate queue - When both parts of the email message have been
stored, move the Interaction into the correct queue for processing.

A quick overview of these steps, and an outline of the key requests sent to Genesys servers, is shown
below.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 427

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

Tip
The order of the second and third steps can be reversed, if desired, as long as the
final UCS entry contains the correct InteractionId value. In this case you would
need to update the UCS entry after creating the new Interaction.

The following sections include code snippets that show one possible approach for handling each of
these steps. The snippets have been simplified to focus only on code related to Genesys-specific
functions.

Connecting to Genesys Servers
When creating and handling email interactions, it is important to remember how email messages are
stored within the Genesys environment, and which Genesys servers you are interacting with.

Each email message is stored as two separate pieces: an Interaction, and an entry in the Universal
Contact Server (UCS) database. The email is represented as an Interaction so that it can be sorted
and processed using queues that have defined behavior. Even though emails are managed through
Interaction Server, the actual contents and subject matter of each message must be stored in the
UCS database. Any attempt to create or handle email messages will require access to both Genesys
Servers: Interaction Server (using the Open Media protocol) and UCS (using the Contacts Platform
SDK protocol).

Before writing your email application, some fairly standard code must be added to allow access to
these Genesys servers. First, all necessary references and using statements must be added to your
project.

[C#]

private InteractionServerProtocol interactionServerProtocol;
private UniversalContactServerProtocol contactServerProtocol;

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 428

public void ConnectToProtocols()
{

var interactionServerEndpoint = new Endpoint(new Uri("tcp://ixnServer:7005"));
interactionServerProtocol = new InteractionServerProtocol(interactionServerEndpoint);
interactionServerProtocol.ClientName = "EmailSample";
interactionServerProtocol.ClientType = InteractionClient.AgentApplication;

var contactServerEndpoint = new Endpoint(new Uri("tcp://ucsServer:7006"));
contactServerProtocol = new UniversalContactServerProtocol(contactServerEndpoint);
contactServerProtocol.ClientName = "EmailSample";

interactionServerProtocol.BeginOpen();
contactServerProtocol.BeginOpen();

}

Creating an Interaction

With connections to the Genesys servers established, we are ready to request a new Interaction that
will represent our email message in Interaction Server. All you need to do to accomplish this is to
create a new RequestSubmit, set a few parameters to indicate that this Interaction represents an
email message, and then use your InteractionServerProtocol object to send that request to
Interaction Server.

Unlike other requests shown in this article, RequestSubmit is sent using the BeginRequest method
so that we can receive and process the response from Interaction Server.

[C#]

public void CreateInteraction(string ixnType, string ixnSubtype, string queue)
{
var req = RequestSubmit.Create();
req.InteractionType = ixnType;
req.InteractionSubtype = ixnSubtype;
req.MediaType = "email";
req.Queue = queue;

interactionServerProtocol.BeginRequest(req, new AsyncCallback(OnCreateInteractionComplete),
null);
}

A full list of properties that need to be set is included in the following table. Note that the
InteractionType and InteractionSubtype properties must match existing business attributes, as
specified in Configuration Server.

Property Name Description

InteractionSubtype
Interaction subtype for this email message. Must
match an Interaction Subtype Business Attribute,
as specified in Configuration Server.

InteractionType
Interaction type for this email message. Must
match an Interaction Type Business Attribute, as
specified in Configuration Server.

MediaType Primary media type of the interaction that is being
submitted to Interaction Server. Intended for Media

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 429

Property Name Description
Server.

Queue

Queue that this Interaction will be placed in
initially. Must be defined in Configuration Server.
When creating a new email Interaction, the initial
queue should not process the message (because
additional information needs to be stored in UCS
first).

Once a response is received from Interaction Server, you can confirm that an EventAck response was
returned and that the request was processed successfully. If an EventError response is returned
instead, then you will need to implement some error handling code.

You should also save and track the InteractionId value of the newly created Interaction. This ID
needs to be specified in UCS entries that hold details related to the email message, and is also
required for moving the Interaction to an appropriate queue when you are ready to process the email.

[C#]

private void OnCreateInteractionComplete(IAsyncResult result)
{

var response = interactionServerProtocol.EndRequest(result);
if (response == null || response.Id != EventAck.MessageId)

// for this sample, no error handling is implemented
return;

var @event = response as EventAck;
mInteractionId = (string)@event.Extension["InteractionId"];

}

In this example we are storing the InteractionId value in a simple variable named
mInteractionId, which is assumed to be defined for your project. In larger samples (or full projects),
a more robust way of tracking and handling Interactions may be required.

Storing Email Details in UCS
With the ID of your newly created Interaction available, it is time to store details about the email you
are sending in the UCS database.

There are three types of information that must be stored in the UCS database:

• Interaction Attributes - Define details about the related Interaction for this information.
• Entity Attributes - Define where the email message is coming from and going to. You will use

EmailOutEntityAttributes for storing outbound email messages, and EmailInEntityAttributes for storing
inbound email messages.

• Interaction Content - Define the actual contents of the email message, including the main text and any
MIME attachments.

Creating and configuring a RequestInsertInteraction object with this information can be easily
accomplished, as shown below.

[C#]

public void StoreDetails(string ixnType, string ixnSubtype)

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 430

{
var req = new RequestInsertInteraction();
req.InteractionAttributes = new InteractionAttributes()
{

Id = mInteractionId,
MediaTypeId = "email",
TypeId = ixnType,
SubtypeId = ixnSubtype,
TenantId = 101,
Status = new NullableStatuses(Statuses.Pending),
Subject = "Sample email subject",
EntityTypeId = new NullableEntityTypes(EntityTypes.EmailOut),

};
req.EntityAttributes = new EmailOutEntityAttributes()
{

FromAddress = "sending@email.com",
ToAddresses = "receiving@email.com",
CcAddresses = "copied@email.com",
...

};
req.InteractionContent = new InteractionContent()
{

Text = "This is the email body.",
...

};
contactServerProtocol.Send(req);

}

A list of InteractionAttributes properties that need to be set for an email message is provided in
the following table. The properties shown for EmailOutEntityAttributes and InteractionContent
represent some of those most commonly used with email. Please check the documentation provided
for each class to see a full list of available properties.

Interaction Attribute Name Description

EntityTypeId Indicates whether this is an outgoing or incoming
email.

Id Interaction ID of the related Interaction record,
created earlier.

MediaTypeId
Primary media type of the Interaction you are
submitting to Interaction Server. Intended for
Media Server.

Subject Subject line for this email message.

SubtypeId
Interaction subtype for this email message. Must
match an Interaction Subtype Business Attribute,
as specified in Configuration Server.

Status Current status of the email message.
TenantId ID of the Tenant where this email belongs.

TypeId
Interaction type for this email message. Must
match an Interaction Type Business Attribute, as
specified in Configuration Server.

Placing the Interaction in the Appropriate Queue
When an Interaction has been created to handle the email, and all content has been stored in the

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 431

UCS database, you are free to begin processing the message as you would process any normal
Interaction. This is accomplished by moving the Interaction that you created into the appropriate
queue for email processing, as defined in Interaction Routing Designer.

[C#]

public void PlaceInQueue(string queue)
{

var req = RequestPlaceInQueue.Create();
req.InteractionId = mInteractionId;
req.Queue = queue;

interactionServerProtocol.Send(req);
}

Replying to an Email Message

Replying to an existing email message follows the same basic process outlined above, but requires a
few additional parameters to be set in your requests. These changes are described in the following
subsections.

Changes to Creating an Interaction
When creating the Interaction, you need to specify one additional parameter before submitting your
RequestSubmit. Take the InteractionId of the Interaction that represents the original email
message, and use that value as the ParentInteractionId parameter in your request, as shown
below:

[C#]

var req = RequestSubmit.Create();
...
req.ParentInteractionId = parentInteractionId;

The following table describes these additional attributes.

Attribute Name Description

ParentInteractionId
InteractionId of a parent email Interaction. Only set
this value when replying to an existing email
message.

Changes to Storing Email Details in UCS
When storing email details in UCS, you need to specify values for three additional interaction
attributes before sending your RequestInsertInteraction. These attributes (shown in the code
snippet below) provide a link between the parent entry in UCS and any related children, as well as
specifying a common thread ID.

[C#]

var req = new RequestInsertInteraction();
...

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 432

req.InteractionAttributes.ParentId = parentInteractionId;
req.InteractionAttributes.CanBeParent = False;
req.InteractionAttributes.ThreadId = parentThreadId;

The following table describes these additional attributes.

Attribute Name Description

CanBeParent Boolean value that indicates whether this message
can be a parent.

ParentId Interaction ID for the parent email Interaction.

ThreadId Unique value that is shared between all UCS
entries in an email conversation.

Other Considerations

Although this introduction to creating and handling email messages is not intended to be a
comprehensive guide, it is useful to quickly introduce some other considerations and basic concepts
regarding how requests are submitted and how errors should be handled.

The first consideration to take into account is how you submit requests. In the code provided here, a
simple Send method is used to submit most requests without waiting for a response from the server.
However, for more complicated samples or implementations you should consider using the
BeginRequest method with a callback handler instead.

Using BeginRequest allows requests to be submitted without waiting for a response, but provides the
ability to confirm the result and response of each request. This allows better error handling to be
implemented if a request fails. Creating an Interaction uses the BeginRequest method and a callback
handler to capture the InteractionID that is returned.

A second consideration to be aware of is how records in Interaction Server and UCS are related when
implementing error handling. If you have already created a new Interaction and then the
RequestInsertInteraction fails, you need to either resubmit the UCS record or delete the related
Interaction by submitting a RequestStopProcessing. (If you reversed those steps and created a UCS
record first, then the same idea must be applied if the request to create a new Interaction fails.)

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 433

Chat
You can use the Web Media Platform SDK to write Java or .NET applications that use the Genesys Web
Media Server's chat, email and voice callback protocols. These applications can range from the
simple to the advanced.

This article shows how to implement the basic functions you will need to write a simple Web Media
Server application. It provides code snippets to illustrate how the FlexChat protocol can be used to
support a simple chat application.

Which Chat Protocol Should I Use?

One possible point of confusion when developing a Chat application is which protocol to use, because
Platform SDK includes two different protocols: Basic Chat and Flex Chat.

Basic Chat is for agent applications. This protocol provides a persistent TCP connection for the
duration of the chat session. With this protocol, a bi-directional connection is established only when
required by the chat session, and is closed when the session is finished. Therefore the total number
of connections is never larger than the number of active chat sessions. An unexpected loss of TCP
connection is treated as a client disconnect by this protocol.

Flex Chat is specifically designed for customer-facing applications. This protocol is for one-directional
messaging, with no push possible, and cannot be used to close the chat session directly.

Java

Importing the Web Media Protocols

Before using the Web Media Platform SDK, you will need to import the appropriate packages. Since
we will be using the FlexChat protocol, we will use the following import statements:

[Java]
import com.genesyslab.platform.webmedia.protocol.*;
import com.genesyslab.platform.webmedia.protocol.flexchat.*;
import com.genesyslab.platform.webmedia.protocol.flexchat.events.*;
import com.genesyslab.platform.webmedia.protocol.flexchat.requests.*;

Setting Up Web Media Protocol Objects

When interacting with existing chat sessions, you will need to store session-specific details including
a secure key and user ID. Additional objects that will be needed include a FlexChatProtocol object

Server-Specific Overviews Chat

Platform SDK Developer's Guide 434

(for sending and receive messages) and a FlexTranscript object (used to store and interact with
the chat transcript).

[Java]
private String mSecureKey = null;
private String mUserId = null;
private FlexTranscript mTranscript = null;
private FlexChatProtocol mFlexChatProtocol = null;

To use the Web Media Platform SDK, you first need to instantiate a protocol object by supplying
information about the Web Media Server you want to connect with. This example specifies values for
the name, host, and port values:

[Java]
mFlexChatProtocol = new FlexChatProtocol(new Endpoint("FlexChat", "<hostname>", <port>));
Thread mListenerThread = new ListenForEventsThread(mFlexChatProtocol);

Note that you have to provide a string when you create the FlexChatProtocol object. This string
should be unique for each protocol used in your application. It might be a good idea to use the name
of the server's application object from the configuration layer, which guarantees uniqueness as well
as clearly identifying which server you are communicating with.

After instantiating the FlexChatProtocol object, you need to open the connection to the Web Media
Server:

[Java]
mFlexChatProtocol.open();

Note that you should always use proper error handling techniques in your code, especially when
working with the protocol connection. To save space, these error handling steps are not shown in this
example.

Logging in to Chat Server
[Java]
// filter the request based on our configured application name
KeyValueCollection kvUserData = new KeyValueCollection();
kvUserData.addObject("FirstName", "John");
kvUserData.addObject("LastName", "Smith");
kvUserData.addObject("EmailAddress", "john.smith@email.com");
RequestLogin reqLogin = RequestLogin.create(strNickName, 0, kvUserData);
Message msg = mFlexChatProtocol.request(reqLogin);

After successfully logging in to Chat Server, a message is returned that includes some important
information: the Secure Key and User ID values. You will use these values when sending messages to
the Chat Server, so remember to keep track of them for later.

[Java]
if (msg != null && msg.messageId() == EventStatus.ID)
{

EventStatus status = (EventStatus)msg;
if (status.getRequestResult() == RequestResult.Success)
{

mSecureKey = status.getSecureKey();
mUserId = status.getUserId();

}

Server-Specific Overviews Chat

Platform SDK Developer's Guide 435

}

Updating a Chat Session

By creating a RequestRefresh object, you can either check for updates or send new text to an
existing chat session. The following sample shows how to create a RequestRefresh object, send it to
the Chat Server, and process the result.

[Java]
RequestRefresh reqRefresh = RequestRefresh.create(mUserId, mSecureKey,

mTranscript.getLastPosition() + 1, MessageText.create("text", message));
Message msg = mFlexChatProtocol.request(reqRefresh);
if (msg != null && msg.messageId() == EventStatus.ID)
{

EventStatus status = (EventStatus)msg;
if (status.getRequestResult() == RequestResult.Success)
{

processTranscript(status.getFlexTranscript());
}

}

Working with Restricted Characters

Due to server-side requirements, the XML-based Webmedia Platform SDK protocols (BasicChat,
FlexChat, Callback and Email) do not support illegal characters in string values. See
http://www.w3.org/TR/2000/REC-xml-20001006#NT-Char for the allowable character range.

The Platform SDK protocols do not change user data by default, but the following options are
available if you want to replace illegal characters:

(1) Include code in your application to configure the protocol connection. For example:

[Java]
PropertyConfiguration conf = new PropertyConfiguration();
conf.setBoolean(WebmediaChannel.OPTION_NAME_REPLACE_ILLEGAL_UNICODE_CHARS, true);
// "replacement" value is optional: if it is not specified - illegal characters will be
removed
conf.setOption(WebmediaChannel.OPTION_NAME_ILLEGAL_UNICODE_CHARS_REPLACEMENT, "?");
BasicChatProtocol protocol = new BasicChatProtocol(new Endpoint("chatServer", HOST, PORT,
conf));
protocol.open();

(2) Set specific JVM properties for the client application using webmediaprotocol.jar. For example:

[Java]
"-Dcom.genesyslab.platform.WebMedia.BasicChat.replace-illegal-unicode-chars=true"

or

[Java]
"-Dcom.genesyslab.platform.WebMedia.BasicChat.replace-illegal-unicode-chars=true
-Dcom.genesyslab.platform.WebMedia.BasicChat.illegal-unicode-chars-replacement=?"

Server-Specific Overviews Chat

Platform SDK Developer's Guide 436

Using JVM system properties will affect all protocol connections for the specified Webmedia protocol.
Using specific connection configuration values will only affect the specified protocol instance(s), and
will take priority over JVM settings.

If no replacement character or string is specified, then illegal characters will be removed (that is,
replaced with an empty string).

Values are extracted independently for the two methods listed above. If you enable character
replacement using the PropertyConfiguration class without specifying a replacement value, but a
replacement value is already specified through the JVM system properties, then characters will be
replaced without verifying the enabling option in the JVM properties. It is recommended to use both
options while writing connection configuration code.

Logging out of a Chat Session

When a client is ready to log out from the existing chat session, build a RequestLogout object and
send it to the Chat Server.

[Java]
RequestLogout reqLogout = RequestLogout.create(mUserId, mSecureKey,

mTranscript.getLastPosition());
Message msg = mFlexChatProtocol.request(reqLogout);
if (msg != null && msg.messageId() == EventStatus.ID)
{

EventStatus status = (EventStatus)msg;
if (status.getRequestResult() == RequestResult.Success)
{

processTranscript(status.getFlexTranscript());
}

}

Disconnecting from a Chat Server

Finally, when you are finished communicating with the Chat Server, you should close the connection
to minimize resource utilization.

[Java]
mFlexChatProtocol.close();

.NET

Using the Web Media Protocols

Before using the Web Media Platform SDK, you should include using statements that allow access to
types from the Platform SDK Commons and Web Media namespaces. For the FlexChat protocol, we

Server-Specific Overviews Chat

Platform SDK Developer's Guide 437

use the following statements:

[C#]
using Genesyslab.Platform.Commons.Collections;
using Genesyslab.Platform.Commons.Connection;
using Genesyslab.Platform.Commons.Protocols;

using Genesyslab.Platform.WebMedia.Protocols;
using Genesyslab.Platform.WebMedia.Protocols.FlexChat;
using Genesyslab.Platform.WebMedia.Protocols.FlexChat.Events;
using Genesyslab.Platform.WebMedia.Protocols.FlexChat.Requests;

Setting Up Web Media Protocol Objects

When interacting with existing chat sessions, you will need to store session-specific details including
a secure key and user ID. Additional objects that will be needed include a FlexChatProtocol object
(for sending and receive messages) and a FlexTranscript object (used to store and interact with
the chat transcript).

[C#]
private string secureKey;
private string userId;
private FlexTranscript flexTranscript;
private FlexChatProtocol flexChatProtocol;

To use the Web Media Platform SDK, you first need to instantiate a Protocol object by supplying
information about the Web Media Server you want to connect with. This example specifies values for
the name, host, and port values:

[C#]
flexChatProtocol = new FlexChatProtocol(new Endpoint("Flex_Chat_Server", "<hostname>",
<port>));

Note that you have to provide a string when you create the FlexChatProtocol object. This string
should be unique for each protocol used in your application. It might be a good idea to use the name
of the server's application object from the configuration layer, which guarantees uniqueness as well
as clearly identifying which server you are communicating with.

After instantiating the FlexChatProtocol object, you need to open the connection to the Web Media
Server:

[C#]
flexChatProtocol.Open();

You should always use proper error handling techniques in your code, especially when working with
the protocol connection. To save space, these error handling steps are not shown in this example.

Logging in to Chat Server
[C#]
// filter the request based on our configured application name
KeyValueCollection kvUserData = new KeyValueCollection();

Server-Specific Overviews Chat

Platform SDK Developer's Guide 438

kvUserData.Add("FirstName", "John");
kvUserData.Add("LastName", "Smith");
kvUserData.Add("EmailAddress", "john.smith@email.com");
RequestLogin reqLogin = RequestLogin.Create("reqLogin", 0, kvUserData);
EventStatus msg = this.flexChatProtocol.Request(reqLogin) as EventStatus;

After successfully logging in to Chat Server, a message is returned that includes some important
information: the Secure Key and User ID values. You will use these values when sending messages to
the Chat Server, so remember to keep track of them for later.

[C#]
if (msg != null && msg.Id == EventStatus.MessageId)
{

if (msg.RequestResult == RequestResult.Success)
{

secureKey = msg.SecureKey;
userId = msg.UserId;

}
}

Updating a Chat Session

By creating a RequestRefresh object, you can either check for updates or send new text to an
existing chat session. The following sample shows how to create a RequestRefresh object, send it to
the Chat Server, and process the result.

[C#]
RequestRefresh reqRefresh = RequestRefresh.Create(

userId, secureKey, flexTranscript.LastPosition + 1, MessageText.Create(""));
EventStatus msg = this.flexChatProtocol.Request(reqJoin) as EventStatus;
if (msg != null && msg.Id == EventStatus.MessageId)
{

if (msg.RequestResult == RequestResult.Success)
{

ProcessTranscript(msg.FlexTranscript);
}

}

Working with Restricted Characters

Due to server-side requirements, the XML-based Web Media Platform SDK protocols (BasicChat,
FlexChat, Callback and Email) do not support illegal characters in string values. See
http://www.w3.org/TR/2000/REC-xml-20001006#NT-Char for the allowable character range.

The Platform SDK protocols do not change user data by default, but if you want to replace illegal
characters then you can include code in your application to configure the protocol connection. For
example:

[C#]
// Note: to use the PropertyConfiguration class, ensure that your using
// statements include Genesyslab.Platform.Commons.Connection
PropertyConfiguration conf = new PropertyConfiguration();
conf.SetBoolean(WebmediaChannel.OptionNameReplaceIllegalUnicodeChars, true);

Server-Specific Overviews Chat

Platform SDK Developer's Guide 439

// "replacement" value is optional: if it is not specified - illegal characters will be
removed
conf.SetOption(WebmediaChannel.OptionNameIllegalUnicodeCharsReplacement, "?");
BasicChatProtocol protocol = new BasicChatProtocol(new Endpoint("chatServer", HOST, PORT,
conf));
protocol.Open();

Using specific connection configuration values in this manner will only affect the specified protocol
instance(s).

If no replacement character or string is specified, then illegal characters will be removed (that is,
replaced with an empty string).

Logging out of a Chat Session

When a client is ready to log out from the existing chat session, build a RequestLogout object and
send it to the Chat Server.

[C#]
RequestLogout reqLogout = RequestLogout.Create(userId, secureKey,
flexTranscript.LastPosition);
IMessage msg = flexChatProtocol.Request(reqLogout);
if (msg != null && msg.Id == EventStatus.MessageId)
{

if ((msg as EventStatus).RequestResult == RequestResult.Success)
{

ProcessTranscript((msg as EventStatus).FlexTranscript);
}

}

Disconnecting from a Chat Server

Finally, when you are finished communicating with the Chat Server, you should close the connection
to minimize resource utilization.

[C#]
flexChatProtocol.Close();

Server-Specific Overviews Chat

Platform SDK Developer's Guide 440

E-Mail Server
The EspEmailProtocol allows communication to be established between a client application and an
ESP-based E-mail Server.

Tip
Note that Platform SDK also provides the deprecated EmailProtocol class along with
EspEmailProtocol. The EmailProtocol cannot be used with E-mail Servers of
release 8.0.2 and higher. For newer email servers, use EspEmailProtocol.

E-mail Server interfaces with the enterprise mail server and the Genesys Web API Server, bringing in
new email interactions and sending out replies or other outbound messages. For better
understanding of email server, see the eServices documentation.

The EspEmailProtocol can be used in a web-based application, for example to submit new email
interaction that user filled out via the web form. You can find advanced samples with
EspEmailProtocol in the Web API Client Developer's Guide.

The sample below shows how to connect to E-mail Server and submit a new email interaction.

Java

Open Connection to Server

Before using the Web Media Platform SDK, you will need to import the appropriate packages. Since
we will be using the EmailServer protocol, we will use the following import statements:

import com.genesyslab.platform.commons.protocol.Endpoint;
import com.genesyslab.platform.commons.protocol.Message;
import com.genesyslab.platform.webmedia.protocol.EspEmailProtocol;
import com.genesyslab.platform.webmedia.protocol.espemail.EmailAttachment;
import com.genesyslab.platform.webmedia.protocol.espemail.EmailAttachmentList;
import com.genesyslab.platform.webmedia.protocol.espemail.events.EventCreateWebEmailIn;
import com.genesyslab.platform.webmedia.protocol.espemail.events.EventError;
import com.genesyslab.platform.webmedia.protocol.espemail.requests.RequestCreateWebEmailIn;

Now create a Protocol object and open a connection to the server.

EspEmailProtocol emailProtocol = new EspEmailProtocol(new Endpoint(hostname, port));
emailProtocol.open();

Server-Specific Overviews E-Mail Server

Platform SDK Developer's Guide 441

Submit a New E-mail Interaction

Create a RequestCreateWebEmailIn message to provide the email message content and submit a
new email interaction.

RequestCreateWebEmailIn req = RequestCreateWebEmailIn.create();
req.setFirstName(firstName);
req.setLastName(lastName);
req.setFromAddress(emailAddress);
req.setSubject(subject);
req.setText(body);
req.setMailbox(replayFrom);

It is possible to attach data to an email using EmailAttachmentList and EmailAttachment objects.

EmailAttachmentList attachmentList= new EmailAttachmentList();
EmailAttachment attachment = new EmailAttachment();
attachment.setContentType("image/png");
attachment.setFileName("picture.png");
attachment.setContent(content);
attachmentList.add(attachment);

req.setAttachments(attachmentList);

Send your request to the E-mail Server. If the operation is completed successfully, the server will
respond with an EventCreateWebEmailIn message. This message contains the ID of the new
interaction.

Message response = emailProtocol.request(req);
if (response instanceof EventCreateWebEmailIn) {

EventCreateWebEmailIn eventAck = (EventCreateWebEmailIn)response;
intearctionId = eventAck.getNewInteractionId();

}
else if (response instanceof EventError) {

EventError eventError = (EventError) response;
//handle error

}

Disconnecting from E-mail Server

Finally, when you are finished communicating with the E-mail Server, you should close the connection
to minimize resource utilization.

emailProtocol.close();

.NET

Server-Specific Overviews E-Mail Server

Platform SDK Developer's Guide 442

Open Connection to Server

Before using the Web Media Platform SDK, you should include using statements that allow access to
types from the Platform SDK Commons and Web Media namespaces. For the EspEmail protocol, we
use the following statements:

using Genesyslab.Platform.Commons.Collections;
using Genesyslab.Platform.Commons.Connection;
using Genesyslab.Platform.Commons.Protocols;
using Genesyslab.Platform.WebMedia.Protocols;
using Genesyslab.Platform.WebMedia.Protocols.EspEmail;
using Genesyslab.Platform.WebMedia.Protocols.EspEmail.Requests;
using Genesyslab.Platform.WebMedia.Protocols.EspEmail.Events;

Now create a Protocol object and open a connection to the server.

EspEmailProtocol espProtocol = new EspEmailProtocol(new Endpoint(hostname, port));
emailProtocol.Open();

Submit a New E-mail Interaction

Create a RequestCreateWebEmailIn message to provide the email message content and submit a
new email interaction.

RequestCreateWebEmailIn req = RequestCreateWebEmailIn.Create();
req.FirstName = firstName;
req.LastName = lastName;
req.FromAddress = emailAddress;
req.Subject = subject;
req.Text = body;
req.Mailbox = replayFrom;

It is possible to attach data to an email using EmailAttachmentList and EmailAttachment objects.

EmailAttachmentList attachmentList= new EmailAttachmentList();
EmailAttachment attachment = new EmailAttachment();
attachment.ContentType = "image/png";
attachment.FileName = fileName;
attachment.Content = File.ReadAllBytes(file);
attachmentList.Add(attachment);
req.Attachments = attachmentList;

Send your request to the E-mail Server. If the operation is completed successfully, the server will
respond with an EventCreateWebEmailIn message. This message contains the ID of the new
interaction.

IMessage response = emailProtocol.Request(req);

if (response is EventCreateWebEmailIn)
{

EventCreateWebEmailIn eventAck = (EventCreateWebEmailIn)response;
intearctionId = eventAck.NewInteractionId;

}
else if (response is EventError)

Server-Specific Overviews E-Mail Server

Platform SDK Developer's Guide 443

{
EventError eventError = (EventError) response;
//handle error

}

Disconnecting from E-mail Server

Finally, when you are finished communicating with the E-mail Server, you should close the connection
to minimize resource utilization.

emailProtocol.Close();

Server-Specific Overviews E-Mail Server

Platform SDK Developer's Guide 444

Outbound

Java

You can use the Outbound Contact Platform SDK to write Java or .NET applications that work with the
Genesys Outbound Contact Server. These applications can range from the simple to the advanced.
This document shows how to implement the basic functions you will need to write a simple Outbound
Contact application. It is organized to show the kind of structure you will probably use to write your
own applications.

Setting Up an OutboundServerProtocol Object

The first thing you need to do to use the Outbound Contact Platform SDK is instantiate a
OutboundServerProtocol object. To do that, you must supply information about the Outbound
Contact Server you want to connect with. This example uses the URI of the server, but you can also
use name, host, and port information:

[Java]

OutboundServerProtocol outboundServerProtocol =
new OutboundServerProtocol(

new Endpoint(
outboundServerUri));

After instantiating the protocol object, you need to open the connection to the server:

[Java]

outboundServerProtocol.open();

Closing the Connection

Finally, when you are finished communicating with the Outbound Contact Server, you should close
the connection to minimize resource utilization:

[Java]

outboundServerProtocol.close();

.NET

You can use the Outbound Contact Platform SDK to write Java or .NET applications that work with the

Server-Specific Overviews Outbound

Platform SDK Developer's Guide 445

Genesys Outbound Contact Server. These applications can range from the simple to the advanced.
This document shows how to implement the basic functions you will need to write a simple Outbound
Contact application. It is organized to show the kind of structure you will probably use to write your
own applications.

Setting Up an OutboundServerProtocol Object

The first thing you need to do to use the Outbound Contact Platform SDK is instantiate a
OutboundServerProtocol object. To do that, you must supply information about the Outbound
Contact Server you want to connect with. This example uses the URI of the server, but you can also
use name, host, and port information:

[C#]

OutboundServerProtocol outboundServerProtocol =
new OutboundServerProtocol(

new Endpoint(
outboundServerUri));

After instantiating the OutboundServerProtocol object, you need to open the connection to the
Outbound Contact Server:

[C#]

outboundServerProtocol.Open();

Closing the Connection

Finally, when you are finished communicating with the Outbound Contact Server, you should close
the connection to minimize resource utilization:

[C#]

outboundServerProtocol.Close();

Server-Specific Overviews Outbound

Platform SDK Developer's Guide 446

Management Layer
You can use the Management Platform SDK to write Java or .NET applications that interact with the
Genesys Message Server, Solution Control Server and Local Control Agents (LCAs). Most people will
want to use this SDK to make their applications visible to the Genesys Management Layer so they
can monitor them with Solution Control Server.

This document shows how to implement the basic functions you will need to write a simple voice
application. It is organized to show the kind of structure you will probably use to write your own
applications.

Java

Making Your Application Visible to the Genesys Management
Layer

A Genesys Local Control Agent (LCA) runs on each host in the Genesys environment, enabling the
Management Layer to monitor and control the applications running on that host. This section shows
how to use the LCA running on your own host to make your application visible to the Genesys
Management Layer.

Connecting to the Local Control Agent
The first step is to create a Local Control Agent Protocol instance, specifying the LCA port in an
Endpoint object. This sample uses the default LCA port of 4999.

LocalControlAgentProtocol lcaProtocol = new LocalControlAgentProtocol(new
Endpoint("localhost", 4999));

Now you can configure the connection. Set the applicationName to the same value as the name of
an application that you have set up in the Configuration Layer. Then set the application status to
Initializing, and the execution mode to Backup.

lcaProtocol.setClientName(applicationName);
lcaProtocol.setControlStatus(ApplicationStatus.Initializing.asInteger());
lcaProtocol.setExecutionMode(ApplicationExecutionMode.Backup);

The next step is to set up a message handler to process events from LCA. See Event Handling articles
for a better understanding of how messages and protocols should be managed. The code snippets
below show how to handle events from LCA.

MessageHandler lcarMessageHandler = new MessageHandler() {
public void onMessage(Message message) {

System.out.println("Message received: \n"+message);
//process message

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 447

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

}
};
lcaProtocol.setMessageHandler(lcarMessageHandler);

Important
You need to know that your event-handling logic will be executed by using the
protocol invoker. Please set the appropriate invoker for your application needs. For
more information about the protocol invoker and how to set it, refer to Connecting to
a Server.

Once you have finished configuring your protocol, you can open a connection to the LCA.

lcaProtocol.Open();

Updating the Application Status
When you need to update the status of your application, send a RequestUpdateStatus. Here is how
to indicate that the application is running:

RequestUpdateStatus requestUpdateStatus = RequestUpdateStatus.create();
requestUpdateStatus.setApplicationName(lcaProtocol.getClientName());
requestUpdateStatus.setControlStatus(ApplicationStatus.Running.asInteger());
lcaProtocol.send(requestUpdateStatus);

The LCA does not return an event when you change the application status. So for this particular task,
you will not need any more code.

Execution Mode and Event Handling
As mentioned, the LCA will not return an event when you change the application status. But when
you change the execution mode — for example, from Primary to Backup — you will receive an
EventChangeExecutionMode. Unlike most events you receive in the Platform SDK, this event requires
a response from your application. If the Management Layer does not know that your application is
expecting to work in Primary mode, for example, it cannot rely on the stability of the Genesys
environment.

Important
If you do not respond within the configured timeout period, your application will be
terminated by the Management Layer.

After receiving the EventChangeExecutionMode, your application must send a
ResponseExecutionModeChanged to indicate to the Management Layer that you are now ready to run
in the new execution mode.

In order to handle these events, you need to setup message handler for a LCA protocol object as
shown above.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 448

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

Implement your event-handling logic:

MessageHandler lcarMessageHandler = new MessageHandler() {
public void onMessage(Message message) {

switch(message.messageId()){
case EventChangeExecutionMode.ID:

OnEventChangeExecutionMode(message);
break;

// other messages
}

}
};

Here is a sample of the handler you might set up for the EventChangeExecutionMode. This handler
includes your ResponseExecutionModeChanged:

private static void OnEventChangeExecutionMode(Message message)
{

if(message instanceof EventChangeExecutionMode)
{

EventChangeExecutionMode eventChangeExecutionMode = (EventChangeExecutionMode)message;
System.out.println("eventChangeExecutionMode received: \n"+eventChangeExecutionMode);

ApplicationExecutionMode mode = eventChangeExecutionMode.getExecutionMode();

ResponseExecutionModeChanged response =
ResponseExecutionModeChanged.create(mode);

System.out.println("Sending response: " + response);
try {

lcaProtocol.send(response);
} catch (ProtocolException e) {

e.printStackTrace();
}

}
}

Tip
However, if your real application didn't successfully do the switchover, you can skip
sending ResponseExecutionModeChanged. That way SCS will revert the switchover
and put the application in Unknown status. That's convenient for admins as they can
have alarms on that.

Closing the Connection
When you are finished, close the connection to the LCA:

lcaProtocol.Close();

Monitoring Your Application with Solution Control Server

Solution Control Server can be used to monitor applications running in the Genesys environment.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 449

Here is how to obtain information about hosts and applications.

Connecting to Solution Control Server
Create a protocol instance and supply the necessary parameters. The ClientName is the name of a
Solution Control application that has been set up in the Configuration Layer, while the ClientId is
the DBID of that application.

SolutionControlServerProtocol scsProtocol = new SolutionControlServerProtocol(new
Endpoint("host", port));

scsProtocol.setClientName(scsApplicationName);
scsProtocol.setClientId(scsApplicationDBid);
scsProtocol.setUserName(userName);

Setting Up Event Handling
You will need to set up some event handling code, since Solution Control Server will return EventInfo
or EventError messages in response to your requests for information. The code for this is similar to
the LCA-related code shown above.

MessageHandler scsrMessageHandler = new MessageHandler() {
public void onMessage(Message message) {

switch(message.messageId()){
case EventInfo.ID:

OnEventInfo(message);
break;

//Other events.
}

}
};
scsProtocol.setMessageHandler(scsrMessageHandler);

...

private static void OnEventInfo(Message message)
{

System.out.println("Event info: \n"+message);
//Handling logic here info.

}

Open Connection
Once you have configured your protocol, you can open your connection to the SCS:

scsProtocol.open();

Requesting Application Information
Here is how to request the status of an application, using its DBID:

RequestGetApplicationInfo requestGetApplicationInfo =
RequestGetApplicationInfo.create(applicationDbid);

scsProtocol.send(requestGetApplicationInfo);

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 450

When you send this request, you will receive an EventInfo that includes the status of the
application:

'EventInfo' ('1')
message attributes:

attr_app_work_mode [int] = 0 [Primary]
attr_client [int] = 660
attr_ref_id [int] = 4
attr_message [str] = "APP_STATUS_RUNNING"
attr_obj_live_status [int] = 6 [Running]
attr_cfg_obj_id [int] = 109
attr_cfg_obj_type [int] = 9 [Application]

If you want to be notified when the status of an application changes, send a RequestSubscribe.

RequestSubscribe requestSubscribeApp = RequestSubscribe.create();
requestSubscribeApp.setControlObjectType(ControlObjectType.Application);
requestSubscribeApp.setControlObjectId(applicationDbid);
scsProtocol.send(requestSubscribeApp);

Whenever the application's status changes, you will receive an EventInfo that informs you of the
new status.

Requesting Host Information
You can also request information about the status of a host. But in this case, you must issue a
RequestSubscribe before you will receive any information about the host. Here is how:

RequestSubscribe requestSubscribeHost = RequestSubscribe.create();
requestSubscribeHost.setControlObjectType(ControlObjectType.Host);
requestSubscribeHost.setControlObjectId(hostDbid);
scsProtocol.send(requestSubscribeHost);

RequestGetHostInfo requestGetHostInfo = RequestGetHostInfo.create();
requestGetHostInfo.setControlObjectId(hostDbid);
scsProtocol.send(requestGetHostInfo);

If you just send the RequestSubscribe, you will be notified any time the host status changes. If you
also send the RequestGetHostInfo, you will also receive an immediate notification of the host's
status, whether it has changed or not. Here is a sample of the information you will receive.

'EventInfo' ('1')
message attributes:

attr_client [int] = 660
attr_ref_id [int] = 3
attr_message [str] = "HOST_STATUS_RUNNING"
attr_obj_live_status [int] = 2 [StopTransition]
attr_cfg_obj_id [int] = 111
attr_cfg_obj_type [int] = 10 [Host]

Once you have subscribed to a host, you can send a RequestGetHostInfo at any time to receive
information about its status.

Closing the Connection
When you are finished, close the connection to Solution Control Server:

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 451

scsProtocol.close();

Sending a Log Message to Message Server

You can easily send log messages to Message Server using the Management Platform SDK. This
sample shows how to log application events, raise alarms and view them in Solution Control
Interface.

First you need to create the Protocol object:

MessageServerProtocol messageServerProtocol = new MessageServerProtocol(new Endpoint(new
URI(serverURI)));

Now you can configure the Protocol object and open the connection to Message Server. Specify the
application type, application name, host on which the application is running, and application DBID.
Note that the CfgAppType enum is defined in the Configuration Protocol package:
com.genesyslab.platform.configuration.protocol.types

messageServerProtocol.setClientType(CfgAppType.CFGGenericServer.ordinal());
messageServerProtocol.setClientName ("Primary_Server_App");
messageServerProtocol.setClientHost (applicationHostName);
messageServerProtocol.setClientId(applicationDBID);

Now you can configure the Protocol object and open the connection to Message Server:

messageServerProtocol.open();

Create RequestLogMessage to log an application event. To raise an Alarm with this event, specify
requestLogMessage.EntryId equal to the alarm detect ID. (There is more information about
configuring Alarm conditions in Configuration Manager at the end of the article.)

RequestLogMessage requestLogMessage = RequestLogMessage.create();
requestLogMessage.setEntryId(9600);
requestLogMessage.setEntryCategory(LogCategory.Application);
requestLogMessage.setEntryText("Primary_Server_App out of service...");
requestLogMessage.setLevel(LogLevel.Alarm);

Once you have created the request, you can send the request to Message Server.

messageServerProtocol.send(requestLogMessage);
Thread.sleep(15000); //stop execution to view raised alarm in SCI

You can cancel an alarm after your application is restored. Specify the cancel alarm event ID and
send that message to Message Server.

requestLogMessage = RequestLogMessage.create();
requestLogMessage.setEntryId(9601);
requestLogMessage.setEntryCategory(LogCategory.Application);
requestLogMessage.setEntryText("Primary_Server_App back in service...");
requestLogMessage.setLevel(LogLevel.Alarm);

messageServerProtocol.send(requestLogMessage);

When you are finished, you should close the connection:

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 452

messageServerProtocol.close();

Configuring Genesys Management Framework
You can view event logs and active alarms created by this code snippet in Solution Control Interface.
However, Genesys Management Framework should be configured according to the list of required
settings, below:

• Solution Control Server must be connected to Message Server. See the Connections tab in the Solution
Control Server properties dialog.

• Solution Control Interface must be connected to Solution Control Server. See the Connections tab in the
Solution Control Interface properties dialog.

• Solution Control Interface must be connected to the DataBase Access Point. See the Connections tab in
the Solution Control Interface properties dialog.

• Message Server must be connected to the DataBase Access Point. See the Connections tab in the
Message Server properties dialog.

• Message Server must have the db_storage=true property. See the messages section under Options of
the Solution Control Interface properties dialog. This option is required to store messages in the
database.

• The DataBase Access Point must be associated with DBServer. See the General tab of the DataBase
Access Point. Check that the DB Info tab has the proper connection options to SQL Server.

Configuring Alarm Conditions
You need to create the Alarm Condition that will trigger an Alarm for log events sent by the code
snippet. To do this, open Configuration Manager, find the Alarm Conditions section and create a new
Condition.

• On the General tab specify a condition name and description, then select Major for the category.
• On the Detect Event tab specify a Log event ID that will raise the alarm. This refers to the

RequestLogMessage.EntryId value.
• On the Detect Event tab choose Select By Application for the Selection Mode and choose the application

for which an event will be triggered.
• On the Detect Event tab specify a Log event ID that will cancel the alarm. This refers to the

RequestLogMessage.EntryId value.

You can observe the results of running the application from Solution Control Interface.

Here is what the log messages look like in SCI:

And here is what the alarm entry looks like while the alarm is active:

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 453

.NET

Making Your Application Visible to the Genesys Management
Layer

A Genesys Local Control Agent (LCA) runs on each host in the Genesys environment, enabling the
Management Layer to monitor and control the applications running on that host. This section shows
how to use the LCA running on your own host to make your application visible to the Genesys
Management Layer.

Connecting to the Local Control Agent
The first step is to create a Local Control Agent Protocol instance, specifying the LCA port in an
Endpoint object. This sample uses the default LCA port of 4999.

LocalControlAgentProtocol lcaProtocol = new LocalControlAgentProtocol(new
Endpoint("localhost", 4999));

Now you can configure the connection. Set the applicationName to the same value as the name of
an application that you have set up in the Configuration Layer. Then set the application status to
Initializing, and the execution mode to Backup.

lcaProtocol.ClientName = applicationName;
lcaProtocol.ControlStatus = (int)ApplicationStatus.Initializing;
lcaProtocol.ExecutionMode = ApplicationExecutionMode.Backup;

The next step is to set up a message handler to process events from LCA. See Event Handling articles
for a better understanding of how messages and protocols should be managed. The code snippets
below show how to handle events from LCA.

private void OnLcaMessageReceived(object sender, EventArgs args)
{

Console.WriteLine("New message: {0}",((MessageEventArgs)args).Message);
// Message handling logic here.

}
. . .

lcaProtocol.Received += OnLcaMessageReceived;

Important

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 454

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

You need to know that your event-handling logic will be executed by using the
protocol invoker. Please set the appropriate invoker for your application needs. For
more information about the protocol invoker and how to set it, refer to Connecting to
a Server.

Once you have configured your protocol, you can open your connection to the LCA:

lcaProtocol.Open();

Updating the Application Status
When you need to update the status of your application, send a RequestUpdateStatus. Here is how
to indicate that the application is running:

RequestUpdateStatus requestUpdateStatus = RequestUpdateStatus.Create();
requestUpdateStatus.ApplicationName = lcaProtocol.ClientName;
requestUpdateStatus.ControlStatus = (int)ApplicationStatus.Running;
lcaProtocol.Send(requestUpdateStatus);

The LCA will not return an event when you change the application status. So for this particular task,
you will not need any more code.

Execution Mode and Event Handling
As mentioned, the LCA will not return an event when you change the application status. But when
Solution Control Server going to change your execution mode — for example, from Primary to
Backup — you will receive an EventChangeExecutionMode. Unlike most events you receive in the
Platform SDK, this event requires a response from your application. If the Management Layer does
not know that your application is expecting to work in Primary mode, for example, it cannot rely on
the stability of the Genesys environment.

Important
If you do not respond within the configured timeout period, your application will be
terminated by the Management Layer.

After receiving the EventChangeExecutionMode, your application must send a
ResponseExecutionModeChanged to indicate to the Management Layer that you are now ready to run
in the new execution mode.

In order to handle these events, you need to setup message handler for a LCA protocol object as
shown in the article above.

Implement your event-handling logic:

private void OnLcaMessageReceived(object sender, EventArgs args)
{

IMessage message = ((MessageEventArgs)args).Message;

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 455

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

switch (message.Id)
{

case EventChangeExecutionMode.MessageId:
OnEventChangeExecutionMode(message);
break;
// . . .

}
}

Here is a sample of the handler you might set up for the EventChangeExecutionMode. This handler
includes your ResponseExecutionModeChanged:

private void OnEventChangeExecutionMode(IMessage theMessage)
{

EventChangeExecutionMode eventChangeExecutionMode = theMessage as EventChangeExecutionMode;
if (eventChangeExecutionMode != null)
{

ApplicationExecutionMode mode = eventChangeExecutionMode.ExecutionMode;
ResponseExecutionModeChanged response = ResponseExecutionModeChanged.Create(mode);
Console.WriteLine("Sending response: " + response);
lcaProtocol.Send(response);

}
}

Tip
However, if your real application did not successfully do the switchover, you can skip
sending ResponseExecutionModeChanged. That way SCS will revert the switchover
and put the application in Unknown status - a convenient event for administrators as
they can have alarms trigger.

Closing the Connection
When you are finished, close the connection to the LCA:

lcaProtocol.Close();

Monitoring Your Application with Solution Control Server

Solution Control Server can be used to monitor applications running in the Genesys environment.
Here is how to obtain information about hosts and applications.

Connecting to Solution Control Server
Create protocol instance and supply the necessary parameters. The ClientName is the name of a
Solution Control application that has been set up in the Configuration Layer, while the ClientId is
the DBID of that application:

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 456

var scsProtocol = new SolutionControlServerProtocol(new Endpoint("host", port));
scsProtocol.ClientName = applicationName;
scsProtocol.ClientId = applicationDBid;
scsProtocol.UserName = userName;

Once you have configured your protocol, you can open your connection to the SCS:

scsProtocol.Open();

Setting Up Event Handling
You will need to set up some event handling code, since Solution Control Server will return EventInfo
or EventError messages in response to your requests for information. The code for this is similar to
the LCA-related code shown above:

scsProtocol.Received += OnScsMessageReceived;
...

private void OnScsMessageReceived(object sender, EventArgs args)
{

IMessage message = ((MessageEventArgs)args).Message;
switch (message.Id)
{

case EventInfo.MessageId:
OnEventInfo(message);
break;
//case ... other message

}
}
...

private void OnEventInfo(IMessage theMessage)
{

var eventInfo = theMessage as EventInfo;
if (eventInfo != null)
{

Console.WriteLine("EventInfo received: \n{0}", eventInfo);
// Handle this event

}
}

Requesting Application Information
Here is how to request the status of an application, using its DBID:

var requestGetApplicationInfo = RequestGetApplicationInfo.Create(applicationDbid);
scsProtocol.Send(requestGetApplicationInfo);

When you send this request, you will receive an EventInfo that includes the status of the
application:

'EventInfo' ('1')
message attributes:

attr_app_work_mode [int] = 0 [Primary]
attr_client [int] = 660
attr_ref_id [int] = 4
attr_message [str] = "APP_STATUS_RUNNING"
attr_obj_live_status [int] = 6 [Running]
attr_cfg_obj_id [int] = 109

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 457

attr_cfg_obj_type [int] = 9 [Application]

If you want to be notified when the status of an application changes, send a RequestSubscribe.

RequestSubscribe requestSubscribeApp = RequestSubscribe.Create();
requestSubscribeApp.ControlObjectType = ControlObjectType.Application;
requestSubscribeApp.ControlObjectId = applicationDbid;
scsProtocol.Send(requestSubscribeApp);

Whenever the application's status changes, you will receive an EventInfo that informs you of the
new status.

Requesting Host Information
You can also request information about the status of a host. But in this case, you must issue a
RequestSubscribe before you will receive any information about the host. Here is how:

RequestSubscribe requestSubscribeHost = RequestSubscribe.Create();
requestSubscribeHost.ControlObjectType = ControlObjectType.Host;
requestSubscribeHost.ControlObjectId = HostDbid;
scsProtocol.Send(requestSubscribeHost);

RequestGetHostInfo requestGetHostInfo = RequestGetHostInfo.Create();
requestGetHostInfo.ControlObjectId = HostDbid;
scsProtocol.Send(requestGetHostInfo);

If you just send the RequestSubscribe, you will be notified any time the host status changes. If you
also send the RequestGetHostInfo, you will also receive an immediate notification of the host's
status, whether it has changed or not. Here is a sample of the information you will receive.

'EventInfo' ('1')
message attributes:

attr_client [int] = 660
attr_ref_id [int] = 3
attr_message [str] = "HOST_STATUS_RUNNING"
attr_obj_live_status [int] = 2 [StopTransition]
attr_cfg_obj_id [int] = 111
attr_cfg_obj_type [int] = 10 [Host]

Once you have subscribed to a host, you can send a RequestGetHostInfo at any time to receive
information about its status.

Closing the Connection
When you are finished, close the connection to Solution Control Server:

scsProtocol.Close();

Sending a Log Message to Message Server

You can easily send log messages to Message Server using the Management Platform SDK. This
sample shows how to log application events, raise alarms and view them in Solution Control
Interface.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 458

First you need to create the Protocol object:

MessageServerProtocol messageServerProtocol = new MessageServerProtocol(new Endpoint(new
Uri(serverURI)));

Now you can configure the Protocol object and open the connection to Message Server. Specify the
application type, application name, host on which the application is running, and application DBID.
Note that the CfgAppType enum is defined in the Configuration Protocol namespace:
Genesyslab.Platform.Configuration.Protocols.Types

messageServerProtocol.ClientType = (int) CfgAppType.CFGGenericServer;
messageServerProtocol.ClientName = "Primary_Server_App";
messageServerProtocol.ClientHost = applicationHostName;
messageServerProtocol.ClientId = applicationDBID;

Now you can configure the Protocol object and open the connection to Message Server:

messageServerProtocol.Open();

Create RequestLogMessage to log an application event. To raise an Alarm with this event, specify
requestLogMessage.EntryId equal to the alarm detect ID. (There is more information about
configuring Alarm conditions in Configuration Manager at the end of the article.)

RequestLogMessage requestLogMessage = RequestLogMessage.Create();
requestLogMessage.EntryId = 9600;
requestLogMessage.EntryCategory = LogCategory.Application;
requestLogMessage.EntryText = "Primary_Server_App out of service...";
requestLogMessage.Level = LogLevel.Alarm;

Once you have created the request, you can send it to Message Server.

messageServerProtocol.Send(requestLogMessage);
Thread.Sleep(15000); //stop execution to view raised alarm in SCI

You can cancel an alarm after your application is restored. Specify the cancel alarm event ID and
send that message to Message Server.

requestLogMessage = RequestLogMessage.Create();
requestLogMessage.EntryId = 9601;
requestLogMessage.EntryCategory = LogCategory.Application;
requestLogMessage.EntryText = "Primary_Server_App back in service...";
requestLogMessage.Level = LogLevel.Alarm;

messageServerProtocol.Send(requestLogMessage);

When you are finished, you should close the connection:

messageServerProtocol.Close();

Configuring Genesys Management Framework
You can view event logs and active alarms created by this code snippet in Solution Control Interface.
However, Genesys Management Framework should be configured according to the list of required
settings, below:

• Solution Control Server must be connected to Message Server. See the Connections tab in the Solution
Control Server properties dialog.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 459

• Solution Control Interface must be connected to Solution Control Server. See the Connections tab in the
Solution Control Interface properties dialog.

• Solution Control Interface must be connected to the DataBase Access Point. See the Connections tab in
the Solution Control Interface properties dialog.

• Message Server must be connected to the DataBase Access Point. See the Connections tab in the
Message Server properties dialog.

• Message Server must have the db_storage=true property. See the messages section under Options of
the Solution Control Interface properties dialog. This option is required to store messages in the
database.

• The DataBase Access Point must be associated with DBServer. See the General tab of the DataBase
Access Point. Check that the DB Info tab has the proper connection options to SQL Server.

Configuring Alarm Conditions
You need to create the Alarm Condition that will trigger an Alarm for log events sent by the code
snippet. To do this, open Configuration Manager, find the Alarm Conditions section and create a new
Condition.

• On the General tab specify a condition name and description, then select Major for the category.
• On the Detect Event tab specify a Log event ID that will raise the alarm. This refers to the

RequestLogMessage.EntryId value.
• On the Detect Event tab choose Select By Application for the Selection Mode and choose the application

for which an event will be triggered.
• On the Detect Event tab specify a Log event ID that will cancel the alarm. This refers to the

RequestLogMessage.EntryId value.

You can observe the results of running the application from Solution Control Interface.

Here is what the log messages look like in SCI:

And here is what the alarm entry looks like while the alarm is active:

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 460

LCA Protocol Usage Samples
This page hosts code samples that showcase basic LCA Protocol usage for Java and .NET applications,
and provides instructions about the deployment and configuration steps required to run the samples.

Java

Overview

The SampleServerApp_Java_814.zip file contains the minimal amount of code required for an
application to connect to LCA and maintain this connection in accordance with the Management
Framework expectations. Download the sample code below, and then follow the steps below to set up
and run this sample.

Java Code Sample
SampleServerApp_Java_814.zip

Unpacking the ZIP file will give you access to the following folders:

• /source - Contains application project files with detailed comments. You can import this source code into
Eclipse or some other IDE as a Maven project.

• /application - Contains pre-compiled binaries.

Before running this sample application, you need to complete two tasks:

1. Create and configure a pair of primary and backup applications in Genesys Management Framework.
2. Copy the binary files to correct locations, and adjust the application properties.

These tasks are described in more detail below.

Genesys Environment Configuration

1. Open Configuration Manager and create two application in Genesys Management Framework: one
for the primary server and a second for the backup server. Select Genesys Generic Server type for
these applications.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 461

2. Setup Warm Standby redundancy type for the Primary_Server_App, as shown below.

3. Open the Start Info tab to set up application start settings, as shown below.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 462

Application Settings

1. Copy the content of the /application folder extracted from the ZIP file into the <your
application root>\Primary and <your application root>\Backup folders.

2. Open SampleServerApp.properties file in the Primary folder.

3. Setup connection options to Configuration Server:

ConfigServerHost=host
ConfigServerPort=port
UserName=user name
Password=your password
ClientName=Primary_Server_App

4. Specify LCA port:

LCAPort=4999

5. Make similar settings for the Backup application, changing the ClientName property as shown
below:

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 463

ClientName=Backup_Server_App

Run the Application
After these steps are complete, you can start Solution Control Interface and go to the applications
status view. From here, you can start or stop the application, do switchover, etc.

The applications will write simple logs about their workflow and execution mode changes.

.NET

Overview

The SampleServerApp_Net_814.zip file contains the minimal amount of code required for an
application to connect to LCA and maintain this connection in accordance with the Management
Framework expectations. Download the sample code below, and then follow the steps below to set up
and run this sample.

.NET Code Sample
SampleServerApp_Net_814.zip

Unpacking the ZIP file will give you access to a Visual Studio project with detailed comments in code.

Before running this sample application, you need to build the project and then complete the following
two tasks:

1. Create and configure a pair of primary and backup applications in Genesys Management Framework.
2. Copy the binary files to correct locations, and adjust the application properties.

These tasks are described in more detail below.

Genesys Environment Configuration

1. Open Configuration Manager and create two application in Genesys Management Framework: one
for the primary server and a second for the backup server. Select Genesys Generic Server type for
these applications.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 464

2. Setup Warm Standby redundancy type for the Primary_Server_App, as shown below.

3. Open the Start Info tab to set up application start settings, as shown below.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 465

Application Settings

1. Build the Visual Studio project that you extracted from the ZIP file and copy the results into the
<your application root>\Primary and <your application root>\Backup folders.

2. Open SampleServerApp.exe.config file in the Primary folder.

3. Setup connection options to Configuration Server and Local Control Agent:

<appSettings>
<add key="ConfigServerHost" value="host"/>
<add key="ConfigServerPort" value="port"/>
<add key="UserName" value="user name"/>
<add key="Password" value="password"/>
<add key="ClientName" value="Primary_Server_App"/>
<add key="LCAPort" value="4999"/>

</appSettings>

5. Make similar settings for the Backup application, changing the ClientName property as shown
below:

<add key="ClientName" value="Backup_Server_App"/>

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 466

Run the Application

After these steps are complete, you can start Solution Control Interface and go to the applications
status view. From here, you can start or stop the application, do switchover, etc.

The applications will write simple logs about their workflow and execution mode changes.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 467

LCA Hang-Up Detection Support
This page provides:

• an overview and list of requirements for the LCA Hang-Up Detection Support feature
• design details explaining how this feature works
• code examples showing how to implement LCA Hang-Up Detection Support in your applications

Introduction to LCA Hang-up Detection Support

Beginning with release 8.1, the Platform SDKs now allow user-developed application to include hang-
up detection functionality.

The Genesys Management Layer relies on Local Control Agent (LCA) to monitor and control
applications. An open connection between LCA and Genesys applications is typically used to
determine which applications are running or stopped. However, if an application that has stopped
responding still has a connection to LCA then it could appear to be running correctly - preventing
Management Layer from switching over to a backup application or taking other actions to restore
functionality.

Hang-up detection allows Local Control Agent (LCA) to detect unresponsive Genesys applications by
checking for regular heartbeat messages. When an unresponsive application is found, pre-configured
actions can be taken - including triggering alarms or restarting the application.

Tip
Hang-up detection functionality has been available in the Genesys Management Layer
since release 8.0.1. For more information, refer to the Framework 8.0 Management
Layer User's Guide. For details about related configuration options, refer to the
Framework 8.0 Configuration Options Reference Manual.

Two levels of hang-up detection are available: implicit and explicit.

Implicit Hang-up Detection
The easiest form of hang-up detection to implement is implicit hang-up detection.

In this scenario, application status is monitored through the connection between your application and
LCA. This functionality can be extended by adding a requirement that your application periodically
interacts with LCA (either responding to ping request or sending its own heart-beat messages) as a
necessary condition of application liveliness.

This simple form of hang-up detection can be implemented internally by using the

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 468

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#Implicit_Hang-up_Detection
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#Explicit_Hang-up_Detection

LocalControlAgentProtocol to connect to LCA. In this case, existing applications only need to be
rebuilt with a version of LocalControlAgentProtocol that supports hang-up detection functionality -
no coding changes are required - and given the appropriate configuration options in Genesys
Management Layer.

Explicit Hang-up Detection
Explicit hang-up detection offers more robust protection from applications that may become
unresponsive, but is also more complex.

The periodic interaction that is monitored by implicit hang-up detection only confirms that your
application can interact with LCA. In most cases this means that the application is able to
communicate with other apps and that the thread responsible for communicating with LCA is still
active. However, multi-threaded applications may contain other threads that are blocked or have
stopped responding without interrupting communication with LCA. Explicit hang-up detection allows
you to determine when only part of your application hangs-up by monitoring individual threads in the
application.

In addition to allowing your application to register (or unregister) individual threads to be monitored,
explicit hang-up detection also allows your application to stop or delay the monitoring process.
Threads that execute synchronous functions (which can block thread execution for some extended
periods) or other features that prevent accurate monitoring should take advantage of this feature.

Feature Overview

• To maintain backwards compatibility, hang-up detection must be explicitly enabled in the application
configuration.

• Implicit hang-up detection can be used for applications that do not require complex monitoring
functionality. No code changes are required, just rebuild your application using the new version of
LocalControlAgentProtocol.

• Explicit hang-up detection requires minimal application participation - enabling monitoring, registering
and unregistering execution threads, and providing heartbeats. Most hang-up detection functionality is
implemented within the Management Layer component, while all timing information (such as maximum
allowed period between heartbeats) is configured through Genesys Management Layer.

Design Details

This section provides an overview of the main classes and interfaces used to add thread monitoring
functionality for Explicit hang-up detection. Before using the classes and methods described here, be
sure that you have implemented basic LCA Integration in your application using
LocalControlAgentProtocol.

Although the details of thread monitoring implementation are slightly differently for Java and .NET,
the basic idea is the same: to create and update a thread monitoring table that LCA can use to
confirm the status of your application.

Note that for implicit hang-up detection you are only required to rebuild your application and make

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 469

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#Explicit_Hang-up_Detection
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#Java_Implementation
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#.NET_Implementation
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#Thread_Monitoring_Table
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#Implicit_Hang-up_Detection

adjustments to the configuration options in Genesys Management Layer; the details described below
are not required for simple application monitoring.

Thread Monitoring Table
The new thread monitoring functions described below allow LocalControlAgentProtocol to create
and maintain a thread monitoring table within the application. This table tracks basic thread status.

Sample Thread Monitoring Table

OS Thread ID Logical Thread
ID Thread Class Heartbeat

Counter Flags

0 «main» 1 444345 active
1 «pool_1» 2 354354 suspend
2 «pool_2» 2 432432 deleted
3 «pool_3» 2 434323 active
4 «DB_store» 3 31212 active
....

Each row corresponds to a monitored thread. Columns of the table are:

• OS Thread ID—The OS-specific thread ID, used for thread identification during monitoring. OS thread ID
is not passed by application but is received directly from system.

• Logical Thread ID – Application logical thread ID (or logical name, in Java). Used for logging and thread
identification.

• Thread Class—Thread class integer. This value is only meaningful within the scope of the application;
threads with the same thread class value in a different application can have different roles. Examples of
thread classes might be the main loop thread, pool threads, or special threads (such as external
authentication threads in ConfigServer).

• Heartbeat Counter—Cumulative counter of Heartbeat() calls made by the corresponding thread.
Incrementing this value is the main way to indicate that the thread is still alive.

Tip
This value is initialized with a random value when the thread is registered for
monitoring. This prevents incorrect hang-up detection if threads are created and
terminated with high frequency, leading to repeating OS thread IDs.

• Flag—Special flags.
• Suspended/Resumed—Corresponds to the state of thread monitoring.
• Deleted—Used internally to notify LCA that a thread was unregistered from monitoring.

.NET Implementation
ThreadMonitoring Class

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 470

The ThreadMonitoring class is defined in the Genesyslab.Diagnostics namespace of
Genesyslab.Core.dll. This class contains the following public static methods:

• Register(int threadClass, string threadLogicId)—enables monitoring for this thread
• Unregister()—removes this thread from monitoring
• Heartbeat()—increases heartbeat counter for this thread (indicating that thread is still alive)
• SuspendMonitoring()—suspend monitoring for this thread
• ResumeMonitoring()—resumes monitoring for this thread

Tip
Each method should be called from within the thread that is being monitored.

When a thread is registered for monitoring, the following parameters are included:

• threadClass—Any positive integer that represents the type of thread, allowing you to specify different
monitoring settings for groups of threads within an application.

• threadLogicId—A logical, descriptive thread ID that is independent from thread ID provided by OS.
This value is used for thread identification within LCA and for logging purposes. This ID should be
unique within the application.

PerformanceCounter Constants

The following String constants (names) are defined in the ThreadMonitoring class:

public const string CategoryName = "Genesyslab PSDK .NET";
public const string HeartbeatCounterName = "Thread Heartbeat";
public const string StateCounterName = "Thread State";
public const string ProcessIdCounterName = "ProcessId";
public const string OsThreadIdCounterName = "OsThreadId";

The Platform SDK thread monitoring functionality uses these constants to manage
PerformanceCounter values. In addition to these custom performance counters, you can also use
standard ones, such as those defined in Thread category: "% Processor Time", "% User Time", etc.

See MSDN PerformanceCounter Class for details about performance counters.

Tip
Use of PerformanceCounters is optional, and is not required for LCA hang-up detection
functionality.

Java Implementation
ThreadHeartbeatCounter class

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 471

The ThreadHeartbeatCounter class is defined in the
com.genesyslab.platform.commons.threading package, located within commons.jar. This class is
designed as a JMX (see JMX: Java Management Extensions) MBean and implements the public
ThreadHeartbeatCounterMBean interface which is accessible through Java management framework.

There is no public constructor for the ThreadHeartbeatCounter class; each thread that you want to
monitor should create its own instance with following static method:

public static ThreadHeartbeatCounter createThreadHeartbeatCounter(
String threadLogicalName,
int threadClass);

When a thread is registered for monitoring, the following parameters are included:

• threadLogicalName—A logical, descriptive thread name that is used to identify the thread within LCA
and for logging purposes. This name should be unique within the application.

• threadClass—Any positive integer that represents the type of thread, allowing you to specify different
monitoring settings for groups of threads within an application.

One key difference from thread monitoring using .NET is the need to create a monitoring object
instance. The lifecycle of this object, including MBeanServer registration, is supported by the parent
class PSDKMBeanBase and is shown in the five steps below:

1. Start monitoring a thread:

ThreadHeartbeatCounter monitor =
ThreadHeartbeatCounter.createThreadHeartbeatCounter(

threadId, threadClass);
monitor.initialize();

2. Notify LCA that thread is still alive (increase heartbeat counter):

monitor.alive();

3. Suspend monitoring of this thread:

monitor.setActive(false);

4. Resume monitoring of this thread:

monitor.setActive(true);

5. Finish monitoring and unregister this thread:

monitor.unregister();

Tip
Each of these methods must be called from within the thread that is being monitored.

Once a ThreadHeartbeatCounter object is unregistered, that instance cannot be reused. To begin

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 472

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#ThreadHeartbeatCounterMBean_interface

monitoring that thread again (or any other) you first need to create a new instance of the thread
monitoring object.

ThreadHeartbeatCounterMBean interface

The ThreadHeartbeatCounterMBean interface is intended to present an open API to the JMX MBean.
This interface contains the following publicly accessible methods:

public long getThreadSystemId();
public String getLogicalName();
public int getThreadClass();
public void setThreadClass(int newThreadClass);
public int getHeartbeatCounter();
public void setActive(boolean isActive);
public boolean isActive();

These methods are "MBean client-side" methods and are used by LCA protocol to get actual
information about the thread for the monitoring table. They also allow users to change the thread
class and suspend or resume thread monitoring (using setActive(false/true)) of a particular
thread at application runtime.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 473

Handle Application "Graceful Stop" with
the LCA Protocol
Graceful stop is operation that allow application to complete current request handling before actual
stop in case when such handling can require significant (time greater than application stop timeout)
time.

Two new states are related to this command:

• SUSPENDING – This state means that an application has understood the command from LCA, so that the
application does NOT accept new requests (unless specified by Management Layer) and will complete
current requests. This status should be reported by an application as the result of Suspend command
from LCA. If the application does no support graceful stop then it can just ignore the Suspend
command; no state changes should be reported in this case.

• SUSPENDED – This state means that an application has completed handling current requests and can be
stopped without any impact to its client.

For applications which DO support graceful stop, the scenario is as follows:

1. SCI issues command "Stop application graceful"
2. SCS receives command, sets up a suspended state timer and sends the Suspend application command

to LCA
3. LCA receives Suspend command and resends it to application (application receives

EventSuspendApplication)
4. Since the application supports this feature, it reports SUSPENDING state with RequestUpdateStatus

and start behave accordingly
5. SCS receives a status update through LCA and cancels the timer set at point (2).
6. From this point, the application has unlimited time to complete handling requests (of course, it can also

be stopped by usual stop command)
7. When the application completes handling requests, it reports the status SUSPENDED (with

RequestUpdateStatus)
8. SCS receive the status update through LCA and stops the application with the usual stop command

(EventChangeExecutionMode)

For applications which do NOT support graceful stop, the scenario is as follows:

1. SCI issues the command: "Stop application graceful"
2. SCS receives the command, sets up a suspended state timer and sends the Suspend application

command to LCA
3. LCA receives Suspend command and resends it to application
4. Since the application does not support this feature, the Suspend command is ignored
5. Suspended state timer set at point (2) expires in SCS. SCS determines that the application does not

support Graceful stop.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 474

6. SCS issues an ordinary stop command to application (EventChangeExecutionMode).

Please also note that message between SCI-SCS and SCS-LCA are not same.

If your application should support graceful stop please check:

• If application receives Suspend command from LCA.
• If application correctly report SUSPENDING/SUSPENDED states.
• If application can be stopped by usual stop command.

If your application should NOT support graceful stop please check:

• If application can be stopped by usual stop command (in this case Graceful stop is equal to usual Stop
command with some delay)

Tip
This feature is new for 8.0 Genesys Management Framework, so, all the involved
components (SCI, SCS, LCA) should be 8.0+ versions (checked with 8.0.3x).

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 475

Routing Server
Many types of interactions enter a modern contact center, and each of them can have many possible
destinations. Universal Routing Server (URS) helps them get to the right place at the right time by
enabling you to create customized routing strategies — sets of instructions that tell URS how to
handle interactions. These routing strategies can be as simple or complex as you need them to be.
URS uses routing strategies to send interactions from one target to another, as needed, until the
interactions have been successfully processed.

The Routing Platform SDK allows you to write .NET applications that combine logic from your custom
application with the router-based logic of URS, in order to solve many common interaction-related
tasks.

This document tells you where you can go to get more information about URS. It also contains a brief
overview of the features of the Routing Platform SDK, followed by code snippets that show how to
implement the basic functions you will need to write applications that work with URS.

Universal Routing Server Overview

The best way to start learning about Universal Routing Server (URS) is by getting a copy of the
Universal Routing 8.1 Reference Manual. This book tells you how to work with routing strategies,
objects, functions, options, and statistics. It also includes a detailed list of Related Documentation
Resources, which discusses other sources of information that can be useful when you are working
with Genesys Universal Routing.

After becoming familiar with the information in the Universal Routing Reference Manual and related
documentation, you can start using the routing API that is exposed by the Platform SDK. As you learn
about Genesys routing, it is important to keep in mind that the main purpose of the Platform SDK
routing API is to work as a complement to the complex capabilities already available from URS, not to
act as a replacement. This API makes it easier to resolve difficult interaction-related tasks by
combining the capabilities of URS with logic from your custom application.

To create routing strategies, you use either Genesys Composer, which lets you create SCXML-based
strategies, or Interaction Routing Designer (IRD), which creates strategies in the Genesys IRL routing
language. Once the URS environment is established, you then use the Platform SDK routing API to
give your application control over which routing strategies are selected under a given set of
circumstances or what criteria URS uses to choose a particular routing target. For example, your
application can select statistics for URS to use in determining which agent group would be the best
one to route a particular interaction to.

Two Types of Router API Usage
Platform SDK lets you use two different methodologies in working with URS. The first method involves
a standalone router. When you use the standalone router method, all of the interaction processing
logic, including media control, is handled by the router. This method can be used by calling
RequestLoadStrategy.

The second method is called the router-behind API. This method can be used when you want your

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 476

application to handle media control, such as attached data or treatments, rather than leaving that up
to the router. With this method, the router is normally used only to select resources.

The code snippets in this article include some requests that work with standalone routers and some
that work with the router-behind API.

Java

Connecting to Universal Routing Server

The Platform SDK uses a message-based architecture to connect to Genesys servers. The following
code samples show how to connect to URS by using the native protocol object that is part of the
Routing Platform SDK.

First set up import statements for the routing namespaces:

import com.genesyslab.platform.routing.protocol.routingserver.*;
import com.genesyslab.platform.routing.protocol.routingserver.requests.*;

After you have set up your import statements, you need to create a RoutingServerProtocol object:

RoutingServerProtocol protocol =
new RoutingServerProtocol(

new Endpoint(
name, host, port));

protocol.setClientName(clientName);
protocol.setClientType(clientType);

Then you can open your connection to URS:

protocol.open();

Message Handling

Once you have set up your connection to the server, your application needs to be able to send
requests to and receive messages from URS.

Tip
This section describes one possible way to provide message handling. For more
details and other options regarding message handling, refer to the full Event Handling
article.

Messages can be received asynchronously by setting up a MessageHandler object, and then

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 477

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

providing code to execute for each type of message that your application expects to respond to.
Once this object is created, you can assign it to the protocol used to connect to the URS server, as
shown below.

MessageHandler ursMessageHandler = new MessageHandler() {
@Override
public void onMessage(Message message) {

// your event-handling code goes here
switch (message.messageId()) {

case EventInfo.ID:
OnEventInfo(message);
break;

...
}

}
};
protocol.setMessageHandler(ursMessageHandler);

For each message type you intend to respond to, your application must include:

• an additional section inside the switch block that checks to ensure the message ID matches
• a function that defines the desired behavior when reacting to that message type

In the example above, the message ID being checked for would match an incoming EventInfo
message, while the resulting behavior (inside an OnEventInfo function that you would create) has
yet to be defined.

Working with URS

As mentioned above, there are two basic methods for using the Platform SDK to work with URS. This
section contains examples of both the standalone router and router-behind APIs.

Standalone Router
The Routing Platform SDK allows you to control which routing strategy is executed on a given routing
point, while leaving everything else to the routing server. To use this methodology, which is known as
"standalone router," issue a RequestLoadStrategy that specifies the routing point and the
associated T-Server, and also the location of the routing strategy. Once the routing strategy has been
loaded, all interactions arriving on the specified routing point will be processed with that strategy.

The following snippet shows how to do this:

RequestLoadStrategy requestLoadStrategy = RequestLoadStrategy.create();
requestLoadStrategy.setTServer("TheT-Server");
requestLoadStrategy.setRoutingPoint("TheRoutingPoint");
requestLoadStrategy.setPath("<Path to the strategy>");

protocol.send(requestLoadStrategy);

URS will respond to your request with an EventInfo, an example of which is shown here:

'EventInfo' (2) attributes:
R_Message [str] = "ATTENTION: Strategy has been loaded from ooo-file."

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 478

R_cdn_status [int] = 1 [Loaded]
R_cdn [str] = "RP_sip1"
R_ErrorCode [int] = 0 [NoError]
R_tserver [str] = "TServerSip1"
R_refID [int] = 1
R_time [str] = "06/30/2011 10:00:29"
R_path [str] = "<Path>"

You can use RequestNotify to check which routing points have been loaded:

RequestNotify requestNotify = RequestNotify.create();
protocol.send(requestNotify);

This request will also return an EventInfo similar to the one shown above.

When you want to stop using the routing strategy you have loaded, for example, if you want to start
using a different one, you can issue a RequestReleaseStrategy:

RequestReleaseStrategy requestReleaseStrategy =
RequestReleaseStrategy.create();

requestReleaseStrategy.setTServer("TheT-Server");
requestReleaseStrategy.setRoutingPoint("TheRoutingPoint");

Message response = protocol.request(requestReleaseStrategy);

Router-Behind API
The router-behind method allows your application code to handle media control. The following
example shows how to execute a strategy using RequestExecuteStrategy. This request is different
from RequestLoadStrategy in that it only executes a strategy one time, instead of associating a
particular strategy with a routing point. To use RequestExecuteStrategy, specify the routing
strategy you want to execute and the tenant (contact center) in whose environment the strategy is to
be executed, as shown here:

RequestExecuteStrategy requestExecuteStrategy =
RequestExecuteStrategy.create();

requestExecuteStrategy.setStrategy("TheRoutingStrategyName");
requestExecuteStrategy.setTenant("TheTenant");

protocol.send(requestExecuteStrategy);

It is important to remember that it can often take a considerable amount of time to process a routing
strategy. If your request is correctly formatted and can be executed by URS, then you will
immediately receive an EventExecutionInProgress. This is a very simple event that only returns the
reference ID of your request, as you can see here:

'EventExecutionInProgress' ('199')
message attributes:
R_refID [int] = 2

Once your request has successfully executed, you will receive an EventExecutionAck. Here is an
example of the kind of output you might receive from an EventExecutionAck:

'EventExecutionAck' ('200')
message attributes:
R_result [bstr] = KVList:

'DN' [str] = "701"
'CUSTOMER_ID' [str] = "TenantForTest"

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 479

'TARGET' [str] = "701_sip@StatServer1.A"
'SWITCH' [str] = "SipSwitch"
'NVQ' [int] = 1
'PLACE' [str] = "701"
'AGENT' [str] = "701_sip"
'ACCESS' [str] = "701"
'VQ' [str] = "1234"
Context = ComplexClass(OperationContext):
UserData [bstr] = KVList:

'ServiceObjective' [str] = ""
'ServiceType' [str] = "default"
'CBR-Interaction_cost' [str] = ""
'RTargetTypeSelected' [str] = "0"
'CBR-IT-path_DBIDs' [str] = ""
'RVQDBID' [str] = ""
'RTargetPlaceSelected' [str] = "701"
'RTargetAgentSelected' [str] = "701_sip"
'CBR-actual_volume' [str] = ""
'RStrategyName' [str] = "##GetTarget"
'RRequestedSkillCombination' [str] = ""
'RTargetRuleSelected' [str] = ""
'RStrategyDBID' [str] = ""
'RRequestedSkills' [bstr] = KVList:
'CustomerSegment' [str] = "default"
'RTargetObjSelDBID' [str] = "984"
'RTargetObjectSelected' [str] = "701_sip"
'RTenant' [str] = "TenantForTest"
'RVQID' [str] = ""
'CBR-contract_DBIDs' [str] = ""

R_refID [int] = 0

If you have any syntax errors, your request will not execute and you will receive an EventError. Here
is an example of an EventError:

'EventError' (1) attributes:
R_cdn_status [int] = 0 [Released]
R_cdn [str] = ""
R_ErrorCode [int] = 4 [NotAvailable]
R_tserver [str] = ""
R_refID [int] = 1
R_time [str] = ""
R_path [str] = "<Path>"

If, on the other hand, URS has a problem executing your request, you will receive an
EventExecutionError, an example of which is shown here:

'EventExecutionError' ('201')
message attributes:
R_result [bstr] = KVList:

'Reason' [str] = "Rejected"
Context = ComplexClass(OperationContext):

UserData [bstr] = KVList:
'PegRejected' [int] = 1

R_refID [int] = 2

There may be times when you want URS to pick a routing target for you. You can use
RequestFindTarget for that purpose. As shown in the sample below, you can use a statistic to aid in
this selection:

RequestFindTarget requestFindTarget =
RequestFindTarget.create();

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 480

requestFindTarget.setTenant("TheTenant");
requestFindTarget.setTargets("TheTargetList");
requestFindTarget.setTimeout(5);
requestFindTarget.setStatistic("TheStatistic");
requestFindTarget.setStatisticUsage(StatisticUsage.Max);
requestFindTarget.setVirtualQueue("TheQueue");
requestFindTarget.setPriority(1);
requestFindTarget.setMediaType("TheMediaType");

protocol.send(requestFindTarget);

You can also have URS fetch statistical information for you directly, in case you want to know more
about the current conditions in your contact center, perhaps in preparation for a RequestFindTarget.
The following example shows how to do this, using RequestGetStatistic:

RequestGetStatistic requestGetStatistic =
RequestGetStatistic.create();

requestGetStatistic.setTenant("TheTenant");
requestGetStatistic.setTargets("TheTargetList");
requestGetStatistic.setStatistic("StatAgentsBusy");

protocol.send(requestGetStatistic);

Both RequestFindTarget and RequestGetStatistic return the same messages as
RequestExecuteStrategy.

Closing the Connection

When you are finished communicating with URS, you should close the connection, in order to
minimize resource utilization:

protocol.close();

.NET

Connecting to Universal Routing Server

The Platform SDK uses a message-based architecture to connect to Genesys servers. The following
code samples show how to connect to URS by using the native protocol object that is part of the
Routing Platform SDK.

First set up using statements for the routing namespaces:

using Genesyslab.Platform.Routing.Protocols;
using Genesyslab.Platform.Routing.Protocols.RoutingServer;
using Genesyslab.Platform.Routing.Protocols.RoutingServer.Events;
using Genesyslab.Platform.Routing.Protocols.RoutingServer.Requests;

After you have set up your using statements, you need to create a RoutingServerProtocol object:

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 481

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ArchitectureofthePlatformSDKs

RoutingServerProtocol protocol =
new RoutingServerProtocol(

new Endpoint(
name, host, port));

protocol.ClientName = clientName;
protocol.ClientType = clientType;

Then you can open your connection to URS:

protocol.Open();

Message Handling

Once you have set up your connection to the server, your application needs to be able to send
requests to and receive messages from URS.

Tip
This section describes one possible way to provide message handling. For more
details and other options regarding message handling, refer to the full Event Handling
article.

Messages can be received asynchronously by subscribing to the Received .NET event:

protocol.Received += OnURSMessageReceived;

Once subscribed, your application must provide code to handle each type of message that is
expected from the protocol object, as shown below.

void OnURSMessageReceived(object sender, EventArgs e)
{

IMessage message = ((MessageEventArgs)e).Message;
// your event-handling code goes here
switch (message.Id)
{

case EventInfo.MessageId:
OnEventInfo(message);
break;

...
}

}

For each message type you intend to respond to, your application must include:

• an additional section inside the switch block that checks to ensure the message ID matches
• a function that defines the desired behavior when reacting to that message type

In the example above, the message ID being checked for would match an incoming EventInfo
message, while the resulting behavior (inside an OnEventInfo function that you would create) has
yet to be defined.

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 482

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

Working with URS

As mentioned above, there are two basic methods for using the Platform SDK to work with URS. This
section contains examples of both the standalone router and router-behind APIs.

Standalone Router
The Routing Platform SDK allows you to control which routing strategy is executed on a given routing
point, while leaving everything else to the routing server. To use this "standalone router"
methodology, issue a RequestLoadStrategy that specifies the routing point and the associated T-
Server, and also the location of the routing strategy. Once the routing strategy has been loaded, all
interactions arriving on the specified routing point will be processed with that strategy.

The following snippet shows how to do this:

RequestLoadStrategy requestLoadStrategy =
RequestLoadStrategy.Create();

requestLoadStrategy.TServer = "TheT-Server";
requestLoadStrategy.RoutingPoint = "TheRoutingPoint";
requestLoadStrategy.Path = "<Path to the strategy>";

protocol.Send(requestLoadStrategy);

URS will respond to your request with an EventInfo, an example of which is shown here:

'EventInfo' (2) attributes:
R_Message [str] = "ATTENTION: Strategy has been loaded from ooo-file."
R_cdn_status [int] = 1 [Loaded]
R_cdn [str] = "RP_sip1"
R_ErrorCode [int] = 0 [NoError]
R_tserver [str] = "TServerSip1"
R_refID [int] = 1
R_time [str] = "06/30/2011 10:00:29"
R_path [str] = "<Path>"

You can use RequestNotify to check which strategies have been loaded to routing points:

RequestNotify requestNotify =
RequestNotify.Create();

protocol.Send(requestNotify);

This request will also return an EventInfo similar to the one shown above.

When you want to stop using the routing strategy you have loaded, for example, if you want to start
using a different one, you can issue a RequestReleaseStrategy:

RequestReleaseStrategy requestReleaseStrategy =
RequestReleaseStrategy.Create();

requestReleaseStrategy.TServer = "TheT-Server";
requestReleaseStrategy.RoutingPoint = "TheRoutingPoint";

protocol.Send(requestReleaseStrategy);

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 483

Router-Behind API
The router-behind method allows your application code to handle media control. The following
example shows how to execute a strategy using RequestExecuteStrategy. This request is different
from RequestLoadStrategy in that it only executes a strategy one time, instead of associating a
particular strategy with a routing point. To use RequestExecuteStrategy, specify the routing
strategy you want to execute and the tenant (contact center) in whose environment the strategy is to
be executed, as shown here:

RequestExecuteStrategy requestExecuteStrategy =
RequestExecuteStrategy.Create();

requestExecuteStrategy.Strategy = "TheRoutingStrategyName";
requestExecuteStrategy.Tenant = "TheTenant";

protocol.Send(requestExecuteStrategy);

It is important to remember that it can often take a considerable amount of time to process a routing
strategy. If your request is correctly formatted and can be executed by URS, then you will
immediately receive an EventExecutionInProgress. This is a very simple event that only returns the
reference ID of your request, as you can see here:

'EventExecutionInProgress' ('199')
message attributes:
R_refID [int] = 2

Once your request has successfully executed, you will receive an EventExecutionAck. Here is an
example of the kind of output you might receive from an EventExecutionAck:

'EventExecutionAck' ('200')
message attributes:
R_result [bstr] = KVList:

'DN' [str] = "701"
'CUSTOMER_ID' [str] = "TenantForTest"
'TARGET' [str] = "701_sip@StatServer1.A"
'SWITCH' [str] = "SipSwitch"
'NVQ' [int] = 1
'PLACE' [str] = "701"
'AGENT' [str] = "701_sip"
'ACCESS' [str] = "701"
'VQ' [str] = "1234"

Context = ComplexClass(OperationContext):
UserData [bstr] = KVList:

'ServiceObjective' [str] = ""
'ServiceType' [str] = "default"
'CBR-Interaction_cost' [str] = ""
'RTargetTypeSelected' [str] = "0"
'CBR-IT-path_DBIDs' [str] = ""
'RVQDBID' [str] = ""
'RTargetPlaceSelected' [str] = "701"
'RTargetAgentSelected' [str] = "701_sip"
'CBR-actual_volume' [str] = ""
'RStrategyName' [str] = "##GetTarget"
'RRequestedSkillCombination' [str] = ""
'RTargetRuleSelected' [str] = ""
'RStrategyDBID' [str] = ""
'RRequestedSkills' [bstr] = KVList:

'CustomerSegment' [str] = "default"
'RTargetObjSelDBID' [str] = "984"
'RTargetObjectSelected' [str] = "701_sip"

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 484

'RTenant' [str] = "TenantForTest"
'RVQID' [str] = ""
'CBR-contract_DBIDs' [str] = ""

R_refID [int] = 0

If you have any syntax errors, your request will not execute and you will receive an EventError. Here
is an example of an EventError:

'EventError' (1) attributes:
R_cdn_status [int] = 0 [Released]
R_cdn [str] = ""
R_ErrorCode [int] = 4 [NotAvailable]
R_tserver [str] = ""
R_refID [int] = 1
R_time [str] = ""
R_path [str] = "<Path>"

If, on the other hand, URS has a problem executing your request, you will receive an
EventExecutionError, an example of which is shown here:

'EventExecutionError' ('201')
message attributes:
R_result [bstr] = KVList:

'Reason' [str] = "Rejected"
Context = ComplexClass(OperationContext):

UserData [bstr] = KVList:
'PegRejected' [int] = 1

R_refID [int] = 2

There may be times when you want URS to pick a routing target for you. You can use
RequestFindTarget for that purpose. As shown in the sample below, you can use a statistic to aid in
this selection:

RequestFindTarget requestFindTarget =
RequestFindTarget.Create();

requestFindTarget.Tenant = "TheTenant";
requestFindTarget.Targets = "TheTargetList";
requestFindTarget.Timeout = 5;
requestFindTarget.Statistic = "TheStatistic";
requestFindTarget.StatisticUsage = StatisticUsage.Max;
requestFindTarget.VirtualQueue = "TheQueue";
requestFindTarget.Priority = 1;
requestFindTarget.MediaType = "TheMediaType";

protocol.Send(requestFindTarget);

You can also have URS fetch statistical information for you directly, in case you want to know more
about the current conditions in your contact center, perhaps in preparation for a RequestFindTarget.
The following example shows how to do this, using RequestGetStatistic:

RequestGetStatistic requestGetStatistic =
RequestGetStatistic.Create();

requestGetStatistic.Tenant = "TheTenant";
requestGetStatistic.Targets = "TheTargetList";
requestGetStatistic.Statistic = "StatAgentsBusy";

protocol.Send(requestGetStatistic);

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 485

Both RequestFindTarget and RequestGetStatistic return the same messages as
RequestExecuteStrategy.

Closing the Connection

When you are finished communicating with URS, you should close the connection, in order to
minimize resource utilization:

protocol.Close();

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 486

Component Overviews
Component Overviews

• Using the Log Library

Component Overviews Routing Server

Platform SDK Developer's Guide 487

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheLogLibrary

Using the Log Library

Java

The purpose of the Platform SDK Log Library is to present an easy-to-use API for logging messages in
custom-built applications. Depending on how you configure your logger, you can quickly and easily
have log messages of different verbose levels written to any of the following targets:

• Genesys Message Server
• Console
• Specified log files

This document provides some key considerations about how to configure and use
this component, as well as code examples that will help you work with the
Platform SDK Log Library in your own projects.

Introduction to Loggers

When working with custom Genesys loggers, the first step is to understand the basic process of
creating and maintaining your logger. How do you create a logger instance? What configuration
options should you use, and how and when can those options be changed? What is required to clean
up once the logger is no longer useful?

Luckily, the main functions and lifecycle of a logger are easy to understand. The following list outlines
the basic process required to create and maintain your customized logger. For more detailed
information, check the Lifecycle of a Logger section, or the specific code examples related to
Creating a Logger, Customizing your Logger, Using your Logger, or Cleaning Up Your Code.

1. Use the LoggerFactory to create a RootLogger instance.
2. Reconfigure the default RootLogger settings, if desired.

• Create a LogConfiguration instance to enable and configure log targets. Depending on the setting
you assign, log messages can be sent to the Console, to a Genesys Message Server, or to one or
more user-defined log files.

• LoggerPolicy property gives you control over how log messages are created and formatted, or
allows you to overwrite MessageServerProtocol properties.

3. Use your logger for logging messages.
4. Dispose of the RootLogger instance when it is no longer needed. (You can also close the logger if it will

be reused in the future.)

Component Overviews Using the Log Library

Platform SDK Developer's Guide 488

Lifecycle of a Logger

There are two possible states for a logger, as shown in the lifecycle diagram below.

Your logger begins in the active state once it is created. If you did not specify any configuration
options during creation, then all messages with a verbose level at least equal to
VerboseLevel.Trace are logged to the Console by default.

You can use the applyConfiguration method to change logger configuration settings from either an
active or inactive state:

• If the logger is active when you call this method, then all messages being processed will be handled
before the logger is stopped and reconfigured. Note that any file targets (from both the old and new
configurations) are not closed automatically when the logger is reconfigured, although file targets can
be closed and a new log file segment started if the new Segmentation settings require this.

• If the logger is inactive when you call this method, then it is activated after the new configuration
settings are applied.

You can use the close method to make the logger inactive without disposing of it. All messages being
processed when this method is called are processed before the logger is stopped. Once the logger is
inactive, no further messages are processed until after the applyConfiguration method is called.

Important
If your logger is connected to Message Server, the logger does not manage the
lifecycle of the MessageServerProtocol instance. You must manage and close that
connection manually.

Creating a Default Logger

This section provides simple code examples that show how to quickly create a logger with the default
configuration and use it as part of your application.

Creating a Logger
As always, the starting point is ensuring that you have the necessary Platform SDK libraries
referenced and declared in your project. For logging functionality described in this article, that

Component Overviews Using the Log Library

Platform SDK Developer's Guide 489

includes the following packages:

• import com.genesyslab.platform.commons.log.*;
• import com.genesyslab.platform.commons.collections.KeyValueCollection;
• import com.genesyslab.platform.management.protocol.messageserver.LogLevel;
• import com.genesyslab.platform.logging.*;
• import com.genesyslab.platform.logging.configuration.*;
• import com.genesyslab.platform.logging.utilities.*;
• import com.genesyslab.platform.logging.runtime.LoggerException;

Once your project is properly configured and coding about to begin, the first task is to create an
instance of the RootLogger class. This is easy to accomplish with help from the LoggerFactory - the
only information you need to provide is a logger name that can be used later to configure targets for
filtering logging output.

[Java]

try{
// Create a logger instance:
RootLogger logger = new LoggerFactory("myLoggerName").getRootLogger();

}
catch(LoggerException e){

// Handle exceptions...
}

The default behavior for this logger is to send all messages of Trace verbose and higher to the
Console. You can change this behavior by using a LogConfiguration instance to change
configuration settings and then applying those values to the RootLogger instance, as shown below,
but for now we will accept the default values.

Using your Logger
With a logger created and ready for use, the next step is to generate some custom log messages and
ensure that your logger is working correctly.

One way to generate log messages is with the write method. Depending on the parameters used
with this method, message formatting can either be provided by templates extracted from LMS files,
or through the settings that you configure in a LogEntry instance. For the example below, the only
formatting come from the LogEntry parameter.

[Java]

LogEntry logEntry;
logEntry = new LogEntry("Sample Internal message.");
logEntry.setId(CommonMessage.GCTI_INTERNAL.getId());
logger.write(logEntry);

logEntry.setMessage("Sample Debug message.");
logEntry.setId(CommonMessage.GCTI_DEBUG.getId());
logger.write(logEntry);

You can also generate log messages by using one of the methods listed in the following table.

Component Overviews Using the Log Library

Platform SDK Developer's Guide 490

Message Level Available Methods

Debug
• debug(Object arg0)
• debug(Object arg0, Throwable arg1)
• debugFormat(String arg0, object arg1)

Info
• info(Object arg0)
• info(Object arg0, Throwable arg1)
• infoFormat(String arg0, object arg1)

Interaction
• warn(Object arg0)
• warn(Object arg0, Throwable arg1)
• warnFormat(String arg0, object arg1)

Error
• error(Object arg0)
• error(Object arg0, Throwable arg1)
• errorFormat(String arg0, object arg1)

Alarm
• fatalError(Object arg0)
• fatalError(Object arg0, Throwable arg1)
• fatalErrorFormat(String arg0, object arg1)

These methods do not use any external templates or formatting, relying entirely on the information
passed into them. In the examples below, the messages are logged at Info and Debug verbose
levels, without any changes or formatting.

[Java]

logger.info("Sample Info message.");
logger.debug("Sample Debug message.");

Cleaning Up Your Code
Once you have finished logging messages with your logger, there are two options available: you can
close the logger if you want it to be available for reuse later, or dispose of the logger if your
application doesn't need it any longer. (Note that you do not have to close a logger before disposing
of it.)

Once closed, a logger remains in an inactive state until either the ApplyConfiguration method is
called or you dispose of the object, as shown in the Lifecycle of a Logger diagram above.

[Java]

Component Overviews Using the Log Library

Platform SDK Developer's Guide 491

// closing the logger
logger.close();
// disposing of the logger
logger = null;

Customizing your Logger

Now that you know how to create and use a generic logger, it is time to look at some of the
configuration options available to alter the behavior of your logger.

The LogConfiguration class allows you change application details, specify targets (including
Genesys Message Server) for your log messages, and adjust the verbose level you want to report on.
You can apply these changes to either a new logger that is created with the LogFactory, or to an
existing logger by using the ApplyConfiguration method.

Tip
MessageHeaderFormat property in the LogConfiguration class has no effect on
records in the Message Server Database due to message server work specificity.

Creating a LogConfiguration to Specify Targets and Verbose Levels
The first step to configuring the settings for your logger is creating an instance of the
LogConfigurationImpl class and setting some basic parameters that describe your application.

[Java]

LogConfigurationImpl logConfigImpl = new LogConfigurationImpl();
logConfigImpl.setApplicationHost("myHostname");
logConfigImpl.setApplicationName("myApplication");
logConfigImpl.setApplicationId(10);
logConfigImpl.setApplicationType(20);
logConfigImpl.setVerbose(VerboseLevel.ALL);

Additional LogConfiguration properties that can be configured to specify the name of an
application-specific LMS file (MessageFile) and whether timestamps should use local or UTC format
(TimeUsage). These steps aren't shown here for brevity; refer to the API Reference for details.

Tip
If logging to the network, timestamps for log entries always use UTC format to avoid
confusion. In this case the TimeUsage setting specified by your LogConfiguration is
ignored.

The next step is to assign this implementation to an actual LogConfiguration instance. Once you do
that, you can specify the target locations where log messages will be sent and the verbose levels
accepted by each individual target. (Only messages with a level greater than or equal to the verbose

Component Overviews Using the Log Library

Platform SDK Developer's Guide 492

setting will be logged.)

[Java]

LogConfiguration config = logConfigImpl;

// configure logging to console
config.getTargets().getConsole().setEnabled(true);
config.getTargets().getConsole().setVerbose(VerboseLevel.TRACE);

// configure logging to system events log
config.getTargets().getNetwork().setEnabled(true);
config.getTargets().getNetwork().setVerbose(VerboseLevel.STANDARD);

Adding files to your logger requires one extra step: creating and configuring a FileConfiguration
instance that provides details about each log file to be used. For example:

[Java]

// add logging to Log file "Log\fulllog" - for all messages
FileConfiguration file = new FileConfigurationImpl(true, VerboseLevel.ALL, "Log/fulllogfile");
file.setMessageHeaderFormat(MessageHeaderFormat.FULL);
config.getTargets().getFiles().add(file);

// add logging to Log file "Log\infolog" - for Info (and higher) messages
file = new FileConfigurationImpl(true, VerboseLevel.TRACE, "Log/infologfile");
file.setMessageHeaderFormat(MessageHeaderFormat.SHORT);
config.getTargets().getFiles().add(file);

Warning
Each file added as a target must have a unique name. If two or more items are added
to the file collection with the same name, only one file target will be created with the
lowest specified verbose level. Other settings will be taken from one of the items
using the same filename, but there is no way to predict which item will be used.

In the example above, the first line of code ensures that your logger will process messages for all
verbose levels - but each target location has its own setting afterwards that specifies what level of
messages can be logged by that target. You also can enable or disable individual logging targets by
changing and then reapplying the settings in the LogConfiguration instance.

Once you have created and configured the LogConfiguration instance, all that remains is to apply
those settings to your logger. The following code shows how you can apply these settings to either a
new Logger instance, or an already existing logger.

[Java]

// applying new configuration to an existing logger
logger.applyConfiguration(config);

For more information about using ApplyConfiguration, see the Lifecycle of a Logger section above
and the API Reference entry for that method.

Component Overviews Using the Log Library

Platform SDK Developer's Guide 493

Alternative Ways to Create a LogConfiguration
Another way to create a LogConfiguration instance is by parsing a KeyValueCollection that
contains the appropriate settings. A brief code example of how to accomplish this is provided below.

[Java]

KeyValueCollection kvConfig = new KeyValueCollection();
// verbose level of logger will be VerboseLevel.All
kvConfig.addString("verbose","all");

// enable output of info (and higher) messages to console
kvConfig.addString("trace","stdout");

// add file target for debug debug output
kvConfig.addString("debug","Log/dbglogfile");

// Parse the created keyValueCollection. Messages generated during parsing are logged to
Console.
LogConfiguration config = LogConfigurationFactory.parse(kvConfig, (ILogger)new
Log4JLoggerFactoryImpl ());

Finally, you can also create a LogConfiguration by parsing an org.w3c.dom.Element that contains
the appropriate settings. This Element can be created manually, or obtained from a CfgApplication
object.

Dealing with Sensitive Log Data

There are two optional filters included as part of the common Platform SDK functionality that can be
used to handle senstive log data. These are not part of the Log Library but are discussed here to help
ensure sensitive data is properly considered and handled in any custom applications involving
logging.

• Hiding Data in Logs - The first option to protect sensitive data is to prevent it from being printed to log
files at all.

• Adding Predefined Prefix/Postfix Strings - The second option does not hide the sensitive information
directly, but adds user-defined strings around values for selected key-value pairs. This makes it easy for
you to locate and removed sensitive data in case log files need to be shared or distributed for any
reason.

For more information about these filters, refer to the KeyValueOutputFilter documentation in this
API Reference.

Hiding Data in Logs
In the code except below, the KeyValuePrinter class is used to hide any value of a key-value pair
where the key is "Password":

[Java]

KeyValueCollection kvOptions = new KeyValueCollection();
KeyValueCollection kvData = new KeyValueCollection();
kvData.addString("Password", KeyValuePrinter.HIDE_FILTER_NAME);

Component Overviews Using the Log Library

Platform SDK Developer's Guide 494

KeyValuePrinter hidePrinter = new KeyValuePrinter(kvOptions, kvData);
KeyValuePrinter.setDefaultPrinter(hidePrinter);

KeyValueCollection col = new KeyValueCollection();
col.addString("Password", "secretPassword");

As result, the KeyValueCollection log output will have the "secretPassword" value printed as "*****".
Values for other keys will display as usual.

Adding Predefined Prefix/Postfix Strings
The PrefixPostfixFilter class is designed to give you the ability to wrap parts of the log with
predefined prefix/postfix strings. This makes it possible to easily filter out sensitive information from
an already-printed log file when such a necessity arises.

In the code except below, the KeyValuePrinter is set to wrap "Password" key-value pairs in the
"<###" (prefix), "###>" (postfix) strings:

[Java]

KeyValueCollection kvData = new KeyValueCollection();
KeyValueCollection kvPPfilter = new KeyValueCollection();
KeyValueCollection kvPPOptions = new KeyValueCollection();
kvPPfilter.addString(KeyValuePrinter.CUSTOM_FILTER_TYPE, "PrefixPostfixFilter");
kvPPOptions.addString(PrefixPostfixFilter.KEY_PREFIX_STRING, "<###");
kvPPOptions.addString(PrefixPostfixFilter.VALUE_POSTFIX_STRING, "###>");
kvPPOptions.addString(PrefixPostfixFilter.KEY_POSTFIX_STRING, ">");
kvPPOptions.addString(PrefixPostfixFilter.VALUE_PREFIX_STRING, "<");
kvPPfilter.addList(KeyValuePrinter.CUSTOM_FILTER_OPTIONS, kvPPOptions);
kvData.addList("Password", kvPPfilter);
KeyValuePrinter.setDefaultPrinter(

new KeyValuePrinter(new KeyValueCollection(), kvData));

KeyValueCollection col = new KeyValueCollection();
col.addString("test", "secretPassword");

As result, the KeyValueCollection log output will have the "Password-secretPassword" key-value
printed as "<###Password-secretPassword###>", leaving all other key-values printed as normal.

.NET

The purpose of the Platform SDK Log Library is to present an easy-to-use API for logging messages in
custom-built applications. Depending on how you configure your logger, you can quickly and easily
have log messages of different verbose levels written to any of the following targets:

• Genesys Message Server
• Console
• .NET Trace
• Windows System Log (Application Log only)
• Specified log files

Component Overviews Using the Log Library

Platform SDK Developer's Guide 495

This document provides some key considerations about how to configure and use
this component, as well as code examples that will help you work with the
Platform SDK Log Library for .NET in your own projects.

Introduction to Loggers

When working with custom Genesys loggers, the first step is to understand the basic process of
creating and maintaining your logger. How do you create a logger instance? What configuration
options should you use, and how and when can those options be changed? What is required to clean
up once the logger is no longer useful?

Luckily, the main functions and lifecycle of a logger are easy to understand. The following list outlines
the basic process required to create and maintain your customized logger. For more detailed
information, check the Lifecycle of a Logger section, or the specific code examples related to
Creating a Logger, Customizing your Logger, Using your Logger, or Cleaning Up Your Code.

1. Use the LoggerFactory to create an ILogger instance.
2. Reconfigure the default ILogger settings, if desired.

• NetworkProtocol property allows you to specify a MessageSeverProtocol instance. This will let your
ILogger instance send messages to Genesys Message Server.

• LoggerPolicy property gives you control over how log messages are created and formatted, or allows
you to overwrite MessageServerProtocol properties.

• LogConfiguration class allows you to configure other aspects of your ILogger instance, which are
applied with the ApplyConfiguration method.

3. Use the logger for logging messages.
4. Dispose of the ILogger instance when it is no longer needed. (You can also close the logger if it will be

reused in the future.)

Lifecycle of a Logger

There are two possible states for a logger, as shown in the lifecycle diagram below.

Your logger begins in the active state once it is created. If you did not specify any configuration
options during creation, then all messages with a verbose level at least equal to
VerboseLevel.Trace are logged to the Console by default.

Component Overviews Using the Log Library

Platform SDK Developer's Guide 496

You can use the ApplyConfiguration method to change logger configuration settings from either an
active or inactive state:

• If the logger is active when you call this method, then all messages being processed will be handled
before the logger is stopped and reconfigured. Note that any file targets (from both the old and new
configurations) are not closed automatically when the logger is reconfigured, although file targets can
be closed and a new log file segment started if the new Segmentation settings require this.

• If the logger is inactive when you call this method, then it is activated after the new configuration
settings are applied.

You can use the Close method to make the logger inactive without disposing of it. All messages being
processed when this method is called are processed before the logger is stopped. Once the logger is
inactive, no further messages are processed until after the ApplyConfiguration method is called.

Important
If your logger is connected to Message Server, the logger does not manage the
lifecycle of the MessageServerProtocol instance. You must manage and close that
connection manually.

Creating a Default Logger

This section provides simple code examples that show how to quickly create a logger with the default
configuration and use it as part of your application.

Creating a Logger
As always, the starting point is ensuring that you have the necessary Platform SDK libraries
referenced and declared in your project. For logging functionality, that includes the following
namespaces:

• Genesyslab.Platform.Commons.Logging

• Genesyslab.Platform.Logging

• Genesyslab.Platform.Logging.Configuration

• Genesyslab.Platform.Logging.Utilities

Once your project is properly configured and coding about to begin, the first task is to create an
instance of the ILogger class. This is easy to accomplish with help from the LoggerFactory - the
only information you need to provide is a logger name that can be used later to configure targets for
filtering logging output.

[C#]

IRootLogger logger = LoggerFactory.CreateRootLogger("myLoggerName");

The default behavior for this logger is to send all messages of Trace verbose and higher to the

Component Overviews Using the Log Library

Platform SDK Developer's Guide 497

Console. You can change this behavior by using the ILogConfiguration interface to pass
configuration settings into the LoggerFactory, as shown below, but for this example we will accept
the default values.

Using your Logger
Now that your logger is created and ready for use, the next step is to generate some custom log
messages and ensure that the logger is working correctly.

One way to generate log messages is with the Write method. Message formatting is provided either
by templates extracted from LMS files or directly from a LogEntry parameter, depending on what
information you pass into the method. For the example below, LMS file templates provide formatting.

[C#]

//log the message with standard id: "9999|STANDARD|GCTI_INTERNAL|Internal error '%s' occurred"
//formatting template is extracted from LMS file
logger.Write((int)CommonMessage.GCTI_INTERNAL, "Sample Internal message.");

//log the message with standard id: "9900|DEBUG|GCTI_DEBUG|%s"
//formatting template is extracted from LMS file
logger.Write((int)CommonMessage.GCTI_DEBUG, "Sample Debug message.");

You can also generate log messages by using one of the methods listed in the following table.

Message Level Available Methods

Debug

• Debug(object message)
• Debug(object message, Exception exception)
• DebugFormat(string format, params object []

args)

Info
• Info(object message)
• Info(object message, Exception exception)
• InfoFormat(string format, params object [] args)

Interaction

• Warn(object message)
• Warn(object message, Exception exception)
• WarnFormat(string format, params object []

args)

Error

• Error(object message)
• Error(object message, Exception exception)
• ErrorFormat(string format, params object []

args)

Component Overviews Using the Log Library

Platform SDK Developer's Guide 498

Message Level Available Methods

Alarm

• FatalError(object message)
• FatalError(object message, Exception exception)
• FatalErrorFormat(string format, params object []

args)

These methods do not use any external templates or formatting, relying entirely on the information
passed into them. In the examples below, the messages are logged at Info and Debug verbose
levels, without any changes or formatting.

[C#]

logger.Info("Sample Info message.");
logger.Debug("Sample Debug message.");

Cleaning Up Your Code
Once you have finished logging messages with your logger, there are two options available: you can
close the logger if you want it to be available for reuse later, or dispose of the logger if your
application doesn't need it any longer. (Note that you do not have to close a logger before disposing
of it.)

Once closed, a logger remains in an inactive state until either the ApplyConfiguration or Dispose
method is called, as shown in the lifecycle diagram above.

[C#]

//closing the logger
logger.Close();
...
//disposing of the logger
logger.Dispose();

Customizing your Logger

Now that you know how to create and use a generic logger, it is time to look at some of the
configuration options available to alter the behavior of your logger.

The LogConfiguration class allows you change application details, specify targets (including
Genesys Message Server) for your log messages, and adjust the verbose level you want to report on.
You can apply these changes to either a new logger that is created with the LogFactory, or to an
existing logger by using the ApplyConfiguration method.

Tip
The setMessageHeaderFormat method has no effect on records in the Message Server

Component Overviews Using the Log Library

Platform SDK Developer's Guide 499

Database due to message server work specificity.

Creating a LogConfiguration to Specify Targets and Verbose Levels
The first step to configuring the settings for your logger is creating an instance of the
LogConfiguration class and setting some basic parameters that describe your application.

[C#]

LogConfiguration config = new LogConfiguration
{

ApplicationHost = "myHostname",
ApplicationName = "myApplication",
ApplicationId = 10,
ApplicationType = 20

};

Additional LogConfiguration properties that can be configured to specify the name of an
application-specific LMS file (MessageFile) and whether timestamps should use local or UTC format
(TimeUsage). These steps aren't shown here for brevity; refer to the API Reference for details.

Tip
If logging to the network, as described in Logging Messages to Genesys Message
Server, timestamps for log entries always use UTC format to avoid confusion. In this
case the TimeUsage setting specified by your LogConfiguration is ignored.

The next step is to specify the target locations where log messages are recorded, and to configure
the verbose levels for the logger and for individual targets. (Only messages with a level greater than
or equal to the verbose setting will be logged.)

[C#]

config.Verbose = VerboseLevel.All;

//configure logging to console
config.Targets.Console.IsEnabled = true;
config.Targets.Console.Verbose = VerboseLevel.Trace;

//configure logging to system events log
config.Targets.System.IsEnabled = true;
config.Targets.System.Verbose = VerboseLevel.Standard;

//add logging to Log file "Log\fulllog" - for all messages
config.Targets.Files.Add(new FileConfiguration(true, VerboseLevel.All, "Log/fulllogfile"));
//add logging to Log file "Log\infolog" - for Info (and higher) messages
config.Targets.Files.Add(new FileConfiguration(true, VerboseLevel.Trace, "Log/infologfile"));

In the example above, the first line of code ensures that your logger will process messages for all
verbose levels - but each target location has its own setting afterwards that specifies what level of
messages can be logged by that target. You also can enable or disable individual logging targets by

Component Overviews Using the Log Library

Platform SDK Developer's Guide 500

changing and then reapplying the settings in the LogConfiguration.

Warning
Each file added as a target must have a unique name. If two or more items are added
to the file collection with the same name, only one file target will be created with the
lowest specified verbose level. Other settings will be taken from one of the items
using the same filename, but there is no way to predict which item will be used.

Once you have created and configured the LogConfiguration instance, all that remains is to apply
those settings to your logger. The following code shows how you can apply these settings to either a
new Logger instance, or an already existing logger.

[C#]

//applying new configuration to an existing logger
logger.ApplyConfiguration(config);
...
//apply new configuration to a new logger when it is created
IRootLogger newlogger = LoggerFactory.CreateRootLogger("NewLoggerName", config);

For more information about using ApplyConfiguration, see the logger lifecycle section above and
the API Reference entry for that method.

Alternative Ways to Create a LogConfiguration
Another way to create a LogConfiguration is by parsing a KeyValueCollection that contains the
appropriate settings. A brief code example of how to accomplish this is provided below.

[C#]

KeyValueCollection kvConfig = new KeyValueCollection();
//verbose level of logger will be VerboseLevel.All
kvConfig.Add("verbose","all");
//enable output of info (and higher) messages to console
kvConfig.Add("trace","stdout");
//add file target for debug debug output
kvConfig.Add("debug","Log/dbglogfile");
//Parse the created keyValueCollection. Messages generated during parsing are logged to
Console.
LogConfiguration config = LogConfigurationFactory.Parse(kvConfig, new ConsoleLogger());

Finally, you can also create a LogConfiguration by parsing an XElement that contains the
appropriate settings, as shown below.

[C#]

XElement xElementConfig =
new XElement("CfgApplication",

new XElement("options",
new XElement("list_pair",

new XAttribute("key","log"),
XElement.Parse("<str_pair key=\"verbose\" value =

\"all\"/>"),
XElement.Parse("<str_pair key=\"trace\" value =

Component Overviews Using the Log Library

Platform SDK Developer's Guide 501

\"stdout\"/>"),
XElement.Parse("<str_pair key=\"debug\" value = \"Log/

dbglogfile\"/>"),
)

)
);

LogConfiguration config = LogConfigurationFactory.Parse(xElementConfig, new ConsoleLogger());

Although the XElement can be created manually (as shown above), it is much more likely that it will
be obtained from a CfgApplication object. The following code example illustrates how this can be
done.

[C#]

ConfService confservice=null;
//...
//initializing the ConfService
//...
CfgApplication cfgApp = confservice.RetrieveObject<CfgApplication>(

new CfgApplicationQuery{Name = "Sample Application"});
XElement xElementConfig = cfgApp.ToXml();
LogConfiguration config = LogConfigurationFactory.Parse(xElementConfig, new ConsoleLogger());

Logging Messages to Genesys Message Server
Creating a connection with Genesys Message Server is similar to setting other targets for your logger,
but contains a couple of additional steps. Several new settings are required to determine how your
logger handles buffering and spooling when sending log messages over the network. Once that is
complete, you also have to create (and manage) a protocol object that connects to Message Server.

The following example shows how this can be accomplished. For details and additional information
about the properties being configured, refer to the appropriate API Reference entries.

[C#]

LogConfiguration config = new LogConfiguration {Verbose = VerboseLevel.All};
config.Targets.Network.IsEnabled = true;
config.Targets.Network.Verbose = VerboseLevel.All;
config.Targets.Network.Buffering = Buffering.On|Buffering.KeepOnProtocolChange;
config.Targets.Network.SpoolFile = "temp/spool";

//create and open connection to message server
MessageServerProtocol protocol = new MessageServerProtocol(

new Endpoint(myApplication, myHostname, myPort));
protocol.Open();

IRootLogger logger = LoggerFactory.CreateRootLogger("mySample");
logger.NetworkProtocol = protocol;
logger.ApplyConfiguration(config);

It is important to remember that any connection created to Message Server is not managed
automatically by the Logger lifecycle. You are responsible to manage and dispose of the connection
manually.

Component Overviews Using the Log Library

Platform SDK Developer's Guide 502

Dealing with Sensitive Log Data

There are two optional filters included as part of the common Platform SDK functionality that can be
used to handle sensitive log data. These are not part of the Log Library for .NET, but are discussed
here to help ensure sensitive data is properly considered and handled in any custom applications
involving logging.

• Hiding Data in Logs - The first option to protect sensitive data is to prevent it from being printed to log
files at all.

• Adding Predefined Prefix/Postfix Strings - The second option does not hide the sensitive information
directly, but adds user-defined strings around values for selected key-value pairs. This makes it easy for
you to locate and removed sensitive data in case log files need to be shared or distributed for any
reason.

Hiding Data in Logs
In the code except below, the KeyValuePrinter class is used to hide any value of a key-value pair
where the key is "Password":

[C#]

KeyValueCollection kvOptions = new KeyValueCollection();
KeyValueCollection kvData = new KeyValueCollection();
kvData["Password"] = KeyValuePrinter.HideFilterName;
KeyValuePrinter hidePrinter = new KeyValuePrinter(kvOptions, kvData);
KeyValuePrinter.DefaultPrinter = hidePrinter;

KeyValueCollection col = new KeyValueCollection();
col["Password"] = "secretPassword";

As result, the KeyValueCollection log output will have the "secretPassword" value printed as
"*****". Values for other keys will display as usual.

Adding Predefined Prefix/Postfix Strings
The PrefixPostfixFilter class is designed to give you the ability to wrap parts of the log with
predefined prefix/postfix strings. This makes it possible to easily filter out sensitive information from
an already-printed log file when such a necessity arises.

In the code except below, the KeyValuePrinter is set to wrap "Password" key-value pairs in the
"<###" (prefix), "###>" (postfix) strings:

[C#]

KeyValueCollection kvData = new KeyValueCollection();
KeyValueCollection kvPPfilter = new KeyValueCollection();
KeyValueCollection kvPPOptions = new KeyValueCollection();
kvPPfilter[KeyValuePrinter.CustomFilterType] = typeof(PrefixPostfixFilter).FullName;
kvPPOptions[PrefixPostfixFilter.KeyPrefixString] = "<###";
kvPPOptions[PrefixPostfixFilter.ValuePrefixString] = "<";
kvPPOptions[PrefixPostfixFilter.ValuePostfixString] = "###>";
kvPPOptions[PrefixPostfixFilter.KeyPostfixString] = ">";
kvPPfilter[KeyValuePrinter.CustomFilterOptions] = kvPPOptions;
kvData["Password "] = kvPPfilter;

Component Overviews Using the Log Library

Platform SDK Developer's Guide 503

KeyValuePrinter.DefaultPrinter = new KeyValuePrinter(new KeyValueCollection(), kvData);
KeyValueCollection col = new KeyValueCollection();
col["Password"] = "myPassword";

As result, the KeyValueCollection log output will have the "Password-secretPassword" key-value
printed as "<###Password-secretPassword###>", leaving all other key-values printed as normal.

Component Overviews Using the Log Library

Platform SDK Developer's Guide 504

Migration Overview
This article provides an overview of any migration information you might require if coming to the
Platform SDK 8.5.0 release after starting development with an earlier version.

Deprecated Application Blocks

Starting with release 8.5.0, the deprecated Message Broker Application Block and Protocol Manager
Application Block should not be used in any current development. Removal of these Application
Blocks simplifies the API, making code clearer and more reliable and smoothing the Platform SDK
learning curve.

Both application blocks should be removed from any existing applications where possible. The
following articles provide migration guidelines for this change:

• Migration from Message Broker Application Block Usage
• Migration from Protocol Manager Application Block Usage

If not possible to remove the Application Blocks from your code, then it is possible to adopt the full
source code (which is available) for the application block into your project as a last resort.

Migration Overview Using the Log Library

Platform SDK Developer's Guide 505

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/MsgBrokerMigration
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/PrtclMgrMigration

Migration from Message Broker Application
Block Usage

Introduction

Starting with release 8.5.0, use of the Message Broker Application Block is no longer recommended.
This application block is now considered as legacy component and has been deprecated.

This article provides an overview of how to migrate existing applications, and outlines how behavior
that was previously handled by the application block should now be implemented.

Tip
If you choose to continue using the Message Broker Application Block, please note
that the common interfaces for COM Application Block and Message Broker have been
moved to an individual file (commonsappblock.jar for Java,
Genesyslab.Platform.ApplicationBlocks.Commons.dll for .NET) starting with
release 8.5.0.

Functional Aspects of the Message Broker Application Block

SubscriptionService + Subscriber Pattern
The broker service is the main component of the application block. It contains several facade service
implementations including: BrokerService, EventBrokerService,
EventReceivingBrokerService, RequestBrokerService and RequestReceivingBrokerService.

Subscription Filters
Each Subscriber has its own events filter (using the Predicate<T> interface). The event broker
service applies incoming events to all of a registered Subscriber's filters.

The application block contains several predefined Message filters for use with protocol message
brokers. For instance, there are:

• MessageFilter: it may filter protocol messages by ProtocolDescription, ProtocolId, or
EndpointName. It also has ability to be negated.

• MessageIdFilter: an extension of MessageFilter with the ability to filter specific MessageId.
• MessageNameFilter: an extension of MessageFilter with the ability to filter specific MessageName.

Migration Overview Migration from Message Broker Application Block Usage

Platform SDK Developer's Guide 506

• MessageRangeFilter: an extension of MessageFilter with the ability to filter specific set of
MessageIds.

The application block also contains helping classes to make composite filters: AndPredicate and
OrPredicate.

Synchronous and Asynchronous Execution

• The application block contains a general purpose synchronous BrokerService<T> implementation. It
does not use additional threads, does not have any queues, and executes generic events (of type <T>)
publishing immediately.

• Asynchronous generic broker service AsyncBrokerService<T>. The difference between this broker and
the synchronous broker is that events are published with the specified invoker (one or more other
threads).

• Old type asynchronous broker services: EventBrokerService and RequestBrokerService. These
services use dedicated internal thread to get events from intermediate queue and pass to invoker.

• EventReceivingBrokerService and RequestReceivingBrokerService. Compared to the old style
brokers, these do not use the additional threads and replace the intermediate queues (implementing
receiving interfaces).

Functional Replacements

COM Application Block ConfService Initialization
The first place where you may need to update application code to not use the Message Broker
Application Block is with old-style initialization of ConfService.

Initialization of ConfService with Message Broker usage may look like following:

[+] Java Code Sample
Endpoint csEndpoint = new Endpoint(csEPName, csHost, csPort);
ConfServerProtocol csProtocol = new ConfServerProtocol(csEndpoint);
csProtocol.setClientName(clientName);
csProtocol.setClientApplicationType(clientType);
csProtocol.setUserName(username);
csProtocol.setUserPassword(password);
csProtocol.open();

EventBrokerService msgBroker = BrokerServiceFactory.CreateEventBroker(csProtocol);

IConfService confService = ConfServiceFactory.createConfService(csProtocol, msgBroker);

[+] .NET Code Sample
Endpoint csEndpoint = new Endpoint(csEPName, csHost, csPort);
ConfServerProtocol csProtocol = new ConfServerProtocol(csEndpoint);
csProtocol.ClientName = clientName;
csProtocol.ClientApplicationType = clientType;

Migration Overview Migration from Message Broker Application Block Usage

Platform SDK Developer's Guide 507

csProtocol.UserName =userName;
csProtocol.UserPassword=password;
csProtocol.Open();

EventBrokerService msgBroker = BrokerServiceFactory.CreateEventBroker(csProtocol);
IConfService confService = ConfServiceFactory.CreateConfService(csProtocol, msgBroker);

The new initialization approach would be following:

[+] Java Code Sample
Endpoint csEndpoint = new Endpoint(csEPName, csHost, csPort);
ConfServerProtocol csProtocol = new ConfServerProtocol(csEndpoint);
csProtocol.setClientName(clientName);
csProtocol.setClientApplicationType(clientType);
csProtocol.setUserName(username);
csProtocol.setUserPassword(password);

IConfService confService = ConfServiceFactory.createConfService(csProtocol);

csProtocol.open();

[+] .NET Code Sample
Endpoint csEndpoint = new Endpoint(csEPName, csHost, csPort);
ConfServerProtocol csProtocol = new ConfServerProtocol(csEndpoint);
csProtocol.ClientName = clientName;
csProtocol.ClientApplicationType = clientType;
csProtocol.UserName =userName;
csProtocol.UserPassword=password;

IConfService confService = ConfServiceFactory.CreateConfService(csProtocol);
csProtocol.Open();

This change eliminates the redundant internal messages queue and the redundant thread.

Tip
Protocol open() has to be done after ConfService creation. By this way ConfService
initializes its own internal instance of MessageHandler, so, the protocol has to be
closed to allow it. And if the protocol instance has initialized custom MessageHandler,
it will be overridden with the ConfServices' internal one.

If there is a need to receive asynchronous protocol messages from ConfServerProtocol and
ConfService pair, your application may use
ConfService.setUserMessageHandler(MessageHandler) instead of a subscription on the message
broker:

[+] Java Code Sample
MessageHandler msgHandler = new MessageHandler() {

public void onMessage(Message message) {
// do something with incoming async protocol message

}

Migration Overview Migration from Message Broker Application Block Usage

Platform SDK Developer's Guide 508

};
confService.setUserMessageHandler(msgHandler);

[+] .NET Code Sample
confService.Protocol.Received += (sender, e) =>
{

var args = e as MessageEventArgs;
if ((args != null) && (args.Message!=null))
{

// do something with incoming async protocol message
}

};

The message handling method MessageHandler.onMessage(message) will be executed using the
protocol invoker thread.

Message Broker Component
Broker (Subscribers-Side Replacement)

The most common part of different types of broker services is functionality for message/event
passing to service Subscriber's.

So, when we have some broker service instance with initialization of several subscribers like this:

broker.register(subscriber1);
broker.register(subscriber2);
broker.register(subscriber3);

it would be replaced with function like:

[+] Java Code Sample
void doNotifySubscribers(final Message message) {

if (<subscriber1 filter on 'message'>) {
// do subscriber1 handling of 'message'

}
if (<subscriber2 filter on 'message'>) {

// do subscriber2 handling of 'message'
}
if (<subscriber3 filter on 'message'>) {

// do subscriber3 handling of 'message'
}

}

[+] .NET Code Sample
void doNotifySubscribers(IMessage message) {

if (<subscriber1 filter on 'message'>) {
// do subscriber1 handling of 'message'

}
if (<subscriber2 filter on 'message'>) {

// do subscriber2 handling of 'message'
}

Migration Overview Migration from Message Broker Application Block Usage

Platform SDK Developer's Guide 509

if (<subscriber3 filter on 'message'>) {
// do subscriber3 handling of 'message'

}
}
protocol.Received += (sender, e) =>
{

var args = e as MessageEventArgs;
if ((args != null) && (args.Message!=null))
{

doNotifySubscribers(args.Message)
}

};

In most cases it is possible to optimize such a function to do not execute all the filters for all incoming
messages, but use "if {} else if {} ...", "switch(<>) {}", or, even do not use explicit filtering taking
into account specifics of the broker instance like expected set of incoming messages, their types, etc.

Subscribers Filters Replacement

Message Broker Application Block contains several predefined filters for protocol messages filtering.

The messages filters provide several properties for filtering. Each of the properties corresponds to
specific attribute of protocol message. So, if some property is initialized and is not null, then it is to
be applied for incoming messages filtering.

For example, here is a sample filter logic:

Action<Message> action = new Action<Message>() {
public void handle(final Message message) {

// do something with 'message'
}

};
brokerService.register(action, new MessageIdFilter(

ConfServerProtocol.PROTOCOL_DESCRIPTION, EventObjectUpdated.ID));

Such broker would be changed to something like:

[+] Java Code Sample
void doNotifySubscribers(final Message message) {

if (ConfServerProtocol.PROTOCOL_DESCRIPTION.equals(message.getProtocolDescription())
&& (message.messageId() == EventObjectUpdated.ID)) {

// do something with 'message'
}

}

[+] .NET Code Sample
void doNotifySubscribers(IMessage message)
{

if (ConfServerProtocol.Description.Equals(message.ProtocolDescription) && (message.Id ==
EventObjectUpdated.MessageId))

{
// do something with 'message'

}
}

Migration Overview Migration from Message Broker Application Block Usage

Platform SDK Developer's Guide 510

Broker (Service-Side Replacement)

The other side of a broker component is an entrance of messages/events for notification.

On this side we may have several different cases of broker service usage:

It may be a general broker for general event type like BrokerService<T>, AsyncBrokerService<T>,
or some other broker type with explicit events publishing with broker.publish(event);.

In this case broker.publish(event); may be simply replaced with direct call to the newly created
doNotifySubscribers(event);.

Usage of EventReceivingBrokerService as MessageReceiver or MessageHandler would be
replaced with direct MessageHandler:

EventReceivingBrokerService evBroker = new EventReceivingBrokerService();
evBroker.register(subscriber1);
evBroker.register(subscriber2);
protocol.setMessageHandler(evBroker);
protocol.open();

would be changed to:

[+] Java Code Sample
protocol.setMessageHandler(new MessageHandler() {

public void onMessage(final Message message) {
if (<subscriber1 filter on 'message'>) {

// do subscriber1 handling of 'message'
}
if (<subscriber2 filter on 'message'>) {

// do subscriber2 handling of 'message'
}

}
});
protocol.open();

[+] .NET Code Sample
private void OnReceivedHandler(object sender, EventArgs e)
{

var args = e as MessageEventArgs;
if ((args != null) && (args.Message != null))
{

if (<subscriber1 filter on 'message'>) {
// do subscriber1 handling of 'message'

}
if (<subscriber2 filter on 'message'>) {

// do subscriber2 handling of 'message'
}

}
}

protocol.Received += OnReceivedHandler;
protocol.Open();

Custom MessageHandler may be shared between several protocols connections just like

Migration Overview Migration from Message Broker Application Block Usage

Platform SDK Developer's Guide 511

EventReceivingBrokerService.

Usage of old style "EventBrokerService"

It's a special case of broker service which is based on intermediate messages queue, and it uses
extra thread to synchronously read messages from the queue and pass them for handling.

For example:

EventBrokerService broker = BrokerServieFactory.CreateEventBroker(protocol);

// or:

EventBrokerService broker = new EventBrokerService(protocol);
broker.activate();

Replacing of such kind of broker with MessageHandler (see above) eliminates redundant messages
queue and the redundant thread.

Request Broker Component
Request broker service is a kind of message broker for handling of clients requests on ServerChannel
side.

There are two types of request broker services: RequestBrokerService and
RequestReceivingBrokerService.

Actual recommendation for requests handling logic on ServerChannel is to do not use any broker
service, but explicitly handle incoming requests in accordance to application specific architecture
(without additional shared queue).

It may be done with custom implementation of request receiver:

[+] Java Code Sample
RequestReceiverSupport rqReceiver = new RequestReceiverSupport() {

public void processRequest(final RequestContext incomingRequest) {
// ! pass some task to do something with 'incomingRequest' in separated thread or

thread pool !
// like "executor.execute(new RequestHandlerTask(incomingRequest));"

}
public RequestContext receiveRequest() throws InterruptedException, IllegalStateException

{
throw new <Exception>("requests are handled asynchronously");

}
// ... implementation for other RequestReceiverSupport methods goes here ...

};
serverChannel.setReceiver(rqReceiver);
serverChannel.open();

[+] .NET Code Sample
private class CustomRequestReceiver : IRequestReceiverSupport
{

public IRequestContext ReceiveRequest(TimeSpan timeout)
{

Migration Overview Migration from Message Broker Application Block Usage

Platform SDK Developer's Guide 512

throw new InvalidOperationException("requests are handled asynchronously");
}
public void ProcessRequest(IRequestContext request)
{ // ! pass some task to do something with 'incomingRequest' in separated thread or thread

pool !
// for example:
ThreadPool.QueueUserWorkItem(delegate(object state){

var context = state as IRequestContext;
// process request context

}, request);
}
// ... implementation for other RequestReceiverSupport methods goes here ...

}

serverChannel.SetReceiver(new CustomRequestReceiver());
serverChannel.Open();

Migration Overview Migration from Message Broker Application Block Usage

Platform SDK Developer's Guide 513

Migration from Protocol Manager
Application Block Usage

Introduction

Starting with release 8.5.0, use of the Protocol Manager Application Block is no longer recommended.
This application block is now considered a legacy component and has been deprecated.

This article provides an overview of how to migrate existing applications, and outlines how behavior
that was previously handled by the application block should now be implemented.

Functional Aspects of the Protocol Manager Application Block

Protocols configurations helper classes:

• Protocols handshake options
• Connection configuration related options
• WarmStandby related options

Protocol Management Service functionality:

• MessageReceiver sharing feature
• ChannelListener's sharing feature
• Protocols WarmStandby initialization feature
• Bulk BeginOpen/BeginClose functions

Functional Replacements

The usual Protocol Manager Application Block usage scenario is to help with the initialization of
multiple protocol connections. Protocol Management configuration classes contain following parts:

• protocol handshake options,
• typified connection configuration options,
• WarmStandby options.

Migration Overview Migration from Protocol Manager Application Block Usage

Platform SDK Developer's Guide 514

Connection Configuration Feature
[+] Java Code Sample
ProtocolManagementServiceImpl pmService = new ProtocolManagementServiceImpl();

TServerConfiguration config = new TServerConfiguration("t-server");

config.setUri(host, port); // - Target server host/port

config.setUseAddp(true); // - ConnectionConfiguration typified options like "UseAddp",
"AddpClientTimeout", etc
config.setAddpServerTimeout(addpServerTimeout);
config.setAddpClientTimeout(addpClientTimeout);

config.setFaultTolerance(FaultToleranceMode.WarmStandby);
config.setWarmStandbyUri(hostBackup, portBackup); // - Backup server host/port
config.setWarmStandbyAttempts((short) 3); // - WarmStandby typified options like
"WarmStandbyAttempts", etc
config.setWarmStandbyTimeout(2000);

config.setClientName(clientName); // - Protocol handshake typified options like "ClientName",
etc

Protocol protocol = pmService.register(config);
pmService.beginOpen();

[+] .NET Code Sample
var pmService = new ProtocolManagementService();
var config = new TServerConfiguration("t-server")
{

Uri = new Uri("tcp://host:port/"), // - Target server host/port
UseAddp = true, // - ConnectionConfiguration typified options like

"UseAddp", "AddpClientTimeout", etc
AddpServerTimeout = addpServerTimeout,
AddpClientTimeout = addpClientTimeout,
FaultTolerance = FaultToleranceMode.WarmStandby,
WarmStandbyUri = new Uri("tcp://backupHost:backupPort/"), // - Backup server host/port
WarmStandbyAttempts = 3, // - WarmStandby typified

options like "WarmStandbyAttempts", etc
WarmStandbyTimeout = 2000,
ClientName = clientName // - Protocol handshake typified options like "ClientName",

etc
};

IProtocol protocol = pmService.Register(config);
pmService.BeginOpen();

Last PSDK versions contain extended ConnectionConfiguration interfaces with set of typified
properties for connections configuration. So, generally speaking, now we can initialize all of these
options right with protocol connection initialization and it is not needed to have additional
intermediate (duplicating) configuration structures.

Elimination of Protocol Management Service may look like:

[+] Java Code Sample
PropertyConfiguration connConf = new PropertyConfiguration();

Migration Overview Migration from Protocol Manager Application Block Usage

Platform SDK Developer's Guide 515

connConf.setUseAddp(true); // - ConnectionConfiguration typified options like "UseAddp",
"AddpClientTimeout", etc
connConf.setAddpServerTimeout(addpServerTimeout);
connConf.setAddpClientTimeout(addpClientTimeout);

Endpoint endpoint = new Endpoint(epName1, host, port, connConf); // - Target server host/port
are here
Endpoint endpointBackup = new Endpoint(epName2, hostBackup, portBackup, connConf); // -
Backup server host/port are here

TServerProtocol protocol = new TServerProtocol(endpoint);
protocol.setClientName(clientName); // - Protocol handshake typified options like
"ClientName", etc

WarmStandbyConfiguration wsConf = new WarmStandbyConfiguration(endpoint, endpointBackup);
wsConf.setAttempts((short) 3); // - WarmStandby typified options like "WarmStandbyAttempts",
etc
wsConf.setTimeout(2000);
WarmStandbyService wsService = new WarmStandbyService(protocol);
wsService.applyConfiguration(wsConfig);
wsService.start();
protocol.beginOpen();

[+] .NET Code Sample
// - ConnectionConfiguration typified options like "UseAddp", "AddpClientTimeout", etc
PropertyConfiguration connConf = new PropertyConfiguration()
{

UseAddp = true,
AddpServerTimeout = addpServerTimeout,
AddpClientTimeout = addpClientTimeout

};

var endpoint = new Endpoint(epName1, host, port, connConf); // - Target server host/port are
here
var endpointBackup = new Endpoint(epName2, hostBackup, portBackup, connConf); // - Backup
server host/port are here

var protocol = new TServerProtocol(endpoint);
protocol.ClientName = clientName; // - Protocol handshake typified options like "ClientName",
etc
var wsConf = new WarmStandbyConfiguration(endpoint, endpointBackup);
wsConf.Attempts = 3; // - WarmStandby typified options like "WarmStandbyAttempts", etc
wsConf.Timeout = 2000;

WarmStandbyService wsService = new WarmStandbyService(protocol);
wsService.ApplyConfiguration(wsConf);
wsService.Start();
protocol.BeginOpen();

MessageReceiver Sharing Feature
The Protocol Manager Service instance unconditionally uses its own instance of MessageReceiver for
all of its registered protocols.

So, it is not possible to use protocol.receive() on protocols instances created with
ProtocolManagementService. It may be done with pmServiceImpl.getReceiver().receive(). This
method returns asynchronous incoming message from shared queue of all protocols registered with

Migration Overview Migration from Protocol Manager Application Block Usage

Platform SDK Developer's Guide 516

this pmServiceImpl.

Actually, MessageReceiver mechanism is deprecated and, usually, it is not effective to use single
handler/queue to process event messages from different protocols connections.

Application logic will be more clear and supportable when each protocol has own specific event
handling logic.

So, the recommendation is to use specific MessageHandler for protocol instance where it is required.
For example:

[+] Java Code Sample
protocol.setMessageHandler(new MessageHandler() {

public void onMessage(final Message message) {
// do fast event message procession or pass it to some other executor for handling

}
});

[+] .NET Code Sample
protocol.Received += (sender, args) =>
{

IMessage message = ((MessageEventArgs) args).Message;
// do fast event message procession or pass it to some other executor for handling

};

ChannelListener Events Concentration
Protocol Management service supports notifications to set of clients ChannelListeners.

To migrate out of Protocol Manager Application Block usage, ChannelListeners may be added
directly to protocol connections.

By the way, in most cases situation like "publish channel events from all of the N connections to all of
the M listeners" is a kind of an application design issue, though, it is possible to be realized.

WarmStandby Service Initialization
Protocol Manager service instance does initialize WarmStandby service internally if given protocol
configuration contains WarmStandby related options/values.

[+] Java Code Sample
...
config.setFaultTolerance(FaultToleranceMode.WarmStandby);

config.setWarmStandbyUri(hostBackup, portBackup);
config.setWarmStandbyAttempts((short) 3);
config.setWarmStandbyTimeout(2000);
...

[+] .NET Code Sample

Migration Overview Migration from Protocol Manager Application Block Usage

Platform SDK Developer's Guide 517

var config = new ConfServerConfiguration("confserver")
{

...
FaultTolerance = FaultToleranceMode.WarmStandby,
WarmStandbyUri = new Uri("tcp://backupHost:backupPort/"),
WarmStandbyAttempts = 3,
WarmStandbyTimeout = 2000,
...

};

The recommendation is to create and initialize it explicitly. Initialization schema was mentioned
above. Initialization may look like:

[+] Java Code Sample
Endpoint confEPprimary = ...;
Endpoint confEPbackup = ...;

ConfServerProtocol cfgProtocol = new ConfServerProtocol(confEPprimary);
cfgProtocol.setClientName(appName);
cfgProtocol.setClientApplicationType(appType);
cfgProtocol.setUserName(username);
cfgProtocol.setUserPassword(password);

WarmStandbyConfiguration wsConfig = new WarmStandbyConfiguration(confEPprimary, confEPbackup);
wsConfig.setTimeout(2000);
wsConfig.setAttempts((short) 3);
WarmStandbyService wsService = new WarmStandbyService(cfgProtocol);
wsService.applyConfiguration(wsConfig);
wsService.start();

cfgProtocol.beginOpen();

[+] .NET Code Sample
Endpoint confEPprimary = ...;
Endpoint confEPbackup = ...;

ConfServerProtocol cfgProtocol = new ConfServerProtocol(confEPprimary);
cfgProtocol.ClientName = appName;
cfgProtocol.ClientApplicationType = appType;
cfgProtocol.UserName = username;
cfgProtocol.UserPassword = password;

WarmStandbyConfiguration wsConfig = new WarmStandbyConfiguration(confEPprimary, confEPbackup);
wsConfig.Timeout = 2000;
wsConfig.Attempts = 3;
WarmStandbyService wsService = new WarmStandbyService(cfgProtocol);
wsService.ApplyConfiguration(wsConfig);
wsService.Start();

cfgProtocol.BeginOpen();

For more details, see WarmStandby Application Block documentation.

Bulk Open/Close Functions
Actually, pmService.beginOpen() means protocol.beginOpen() for all protocols registered in given

Migration Overview Migration from Protocol Manager Application Block Usage

Platform SDK Developer's Guide 518

PM Service.

Migration Overview Migration from Protocol Manager Application Block Usage

Platform SDK Developer's Guide 519

Legacy Topics
Topics in this section are no longer applicable for new development, but are maintained here for
backwards compatibility.

• Using the Message Broker Application Block
• Event Handling Using the Message Broker Application Block
• Using the Protocol Manager Application Block
• Connecting to a Server Using the Protocol Manager Application Block
• Legacy Warm Standby Application Block Description

Migration Overview Legacy Topics

Platform SDK Developer's Guide 520

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheProtocolManagerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingUsingProtocolManagerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LegacyWarmStandbyAB

Using the Message Broker Application Block
Deprecation Notice: This application block is considered a legacy product starting with
release 8.1.1. Documentation is provided for backwards compatibility, but new
development should consider using the improved method of message handling.

Important
This application block is a reusable production-quality component. It has been
designed using industry best practices and provided with source code so it can be
used "as is," extended, or tailored if you need to.

Please see the License Agreement for details.

The Message Broker Application Block makes it easy for your applications to handle events in an
efficient way.

Java

Installing the Message Broker Application Block

To work with the Message Broker Application Block, you must ensure that your system meets the
software requirements established in the Genesys Supported Operating Environment Reference
Guide.

Building the Message Broker Application Block

Tip
Starting with release 8.5.0, the common interfaces for COM Application Block and
Message Broker have been moved to an individual commonsappblock.jar file.

To build the Message Broker Application Block:

1. Open the <Platform SDK Folder>\applicationblocks\messagebroker folder.
2. Run either build.bat or build.sh, depending on your platform.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 521

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling
https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK

This will create the commonsappblock.jar file, located within the <Platform SDK
Folder>\applicationblocks\messagebroker\dist\lib directory.

Working with the Message Broker Application Block
You can find basic information on how to use the Message Broker Application Block in the article on
Event Handling Using the Message Broker Application Block.

Configuring Message Broker

When you first work with Message Broker, you will probably use a single instance of
EventBrokerService. This means that all messages coming into your application will first pass
through this single instance, as shown in below. Note that configuration diagrams used here do not
show the Protocol Manager Application Block, in order to focus on the architecture of Message Broker.

However, there may be high-traffic scenarios that require multiple instances of Message Broker. This
might happen if you have one or more servers whose events use so much of Message Broker’s
processing time that events from other servers must wait for an unacceptable amount of time. In that
case, you could dedicate an instance of EventBrokerService to the appropriate server.

For example, you may have a scenario in which you frequently receive large volumes of statistics. To
handle that situation, you could dedicate an EventBrokerService instance to Stat Server. In other
situations, you might regularly receive large amounts of Configuration Layer data from Configuration
Server. You could handle this in a similar way by giving Configuration Server its own instance of
EventBrokerService, as shown here:

Migration Overview Legacy Topics

Platform SDK Developer's Guide 522

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB

Sometimes you may have large message volumes for each server, in which case you could use a
separate instance of EventBrokerService for each server, as shown here.

Using Message Filters

Message Broker comes with several types of message filters. You can filter on individual messages
using MessageIdFilter or MessageNameFilter. In most cases you will want to use
MessageIdFilter, as it is more efficient than MessageNameFilter. You can also use a
MessageRangeFilter to filter on several messages at a time.

As shown in the article on Event Handling Using the Message Broker Application Block, you can
specify these filters when you register an event handler with the Event Broker Service. Here is a
sample of how to set up a MessageIdFilter:

[Java]

eventBrokerService.register(new StatPackageOpenedHandler(),
packageEvents);

Migration Overview Legacy Topics

Platform SDK Developer's Guide 523

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB

There may be times when you want to process several events in the same event handler. In such
cases, you can use a MessageRangeFilter, which will direct all of these events to that handler. Here
is a sample of how to set up the filter:

[Java]

int[] messageRange = new int[] {EventPackageOpened.ID, EventPackageClosed.ID};
MessageRangeFilter packageStatusEvents = new MessageRangeFilter

(messageRange);
eventBrokerService.register(new StatPackageStatusChangedHandler(),

packageStatusEvents);

Your event handler might look something like this:

[Java]

class StatPackageStatusChangedHandler implements Action {

public void handle(Message obj) {
// Common processing goes here...
if (obj.messageId() == EventPackageOpened.ID) {

// EventPackageOpened processing goes here...
} else {

// EventPackageClosed processing goes here...
}

}
}

Some servers use events that have the same name as events used by another server. One example
is EventError, which is used by just about every server except Stat Server. The Event Handling Using
the Message Broker Application Block article shows how to use a Protocol Description object to filter
events by server type in order to avoid confusion when handling these events.

There also may be times when you have several instances of a given server in your environment and
you want to filter by a specific one. To do this, first specify an Endpoint for that server, using a name
for the server in the Endpoint constructor:

[Java]

String statServer1EndpointName = "StatServer1";
Endpoint statServer1Endpoint =

new Endpoint(statServer1EndpointName, statServer1Uri);

Now create the filter:

[Java]

MessageIdFilter statServer1EndpointFilter =
new MessageIdFilter(EventPackageOpened.ID);

And set the EndpointName in the filter:

[Java]

statServer1EndpointFilter.setEndpointName(statServer1EndpointName);

When you register this filter, the handler you specify will only receive messages that were sent from
the instance you mentioned above:

Migration Overview Legacy Topics

Platform SDK Developer's Guide 524

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB

[Java]

eventBrokerService.register(new StatPackageOpenedHandler_StatServer1(),
statServer1EndpointFilter);

Architecture and Design

The Message Broker Application Block is designed to make it easy for your applications to handle
events in an efficient way.

Message Broker allows you to set up individual classes to handle specific events coming from
Genesys servers. It receives all of the events from the servers you specify, and sends each one to the
appropriate handler class. Message Broker is a high-performance way to hide the complexity of
event-driven programming — so you can focus on other areas of your application.

Tip
Message Broker has been designed for use with the Protocol Manager Application
Block. Protocol Manager is another high-performance component that makes it easy
for your applications to connect to Genesys servers. You can find basic information on
how to use the Protocol Manager Application Block in the article on Connecting to a
Server.

The Message Broker Application Block Architecture
The Message Broker Application Block uses a service-based API that enables you to write individual
methods that handle one or more events.

For example, you might want to handle every occurrence of EventAgentLogin with a specific
dedicated method, while there might be other events that you wish to send to a common event-
handling method. Message Broker allows you write these methods and register them with an event
broker that manages them for you.

Message Filters

Message Broker uses message filters to identify specific messages, assign them to specified
methods, and route them accordingly.

Design Patterns

This section gives an overview of the design patterns used in the Message Broker Application Block.

Publish/Subscribe Pattern
There are many occasions when one class (the subscriber) needs to be notified when something

Migration Overview Legacy Topics

Platform SDK Developer's Guide 525

changes in another class (the publisher). The Message Broker Application Block use the Publish/
Subscribe pattern to inform the client application when events arrive from the server.

Factory Method Pattern
It is common practice for a class to include constructors that enable clients of the class instantiate it.
There are times, however, when a client may need to instantiate one of several different classes. In
some of these situations, the client should not need to decide which class is being created. In this
case, a Factory Method pattern is used. The Factory Method pattern lets a class developer define the
interface for creating an object, while retaining control of which class to instantiate.

How To Properly Manage the EventBrokerService Lifecycle

Unfortunately, a commonly encountered problem is that users create EventBrokerService but do
not dispose of it properly. EventBrokerService exclusively uses an invoker thread to run an infinite
cycle with MessageReceiver.receive() and incoming messages handling logic. EventBroker is
created by user code, so it should be disposed by user code as well. Useful methods are
MessageBrokerService.deactivate() and MessageBrokerService.dispose().

In PSDK 8.1 this class is deprecated and a new one is added to resolve the problem with thread
waiting: EventReceivingBrokerService. This new class implements the MessageReceiver interface
and may be used as external receiver for Platform SDK protocols. In this case, we have no
intermediate redundant queue and incoming messages are delivered from protocol(s) to handler(s)
directly. This class still requires async invoker to execute messages handling, but in this case the
invoker is called once per incoming message, so it's thread is not blocked during the .receive()
operation.

So, EventReceivingBrokerService does not need .dispose() and is GC friendly.

Tip
A similar change has been made to RequestBrokerService.

Also note that the Invoker instance still represents a "costly" resource (thread) and is managed by
user code, so proper attention (allocation/deallocation) is required.

Q: Does it matter if the event broker service is created by the BrokerServiceFactory or not?

A: Actually, BrokerServiceFactory just creates and activates the corresponding broker instance. So
if a broker is created by a call to the factory, it must be disposed of by user code in accordance to its
usage there.

.NET

Migration Overview Legacy Topics

Platform SDK Developer's Guide 526

Installing the Message Broker Application Block

To work with the Message Broker Application Block, you must ensure that your system meets the
software requirements established in the Genesys Supported Operating Environment Reference
Guide.

Building the Message Broker Application Block

Tip
Starting with release 8.5.0, the common interfaces for COM Application Block and
Message Broker have been moved to an individual
Genesyslab.Platform.ApplicationBlocks.Commons.dll file.

The Platform SDK distribution includes a Genesyslab.Platform.ApplicationBlocks.Commons.dll
file that you can use as is. This file is located in the bin directory at the root level of the Platform SDK
directory. To build your own copy of this application block, follow the instructions below:

1. Open the <Platform SDK Folder>\ApplicationBlocks\MessageBroker folder.
2. Double-click MessageBroker.sln.
3. Build the solution.

Working with the Message Broker Application Block
You can find basic information on how to use the Message Broker Application Block in the article on
Event Handling Using the Message Broker Application Block.

Configuring Message Broker

When you first work with Message Broker, you will probably use a single instance of
EventBrokerService. This means that all messages coming into your application will first pass
through this single instance, as shown in the figure below. Note that the following configuration
diagrams do not show the Protocol Manager Application Block, in order to focus on the architecture of
Message Broker.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 527

https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB

However, there may be high-traffic scenarios that require multiple instances of Message Broker. This
might happen if you have one or more servers whose events use so much of Message Broker's
processing time that events from other servers must wait for an unacceptable amount of time. In that
case, you could dedicate an instance of EventBrokerService to the appropriate server.

For example, you may have a scenario in which you frequently receive large volumes of statistics. To
handle that situation, you could dedicate an EventBrokerService instance to Stat Server. In other
situations, you might regularly receive large amounts of Configuration Layer data from Configuration
Server. You could handle this in a similar way by giving Configuration Server its own instance of
EventBrokerService, as shown in the following figure:

Sometimes you may have large message volumes for each server, in which case you could use a
separate instance of EventBrokerService for each server, as shown here.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 528

Using Message Filters

Message Broker comes with several types of message filters. You can filter on individual messages
using MessageIdFilter or MessageNameFilter. In most cases you will want to use
MessageIdFilter, as it is more efficient than MessageNameFilter. You can also use a
MessageRangeFilter to filter on several messages at a time.

As shown in the article on Event Handling Using the Message Broker Application Block in the
beginning of this guide, you can specify these filters when you register an event handler with the
Event Broker Service. Here is a sample of how to set up a MessageIdFilter:

[C#]

eventBrokerService.Register(this.OnEventPackageClosed,
new MessageIdFilter(EventPackageClosed.MessageId));

There may be times when you want to process several events in the same event handler. In such
cases, you can use a MessageRangeFilter, which will direct all of these events to that handler. Here
is a sample of how to set up the filter:

[C#]

eventBrokerService.Register(this.OnEventPackageStatusChanged, new MessageRangeFilter(new
int[] {

EventPackageOpened.MessageId, EventPackageClosed.MessageId}));

Your event handler might look something like this:

[C#]

private void OnEventPackageStatusChanged(IMessage theMessage)
{

// Common processing goes here...
if (theMessage.Id == EventPackageOpened.MessageId)
{

// EventPackageOpened processing goes here...
}
else

Migration Overview Legacy Topics

Platform SDK Developer's Guide 529

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB

{
// EventPackageClosed processing goes here...

}
}

Some servers use events that have the same name as events used by another server. One example
is EventError, which is used by just about every server except Stat Server. The Event Handling Using
the Message Broker Application Block article shows how to use a Protocol Description object to filter
events by server type in order to avoid confusion when handling these events.

There also may be times when you have several instances of a given server in your environment and
you want to filter by a specific one. To do this, first specify an Endpoint for that server, using a name
for the server in the Endpoint constructor:

[C#]

string statServer1EndpointName = "StatServer1";
Endpoint statServer1Endpoint =

new Endpoint(statServer1EndpointName, statServer1Uri);

Now create the filter:

[C#]

MessageIdFilter statServer1EndpointFilter =
new MessageIdFilter(EventPackageOpened.MessageId);

And set the EndpointName property of the filter:

[C#]

statServer1EndpointFilter.EndpointName = statServer1EndpointName;

When you register this filter, the handler you specify will only receive messages that were sent from
the instance you mentioned above:

[C#]

eventBrokerService.Register(
this.OnEventPackageOpened_StatServer1, statServer1EndpointFilter);

Architecture and Design

The Message Broker Application Block is designed to make it easy for your applications to handle
events in an efficient way.

Message Broker allows you to set up individual classes to handle specific events coming from
Genesys servers. It receives all of the events from the servers you specify, and sends each one to the
appropriate handler class. Message Broker is a high-performance way to hide the complexity of
event-driven programming — so you can focus on other areas of your application.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 530

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB

Tip
Message Broker has been designed for use with the Protocol Manager Application
Block. Protocol Manager is another high-performance component that makes it easy
for your applications to connect to Genesys servers. You can find basic information on
how to use the Protocol Manager Application Block in the article on Connecting to a
Server Using the Protocol Manager Application Block.

The Message Broker Application Block Architecture
The Message Broker Application Block uses a service-based API that enables you to write individual
methods that handle one or more events.

For example, you might want to handle every occurrence of EventAgentLogin with a specific
dedicated method, while there might be other events that you wish to send to a common event-
handling method. Message Broker allows you write these methods and register them with an event
broker that manages them for you.

Message Filters
Message Broker uses message filters to identify specific messages, assign them to specified
methods, and route them accordingly. These message filters are shown in greater detail in the figure
below.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 531

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingUsingProtocolManagerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingUsingProtocolManagerAB

Design Patterns

This section gives an overview of the design patterns used in the Message Broker Application Block.

Publish/Subscribe Pattern
There are many occasions when one class (the subscriber) needs to be notified when something
changes in another class (the publisher). Message Broker uses the Publish/Subscribe pattern to
inform the client application when events arrive from the server.

Factory Method Pattern
It is common practice for a class to include constructors that enable clients of the class instantiate it.
There are times, however, when a client may need to instantiate one of several different classes. In
some of these situations, the client should not need to decide which class is being created. In this
case, a Factory Method pattern is used. The Factory Method pattern lets a class developer define the
interface for creating an object, while retaining control of which class to instantiate.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 532

Event Handling Using the Message Broker
Application Block

Important
The Message Broker Application Block is considered a legacy product as of release
8.1.1 due to changes to the default event-receiving mechanism. Documentation
related to this application block is retained for backwards compatibility. For
information about event handling without use of the deprecated Message Broker
Application Block, refer to the Event Handling article.

Once you have connected to a server using the Protocol Manager Application Block, much of the work
of your application will be to send messages to that server and then handle the events you receive
from it.

Genesys recommends that you use the Message Broker Application Block for most of your event
handling needs. This article shows how to send and receive simple synchronous events without using
Message Broker and then discusses how to use Message Broker for asynchronous event handling.

Tip
It is important to determine whether your application needs to use synchronous or
asynchronous messages. In general, you will probably use only one or the other type
in your application. If you decide to use synchronous messages, you must make sure
that your code handles all of the messages you receive from your servers. For
example, if you send a RequestReadObjects message to Configuration Server, you
will receive several EventObjectsRead messages, followed by an EventObjectsSent
message. If your application does not handle all of these messages, it will not work
properly.

The messages you send to a server are in the form of requests. For example, you may send a request
to log in an agent or to gather statistics. You might also send a request to update a configuration
object, or to shut down an application.

In each of these cases, the server will respond with an event message, as shown below.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 533

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingUsingProtocolManagerAB

Some of the requests you send may best be handled with a synchronous response, while others may
best be handled asynchronously. Let’s talk about synchronous requests first.

Java

Synchronous Requests

Sometimes you might want a synchronous response to your request. For example, if you are using
the Open Media Platform SDK, you may want to log in an agent. To do this, you need to let the server
know that you want to log in. And then you need to wait for confirmation that your login was
successful.

The first thing you need to do is to create a login request, as shown here:

[Java]

RequestAgentLogin requestAgentLogin =
RequestAgentLogin.create(

tenantId,
placeId,
reason);

This version of RequestAgentLogin.Create specifies most of the information you will need in order
to perform the login, but there is one more piece of data required. Here is how to add it:

[Java]

requestAgentLogin.setMediaList(mediaList);

Once you have created the request and set all required properties, you can make a synchronous
request by using the request method of your ProtocolManagementService object, like this:

[Java]

Message response = null;
response = protocolManagementServiceImpl.getProtocol("Interaction_Server_App")

.request(requestAgentLogin);

Migration Overview Legacy Topics

Platform SDK Developer's Guide 534

Tip
For information on how to use the ProtocolManagementServiceImpl class of the
Protocol Manager Block to communicate with a Genesys server, see the article on
Connecting to a Server.

There are two important things to understand when you use the request method:

• When you execute this method call, the calling thread will be blocked until it has received a response
from the server.

• This method call will only return one message from the server. If the server returns subsequent
messages in response to this request, you must process them separately. This can happen in the
example of sending a RequestReadObjects message to Configuration Server, as mentioned at the
beginning of this article.

The response from the server will come in the form of a Message. This is the interface implemented
by all events in the Platform SDK. Some types of requests will be answered by an event that is
specific to the request, while others may receive a more generic response of EventAck, which simply
acknowledges that your request was successful. If a request fails, the server will send an
EventError.

A successful RequestAgentLogin will receive an EventAck, while an unsuccessful one will receive an
EventError. You can use a switch statement to test which response you received, as outlined here:

[Java]

switch(response.messageId())
{

case EventAck.ID:
OnEventAck(response);

case EventError.ID:
OnEventError(response);

...
}

Using Message Broker to Handle Asynchronous Requests

There are times when you need to receive asynchronous responses from a server.

First of all, some requests to a server can result in multiple events. For example, if you send a
RequestReadObjects message, which is used to read objects from the Genesys Configuration Layer,
Configuration Server may send more than one EventObjectsRead messages in response, depending
on whether there is too much data to be handled by a single EventObjectsRead.

In other cases, events may be unsolicited. To continue with our example, once you have received all
of the EventObjectsRead messages, Configuration Server will also send an EventObjectsSent,
which confirms that it has completed your request.

To make an asynchronous request, you would use the send method of your
ProtocolManagementServiceImpl class. For example, you might need to fetch information about

Migration Overview Legacy Topics

Platform SDK Developer's Guide 535

some objects in the Genesys Configuration Layer. Here is how to set up a RequestReadObjects,
followed by the send:

[Java]

KeyValueCollection filterKey = new KeyValueCollection();
filterKey.addObject("switch_dbid", 113);
filterKey.addObject("dn_type", CfgDNType.CFGExtension.asInteger());
RequestReadObjects requestReadObjects = RequestReadObjects.create(

CfgObjectType.CfgDN.asInteger(), filterKey);
protocolManagementServiceImpl.getProtocol("Config_Server_App")

.send(requestReadObjects);

This snippet is searching for all DNs that have a type of Extension and are associated with the switch
that has a database ID of 113.

There are several ways to handle the response from the server, but Genesys recommends that you
use the Message Broker Application Block, which is included with the Platform SDK. Message Broker
allows you to set up individual classes to handle specific events. It receives the events from the
servers you are working with, and sends them to the appropriate handler class. Message Broker is a
high-performance way to hide the complexity of event-driven programming — so you can focus on
other areas of your application.

To use the Message Broker Application Block, add the following .jar file to the classpath for your
application:

• messagebrokerappblock.jar

This .jar file was precompiled using the default Application Block code, and can be located at:
<Platform SDK Folder>\lib.

Tip
You can also view or modify the Message Broker Application Block source code. To do
this, open the Message Broker Java source files that were installed with the Platform
SDK. The Java source files for this project are located at: <Platform SDK
Folder>\applicationblocks\messagebroker\src\java. If you make any changes to
the project, you will have to run Ant (or use the build.bat file for this Application
Block) to rebuild the .jar archive listed above. After you run Ant, add the resulting .jar
to your classpath.

Now you can add the appropriate import statements to your source code. For example:

[Java]

import com.genesyslab.platform.applicationblocks.commons.broker.*;

In order to use the Message Broker Application Block, you need to create an EventBrokerService
object to handle the events your application receives. Since you are using the Protocol Manager
Application Block to connect to your servers, as shown in the section on Connecting to a Server, you
should specify the ProtocolManagementServiceImpl object in the EventBrokerService constructor:

[Java]

Migration Overview Legacy Topics

Platform SDK Developer's Guide 536

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingUsingProtocolManagerAB

EventBrokerService mEventBrokerService = new EventBrokerService(
(MessageReceiverSupport) protocolManagementServiceImpl

.getReceiver());

You also need to set up the appropriate filters for your event handlers and register the handlers with
the EventBrokerService. This allows that service to determine which classes will be used for event-
handling. Note that you should register these classes before you open the connection to the server.
Otherwise, the server might send events before you are ready to handle them. The sample below
shows how to filter on Message ID, which is an integer associated with a particular message:

[Java]

mEventBrokerService.register(new ConfObjectsReadHandler(),
new MessageIdFilter(EventObjectsRead.ID));

mEventBrokerService.register(new ConfObjectsSentHandler(),
new MessageIdFilter(EventObjectsSent.ID));

mEventBrokerService.register(new StatPackageInfoHandler(),
new MessageIdFilter(EventPackageInfo.ID));

Once you have registered your event-handling classes, you can activate the EventBrokerService
and open the connection to your server. In the following snippet, connections are being opened to
both Configuration Server and Stat Server:

[Java]

mEventBrokerService.activate();

protocolManagementServiceImpl.getProtocol("Config_Server_App")
.open();

protocolManagementServiceImpl.getProtocol("Stat_Server_App").open();

At this point, you are ready to set up classes to handle the events you have received from the server.
Here is a simple class that handles the EventObjectsRead messages:

[Java]

class ConfObjectsReadHandler implements Action {

public void handle(Message obj) {
EventObjectsRead objectsRead = (EventObjectsRead) obj;
// Add processing here...

}
}

As mentioned earlier, once Configuration Server has sent all of the information you requested, it will
let you know it has finished by sending an EventObjectsSent message. Note that this handler has a
structure that is similar to the one for EventObjectsRead:

[Java]

class ConfObjectsSentHandler implements Action {

public void handle(Message obj) {
EventObjectsSent objectsSent = (EventObjectsSent) obj;
// Add processing here...

}
}

Message Broker only routes non-null messages of the type you specify to your message

Migration Overview Legacy Topics

Platform SDK Developer's Guide 537

handlers. For example, if you send a RequestReadObjects and no objects in the
Configuration Layer meet your filtering criteria, you will not receive an
EventObjectsRead. In that case, you will only receive an EventObjectsSent. Therefore,
you do not need to check for a null message in your EventObjectsRead handler.|2

The EventPackageInfo handler also has a similar structure, but in this case, we show how to print
information about the statistics contained in the requested package:

[Java]

class StatPackageInfoHandler implements Action {

public void handle(Message obj) {
EventPackageInfo eventPackageInfo = (EventPackageInfo) obj;
if (eventPackageInfo != null)
{

int statisticsCount = eventPackageInfo.getStatistics().getCount();
StatisticsCollection statisticsCollection = eventPackageInfo.getStatistics();

for (int i = 0; i < statisticsCount; i++)
{

Statistic statistic = statisticsCollection.getStatistic(i);

System.out.println("\nStatistic Metric is: " +
statistic.getMetric().toString());

System.out.println("Statistic Object is: " +
statistic.getObject());

System.out.println("Statistic IntValue is: " +
statistic.getIntValue());

System.out.println("Statistic StringValue is: " +
statistic.getStringValue());

System.out.println("Statistic ObjectValue is: " +
statistic.getObjectValue());

System.out.println("Statistic ExtendedValue is: " +
statistic.getExtendedValue());

System.out.println("Statistic Tenant is: " +
statistic.getObject().getTenant());

System.out.println("Statistic Type is: " +
statistic.getObject().getType());

System.out.println("Statistic Id is: " +
statistic.getObject().getId());

System.out.println("Statistic TimeProfile is: " +
statistic.getMetric().getTimeProfile());

System.out.println("Statistic StatisticType is: " +
statistic.getMetric().getStatisticType());

System.out.println("Statistic TimeRange is: " +
statistic.getMetric().getTimeRange());

}
}

}
}

Filtering Messages by Server
Each server in the Genesys environment makes use of a particular set of events that corresponds to
the tasks of that server. For example, Configuration Server sends EventObjectsRead and
EventObjectsSent messages, among others, while Stat Server's events include EventPackageInfo
and EventPackageOpened. Although your applications can identify each of these events by name, it is
more efficient to use the ID field associated with an event, which you specify as an int. You can do
this by using a MessageIdFilter, as shown here:

Migration Overview Legacy Topics

Platform SDK Developer's Guide 538

[Java]

mEventBrokerService.register(new ConfEventErrorHandler(),
new MessageIdFilter(EventError.ID));

However, the integer used for the Message ID of, say, a Configuration Server message, could be
same as the integer used for a completely different message on another server. This could lead to
problems if your application works with messages from more than one server. For example, if a multi-
server application includes a handler that processes a specific type of message from the first server
and that message has an ID of 12, any messages from the other servers that also have a Message ID
of 12 will be sent by your MessageIdFilter to the same handler.

Fortunately, the Platform SDK allows you to filter messages on a server-by-server basis in addition to
filtering on MessageId. Here is how to set up a Protocol Description object that allows you to specify
that you want some of your handlers to work only with events that are coming from Configuration
Server:

[Java]

ConfServerProtocol confServerProtocol = (ConfServerProtocol)
protocolManagementServiceImpl.getProtocol("Config_Server_App");

ProtocolDescription configProtocolDescription = null;
if (confServerProtocol != null)
{

configProtocolDescription =
confServerProtocol.getProtocolDescription();

}

Once you have set up this Protocol Description, you can use it to indicate that you only want to
process events associated with that server, in addition to specifying which event or events you want
each handler to process:

[Java]

mEventBrokerService.register(new ConfEventErrorHandler(),
new MessageIdFilter(configProtocolDescription, EventError.ID));

You are now ready to open the connection to Configuration Server:

[Java]

protocolManagementServiceImpl.
getProtocol("Config_Server_App").open();

Using One Handler for Multiple Events
There may be times when you would like to use a single event handler for more than one event. In
that case, you can create the handler and then register the appropriate events with it. For example,
you might create a handler for both EventObjectsRead and EventObjectsSent:

[Java]

class ConfEventHandler implements Action {
...

}

You might use a case statement inside the handler, in order to process each event appropriately. In
any case, once you have set up this handler, all you need to do is register both events with it, as

Migration Overview Legacy Topics

Platform SDK Developer's Guide 539

shown here:

[Java]

mEventBrokerService.register(new ConfEventHandler(),
new MessageIdFilter(configProtocolDescription, EventObjectsRead.ID));

mEventBrokerService.register(new ConfEventHandler(),
new MessageIdFilter(configProtocolDescription, EventObjectsSent.ID));

These are the basics of how to use the Message Broker Application Block. For more information, see
the Using the Message Broker Application Block article.

.NET

Synchronous Requests

Sometimes you might want a synchronous response to your request. For example, if you are using
the Open Media Platform SDK, you may want to log in an agent. To do this, you need to let the server
know that you want to log in. And then you need to wait for confirmation that your login was
successful.

The first thing you need to do is to create a login request, as shown here:

[C#]

RequestAgentLogin requestAgentLogin =
RequestAgentLogin.Create(

tenantId,
placeId,
reason);

This version of RequestAgentLogin.Create specifies most of the information you will need in order
to perform the login, but there is one more piece of data required. Here is how to add it:

[C#]

requestAgentLogin.MediaList = mediaList;

Once you have created the request and set all required properties, you can make a synchronous
request by using the Request method of your ProtocolManagementService object, like this:

[C#]

IMessage response =
protocolManagementService["InteractionServer"].

Request(requestAgentLogin);

Tip

Migration Overview Legacy Topics

Platform SDK Developer's Guide 540

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheMessageBrokerAB

For information on how to use the ProtocolManagementService class of the Protocol
Manager Application Block to communicate with a Genesys server, see the article on
Connecting to a Server Using the Protocol Manager Application Block.

There are two important things to understand when you use the Request method:

• When you execute this method call, the calling thread will be blocked until it has received a response
from the server.

• This method call will only return one message from the server. If the server returns subsequent
messages in response to this request, you must process them separately. This can happen in the
example of sending a RequestReadObjects message to Configuration Server, as mentioned at the
beginning of this article.

The response from the server will come in the form of an IMessage. This is the interface implemented
by all events in the Platform SDK. Some types of requests will be answered by an event that is
specific to the request, while others may receive a more generic response of EventAck, which simply
acknowledges that your request was successful. If a request fails, the server will send an
EventError.

A successful RequestAgentLogin will receive an EventAck, while an unsuccessful one will receive an
EventError. You can use a switch statement to test which response you received, as outlined here:

[C#]

switch(response.Id)
{

case EventAck.MessageId:
OnEventAck(response);

case EventError.MessageId:
OnEventError(response);

...
}

Using Message Broker to Handle Asynchronous Requests

There are times when you need to receive asynchronous responses from a server.

First of all, some requests to a server can result in multiple events. For example, if you send a
RequestReadObjects message, which is used to read objects from the Genesys Configuration Layer,
Configuration Server may send more than one EventObjectsRead messages in response, depending
on whether there is too much data to be handled by a single EventObjectsRead.

In other cases, events may be unsolicited. To continue with our example, once you have received all
of the EventObjectsRead messages, Configuration Server will also send an EventObjectsSent,
which confirms that it has completed your request.

To make an asynchronous request, you would use the Send method of your
ProtocolManagementService class. Here is how to set up a RequestReadObjects, followed by the
Send:

Migration Overview Legacy Topics

Platform SDK Developer's Guide 541

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingUsingProtocolManagerAB

[C#]

KeyValueCollection filterKey = new KeyValueCollection();
filterKey.Add("switch_dbid", 113);
filterKey.Add("dn_type", (int) CfgDNType.Extension);
RequestReadObjects requestReadObjects =

RequestReadObjects.Create(
(int) CfgObjectType.CFGDN,
filterKey);

protocolManagementService["ConfigServer"].Send(requestReadObjects);

This snippet is searching for all DNs that have a type of Extension and are associated with the switch
that has a database ID of 113.

There are several ways to handle the response from the server, but Genesys recommends that you
use the Message Broker Application Block, which is included with the Platform SDK. Message Broker
allows you to set up individual handlers for specific events. It receives the events from the servers
you are working with, and sends them to the appropriate handler. Message Broker is a high-
performance way to hide the complexity of event-driven programming — so you can focus on other
areas of your application.

To use the Message Broker Application Block, open the Solution Explorer for your application project
and add a reference to the following file:

• Genesyslab.Platform.ApplicationBlocks.Commons.Broker.dll

This dll file is precompiled using the default Application Block code, and can be located at: <Platform
SDK Folder>\Bin.

Tip
You can also view or modify the Message Broker Application Block source code. To do
this, open the Message Broker Visual Studio project that was installed with the
Platform SDK. The solution file for this project is located at: <Platform SDK
Folder>\ApplicationBlocks\MessageBroker. If you make any changes to the
project, you will have to rebuild the .dll file listed above.

Once you have added the reference, you can add a using statement to your source code:

[C#]

using Genesyslab.Platform.ApplicationBlocks.Commons.Broker;

In order to use the Message Broker Application Block, you need to create an EventBrokerService
object to handle the events your application receives. Declare this object with your other fields:

[C#]

EventBrokerService eventBrokerService;

Then you can set up the EventBrokerService to receive events from the Protocol Manager
Application Block's ProtocolManagementService class, which you are using to connect to your
servers, as shown in the section on Connecting to a Server:

Migration Overview Legacy Topics

Platform SDK Developer's Guide 542

[C#]

eventBrokerService = new EventBrokerService(protocolManagementService.Receiver);

Now you are ready to set up your event handlers.

Note that there are two ways to do this. In 7.5, when Message Broker was introduced, you needed to
use attributes to filter the events you wanted processed by a particular handler. Starting in 7.6, you
can still do it that way, but you can also set up your filters in the statement that registers an event
handler with the Event Broker service, rather than using attributes that are associated with the
handler itself. This new method may perform better than the old way, but we will show you how to
use both.

Using Event Handlers Without Attributes
Let us start by setting up a couple of event handlers. First, here is a simple handler for the
EventError message:

[C#]

private void OnConfEventError(IMessage theMessage)
{

EventError eventError = theMessage as EventError;
/// Add processing here...

}

And here is one for the EventObjectsRead message:

[C#]

private void OnConfEventObjectsRead(IMessage theMessage)
{

EventObjectsRead objectsRead = theMessage as EventObjectsRead;
/// Add processing here...

}

As mentioned earlier, once Configuration Server has sent all of the information you requested, it will
let you know it has finished by sending an EventObjectsSent message. Here is a handler for that:

[C#]

private void OnConfEventObjectsSent(IMessage theMessage)
{

EventObjectsSent objectsSent = theMessage as EventObjectsSent;
/// Add processing here...

}

Now you can set up the appropriate filters for your event handlers and register the handlers with the
EventBrokerService. This allows that service to determine which classes will be used for event-
handling. Note that you should register these handlers before you open the connection to the server.
Otherwise, the server might send events before you are ready to handle them. The sample below
shows how to filter on Message ID, which is an integer associated with a particular message:

[C#]

eventBrokerService.Register(
this.OnConfEventError,
new MessageIdFilter(EventError.MessageId));

Migration Overview Legacy Topics

Platform SDK Developer's Guide 543

eventBrokerService.Register(
this.OnConfEventObjectsRead,
new MessageIdFilter(EventObjectsRead.MessageId));

eventBrokerService.Register(
this.OnConfEventObjectsSent,
new MessageIdFilter(EventObjectsSent.MessageId));

Message Broker only routes non-null messages of the type you specify to your message
handlers. For example, if you send a RequestReadObjects and no objects in the
Configuration Layer meet your filtering criteria, you will not receive an
EventObjectsRead. In that case, you will only receive an EventObjectsSent. Therefore,
you do not need to check for a null message in your EventObjectsRead handler.

Filtering Messages by Server
Each server in the Genesys environment makes use of a particular set of events that corresponds to
the tasks of that server. For example, Configuration Server sends EventObjectsRead and
EventObjectsSent messages, among others, while Stat Server's events include EventPackageInfo
and EventPackageOpened. Although your applications can identify each of these events by name, it is
more efficient to use the ID field associated with an event, which you specify as an int. You can do
this by using a MessageIdFilter, as shown here:

[C#]

eventBrokerService.Register(this.OnConfEventError);

However, the integer used for the Message ID of, say, a Configuration Server message, could be
same as the integer used for a completely different message on another server. This could lead to
problems if your application works with messages from more than one server. For example, if a multi-
server application includes a handler that processes a specific type of message from the first server
and that message has an ID of 12, any messages from the other servers that also have a Message ID
of 12 will be sent by your MessageIdFilter to the same handler.

Fortunately, the Platform SDK allows you to filter messages on a server-by-server basis in addition to
filtering on MessageId. Here is how to set up a Protocol Description object that allows you to specify
that you want some of your handlers to work only with events that are coming from Configuration
Server:

[C#]

ConfServerProtocol confServerProtocol =
protocolManagementService["Config_Server_App"]

as ConfServerProtocol;
ProtocolDescription configProtocolDescription = null;
if (confServerProtocol != null)
{

configProtocolDescription =
confServerProtocol.ProtocolDescription;

}

Once you have set up this Protocol Description, you can use it to indicate that you only want to
process events associated with that server, in addition to specifying which event or events you want
each handler to process:

[C#]

eventBrokerService.Register(

Migration Overview Legacy Topics

Platform SDK Developer's Guide 544

this.OnConfEventError,
new MessageIdFilter(

configProtocolDescription,
EventError.MessageId));

eventBrokerService.Register(
this.OnConfEventObjectsRead,

new MessageIdFilter(
configProtocolDescription,

EventObjectsRead.MessageId));
eventBrokerService.Register(

this.OnConfEventObjectsSent,
new MessageIdFilter(

configProtocolDescription,
EventObjectsSent.MessageId));

You are now ready to open the connection to Configuration Server:

[C#]

protocolManagementService["Config_Server_App"].Open();

Using One Handler for Multiple Events
There may be times when you would like to use a single event handler for more than one event. In
that case, you can create the handler and then register the appropriate events with it. For example,
you might create a handler for both EventObjectsRead and EventObjectsSent:

[C#]

private void OnConfEvents (IMessage theMessage) {
...

}

You might use a case statement inside the handler, in order to process each event appropriately. In
any case, once you have set up this handler, all you need to do is register both events with it, as
shown here:

[C#]

eventBrokerService.Register(
this.OnConfEvents,

new MessageIdFilter(
configProtocolDescription,
EventObjectsRead.MessageId));

eventBrokerService.Register(
this.OnConfEvents,

new MessageIdFilter(
configProtocolDescription,
EventObjectsSent.MessageId));

Using Attributes with Your Event Handlers
As mentioned above, you can also use attributes to filter your event handlers. It is important to note
that this may not perform as well as the method outlined above, but in case you would like to use
attributes in your application, here is how to proceed.

When you use attributes, you have to specify the name of the protocol object you are using, and the
name of the SDK it is part of, as shown here:

Migration Overview Legacy Topics

Platform SDK Developer's Guide 545

[C#]

private const string protocolName = "ConfServer";
private const string sdkName = "Configuration";

These values can be determined by accessing the ProtocolDescription.ProtocolName and
ProtocolDescription.SdkName properties of your protocol object. They are also provided in the
following table.

SDK SdkName Protocol Object ProtocolName
Configuration Platform
SDK Configuration ConfServerProtocol ConfServer

Contacts Platform SDK Contacts UniversalContactServerProtocolContactServer

Management Platform
SDK Management

• LocalControlAgentProtocol
• MessageServerProtocol
• SolutionControlServerProtocol

• LocalControlAgent
• MessageServer
• SolutionControlServer

Open Media Platform
SDK OpenMedia

• InteractionServerProtocol
• ExternalServiceProtocol

• InteractionServer
• ExternalService

Outbound Contact
Platform SDK Outbound OutboundServerProtocol OutboundServer

Routing Platform SDK Routing
• RoutingServerProtocol
• UrsCustomProtocol

• RoutingServer
• CustomServer

Statistics Platform SDK Reporting StatServerProtocol StatServer
Voice Platform SDK Voice TServerProtocol TServer

Web Media Platform
SDK WebMedia

• BasicChatProtocol
• FlexChatProtocol
• EmailProtocol
• EspEmailProtocol
• CallbackProtocol

• BasicChat
• FlexChat
• Email
• EspEmail
• Callback

Table 1: Platform SDK SdkName and ProtocolName Values

You also need to register the methods you will handle your events with. This allows the
EventBrokerService to determine which methods will be used for event-handling. When registering
for event handlers that use attributes, you only specify the name of the event-handling method. In
this case, you need to handle three different events. Note that you should register these methods
before you open the connection to the server, as shown here. Otherwise, the server might send
events before you are ready to handle them:

[C#]

Migration Overview Legacy Topics

Platform SDK Developer's Guide 546

eventBrokerService.Register(this.OnConfEventObjectsRead);
eventBrokerService.Register(this.OnConfEventObjectsSent);
eventBrokerService.Register(this.OnConfEventError);
protocolManagementService["Config_Server_App"].Open();

At this point, you are ready to set up methods to handle the events you have received from the
server. Here is a simple method that handles the EventError message:

[C#]

[MessageIdFilter(EventError.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]
private void OnConfEventError(IMessage theMessage)
{

EventError eventError = theMessage as EventError;
/// Add processing here...

}

Notice that there is a MessageIdFilter attribute right before the method body. This attribute
indicates that all EventError messages for the Configuration Platform SDK's Configuration protocol
will be handled by this method.

The attributes and methods for EventObjectsRead have a similar structure:

[C#]

[MessageIdFilter(EventObjectsRead.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]
private void OnConfEventObjectsRead(IMessage theMessage)
{

EventObjectsRead objectsRead = theMessage as EventObjectsRead;
/// Add processing here...

}

And so do the attributes and methods for EventObjectsSent:

[C#]

[MessageIdFilter(EventObjectsSent.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]
private void OnConfEventObjectsSent(IMessage theMessage)
{

//protocolManagementService["Config_Server_App"].Close();
EventObjectsSent objectsSent = theMessage as EventObjectsSent;
/// Add processing here...

}

If you want to process more than one event with a single handler, you can set up multiple attributes
for that handler, like this:

[C#]

[MessageIdFilter(EventObjectsRead.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]
[MessageIdFilter(EventObjectsSent.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]

Migration Overview Legacy Topics

Platform SDK Developer's Guide 547

private void OnConfEvents (IMessage theMessage) {
...

}

These are the basics of how to use the Message Broker Application Block. For more information, see
the Using the Message Broker Application Block article.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 548

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheMessageBrokerAB

Using the Protocol Manager Application
Block
Deprecation Notice: This application block is considered a legacy product staring with
release 8.1.1. Documentation is provided for backwards compatibility, but new
development should consider using the improved method of connecting to servers.

Important
This application block is a reusable production-quality component. It has been
designed using industry best practices and provided with source code so it can be
used "as is," extended, or tailored if you need to.

Please see the License Agreement for details.

One of the two main functions of the Platform SDK is to enable your applications to establish and
maintain connections with Genesys servers. The Protocol Manager Application Block provides unified
management of server protocol objects. It takes care of opening and closing connections to many
different servers, as well as reconfiguration of high availability connections.

Java

Installing the Protocol Manager Application Block

Before you install the Protocol Manager Application Block, it is important to review the software
requirements and the structure of the software distribution.

Building the Protocol Manager Application Block
To build the Protocol Manager Application Block:

1. Open the <Platform SDK Folder>\applicationblocks\protocolmanager folder.
2. Run either build.bat or build.sh, depending on your platform.

This will create the protocolmanagerappblock.jar file, located within the <Platform SDK
Folder>\applicationblocks\protocolmanager\dist\lib directory.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 549

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK
https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK

Working with the Protocol Manager Application Block
You can find basic information on how to use the Protocol Manager Application Block in the article on
Connecting to a Server Using the Protocol Manager Application Block.

Configuring ADDP

To enable ADDP, set the UseAddp property of your Configuration object to true. You can also set
server and client timeout intervals, as shown here:

[Java]

statServerConfiguration.setUseAddp(true);
statServerConfiguration.setAddpServerTimeout(10);
statServerConfiguration.setAddpClientTimeout(10);

Tip
To avoid connection exceptions in the scenario where a client has configured ADDP
but the server has not, "ADDP" is included as a default value for the "protocol" key in
the configure() method of the ServerChannel class.

Configuring Warm Standby

Enable warm standby in your application by setting your Configuration object's FaultTolerance
property to FaultToleranceMode.WarmStandby, as shown here. You can also configure the backup
server's URI, the timeout interval, and the number of times your application will attempt to contact
the primary server before switching to the backup:

[Java]

statServerConfiguration
.setFaultTolerance(FaultToleranceMode.WarmStandby);

statServerConfiguration.setWarmStandbyTimeout(10);
statServerConfiguration.setWarmStandbyAttempts((short) 5);
try {

statServerConfiguration.setWarmStandbyUri(new URI("tcp://"
+ statServerBackupHost
+ ":"
+ statServerBackupPort));

} catch (URISyntaxException e) {
e.printStackTrace();

}

Migration Overview Legacy Topics

Platform SDK Developer's Guide 550

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingUsingProtocolManagerAB

High-Performance Message Parsing

The Platform SDK exposes the protocols of supported Genesys servers as an API. This means you can
write .NET and Java applications that communicate with these servers in their native protocols.

Every message you receive from a Genesys server is formatted in some way. Most Genesys servers
use binary protocols, while some use XML-based protocols. When your application receives one of
these messages, it parses the message and places it in the message queue for the appropriate
protocol.

By default, the Platform SDK uses a single thread for all of this message parsing. Since this parsing
can be time-consuming in certain cases, some applications may face serious performance issues. For
example, some applications may receive lots of large binary-format messages, such as some of the
statistics messages generated by Stat Server, while others might need to parse messages in non-
binary formats, such as the XML format used to communicate with Genesys Multimedia (or e-
Services) servers.

This section gives an example of how you can modify Protocol Manager to selectively enable multi-
threaded parsing of incoming messages, in order to work around these kinds of performance issues.
It is important to stress that you must take a careful look at which kind of multi-threading options to
pursue in your applications, since your needs are specific to your situation.

Tip
Your application may also face other performance bottlenecks. For example, you may
need more than one instance of the Message Broker Application Block if you handle
large numbers of messages. For more information on how to configure Message
Broker for high-performance situations, see the Message Broker Application Block
Guide.

This example shows how to call com.genesyslab.platform.commons.threading.DefaultInvoker,
which uses SingleThreadInvoker behind the scenes. As mentioned, you need to determine whether
this is the right solution for your application.

The main thing to take from this example is how to set up an invoker interface, so that you can use
another invoker if DefaultInvoker doesn't meet your needs. For example, Genesys also supplies
com.genesyslab.platform.commons.threading.SingleThreadInvoker, which assigns a single
dedicated thread to each protocol that enables it in your application. This may be useful in some
cases where you have to parse XML messages.

The enhancement shown here will only require small changes to two of the classes in Protocol
Manager, namely ProtocolConfiguration and ProtocolFacility.

To get started, let's declare a new multi-threaded parsing property in the ProtocolConfiguration
class. In this example, the property is called useMultiThreadedMessageParsing. It is declared right
after some ADDP and Warm Standby declarations:

[Java]

private boolean useAddp;
private FaultToleranceMode faultTolerance;

Migration Overview Legacy Topics

Platform SDK Developer's Guide 551

private Boolean useMultiThreadedMessageParsing;

Now you can code the getter and setter methods for the property itself, as shown here:

[Java]

public Boolean getUseMultiThreadedMessageParsing()
{

return useMultiThreadedMessageParsing;
}

public void setUseMultiThreadedMessageParsing(Boolean value)
{

useMultiThreadedMessageParsing = value;
}

Once you have made these changes, add an if statement to the ApplyChannelConfiguration
method of the ProtocolFacility class so that your applications can selectively enable this property:

[Java]

private void applyChannelConfiguration(
ProtocolConfiguration conf, ProtocolInstance instance)

{
if (conf.getUri() != null)
{

instance.getProtocol().setEndpoint(
new Endpoint(conf.getName(), conf.getUri()));

}

if (conf.getUseMultiThreadedMessageParsing() != null &&
conf.getUseMultiThreadedMessageParsing().booleanValue())

{
instance.getProtocol().

setConnectionInvoker(DefaultInvoker.getSingletonInstance());
}

...

Enabling UseMultiThreadedMessageParsing now calls DefaultInvoker.

To enable multi-threaded parsing, set the useMultiThreadedMessageParsing property of your
Configuration object to true. Here is how to enable the new property for Stat Server messages:

[Java]

statServerConfiguration.setUseMultiThreadedMessageParsing(true);

Receiving Copies of Synchronous Server Messages

Most of the time, when you send a synchronous message to a server, you are satisfied to receive the
response synchronously. But there can be situations where you want to receive a copy of the
response asynchronously, as well. This section shows how to do that.

As in the previous section, this enhancement will only require small changes to the
ProtocolConfiguration and ProtocolFacility classes.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 552

To get started, let's declare a new copyResponse property in the ProtocolConfiguration class. You
can put this declaration right after the useMultiThreadedMessageParsing declaration we created in
the previous section:

[Java]

private boolean useAddp;
private FaultToleranceMode faultTolerance;
private Boolean useMultiThreadedMessageParsing;
private Boolean copyResponse;

Now you can code the getter and setter methods for the property itself, as shown here:

[Java]

public Boolean getCopyResponse()
{

return copyResponse;
}

public void setCopyResponse(Boolean value)
{

copyResponse = value;
}

It might be a good idea to let anyone using Protocol Manager know whether this property is enabled.
One way to do this is to add it to the toString method in this class:

[Java]

public String toString()
{

StringBuilder sb = new StringBuilder();
.
.
.
sb.append(MessageFormat.format(

"AddpClientTimeout: {0}\n", addpClientTimeout));
sb.append(MessageFormat.format(

"AddpServerTimeout: {0}\n", addpServerTimeout));
sb.append(MessageFormat.format(

"CopyResponse: {0}\n", copyResponse));
...

Once you have made these changes, add an if statement to the applyChannelConfiguration
method of the ProtocolFacility class so that your applications can selectively enable this property:

[Java]

private void applyChannelConfiguration(
ProtocolConfiguration conf, ProtocolInstance instance)

{
if (conf.getUri() != null)
{

instance.getProtocol().setEndpoint(
new Endpoint(conf.getName(), conf.getUri()));

}

if (conf.getCopyResponse() != null)
{

instance.getProtocol().setCopyResponse(

Migration Overview Legacy Topics

Platform SDK Developer's Guide 553

conf.getCopyResponse());
}

...

To receive a copy of synchronous server messages, set the CopyResponse property of your
Configuration object to true. Here is how to enable the new property for Stat Server messages:

[Java]

statServerConfiguration.setCopyResponse(true);

Supporting New Protocols

When the Platform SDK was first developed, it supported many, but not all, of the servers in the
Genesys environment. As the SDK has matured, support has been added for more servers. As you
might expect, a given version of the Protocol Manager Application Block only supports those servers
that were supported by the Platform SDK at the time of its release. Since you may want to work with
a server that is not currently supported by Protocol Manager, it can be helpful to know how add
support for that server.

This section shows how the Protocol Manager Application Block supports the Stat Server Protocol. You
can use it as a guide if you need to add support for other servers or protocols.

Adding support for the Stat Server Protocol involved three basic steps:

1. Create a new subclass of ProtocolConfiguration called StatServerConfiguration.
2. Create a new subclass of ProtocolFacility called StatServerFacility.
3. Add a statement to the initialize method of ProtocolManagementServiceImpl that associates

StatServerFacility with StatServerProtocol.

The StatServerConfiguration Class
Here is the code for StatServerConfiguration:

[Java]

package com.genesyslab.platform.applicationblocks.commons.protocols;
import com.genesyslab.platform.reporting.protocol.StatServerProtocol;
import java.text.MessageFormat;

public final class StatServerConfiguration extends ProtocolConfiguration
{

private String clientName;
private Integer clientId;

public StatServerConfiguration(String name)
{

super(name, StatServerProtocol.class);
}

public Integer getClientId()
{

Migration Overview Legacy Topics

Platform SDK Developer's Guide 554

return clientId;
}

public void setClientId(Integer clientId)
{

this.clientId = clientId;
}

public String getClientName()
{

return clientName;
}

public void setClientName(String clientName)
{

this.clientName = clientName;
}

public String toString()
{

StringBuilder sb = new StringBuilder(super.toString());

sb.append(MessageFormat.format("ClientName: {0}\n", clientName));
sb.append(MessageFormat.format("ClientId: {0}\n", this.clientId));

return sb.toString();
}

}

As you can see, this class imports the protocol object, but you will also need to use MessageFormat
when we create the toString() method, so there must be an import statement for that class, as
well:

[Java]

import com.genesyslab.platform.reporting.protocol.StatServerProtocol;
import java.text.MessageFormat;

Here are the class declaration and the field and constructor declarations. Stat Server requires client
name and ID, so these must both be present in StatServerConfiguration:

[Java]

public final class StatServerConfiguration extends ProtocolConfiguration
{

private String clientName;
private Integer clientId;

public StatServerConfiguration(String name)
{

super(name, StatServerProtocol.class);
}

Here are the getter and setter methods for the client name and ID:

[Java]

public Integer getClientId()
{

return clientId;
}

Migration Overview Legacy Topics

Platform SDK Developer's Guide 555

public void setClientId(Integer clientId)
{

this.clientId = clientId;
}

public String getClientName()
{

return clientName;
}

public void setClientName(String clientName)
{

this.clientName = clientName;
}

And finally, the toString() method:

[Java]

public String toString()
{

StringBuilder sb = new StringBuilder(super.toString());

sb.append(MessageFormat.format("ClientName: {0}\n", clientName));
sb.append(MessageFormat.format("ClientId: {0}\n", this.clientId));

return sb.toString();
}

The StatServerFacility Class
Now we can take a look at the StatServerFacility class. Once again, we will start with the code for
the entire class:

[Java]

package com.genesyslab.platform.applicationblocks.commons.protocols;

import com.genesyslab.platform.commons.protocol.Endpoint;
import com.genesyslab.platform.commons.protocol.Protocol;
import com.genesyslab.platform.reporting.protocol.StatServerProtocol;
import java.net.URI;

public final class StatServerFacility extends ProtocolFacility
{

public void applyConfiguration(
ProtocolInstance instance, ProtocolConfiguration conf)

{
super.applyConfiguration(instance, conf);
StatServerConfiguration statConf = (StatServerConfiguration)conf;
StatServerProtocol statProtocol =

(StatServerProtocol) instance.getProtocol();

/*
if (statConf.getClientName() != null)
{

statProtocol.setClientName(statConf.getClientName());
}

*/

Migration Overview Legacy Topics

Platform SDK Developer's Guide 556

if (statConf.getClientId() != null)
{

statProtocol.setClientId(statConf.getClientId());
}

}

public Protocol createProtocol(String name, URI uri)
{

return new StatServerProtocol(new Endpoint(name, uri));
}

}

This class needs the following import statements:

[Java]

import com.genesyslab.platform.commons.protocol.Endpoint;
import com.genesyslab.platform.commons.protocol.Protocol;
import com.genesyslab.platform.reporting.protocol.StatServerProtocol;
import java.net.URI;

Here is how to declare the class:

[Java]

public final class StatServerFacility extends ProtocolFacility

There are two methods in this class. The first is applyConfiguration:

[Java]

public void applyConfiguration(
ProtocolInstance instance, ProtocolConfiguration conf)

{
super.applyConfiguration(instance, conf);
StatServerConfiguration statConf = (StatServerConfiguration)conf;
StatServerProtocol statProtocol =

(StatServerProtocol) instance.getProtocol();

/*
if (statConf.getClientName() != null)
{

statProtocol.setClientName(statConf.getClientName());
}

*/
if (statConf.getClientId() != null)
{

statProtocol.setClientId(statConf.getClientId());
}

}

The second method is createProtocol:

[Java]

public Protocol createProtocol(String name, URI uri)
{

return new StatServerProtocol(new Endpoint(name, uri));
}

Migration Overview Legacy Topics

Platform SDK Developer's Guide 557

Updating ProtocolManagementServiceImpl
To complete this enhancement, a single line of code was added to the initialize method of
ProtocolManagementServiceImpl:

[Java]

private void Initialize()
{

this.facilities.Add(typeof(ConfServerProtocol), new ConfServerFacility());
this.facilities.Add(typeof(TServerProtocol), new TServerFacility());
this.facilities.Add(typeof(InteractionServerProtocol), new

InteractionServerFacility());
this.facilities.Add(typeof(StatServerProtocol), new StatServerFacility());
this.facilities.Add(typeof(OutboundServerProtocol), new OutboundServerFacility());
this.facilities.Add(typeof(LocalControlAgentProtocol), new LcaFacility());
this.facilities.Add(typeof(SolutionControlServerProtocol), new ScsFacility());
this.facilities.Add(typeof(MessageServerProtocol), new MessageServerFacility());

}

Architecture and Design

The Protocol Manager Application Block uses a service-based API. You can use this API to open and
close your connection with Genesys servers and to dynamically reconfigure the parameters for a
given protocol. Protocol Manager also includes built-in warm standby capabilities.

Protocol Manager uses a ServerConfiguration object to describe each server it manages.

.NET

Installing the Protocol Manager Application Block

Before you install the Protocol Manager Application Block, it is important to review the software
requirements and the structure of the software distribution.

Building the Protocol Manager Application Block
The Platform SDK distribution includes a
Genesyslab.Platform.ApplicationBlocks.Commons.Protocols.dll file that you can use as is. This file is
located in the bin directory at the root level of the Platform SDK directory. To build your own copy of
this application block, follow the instructions below:

1. Open the <Platform SDK Folder>\ApplicationBlocks\ProtocolManager folder.
2. Double-click ProtocolManager.sln.
3. Build the solution.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 558

https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK
https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK

Working with the Protocol Manager Application Block
You can find basic information on how to use the Protocol Manager Application Block in the article on
Connecting to a Server Using the Protocol Manager Application Block at the beginning of this guide.

Configuring ADDP

To enable ADDP, set the UseAddp property of your Configuration object to true. You can also set
server and client timeout intervals, as shown here:

[C#]

statServerConfiguration.UseAddp = true;
statServerConfiguration.AddpServerTimeout = 10;
statServerConfiguration.AddpClientTimeout = 10;

Configuring Warm Standby

Hot standby is not designed to handle situations where both the primary and backup servers are
down. It is also not designed to connect to your backup server if the primary server was down when
you initiated your connection. However, in cases like these, warm standby will attempt to connect. In
fact, warm standby will keep trying one server and then the other, until it does connect. Because of
this, you will probably want to enable warm standby in your applications, even if you are already
using hot standby.

You can enable warm standby in your application by setting your Configuration object's
FaultTolerance property to FaultToleranceMode.WarmStandby, as shown here. You can also
configure the backup server's URI, the timeout interval, and the number of times your application will
attempt to contact the primary server before switching to the backup:

[C#]

statServerConfiguration.FaultTolerance = FaultToleranceMode.WarmStandby;
statServerConfiguration.WarmStandbyTimeout = 5000;
statServerConfiguration.WarmStandbyAttempts = 5;
statServerConfiguration.WarmStandbyUri = statServerBackupUri;

High-Performance Message Parsing

The Platform SDK exposes the protocols of supported Genesys servers as an API. This means you can
write .NET and Java applications that communicate with these servers in their native protocols.

Every message you receive from a Genesys server is formatted in some way. Most Genesys servers
use binary protocols, while some use XML-based protocols. When your application receives one of
these messages, it parses the message and places it in the message queue for the appropriate
protocol.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 559

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingUsingProtocolManagerAB

By default, the Platform SDK uses a single thread for all of this message parsing. Since this parsing
can be time-consuming in certain cases, some applications may face serious performance issues. For
example, some applications may receive lots of large binary-format messages, such as some of the
statistics messages generated by Stat Server, while others might need to parse messages in non-
binary formats, such as the XML format used to communicate with Genesys Multimedia (or e-
Services) servers.

This section gives an example of how you can modify Protocol Manager to selectively enable multi-
threaded parsing of incoming messages, in order to work around these kinds of performance issues.
It is important to stress that you must take a careful look at which kind of multi-threading options to
pursue in your applications, since your needs are specific to your situation.

Tip
Your application may also face other performance bottlenecks. For example, you may
need more than one instance of the Message Broker Application Block if you handle
large numbers of messages. For more information on how to configure Message
Broker for high-performance situations, see the Using the Message Broker Application
Block.

This example shows how to call Genesyslab.Platform.Commons.Threading.DefaultInvoker, which
uses the .NET thread pool for your message parsing needs. As mentioned, you need to determine
whether this is the right solution for your application, since, for example, the .NET thread pool may
be heavily used for other tasks.

The main thing to take from this example is how to set up an invoker interface, so that you can use
another invoker if DefaultInvoker doesn't meet your needs. For example, Genesys also supplies
Genesyslab.Platform.Commons.Threading.SingleThreadInvoker, which assigns a single
dedicated thread to each protocol that enables it in your application. This may be useful in some
cases where you have to parse XML messages.

The enhancement shown here will only require small changes to two of the classes in Protocol
Manager, namely ProtocolConfiguration and ProtocolFacility.

To get started, let's declare a new multi-threaded parsing property in the ProtocolConfiguration
class. In this example, the property is called useMultiThreadedMessageParsing. It is nullable and is
declared right after some ADDP and Warm Standby declarations:

[C#]

private bool? useAddp;
private FaultToleranceMode? faultTolerance;
private string addpTrace;
private bool? useMultiThreadedMessageParsing;

Now you can code the property itself, as shown here:

[C#]

public bool? UseMultiThreadedMessageParsing
{

get { return this.useMultiThreadedMessageParsing; }
set { this.useMultiThreadedMessageParsing = value; }

Migration Overview Legacy Topics

Platform SDK Developer's Guide 560

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheMessageBrokerAB

}

Once you have made these changes, add an if statement to the ApplyChannelConfiguration
method of the ProtocolFacility class so that your applications can selectively enable this property:

[C#]

private void ApplyChannelConfiguration(ProtocolInstance entry, ProtocolConfiguration conf)
{

if(conf.Uri != null)
{

entry.Protocol.Endpoint = new Endpoint(conf.Name, conf.Uri);
}

if (conf.UseMultiThreadedMessageParsing != null &&
conf.UseMultiThreadedMessageParsing.Value)

{
entry.Protocol.SetConnectionInvoker(DefaultInvoker.InvokerSingleton);

}
...

Enabling UseMultiThreadedMessageParsing now calls DefaultInvoker, which uses the .NET thread
pool, as mentioned above.

To enable multi-threaded parsing, set the UseMultiThreadedMessageParsing property of your
Configuration object to true. Here is how to enable the new property for Stat Server messages:

[C#]

statServerConfiguration.UseMultiThreadedMessageParsing = true;

Receiving Copies of Synchronous Server Messages

Most of the time, when you send a synchronous message to a server, you are satisfied to receive the
response synchronously. But there can be situations where you want to receive a copy of the
response asynchronously, as well. This section shows how to do that.

As in the previous section, this enhancement will only require small changes to the
ProtocolConfiguration and ProtocolFacility classes.

To get started, let's declare a new copyResponse property in the ProtocolConfiguration class. You
can put this declaration right after the useMultiThreadedMessageParsing declaration we created in
the previous section:

[C#]

private bool? useAddp;
private FaultToleranceMode? faultTolerance;
private string addpTrace;
private bool? useMultiThreadedMessageParsing;
private bool? copyResponse;

Now you can code the property itself, as shown here:

[C#]

Migration Overview Legacy Topics

Platform SDK Developer's Guide 561

public bool? CopyResponse
{

get { return this.copyResponse; }
set { this.copyResponse = value; }

}

It might be a good idea to let anyone using Protocol Manager know whether this property is enabled.
One way to do this is to add it to the ToString method overrides in this class:

[C#]

public override string ToString()
{

StringBuilder sb = new StringBuilder();
.
.
.
sb.AppendFormat("AddpClientTimeout: {0}\n", this.addpClientTimeout.ToString());
sb.AppendFormat("AddpServerTimeout: {0}\n", this.addpServerTimeout.ToString());
sb.AppendFormat("CopyResponse: {0}\n", this.copyResponse.ToString());
...

Once you have made these changes, add an if statement to the ApplyChannelConfiguration
method of the ProtocolFacility class so that your applications can selectively enable this property:

[C#]

private void ApplyChannelConfiguration(ProtocolInstance entry, ProtocolConfiguration conf)
{

if(conf.Uri != null)
{

entry.Protocol.Endpoint = new Endpoint(conf.Name, conf.Uri);
}

if (conf.CopyResponse != null)
{

entry.Protocol.CopyResponse = conf.CopyResponse.Value;
}
...

To receive a copy of synchronous server messages, set the CopyResponse property of your
Configuration object to true. Here is how to enable the new property for Stat Server messages:

[C#]

statServerConfiguration.CopyResponse = true;

Supporting New Protocols

When the Platform SDK was first developed, it supported many, but not all, of the servers in the
Genesys environment. As the SDK has matured, support has been added for more servers. As you
might expect, a given version of the Protocol Manager Application Block only supports those servers
that were supported by the Platform SDK at the time of its release. Since you may want to work with
a server that is not currently supported by Protocol Manager, it can be helpful to know how add
support for that server.

For example, early versions of Protocol Manager were developed before the Platform SDK supported

Migration Overview Legacy Topics

Platform SDK Developer's Guide 562

Universal Contact Server (UCS). This section shows how to add UCS support to the Protocol Manager
Application Block. You can also use these instructions as a guide if you need to add support for other
servers.

This enhancement involves three basic steps:

• Create a new subclass of ProtocolConfiguration. We will call this class
ContactServerConfiguration.

• Create a new subclass of ProtocolFacility called ContactServerFacility.
• Add a statement to the Initialize method of ProtocolManagementService that associates the new

ContactServerFacility class with UniversalContactServerProtocol.

Creating a ContactServerConfiguration Class
We will use the StatServerConfiguration class as a template for the new
ContactServerConfiguration class. Here is the code for StatServerConfiguration:

[C#]

using System;
using System.Text;

using Genesyslab.Platform.Reporting.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

public sealed class StatServerConfiguration : ProtocolConfiguration
{

#region Fields

private string clientName;
private int? clientId;

#endregion Fields

public StatServerConfiguration(string name)
: base(name, typeof(StatServerProtocol))

{
}

#region Properties

public string ClientName
{

get { return this.clientName; }
set { this.clientName = value; }

}

public int? ClientId
{

get { return this.clientId; }
set { this.clientId = value; }

}

#endregion Properties

public override string ToString()
{

Migration Overview Legacy Topics

Platform SDK Developer's Guide 563

StringBuilder sb = new StringBuilder();
sb.Append(base.ToString());

sb.AppendFormat("ClientName: {0}\n", this.clientName);
sb.AppendFormat("ClientId: {0}\n", this.clientId.ToString());

return sb.ToString();
}

}
}

To get started, make a copy of StatServerConfiguration.cs and call it
ContactServerConfiguration.cs. Rename the Platform SDK using statement and the class name,
as shown here:

[C#]

using System;
using System.Text;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

public sealed class ContactServerConfiguration : ProtocolConfiguration
{
...

The connection parameters required by Stat Server are different from those used by UCS. Instead of
clientName and clientId, UCS requires applicationName. Like clientName, applicationName is of
type string. One fairly simple way to modify this class is to delete all references to clientId and
rename the references to clientName to applicationName. Make sure to retain the capitalization in
the property name, which should become ApplicationName.

[C#]

using System;
using System.Text;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

public sealed class ContactServerConfiguration : ProtocolConfiguration
{

#region Fields

private string applicationName;
private int? clientId;

#endregion Fields

...

#region Properties

public string ApplicationName
{

get { return this.applicationName; }
set { this.applicationName = value; }

}

public int? ClientId

Migration Overview Legacy Topics

Platform SDK Developer's Guide 564

{
get { return this.clientId; }
set { this.clientId = value; }

}

#endregion Properties

public override string ToString()
{

StringBuilder sb = new StringBuilder();
sb.Append(base.ToString());

sb.AppendFormat("applicationName: {0}\n", this.applicationName);
sb.AppendFormat("ClientId: {0}\n", this.clientId.ToString());

return sb.ToString();
}

}
}

The constructor also needs to be renamed. This code:

[C#]

public StatServerConfiguration(string name)
: base(name, typeof(StatServerProtocol))

{
}

should be replaced with this:

[C#]

public ContactServerConfiguration(string name)
: base(name, typeof(UniversalContactServerProtocol))

{
}

When you have made all of these changes, your new class should look like this:

[C#]

using System;
using System.Text;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

public sealed class ContactServerConfiguration : ProtocolConfiguration
{

#region Fields

private string applicationName;

#endregion Fields

public ContactServerConfiguration(string name)
: base(name, typeof(UniversalContactServerProtocol))

{
}
#region Properties

Migration Overview Legacy Topics

Platform SDK Developer's Guide 565

public string ApplicationName
{

get { return this.applicationName; }
set { this.applicationName = value; }

}

#endregion Properties

public override string ToString()
{

StringBuilder sb = new StringBuilder();
sb.Append(base.ToString());

sb.AppendFormat("ApplicationName: {0}\n", this.applicationName);

return sb.ToString();
}

}
}

Creating a ContactServerFacility Class
The next step is to create a copy of StatServerFacility.cs and name it
ContactServerFacility.cs. Here is what the StatServerFacility class looks like:

[C#]

using System;
using System.Text;

using Genesyslab.Platform.Commons.Collections;
using Genesyslab.Platform.Commons.Protocols;
using Genesyslab.Platform.Reporting.Protocols;
using Genesyslab.Platform.Commons.Logging;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

internal sealed class StatServerFacility : ProtocolFacility
{

public override void ApplyConfiguration(ProtocolInstance entry, ProtocolConfiguration
conf, ILogger logger)

{
base.ApplyConfiguration(entry, conf, logger);

StatServerConfiguration statConf = (StatServerConfiguration)conf;
StatServerProtocol statProtocol = (StatServerProtocol)entry.Protocol;

if (statConf.ClientName != null)
{

statProtocol.ClientName = statProtocol.ClientName;
}
if (statConf.ClientId != null)
{

statProtocol.ClientId = statConf.ClientId.Value;
}

}

public override ClientChannel CreateProtocol(string name, Uri uri)
{

return new StatServerProtocol(new Endpoint(name, uri));

Migration Overview Legacy Topics

Platform SDK Developer's Guide 566

}
}

}

Start by renaming the using statement and the class name:

[C#]

using System;
using Genesyslab.Platform.Commons.Logging;
using Genesyslab.Platform.Commons.Protocols;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

internal sealed class ContactServerFacility : ProtocolFacility
...

Rename statConf and statProtocol, giving them the correct configuration and protocol types:

[C#]

ContactServerConfiguration ucsConf = (ContactServerConfiguration)conf;
UniversalContactServerProtocol ucsProtocol =

(UniversalContactServerProtocol)entry.Protocol;

And delete the references to ClientId:

[C#]

if (statConf.ClientId != null)
{

statProtocol.ClientId = statConf.ClientId.Value;

Now you can rename ClientName to ApplicationName:

[C#]

if (ucsConf.ApplicationName != null)
{

ucsProtocol.ApplicationName = ucsConf.ApplicationName;
}

When you are finished, you will have a new class that looks like this:

[C#]

using System;
using Genesyslab.Platform.Commons.Logging;
using Genesyslab.Platform.Commons.Protocols;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

internal sealed class ContactServerFacility : ProtocolFacility
{

public override void ApplyConfiguration(ProtocolInstance entry, ProtocolConfiguration
conf, ILogger logger)

{
base.ApplyConfiguration(entry, conf, logger);

Migration Overview Legacy Topics

Platform SDK Developer's Guide 567

ContactServerConfiguration ucsConf = (ContactServerConfiguration)conf;
UniversalContactServerProtocol ucsProtocol =

(UniversalContactServerProtocol)entry.Protocol;

if (ucsConf.ApplicationName != null)
{

ucsProtocol.ApplicationName = ucsConf.ApplicationName;
}

}

public override ClientChannel CreateProtocol(string name, Uri uri)
{

return new UniversalContactServerProtocol(new Endpoint(name, uri));
}

}
}

Updating ProtocolManagementService
To complete this enhancement, add a single line of code to the Initialize method of
ProtocolManagementService:

[C#]

private void Initialize()
{

this.facilities.Add(typeof(ConfServerProtocol), new ConfServerFacility());
this.facilities.Add(typeof(TServerProtocol), new TServerFacility());
this.facilities.Add(typeof(InteractionServerProtocol), new

InteractionServerFacility());
this.facilities.Add(typeof(StatServerProtocol), new StatServerFacility());
this.facilities.Add(typeof(OutboundServerProtocol), new OutboundServerFacility());
this.facilities.Add(typeof(LocalControlAgentProtocol), new LcaFacility());
this.facilities.Add(typeof(SolutionControlServerProtocol), new ScsFacility());
this.facilities.Add(typeof(MessageServerProtocol), new MessageServerFacility());
this.facilities.Add(typeof(UniversalContactServerProtocol), new

ContactServerFacility());
}

Your copy of Protocol Manager now works with Universal Contact Server!

Architecture and Design

The Protocol Manager Application Block uses a service-based API. You can use this API to open and
close your connection with Genesys servers and to dynamically reconfigure the parameters for a
given protocol. Protocol Manager also includes built-in warm standby capabilities.

Protocol Manager uses a ServerConfiguration object to describe each server it manages. The figure
below gives examples of the structure of some of these objects.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 568

Tip
Any protocol can be reconfigured dynamically.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 569

Connecting to a Server Using the Protocol
Manager Application Block

Important
The Protocol Manager Application Block is considered a legacy product as of release
8.1.1 due to improvements in the configuration of core protocol classes.
Documentation related to this application block is retained for backwards
compatibility. For information about connecting to Genesys servers without use of the
Protocol Manager Application Block, refer to the Connecting to a Server article.

The applications you write with the Platform SDK will need to communicate with one or more Genesys
servers. So the first thing you need to do is create a connection with these servers. Genesys
recommends that you use the Protocol Manager Application Block to do this. Protocol Manager is
designed for high-performance communication with Genesys servers. It also includes built-in support
for warm standby.

Once you have connected to a server, you will be sending and receiving messages to and from this
server. The next article shows how to use the Message Broker Application Block for efficient event
handling using the Message Broker Application Block.

Tip
Protocol Manager may not support all of the servers you need to use in your
application. For information about how to update Protocol Manager to communicate
with these servers, see the Using the Protocol Manager Application Block article.

Java

To use the Protocol Manager Application Block, add the following file to your classpath:

• protocolmanagerappblock.jar

This jar file was precompiled using the default Application Block code, and can be
located at: <Platform SDK Folder>\lib.

Tip

Migration Overview Legacy Topics

Platform SDK Developer's Guide 570

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheProtocolManagerAB

You can also view or modify the Protocol Manager Application Block source code. To do
this, open the Protocol Manager Java source files that were installed with the Platform
SDK. The Java source files for this project are located at: <Platform SDK
Folder>\applicationblocks\protocolmanager\src\java. If you make any changes
to the project, you will have to run Ant (or use the build.bat file for this Application
Block) to rebuild the jar archive listed above. After you run Ant, add the resulting jar to
your classpath.

Now you can add import statements to your source code. For example:

[Java]

import com.genesyslab.platform.applicationblocks.commons.protocols.*;
import com.genesyslab.platform.applicationblocks.warmstandby.*;

You will also have to add additional JAR archives to your classpath and add import statements to
your project for each specific protocol you are working with. The steps are not explicitly described
here because the archives and classes required will vary depending on which SDKs and protocols you
plan to use.

In order to use the Protocol Manager, you need to create a ProtocolManagementServiceImpl object.
This object manages all of your server connections. Declare it with your other fields:

[Java]

ProtocolManagementServiceImpl protocolManagementServiceImpl;

Then you can initialize the service object inside the appropriate method body:

[Java]

protocolManagementServiceImpl =
new ProtocolManagementServiceImpl();

You are now ready to create an object that will be used to specify how to communicate with the
server. For example, if you are working with Configuration Server, you will set up a
ConfServerConfiguration object:

[Java]

ConfServerConfiguration confServerConfiguration = new
ConfServerConfiguration("Config_Server_App");

Note that you have to provide a string when you create the ConfServerConfiguration object. This
string should be unique for each protocol used in your application. It might be a good idea to use the
name of the server's application object from the configuration layer, which guarantees uniqueness as
well as clearly identifying which server you are communicating with.

After setting up the ConfServerConfiguration object, you need to specify the URI of the
Configuration Server you want to communicate with, as well as a few other necessary pieces of
information:

[Java]

Migration Overview Legacy Topics

Platform SDK Developer's Guide 571

try {
confServerConfiguration.setUri(

new URI("tcp://" + confServerHost + ":" + confServerPort));
} catch (URISyntaxException e) {

e.printStackTrace();
}
confServerConfiguration.setClientApplicationType(CfgAppType.CFGSCE);
confServerConfiguration.setClientName(clientName);
confServerConfiguration.setUserName(userName);
confServerConfiguration.setUserPassword(password);

At this point, you can register your ConfServerConfiguration object with Protocol Manager:

[Java]

protocolManagementServiceImpl.register(confServerConfiguration);

Now you can tell Protocol Manager to open the connection to your server:

[Java]

try {
protocolManagementServiceImpl.getProtocol("Config_Server_App").open();

} catch (ProtocolException e) {
e.printStackTrace();

} catch (IllegalStateException e) {
e.printStackTrace();

} catch (InterruptedException e) {
e.printStackTrace();

}

You may want to set up a connection to more than one server. To do that, you could repeat the steps
outlined above. Here is an example of how you might do that in order to add a connection to Stat
Server:

[Java]

StatServerConfiguration statServerConfiguration = new StatServerConfiguration(
"Stat_Server_App");

try {
statServerConfiguration.setUri(new URI(statServerUri));

} catch (URISyntaxException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
protocolManagementServiceImpl.register(statServerConfiguration);
.
.
.
// Add this line to the try block for the Configuration Server open()
protocolManagementServiceImpl.getProtocol("Stat_Server_App").open();

In some cases, you may want to use the beginOpen() method instead of using the open() method.
beginOpen() will open all of your connections with a single method call. However, unlike open(),
beginOpen() is asynchronous. This means you will need to make sure you have received the
onChannelOpened event before you send any messages. Otherwise, you might be trying to use a
connection that does not yet exist.

In order to use beginOpen(), you need to implement the ChannelListener interface:

Migration Overview Legacy Topics

Platform SDK Developer's Guide 572

[Java]

import com.genesyslab.platform.commons.protocol.ChannelListener;
.
.
.
public class YourApplication

implements ChannelListener, ...

You will also need to add a channel listener after you register your ServerConfiguration objects:

[Java]

protocolManagementServiceImpl.register(confServerConfiguration);
protocolManagementServiceImpl.register(statServerConfiguration);
.
.
.
protocolManagementServiceImpl.addChannelListener(this);

Now you can add a method to handle the OnChannelOpened event:

[Java]

public void onChannelOpened(EventObject event) {
if (event.getSource() instanceof ClientChannel) {

ClientChannel channel = (ClientChannel)event.getSource();

if (channel instanceof ConfServerProtocol) {
// Work with Configuration Server messages...

}
else if (channel instanceof StatServerProtocol) {

// Work with Stat Server messages...
}

}
}

Having done that, you can remove these lines from the try block:

[Java]

protocolManagementServiceImpl.getProtocol("Config_Server_App").open();
protocolManagementServiceImpl.getProtocol("Stat_Server_App").open();

And replace them with this one:

[Java]

protocolManagementServiceImpl.beginOpen();

However, if you want to issue an asynchronous open for a specific protocol, you can invoke
beginOpen for that protocol, like this:

[Java]

protocolManagementServiceImpl.getProtocol("Config_Server_App").beginOpen();
protocolManagementServiceImpl.getProtocol("Stat_Server_App").beginOpen();

Migration Overview Legacy Topics

Platform SDK Developer's Guide 573

Tip
When using the beginOpen() method, make sure that your code waits for the
onChannelOpened event to fire before attempting to send or receive messages.

Once you have opened your connection, you can send and receive messages, as shown in the article
on Event Handling. But before getting to that, please note that when you have finished
communicating with your servers, you should close the connection, like this:

[Java]

protocolManagementServiceImpl.beginClose();

Or like this:

[Java]

protocolManagementServiceImpl.getProtocol("Config_Server_App")
.close();

protocolManagementServiceImpl.getProtocol("Stat_Server_App")
.close();

Or like this:

[Java]

protocolManagementServiceImpl.getProtocol("Config_Server_App")
.beginClose();

protocolManagementServiceImpl.getProtocol("Stat_Server_App")
.beginClose();

This introduction has only covered the most basic features of the Protocol Manager Application Block.
Consult the Protocol Manager Application Block Guide for more information on how to use Protocol
Manager, including the following topics:

• Configuring ADDP
• Configuring Warm Standby
• High-Performance Message Parsing
• Supporting New Protocols

To learn how to send and receive messages, go to the article on Event Handling Using the Message
Broker Application Block.

.NET

To use the Protocol Manager Application Block, open the Solution Explorer for your application project
and add references to the following files:

• Genesyslab.Platform.ApplicationBlocks.Commons.Protocols.dll

Migration Overview Legacy Topics

Platform SDK Developer's Guide 574

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB

• Genesyslab.Platform.ApplicationBlocks.WarmStandby.dll

These dll files are precompiled using the default Application Block code, and can
be located at: <Platform SDK Folder>\Bin.

Tip
You can also view or modify the Protocol Manager Application Block source code. To do
this, open the Protocol Manager Visual Studio project that was installed with the
Platform SDK. The solution file for this project is located at: <Platform SDK
Folder>\ApplicationBlocks\ProtocolManager. If you make any changes to the
project, you will have to rebuild the two .dll files listed above.

Once you have added the references, you can add using statements to your source code:

[C#]

using Genesyslab.Platform.ApplicationBlocks.Commons.Protocols;
using Genesyslab.Platform.ApplicationBlocks.WarmStandby;

You will also have to reference additional libraries and add using statements to your project for each
specific protocol you are working with. The steps are not explicitly described here because the files
and namespaces required will vary depending on which SDKs and protocols you plan to use.

In order to use the Protocol Manager, you now need to create a ProtocolManagementService object.
This object manages all of your server connections. Declare it with your other fields:

[C#]

ProtocolManagementService protocolManagementService;

Then you can initialize the service object inside the appropriate method body:

[C#]

protocolManagementService =
new ProtocolManagementService();

You are now ready to create an object that will be used to specify how to communicate with the
server. For example, if you are working with Configuration Server, you will set up a
ConfServerConfiguration object:

[C#]

ConfServerConfiguration confServerConfiguration =
new ConfServerConfiguration("Config_Server_App");

Note that you have to provide a string when you create the ConfServerConfiguration object. This
string should be unique for each protocol used in your application. It might be a good idea to use the
name of the server's application object from the configuration layer, which guarantees uniqueness as
well as clearly identifying which server you are communicating with.

After setting up the ConfServerConfiguration object, you need to specify the URI of the

Migration Overview Legacy Topics

Platform SDK Developer's Guide 575

Configuration Server you want to communicate with, as well as a few other necessary pieces of
information:

[C#]

confServerConfiguration.Uri =
new Uri("tcp://" + confServerHost + ":" + confServerPort);

confServerConfiguration.ClientApplicationType = CfgAppType.CFGSCE;
confServerConfiguration.ClientName = clientName;
confServerConfiguration.UserName = userName;
confServerConfiguration.UserPassword = password;

At this point, you can register your ConfServerConfiguration object with Protocol Manager:

[C#]

protocolManagementService.Register(confServerConfiguration);

Now you can tell Protocol Manager to open the connection to your server:

[C#]

protocolManagementService["Config_Server_App"].Open();

You may want to set up a connection to more than one server. To do that, you could repeat the steps
outlined above. Here is an example of how you might do that in order to add a connection to Stat
Server:

[C#]

StatServerConfiguration statServerConfiguration = new
StatServerConfiguration("Stat_Server_App");
statServerConfiguration.Uri = statServerUri;
protocolManagementService.Register(statServerConfiguration);
.
.
.
protocolManagementService["Stat_Server_App"].Open();

In some cases, you may want to use the BeginOpen() method instead of using the Open() method.
BeginOpen() will open all of your connections with a single method call. However, unlike Open(),
BeginOpen() is asynchronous. This means you will need to make sure you have received the Opened
event before you send any messages. Otherwise, you might be trying to use a connection that does
not yet exist.

Once you have set up an event handler for the Opened event, you can remove these lines from your
code:

[C#]

protocolManagementService["Config_Server_App"].Open();
protocolManagementService["Stat_Server_App"].Open();

And replace them with this one:

[C#]

protocolManagementService.BeginOpen();

Migration Overview Legacy Topics

Platform SDK Developer's Guide 576

However, if you want to issue an asynchronous open for a specific protocol, you can invoke
BeginOpen for that protocol, like this:

[C#]

protocolManagementService["Config_Server_App"].BeginOpen();
protocolManagementService["Stat_Server_App"].BeginOpen();

Tip
When using the BeginOpen() method, make sure that your code waits for the Opened
event to fire before attempting to send or receive messages.

Once you have opened your connection, you can send and receive messages, as shown in the article
on Event Handling Using the Message Broker Application Block. But before getting to that, please
note that when you have finished communicating with your servers, you should close the connection,
like this:

[C#]

protocolManagementService.BeginClose();

Or like this:

[C#]

protocolManagementService["Config_Server_App"].Close();
protocolManagementService["Stat_Server_App"].Close();

Or like this:

[C#]

protocolManagementService["Config_Server_App"].BeginClose();
protocolManagementService["Stat_Server_App"].BeginClose();

This introduction has only covered the most basic features of the Protocol Manager Application Block.
Consult Using the Protocol Manager Application Block for more information on how to use Protocol
Manager, including the following topics:

• Configuring ADDP
• Configuring Warm Standby
• High-Performance Message Parsing
• Supporting New Protocols

To learn how to send and receive messages, go to the article on Event Handling Using the Message
Broker Application Block.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 577

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingtheProtocolManagerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandlingUsingMessageBrokerAB

Transport Layer Security (TLS) Support

Platform SDK now supports Transport Layer Security (TLS). This section contains two sample
configurations, but it is important to understand your environment and its unique requirements
before using this new support. You should refer to the appropriate server manual to configure TLS on
your server. You should also refer to Part 3 of the Genesys 8.0 Security Deployment Guide,
"Communications Integrity—Transport Layer Security".

The first sample configuration shows a situation where the client application specifies the name of a
server-based certificate:

[C#]

SolutionControlServerProtocol scsProtocol
= new SolutionControlServerProtocol(myEndpoint);

KeyValueCollection kvCollection = new KeyValueCollection();
kvCollection[CommonConnection.TlsKey] = 1;
kvCollection[CommonConnection.CertificateNameKey] = "name";
KeyValueConfiguration kvConfig = new KeyValueConfiguration(kvCollection);
scsProtocol.Configure(kvConfig);

In this sample configuration, "name" is the name of the certificate, which is located in the certificate
store on the server and used in the TLS configuration of the port/application/server in the Genesys
Configuration Layer.

The second sample configuration shows a client application using its own client certificate to
authenticate on the server:

[C#]

SolutionControlServerProtocol scsProtocol
= new SolutionControlServerProtocol(myEndpoint);

KeyValueCollection kvCollection = new KeyValueCollection();
kvCollection[CommonConnection.TlsKey] = 1;
kvCollection[CommonConnection.CertificateKey] = @"c:\directory\certificate.p12";
kvCollection[CommonConnection.CertificatePwdKey] = "password";
KeyValueConfiguration kvConfig = new KeyValueConfiguration(kvCollection);
scsProtocol.Configure(kvConfig);

In this sample configuration, CommonConnection.CertificateKey is the path to the certificate file
located on the client machine, while CommonConnection.CertificatePwdKey is the password which
will be used to open the certificate file, if it is password protected.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 578

Legacy Warm Standby Application Block
Description

Deprecation Notice Deprecated In
Significant changes were made to the Warm
Standby Application Block with release 8.5.101.x.
This documentation is maintained for backwards
compatibility. Guidelines about using the new
warm standby implementation should be
followed for any new development.

Java: 8.5.101.06
.NET: 8.5.101.06

Important
This application block is a reusable production-quality component. It has been
designed using industry best practices and provided with source code so it can be
used "as is," extended, or tailored if you need to.

Please see the License Agreement for details.

This article examines the architecture and design of the Warm Standby Application Block, which
enables developers to switch to a backup server in case their primary server fails without needing to
guarantee the integrity of existing interactions. The application block also gives details about how to
set up the QuickStart application that ships with this application block.

Java

Architecture and Design

Many contact center environments require redundant backup servers that are able to take over
quickly if a primary server fails. In this situation, the primary server operates in active mode,
accepting connections and exchanging messages with clients. The backup server, on the other hand,
is in standby mode. If the primary server fails, the backup server switches to active mode, assuming
the role and behavior of the primary server.

There are two standby modes: warm standby and hot standby. The main difference between them is
that warm standby mode does not ensure the continuation of interactions in progress when a failure
occurs, while hot standby mode does.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 579

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingWarmStandbyAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/UsingWarmStandbyAB

The Client Channel Architecture
Since the Warm Standby Application Block is designed to be used in the context of a Client Channel
architecture, it is important to understand that architecture before talking about the application block
itself.

To start with, this architecture consists of three functional components:

• A connection
• A client channel
• A protocol channel

These components are shown in the following figure.

The connection controls all necessary TCP/IP connection activities, while the client channel contains
the protocol- and server-independent channel functionality that is common for a protocol channel.
Finally, the protocol channel controls all of the client channel activities that are dependent on the
protocol and the server.

Client Channel State

The state of a client channel is based on the state of the corresponding connection. There are four
major states:

• Opening (Registration)
• Opened
• Closing
• Closed

The figure below shows a detailed client channel state diagram.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 580

In addition to establishing a TCP/IP connection, several activities may take place when a client
channel opens. These activities can include things like:

• A preliminary exchange of messages with the server, which is known as registration
• Reading the client channel’s locally stored configuration information

You can often determine the cause of a client channel failure by checking the state of the client
channel just before it closed. There are exceptions to this rule, however, such as a registration failure,
which is protocol-specific.

Client Channel Failure Scenarios
There are several common client channel failure scenarios:

Client Channel Failure Scenarios

Scenario Description Source
States Condition Target State Protocol-

Dependent

Opening Timed
Out

Channel tries
to open
connection to
non-existing
URI

Opening
Connection
opening
timeout

Closed No

Wrong URI

Channel tries
to open
connection to
non-existing
URI

Opening Incorrect URI
exception Closed No

Connection
Problem

Channel
connection
detects a
connection

Opened
Opening

Server
disconnected Closed No

Migration Overview Legacy Topics

Platform SDK Developer's Guide 581

Scenario Description Source
States Condition Target State Protocol-

Dependent
problem

Network
Problem
(ADDP)

Channel
connection
detects a
network
problem
(ADDP)

Opened
Opening

Network
problem
(ADDP)

Closed No

Wrong Server
or Protocol

Channel tries
to open
connection
with an
incorrect
server or
protocol

Opening
Registration
Failed/
ProtocolException

Closing Yes

Registration
Failure

One of the
channel
registration
steps failed

Opening
Registration
Failed/
ProtocolException

Closing Yes

Note that the first four scenarios, Opening timed-out, Wrong URI, Connection Problem, and Network
Problem happen with the connection (TCP/IP) component. They do not involve protocol- or server-
specific elements, whether in terms of failure-specific data or in terms of channel recovery actions
and data.

The Wrong Server or Protocol and Registration Failure scenarios are protocol- or server-dependent
and can be different for each type of protocol channel.

Application Block Architecture
The Warm Standby Application Block’s functionality is based on intercepting the channel's transition
from a non-closed state to the Closed state. As you can see in the following figure, the application
block is able to pick up this information because it sits between the client and protocol channels.

Upon receiving the channel’s Closed event, the application block uses diagnostic information to
determine why the channel has closed. This diagnostic information is necessary to determine what
actions, if any, the application block should take to restore the channel’s connectivity to the server.

The Warm Standby Application Block can take several different steps to recover channel connectivity.
These steps are:

Migration Overview Legacy Topics

Platform SDK Developer's Guide 582

• Do nothing (close the channel by request of the user application)
• Attempt to open the channel without switching over its connectivity configuration from primary to

backup
• Attempt to open the channel, switching its connectivity configuration from primary to backup
• Deactivate, in case of a fatal failure

Any application block activity will be followed by a corresponding event generated by the application
block. These events will provide user applications with the opportunity to monitor and react to all of
the application block’s activities and failures

To control channel connectivity with a warm standby mechanism, the user application should activate
the Warm Standby Application Block instance that is responsible for handling the particular channel's
connectivity failure and recovery.

Warm Standby Application Block Algorithm
The Warm Standby Application Block has 4 states, as shown below.

As soon as a channel’s Warm Standby Application Block is activated, it goes into the idle state,
waiting for the channel’s Closed event. When the channel issues a Closed event, the application
block checks to see if the channel was closed due to a connectivity failure. If so, the application block
instance starts the channel connectivity recovery procedure, as shown below.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 583

Here is the procedure for the Warm Standby Application Block:

• The user should activate the Warm Standby Application Block for every channel he or she intends to
work with.

• In the active state, the application block waits for the channel’s Closed event.
• On receiving the channel’s Closed event, the application block activates the channel connectivity

recovery procedure.

Application Block Components
The Warm Standby Application Block distribution consists of two main components:

1. The application block itself, which provides an interface that you can use to integrate it into different
GUI applications.

2. A sample application, the WarmStandbyQuickStart application, which is built on the Warm Standby
Application Block

As shown below, the application block itself runs on top of the Platform SDK, while the QuickStart
application runs on top of the application block.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 584

The Warm Standby Application Block Interface
The Warm Standby Application Block consists of the following classes:

• WarmStandbyService

• WarmStandbyConfiguration

The WarmStandbyService class monitors and controls the connectivity of the channel it is responsible
for, while the WarmStandbyConfiguration class handles all the parameters that are needed for the
proper functioning of the warm standby process.

Tip
Starting with release 8.1.1, default behavior for the WarmStandbyService connection
restoration includes the following improvements to provide improved performance:

• Following a switchover or the first reconnection attempt, WarmStandbyService no longer
waits for a timeout to occur.

• Check backup server availability by performing a fast first switchover.

Tip
Starting with release 8.1.4, users can also modify the timeout value used during fast
reconnect to a backup server if a live connection is terminated.

User applications can subscribe to the controlled channel's Closed and Opened events in order to
monitor and handle channel connectivity.

WarmStandbyService's StateChanged event is fired on any change of state in WarmStandby,
providing the means for a user application to monitor state changes and to control the application

Migration Overview Legacy Topics

Platform SDK Developer's Guide 585

block's activities.

Using the Warm Standby Application Block

Before you install the Warm Standby Application Block, it is important to review the software
requirements and the structure of the software distribution.

Building the Warm Standby Application Block
To build the Warm Standby Application Block:

1. Open the <Platform SDK Folder>\applicationblocks\warmstandby folder.
2. Run either build.bat or build.sh, depending on your platform.

Tip
You may need to edit the path specified in the quickstart file by adding quotation
marks if your ANT_HOME environment variable contains spaces.

This build file will create the warmstandbyappblock.jar file, located within the <Platform SDK
Folder>\applicationblocks\warmstandby\dist\lib directory.

Now you are ready to add the appropriate import statements to your source code and start using the
Warm Standby Application Block:

[Java]
import com.genesyslab.platform.applicationblocks.warmstandby.*;

Using the QuickStart Application
The easiest way to start using the Warm Standby Application Block is to use the bundled QuickStart
application. This application ships in the same folder as the application block.

To run the QuickStart application:

1. Open the \ApplicationBlocks\WarmStandby\quickstart folder.
2. Run either quickstart.bat or quickstart.sh, depending on your platform.

Important
You may need to edit the path specified in the quickstart file by adding quotation
marks if your ANT_HOME environment variable contains spaces.2

Migration Overview Legacy Topics

Platform SDK Developer's Guide 586

https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK
https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK

After you start the application, you will see the user interface shown below.

On startup, the QuickStart application uses values specified by the quickstart.properties configuration
file. You can change these values either by editing that file or by overwriting them after running the
user interface.

This form has two main sections. The left side enables you to set up a connection for the application
indicated in the Name field, using the protocol specified in the Protocol field. To open the connection,
press the Open button. Press the Close button to close it.

The right side of the form lets you specify primary and backup servers. It also lets you specify the
number of times the warm standby mechanism will try to contact the primary server, and what the
timeout value should be for each attempt.

Once you have the desired values, you can press the Start button to turn on the warm standby
feature. If you would like to change the configuration after warm standby is turned on, simply modify
the configuration information and press the Reconfigure button. The warm standby configuration will
be changed dynamically.

.NET

Architecture and Design

Many contact center environments require redundant backup servers that are able to take over
quickly if a primary server fails. In this situation, the primary server operates in active mode,
accepting connections and exchanging messages with clients. The backup server, on the other hand,
is in standby mode. If the primary server fails, the backup server switches to active mode, assuming
the role and behavior of the primary server.

There are two standby modes: warm standby and hot standby. The main difference between them is
that warm standby mode does not ensure the continuation of interactions in progress when a failure
occurs, while hot standby mode does.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 587

The Client Channel Architecture
Since the Warm Standby Application Block is designed to be used in the context of a Client Channel
architecture, it is important to understand that architecture before talking about the application block
itself.

To start with, this architecture consists of three functional components:

• A connection
• A client channel
• A protocol channel

These components are shown in the following figure.

The connection controls all necessary TCP/IP connection activities, while the client channel contains
the protocol- and server-independent channel functionality that is common for a protocol channel.
Finally, the protocol channel controls all of the client channel activities that are dependent on the
protocol and the server.

Client Channel State

The state of a client channel is based on the state of the corresponding connection. There are four
major states:

• Opening (Registration)
• Opened
• Closing
• Closed

The figure below shows a detailed client channel state diagram.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 588

In addition to establishing a TCP/IP connection, several activities may take place when a client
channel opens. These activities can include things like:

• A preliminary exchange of messages with the server, which is known as registration
• Reading the client channel’s locally stored configuration information

You can often determine the cause of a client channel failure by checking the state of the client
channel just before it closed. There are exceptions to this rule, however, such as a registration failure,
which is protocol-specific.

Client Channel Failure Scenarios
There are several common client channel failure scenarios:

Client Channel Failure Scenarios

Scenario Description Source
States Condition Target State Protocol-

Dependent

Opening Timed
Out

Channel tries
to open
connection to
non-existing
URI

Opening
Connection
opening
timeout

Closed No

Wrong URI

Channel tries
to open
connection to
non-existing
URI

Opening Incorrect URI
exception Closed No

Connection
Problem

Channel
connection
detects a
connection

Opened
Opening

Server
disconnected Closed No

Migration Overview Legacy Topics

Platform SDK Developer's Guide 589

Scenario Description Source
States Condition Target State Protocol-

Dependent
problem

Network
Problem
(ADDP)

Channel
connection
detects a
network
problem
(ADDP)

Opened
Opening

Network
problem
(ADDP)

Closed No

Wrong Server
or Protocol

Channel tries
to open
connection
with an
incorrect
server or
protocol

Opening
Registration
Failed/
ProtocolException

Closing Yes

Registration
Failure

One of the
channel
registration
steps failed

Opening
Registration
Failed/
ProtocolException

Closing Yes

Note that the first four scenarios, Opening timed-out, Wrong URI, Connection Problem, and Network
Problem happen with the connection (TCP/IP) component. They do not involve protocol- or server-
specific elements, whether in terms of failure-specific data or in terms of channel recovery actions
and data.

The Wrong Server or Protocol and Registration Failure scenarios are protocol- or server-dependent
and can be different for each type of protocol channel.

Application Block Architecture
The Warm Standby Application Block’s functionality is based on intercepting the channel's transition
from a non-closed state to the Closed state. As you can see in the following figure, the application
block is able to pick up this information because it sits between the client and protocol channels.

Upon receiving the channel’s Closed event, the application block uses diagnostic information to
determine why the channel has closed. This diagnostic information is necessary to determine what
actions, if any, the application block should take to restore the channel’s connectivity to the server.

The Warm Standby Application Block can take several different steps to recover channel connectivity.
These steps are:

Migration Overview Legacy Topics

Platform SDK Developer's Guide 590

• Do nothing (close the channel by request of the user application)
• Attempt to open the channel without switching over its connectivity configuration from primary to

backup
• Attempt to open the channel, switching its connectivity configuration from primary to backup
• Deactivate, in case of a fatal failure

Any application block activity will be followed by a corresponding event generated by the application
block. These events will provide user applications with the opportunity to monitor and react to all of
the application block’s activities and failures

To control channel connectivity with a warm standby mechanism, the user application should activate
the Warm Standby Application Block instance that is responsible for handling the particular channel's
connectivity failure and recovery.

Warm Standby Application Block Algorithm
The Warm Standby Application Block has 4 states, as shown below.

As soon as a channel’s Warm Standby Application Block is activated, it goes into the idle state,
waiting for the channel’s Closed event. When the channel issues a Closed event, the application
block checks to see if the channel was closed due to a connectivity failure. If so, the application block
instance starts the channel connectivity recovery procedure, as shown below.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 591

Here is the procedure for the Warm Standby Application Block:

• The user should activate the Warm Standby Application Block for every channel he or she intends to
work with.

• In the active state, the application block waits for the channel’s Closed event.
• On receiving the channel’s Closed event, the application block activates the channel connectivity

recovery procedure.

Application Block Components
The Warm Standby Application Block distribution consists of two main components:

1. The application block itself, which provides an interface that you can use to integrate it into different
GUI applications.

2. A sample application, the WarmStandbyQuickStart application, which is built on the Warm Standby
Application Block

As shown below, the application block itself runs on top of the Platform SDK, while the QuickStart
application runs on top of the application block.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 592

The Warm Standby Application Block Interface
The Warm Standby Application Block consists of the following classes:

• WarmStandbyService

• WarmStandbyConfiguration

These classes are shown in greater detail below.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 593

The WarmStandbyService class monitors and controls the connectivity of the channel it is responsible
for, while the WarmStandbyConfiguration class handles all the parameters that are needed for the
proper functioning of the warm standby process.

Tip
Starting with release 8.1.1, default behavior for the WarmStandbyService connection
restoration includes the following improvements to provide improved performance:

• Following a switchover or the first reconnection attempt, WarmStandbyService no longer

Migration Overview Legacy Topics

Platform SDK Developer's Guide 594

waits for a timeout to occur.
• Check backup server availability by performing a fast first switchover.

Tip
Starting with release 8.1.4, users can also modify the timeout value used during fast
reconnect to a backup server if a live connection is terminated.

User applications can subscribe to the controlled channel’s Closed and Opened events in order to
monitor and handle channel connectivity.

WarmStandbyService's StateChanged event is fired on any change of state in WarmStandby,
providing the means for a user application to monitor state changes and to control the application
block's activities.

Using the Warm Standby Application Block

Before you install the Warm Standby Application Block, it is important to review the software
requirements and the structure of the software distribution.

Configuring the Warm Standby Application Block
In order to use the QuickStart application, you need to set up the XML configuration file that comes
with the application block. This file is located at Quickstart\app.config. This is what the contents look
like:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>

</configSections>
<WarmStandbyQuickStart>

<Channel
ClientType="19"
ProtocolName="ConfigurationServer"
ClientName="default"

/>
<WarmStandby

PrimaryServer="tcp://hostname:9999"
BackupServer="tcp://hostname:9999"
Attempts="3"
Timeout="10"
Switchovers="3"

/>
<ConfServer

UserName="default"

Migration Overview Legacy Topics

Platform SDK Developer's Guide 595

https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK
https://docs.genesys.com/Documentation/System/Current/SOE/PlatformSDK

UserPassword="password"
/>

</WarmStandbyQuickStart>

</configuration>

Follow the instructions in the comments and save the file.

Building the Warm Standby Application Block
The Platform SDK distribution includes a Genesyslab.Platform.ApplicationBlocks.WarmStandby.dll file
that you can use as is. This file is located in the bin directory at the root level of the Platform SDK
directory. To build your own copy of this application block, follow the instructions below:

To build the Warm Standby Application Block:

1. Open the <Platform SDK Folder>\ApplicationBlocks\WarmStandby folder.
2. Double-click WarmStandby.sln.
3. Build the solution.

Using the QuickStart Application
The easiest way to start using the Warm Standby Application Block is to use the bundled QuickStart
application. This application ships in the same folder as the application block.

To run the QuickStart application:

1. Open the <Platform SDK Folder>\ApplicationBlocks\WarmStandby folder.
2. Double-click WarmStandbyQuickStart.sln.
3. Build the solution.
4. Find the executable for the QuickStart application, which will be at <Platform SDK

Folder>\ApplicationBlocks\WarmStandby\QuickStart\bin\Debug\WarmStandbyQuickStart.exe.
5. Double-click WarmStandbyQuickStart.exe.

After you start the application, you will see the user interface shown below.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 596

This form has two main sections. The left side enables you to set up a connection for the application
indicated in the Name field, using the protocol specified in the Protocol field. To open the connection,
press the Open button. Press the Close button to close it.

The right side of the form lets you specify primary and backup servers. It also lets you specify the
number of times the warm standby mechanism will try to contact the primary server, and what the
timeout value should be for each attempt. On startup, these values are picked up from the
configuration file, but you can change them in the user interface.

Once you have the desired values, you can press the Start button to turn on the warm standby
feature. If you would like to change the configuration after warm standby is turned on, simply modify
the configuration information and press the Reconfigure button. The warm standby configuration will
be changed dynamically.

Migration Overview Legacy Topics

Platform SDK Developer's Guide 597

	Platform SDK Developer's Guide
	Table of Contents
	Welcome to the Developer's Guide!
	Introductory Topics
	Introducing the Platform SDK
	Architecture of the Platform SDK
	Connecting to a Server
	Configuring Platform SDK Channel Encoding for String Values
	Using the Warm Standby Application Block
	Using the Application Template Application Block
	Using the Cluster Protocol Application Block
	Event Handling
	Setting up Logging in Platform SDK
	Additional Logging Features
	Log4j2 Configuration with the Application Template Application Block

	Advanced Platform SDK Topics
	Using Kerberos Authentication in Platform SDK
	Secure connections using TLS
	Quick Start
	TLS and the Platform SDK Commons Library
	TLS and the Application Template Application Block
	Configuring TLS Parameters in Configuration Manager
	Using and Configuring Security Providers
	OpenSSL Configuration File
	Use Cases
	Using and Configuring TLS Protocol Versions

	Lazy Parsing of Message Attributes
	Log Filtering
	Hide or Tag Sensitive Data in Logs
	Profiling and Performance Services
	IPv6 Resolution
	Managing Protocol Configuration
	Friendly Reaction to Unsupported Messages
	Creating Custom Protocols
	JSON Support
	Working with Custom Servers
	Bidirectional Messaging
	Hide Message Attributes in Logs
	Resources Releasing in an Application Container
	Transport Layer Substitution

	Server-Specific Overviews
	Telephony (T-Server)
	Introduction to TLib Functions and Data

	Configuration
	Connecting Using UTF-8 Character Encoding
	Change Password On Next Login
	Getting the Last Login Info
	Using the Configuration Object Model Application Block
	Introduction to the Configuration Layer Objects

	Stat Server
	Custom Statistics: Getting Agent State for All Channels

	Interaction Server
	Universal Contact Server
	Creating an Email

	Chat
	E-Mail Server
	Outbound
	Management Layer
	LCA Protocol Usage Samples
	LCA Hang-Up Detection Support
	Handle Application "Graceful Stop" with the LCA Protocol

	Routing Server

	Component Overviews
	Using the Log Library

	Migration Overview
	Migration from Message Broker Application Block Usage
	Migration from Protocol Manager Application Block Usage
	Legacy Topics
	Using the Message Broker Application Block
	Event Handling Using the Message Broker Application Block
	Using the Protocol Manager Application Block
	Connecting to a Server Using the Protocol Manager Application Block
	Legacy Warm Standby Application Block Description

