
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Resources Releasing in an Application Container

Platform SDK Developer's Guide

5/4/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Resources Releasing in an Application
Container
To improve performance, Platform SDK only releases internal resources (such as threads) after a
slight delay so that they can be reused in the near future if beneficial.

This delay in releasing resources can lead to warnings about memory leaks from application
containers like Tomcat, because Tomcat checks if all application threads are stopped immediately
without taking into account that Platform SDK intentionally holds resources for a short time.

Starting with release 8.5.300.02, Platform SDK for Java includes a PSDKRuntime class that allows your
applications to stop gracefully. When used in your application, this class does the following things:

• wait until all Platform SDK resources are released
• reduce time required to release PSDK resources

Design Notes

The PSDKRuntime class provides two methods:

• awaitTermination with timeout
• awaitTermination without timeout

PSDKRuntime.java

public final class PSDKRuntime {

public static void awaitTermination() throws InterruptedException { ... } // It is similar
to call of awaitTermination(Long.MAX_VALUE, TimeUnit.MILLISECONDS)

public static void awaitTermination(long timeout, TimeUnit timeUnit) throws
InterruptedException, TimeoutException { ... }

}

Important
These two methods wait until all Platform SDK resources are released, and reduce the
release time for Platform SDK resources.

To initiate Platform SDK resources releasing:

• all Platform SDK channels have to be closed;

Resources Releasing in an Application Container

Platform SDK Developer's Guide 2

• if Platform SDK invokers were requested using InvokerFactory.namedInvoker(String) or
InvokerFactory.namedInvoker(String, int), then those invokers must be released (as many times
as they were requested) using InvokerFactory.releaseInvoker(String);

• if SingleThreadInvoker instances were created by user then these invokers have to be released using
SingleThreadInvoker.release() ;

• if you scheduled timer actions by using Scheduler.schedule(long, long, TimerAction) then these
timer actions have to be canceled using TimerActionTicket.cancel().

Code Sample

The following sample provides an example of how you can correctly finalize a Platform SDK-based
application in J2EE containers.

TestServlet.java

@WebServlet("/TestServlet")
public class TestServlet extends HttpServlet {

ConfServerProtocol protocol;
AsyncInvoker myInvoker;
SingleThreadInvoker myInvoker2;
TimerActionTicket ticket;

@Override
public void init(ServletConfig config) throws ServletException {

super.init(config);

String name = "Case0001731406Test";
String host = "host";
String clientName = "clientName";
String userName = "userName";
String password = "password";
int port = 2020;

// creates PSDK channel
protocol = new ConfServerProtocol(new Endpoint(name, host, port));
protocol.setClientName(clientName);
protocol.setUserName(userName);
protocol.setUserPassword(password);
protocol.setTimeout(Long.MAX_VALUE);

// request PSDK named invoker
myInvoker = InvokerFactory.namedInvoker("myInvoker");
protocol.setInvoker(myInvoker);

// request it 2nd time (it increases its reference counter)
InvokerFactory.namedInvoker("myInvoker");

// request PSDK invoker
myInvoker2 = new SingleThreadInvoker();

// open PSDK channel
try {

protocol.open();
} catch (Exception e) { /*...*/ }

// creates PSDK timer action

Resources Releasing in an Application Container

Platform SDK Developer's Guide 3

TimerAction action = new TimerAction() {
public void onTimer() { /* ... */ }

};

// schedule the periodic timer action
ticket = TimerFactory.getTimer().schedule(500, 1000, action);

}

public void destroy() {

// stop periodic timer action scheduled before in PSDK timer
if (ticket != null) {

ticket.cancel();
ticket = null;

}

// close all opened PSDK channels
if (protocol != null) {

try {
protocol.close();

} catch (Exception e) { /*...*/ }
protocol.setInvoker(null);
protocol = null;

}

// release 1st invoker
if (myInvoker != null) {

myInvoker = null;
InvokerFactory.releaseInvoker("myInvoker");
InvokerFactory.releaseInvoker("myInvoker"); // named invoker have to be released

as many times as it was requested before
}

// release 2nd invoker
if (myInvoker2 != null) {

myInvoker2.release();
myInvoker2 = null;

}

// wait until all PSDK resources are stopped
try {

PSDKRuntime.awaitTermination(20000, TimeUnit.MILLISECONDS);
} catch (InterruptedException e) { /*...*/ }

}

protected void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException { /* ... */ }

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException { /* ... */ }

// ...
}

Resources Releasing in an Application Container

Platform SDK Developer's Guide 4

	Platform SDK Developer's Guide
	Resources Releasing in an Application Container

