
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Secure connections using TLS

Platform SDK Developer's Guide

4/1/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Secure connections using TLS

Java

This page provides an introduction to creating and configuring Transport Layer Security (TLS) for your
Platform SDK connections, as introduced in release 8.1.1.

Introduction to TLS

This page provides an overview of the TLS implementation provided in the 8.1.1 release of Platform
SDK. It introduces Platform SDK users to TLS concepts and then provides links to expanded articles
and examples that describe implementation details.

Before working with TLS to create secure connections, you should have a basic awareness of how
public key cryptography works.

Certificates
Transport Layer Security (TLS) technology uses public key cryptography, where the key required to
encrypt and decrypt information is divided into two parts: a public key and a private key. These parts
are reciprocal in the sense that data encrypted using a private key can be decrypted with the public
key and vice versa, but cannot be decrypted using the same key that was used for encryption.

There is an X.509 standard for public key (certificate) format, and public-key cryptography standards
(PKCS) that define format for private key (PKCS#8) and related data structures.

Certificate Authority (CA)
In the context of TLS, a CA is an entity that is trusted by both sides of network connection. Each CA
has a public X.509 certificate and owns a related private key that kept secret. A CA can generate and
sign certificates for other parties using its private key, and then that CA certificate can be used by
the parties to validate their certificates. A CA can also issue public Certificate Revocation Lists (CRLs),
which are also used by parties for certificate validation.

The relation between certificates and CRL can be depicted like this:

Secure connections using TLS

Platform SDK Developer's Guide 2

Certificate Usage
To create a secure connection, each party must have a copy of:

• a public CA certificate
• a CRL issued by the CA
• their own public certificate (with a corresponding private key)

When a network connection is established, the client initiates a TLS handshake process during which
the parties exchange their public certificates, prove that they own corresponding private keys, create
a shared session encryption key, and negotiate which cipher suite will be used.

Placement and exchange of certificate data is shown on the following diagram:

TLS only requires that servers send their certificates, but the client certificates can also be
exchanged depending on server settings. Cases where the client certificates are demanded by the
server are called “Mutual TLS”, as both sides send their certificates.

If all certificates pass validation and the ciphers are negotiated successfully, then a TLS connection is
established and higher-level protocols may proceed.

Secure connections using TLS

Platform SDK Developer's Guide 3

Implementing and Configuring TLS

Genesys strongly recommends reading all TLS in Platform SDK articles in order to get understanding
of how TLS works in general and how it is supported in Platform SDK. A Quick Start page is provided
for reference, but the specific implementation details and expanded information provided in other
pages will help you to better understand how to provide TLS support in your applications. Once you
have an understanding of how TLS is implemented, you can use the Use Case guide to quickly find
code snippets or relevant links for common tasks.

There are two main ways to implement TLS in your Platform SDK code:

1. Use the Platform SDK Commons Library to specify TLS settings directly when creating endpoints
2. Use the Application Template Application Block to read connection parameters inside configuration

objects retrieved from Configuration Server, then use those parameters to configure TLS settings.

Note: If using the Application Template Application Block, you will need to configure TLS Parameters
in Configuration Manager before the application is tested.

Recommendations are also provided for the configuration and use of security providers. The security
providers discussed on that page have been tested within the described configurations, and worked
reliably.

Migrating TLS Support From Platform SDK Release 8.1.0

This section outlines migration information that may be needed for applications that were developed
using the TLS implementation provided with the 8.1.0 release of Platform SDK.

Platform SDK 8.1.0 had the following connection configuration parameters for TLS:

• Connection.TLS_KEY

• Connection.SSL_KEYSTORE_PATH_KEY

• Connection.SSL_KEYSTORE_PASS

The TLS_KEY parameter is the equivalent of enableTls flag in the current release, while the other
parameters specified the location and password for the Java keystore file containing certificates that
were used by the application to authenticate itself. TLS configuration code looked like this:

ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
connConf.setOption(Connection.TLS_KEY, "1");
connConf.setOption(Connection.SSL_KEYSTORE_PATH_KEY, "c:/certificates/client-certs.keystore");
connConf.setOption(Connection.SSL_KEYSTORE_PASS, "pa$$w0rd");

In Platform SDK 8.1.1, this code can be translated to the following:

boolean tlsEnabled = true;
// By default, PSDK 8.1.0 trusted any certificate
TrustManager trustManager = TrustManagerHelper.createTrustEveryoneTrustManager();
// Keystore entries may be protected with individual password,
// but usually, these passwords are the same as keystore password
KeyManager keyManager = KeyManagerHelper.createJKSKeyManager(

Secure connections using TLS

Platform SDK Developer's Guide 4

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSQuickStart
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUseCases
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingPSDKCommonsLibrary
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingApplicationTemplateAB
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSSecurityProviders

"c:/certificates/client-certs.keystore", "pa$$w0rd".toCharArray(),
"pa$$w0rd".toCharArray());
SSLContext sslContext = SSLContextHelper.createSSLContext(keyManager, trustManager);

In most cases, certificates from other parties will need to be validated. Assuming there is a separate
keystore file with a CA certificate, this can be achieved with the following code:

TrustManager trustManager = TrustManagerHelper.createJKSTrustManager(
"c:/certificates/CA-cert.keystore", "pa$$w0rd".toCharArray(), null, null);

Please note that different keystore files are used for the KeyManager and TrustManager objects. For
more information, see Using the Platform SDK Commons Library.

Known Issues

For more details about the known issues listed here, refer to Using and Configuring Security
Providers.

• Java 7:
• CRL files without extension section cannot be loaded: http://bugs.sun.com/bugdatabase/

view_bug.do?bug_id=7166885.
Note: Although the bug is marked as "Will not fix", it seems to be fixed since Java 7 update 7.

• CRLs located in WCS are ignored, please use CRLs as files.

• MSCAPI: MSCAPI does not have a documented way to programmatically set passwords to the private
key stored in WCS. Regardless of the password returned by CallbackHandler, if the private key is
protected with a confirmation prompt or password prompt then the user will be shown an OS-specific
popup dialog.

.NET

This page provides an introduction to creating and configuring Transport Layer Security (TLS) for your
Platform SDK connections, as introduced in release 8.1.1.

Introduction to TLS

This page provides an overview of the TLS implementation provided in the 8.1.1 release of Platform
SDK. It introduces Platform SDK users to TLS concepts and then provides links to expanded articles
and examples that describe implementation details.

Before working with TLS to create secure connections, you should have a basic awareness of how
public key cryptography works.

Secure connections using TLS

Platform SDK Developer's Guide 5

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingPSDKCommonsLibrary
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSSecurityProviders

Certificates
Transport Layer Security (TLS) technology uses public key cryptography, where the key required to
encrypt and decrypt information is divided into two parts: a public key and a private key. These parts
are reciprocal in the sense that data encrypted using a private key can be decrypted with the public
key and vice versa, but cannot be decrypted using the same key that was used for encryption.

There is an X.509 standard for public key (certificate) format, and public-key cryptography standards
(PKCS) that define format for private key (PKCS#8) and related data structures.

Certificate Authority (CA)
In the context of TLS, a CA is an entity that is trusted by both sides of network connection. Each CA
has a public X.509 certificate and owns a related private key that kept secret. A CA can generate and
sign certificates for other parties using its private key, and then that CA certificate can be used by
the parties to validate their certificates. A CA can also issue public Certificate Revocation Lists (CRLs),
which are also used by parties for certificate validation.

The relation between certificates and CRL can be depicted like this:

Certificate Usage
To create a secure connection, each party must have a copy of:

• a public CA certificate
• a CRL issued by the CA
• their own public certificate (with a corresponding private key)

When a network connection is established, the client initiates a TLS handshake process during which
the parties exchange their public certificates, prove that they own corresponding private keys, create
a shared session encryption key, and negotiate which cipher suite will be used.

Placement and exchange of certificate data is shown on the following diagram:

Secure connections using TLS

Platform SDK Developer's Guide 6

TLS only requires that servers send their certificates, but the client certificates can also be
exchanged depending on server settings. Cases where the client certificates are demanded by the
server are called “Mutual TLS”, as both sides send their certificates.

If all certificates pass validation and the ciphers are negotiated successfully, then a TLS connection is
established and higher-level protocols may proceed.

Migrating TLS Support From Platform SDK Release 8.1.0

This section outlines migration information that may be needed for applications that were developed
using the TLS implementation provided with the 8.1.0 release of Platform SDK.

There were no significant changes to interfaces for the .NET version of Platform SDK 8.1.1, so the
same code would work for 8.1.0 and later releases:

KeyValueConfiguration config = new KeyValueConfiguration(new KeyValueCollection());
config.TlsEnabled = true;
config.TlsCertificate = "29 3f 0d d9 65 a1 a9 92 dd 1c 8c 2a e7 20 74 06 c5 ba 0f 10";
Endpoint ep = new Endpoint(AppName, Host, Port, config);

Secure connections using TLS

Platform SDK Developer's Guide 7

	Platform SDK Developer's Guide
	Secure connections using TLS

