3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Platform SDK Developer's Guide

Management Layer

4/10/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Management Layer

Management Layer

You can use the Management Platform SDK to write Java or .NET applications that interact with the
Genesys Message Server, Solution Control Server and Local Control Agents (LCAs). Most people will
want to use this SDK to make their applications visible to the Genesys Management Layer so they
can monitor them with Solution Control Server.

This document shows how to implement the basic functions you will need to write a simple voice
application. It is organized to show the kind of structure you will probably use to write your own
applications.

Java

Making Your Application Visible to the Genesys Management
Layer

A Genesys Local Control Agent (LCA) runs on each host in the Genesys environment, enabling the
Management Layer to monitor and control the applications running on that host. This section shows
how to use the LCA running on your own host to make your application visible to the Genesys
Management Layer.

Connecting to the Local Control Agent

The first step is to create a Local Control Agent Protocol instance, specifying the LCA portin an
Endpoint object. This sample uses the default LCA port of 4999.

LocalControlAgentProtocol lcaProtocol = new LocalControlAgentProtocol(new
Endpoint("localhost", 4999));

Now you can configure the connection. Set the applicationName to the same value as the name of
an application that you have set up in the Configuration Layer. Then set the application status to
Initializing, and the execution mode to Backup.

lcaProtocol.setClientName(applicationName);
lcaProtocol.setControlStatus(ApplicationStatus.Initializing.asInteger());
lcaProtocol.setExecutionMode (ApplicationExecutionMode.Backup);

The next step is to set up a message handler to process events from LCA. See Event Handling articles
for a better understanding of how messages and protocols should be managed. The code snippets
below show how to handle events from LCA.

MessageHandler lcarMessageHandler = new MessageHandler() {
public void onMessage(Message message) {
System.out.println("Message received: \n"+message);
//process message

Platform SDK Developer's Guide 2

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

Management Layer

}
};

lcaProtocol.setMessageHandler(lcarMessageHandler);

You need to know that your event-handling logic will be executed by using the
protocol invoker. Please set the appropriate invoker for your application needs. For
more information about the protocol invoker and how to set it, refer to Connecting to
a Server.

Once you have finished configuring your protocol, you can open a connection to the LCA.

lcaProtocol.Open();

Updating the Application Status

When you need to update the status of your application, send a RequestUpdateStatus. Here is how
to indicate that the application is running:

RequestUpdateStatus requestUpdateStatus = RequestUpdateStatus.create();
requestUpdateStatus.setApplicationName(lcaProtocol.getClientName());
requestUpdateStatus.setControlStatus(ApplicationStatus.Running.asInteger());
lcaProtocol.send(requestUpdateStatus);

The LCA does not return an event when you change the application status. So for this particular task,
you will not need any more code.

Execution Mode and Event Handling

As mentioned, the LCA will not return an event when you change the application status. But when
you change the execution mode — for example, from Primary to Backup — you will receive an
EventChangeExecutionMode. Unlike most events you receive in the Platform SDK, this event requires
a response from your application. If the Management Layer does not know that your application is
expecting to work in Primary mode, for example, it cannot rely on the stability of the Genesys
environment.

If you do not respond within the configured timeout period, your application will be
terminated by the Management Layer.

After receiving the EventChangeExecutionMode, your application must send a
ResponseExecutionModeChanged to indicate to the Management Layer that you are now ready to run
in the new execution mode.

In order to handle these events, you need to setup message handler for a LCA protocol object as
shown above.

Platform SDK Developer's Guide 3

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

Management Layer

Implement your event-handling logic:

MessageHandler lcarMessageHandler = new MessageHandler() {
public void onMessage(Message message) {
switch(message.messageId()){
case EventChangeExecutionMode.ID:
OnEventChangeExecutionMode (message) ;
break;
// other messages
}
}
I

Here is a sample of the handler you might set up for the EventChangeExecutionMode. This handler
includes your ResponseExecutionModeChanged:

private static void OnEventChangeExecutionMode(Message message)

{

if(message instanceof EventChangeExecutionMode)

EventChangeExecutionMode eventChangeExecutionMode = (EventChangeExecutionMode)message;
System.out.println("eventChangeExecutionMode received: \n"+eventChangeExecutionMode) ;

ApplicationExecutionMode mode = eventChangeExecutionMode.getExecutionMode();

ResponseExecutionModeChanged response =
ResponseExecutionModeChanged. create(mode);
System.out.println("Sending response:
try {
lcaProtocol.send(response);
} catch (ProtocolException e) {
e.printStackTrace();
}
}

+ response);

by

Tip
However, if your real application didn't successfully do the switchover, you can skip
sending ResponseExecutionModeChanged. That way SCS will revert the switchover

and put the application in Unknown status. That's convenient for admins as they can
have alarms on that.

Closing the Connection

When you are finished, close the connection to the LCA:

lcaProtocol.Close();

Monitoring Your Application with Solution Control Server

Solution Control Server can be used to monitor applications running in the Genesys environment.

Platform SDK Developer's Guide

Management Layer

Here is how to obtain information about hosts and applications.

Connecting to Solution Control Server

Create a protocol instance and supply the necessary parameters. The ClientName is the name of a
Solution Control application that has been set up in the Configuration Layer, while the ClientId is
the DBID of that application.

SolutionControlServerProtocol scsProtocol = new SolutionControlServerProtocol(new
Endpoint("host", port));

scsProtocol.setClientName(scsApplicationName);
scsProtocol.setClientId(scsApplicationDBid);
scsProtocol.setUserName(userName);

Setting Up Event Handling

You will need to set up some event handling code, since Solution Control Server will return EventInfo
or EventError messages in response to your requests for information. The code for this is similar to
the LCA-related code shown above.

MessageHandler scsrMessageHandler = new MessageHandler() {
public void onMessage(Message message) {
switch(message.messageld()){
case EventInfo.ID:
OnEventInfo(message);
break;
//0ther events.
}
}
}
scsProtocol.setMessageHandler(scsrMessageHandler);

private static void OnEventInfo(Message message)

{

System.out.println("Event info: \n"+message);
//Handling logic here info.
}

Open Connection
Once you have configured your protocol, you can open your connection to the SCS:

scsProtocol.open();

Requesting Application Information
Here is how to request the status of an application, using its DBID:

RequestGetApplicationInfo requestGetApplicationInfo =
RequestGetApplicationInfo.create(applicationDbid);

scsProtocol.send(requestGetApplicationInfo);

Platform SDK Developer's Guide 5

Management Layer

When you send this request, you will receive an EventInfo that includes the status of the
application:

'EventInfo' ('1")

message attributes:
attr _app work mode [int] = 0 [Primary]
attr _client [int] 660
attr_ref id [int] 4
attr message [str] = "APP_STATUS RUNNING"
attr obj live status [int] = 6 [Running]
attr cfg obj id [int] = 109
attr cfg obj type [int] = 9 [Application]

If you want to be notified when the status of an application changes, send a RequestSubscribe.

RequestSubscribe requestSubscribeApp = RequestSubscribe.create();
requestSubscribeApp.setControlObjectType(ControlObjectType.Application);
requestSubscribeApp.setControlObjectId(applicationDbid);
scsProtocol.send(requestSubscribeApp);

Whenever the application's status changes, you will receive an EventInfo that informs you of the
new status.

Requesting Host Information

You can also request information about the status of a host. But in this case, you must issue a
RequestSubscribe before you will receive any information about the host. Here is how:

RequestSubscribe requestSubscribeHost = RequestSubscribe.create();
requestSubscribeHost.setControlObjectType(ControlObjectType.Host);
requestSubscribeHost.setControlObjectId(hostDbid);
scsProtocol.send(requestSubscribeHost);

RequestGetHostInfo requestGetHostInfo = RequestGetHostInfo.create();
requestGetHostInfo.setControlObjectId(hostDbid);
scsProtocol.send(requestGetHostInfo);

If you just send the RequestSubscribe, you will be notified any time the host status changes. If you
also send the RequestGetHostInfo, you will also receive an immediate notification of the host's
status, whether it has changed or not. Here is a sample of the information you will receive.

'"EventInfo' ('1"')
message attributes:
attr client [int] = 660
attr_ref_id [int] = 3
attr message [str] = "HOST STATUS RUNNING"
attr obj live status [int] = 2 [StopTransition]
attr cfg obj id [int] = 111
attr cfg obj type [int] = 10 [Host]

Once you have subscribed to a host, you can send a RequestGetHostInfo at any time to receive
information about its status.

Closing the Connection

When you are finished, close the connection to Solution Control Server:

Platform SDK Developer's Guide

Management Layer

scsProtocol.close();

Sending a Log Message to Message Server

You can easily send log messages to Message Server using the Management Platform SDK. This
sample shows how to log application events, raise alarms and view them in Solution Control

Interface.

First you need to create the Protocol object:

MessageServerProtocol messageServerProtocol

URI(serverURI)));

new MessageServerProtocol(new Endpoint(new

Now you can configure the Protocol object and open the connection to Message Server. Specify the
application type, application name, host on which the application is running, and application DBID.
Note that the CfgAppType enum is defined in the Configuration Protocol package:
com.genesyslab.platform.configuration.protocol.types

messageServerProtocol.
messageServerProtocol.
messageServerProtocol.
messageServerProtocol.

setClientType(CfgAppType.CFGGenericServer.ordinal());
setClientName ("Primary Server App");

setClientHost (applicationHostName);
setClientId(applicationDBID);

Now you can configure the Protocol object and open the connection to Message Server:

messageServerProtocol.open();

Create RequestLogMessage to log an application event. To raise an Alarm with this event, specify
requestLogMessage.EntryId equal to the alarm detect ID. (There is more information about

configuring Alarm

RequestLogMessage

requestLogMessage.
requestLogMessage.

requestLogMessage

conditions in Configuration Manager at the end of the article.)

requestLogMessage
setEntryId(9600);
setEntryCategory(LogCategory.Application);

RequestlLogMessage.create();

.setEntryText("Primary Server App out of service...");
requestLogMessage.

setLevel(LogLevel.Alarm);

Once you have created the request, you can send the request to Message Server.

messageServerProtocol.send(requestLogMessage);

Thread.sleep(15000);

You can cancel an

//stop execution to view raised alarm in SCI

alarm after your application is restored. Specify the cancel alarm event ID and

send that message to Message Server.

requestLogMessage
requestLogMessage

requestLogMessage

= RequestlLogMessage.create();

.setEntryId(9601);
requestLogMessage.
requestLogMessage.

setEntryCategory(LogCategory.Application);
setEntryText("Primary Server App back in service...");

.setLevel(LogLevel.Alarm);

messageServerProtocol.send(requestLogMessage);

When you are finished, you should close the connection:

Platform SDK Developer's Guide

Management Layer

messageServerProtocol.close();

Configuring Genesys Management Framework

You can view event logs and active alarms created by this code snippet in Solution Control Interface.
However, Genesys Management Framework should be configured according to the list of required
settings, below:

¢ Solution Control Server must be connected to Message Server. See the Connections tab in the Solution
Control Server properties dialog.

¢ Solution Control Interface must be connected to Solution Control Server. See the Connections tab in the
Solution Control Interface properties dialog.

¢ Solution Control Interface must be connected to the DataBase Access Point. See the Connections tab in
the Solution Control Interface properties dialog.

* Message Server must be connected to the DataBase Access Point. See the Connections tab in the
Message Server properties dialog.

* Message Server must have the db_storage=true property. See the messages section under Options of
the Solution Control Interface properties dialog. This option is required to store messages in the
database.

¢ The DataBase Access Point must be associated with DBServer. See the General tab of the DataBase
Access Point. Check that the DB Info tab has the proper connection options to SQL Server.

Configuring Alarm Conditions

You need to create the Alarm Condition that will trigger an Alarm for log events sent by the code
snippet. To do this, open Configuration Manager, find the Alarm Conditions section and create a new
Condition.

¢ On the General tab specify a condition name and description, then select Major for the category.

* On the Detect Event tab specify a Log event ID that will raise the alarm. This refers to the
RequestlLogMessage.EntryId value.

¢ On the Detect Event tab choose Select By Application for the Selection Mode and choose the application
for which an event will be triggered.

* On the Detect Event tab specify a Log event ID that will cancel the alarm. This refers to the
RequestlLogMessage.EntryId value.

You can observe the results of running the application from Solution Control Interface.

Here is what the log messages look like in SCI:

! I (0] I Generated I Text | Type I
(1] 00-09a01 11/18/201312:22:... Primary_Server_App back in service.. Genesys Gene...
o 00-09600 11/18/201312:22:... Primary_Server_App out of service.., Genesys Gene..
o 00-09601 11/18/201312:21:... Primary_Server_App back in service.. Genesys Gene...
g 00-09600 11/18/201312:21:... Primary_Server_App out of service... Genesys Gene...

And here is what the alarm entry looks like while the alarm is active:

Platform SDK Developer's Guide 8

Management Layer

E@ psdlow2k3:6000 [default] | 1D | Application | Message | Generated
o Active Alarms (1) D 14 Primary_Server_App Primary_Server_App out of service... 15.11.2013 18:08:26
_— T ol

Making Your Application Visible to the Genesys Management
Layer

A Genesys Local Control Agent (LCA) runs on each host in the Genesys environment, enabling the
Management Layer to monitor and control the applications running on that host. This section shows
how to use the LCA running on your own host to make your application visible to the Genesys
Management Layer.

Connecting to the Local Control Agent

The first step is to create a Local Control Agent Protocol instance, specifying the LCA port in an
Endpoint object. This sample uses the default LCA port of 4999.

LocalControlAgentProtocol lcaProtocol = new LocalControlAgentProtocol(new
Endpoint("localhost", 4999));

Now you can configure the connection. Set the applicationName to the same value as the name of
an application that you have set up in the Configuration Layer. Then set the application status to
Initializing, and the execution mode to Backup.

lcaProtocol.ClientName = applicationName;

lcaProtocol.ControlStatus = (int)ApplicationStatus.Initializing;
lcaProtocol.ExecutionMode = ApplicationExecutionMode.Backup;

The next step is to set up a message handler to process events from LCA. See Event Handling articles
for a better understanding of how messages and protocols should be managed. The code snippets
below show how to handle events from LCA.

private void OnLcaMessageReceived(object sender, EventArgs args)

Console.WritelLine("New message: {0}", ((MessageEventArgs)args) .Message);
// Message handling logic here.

lcaProtocol.Received += OnLcaMessageReceived;

Important

Platform SDK Developer's Guide 9

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/EventHandling

Management Layer

You need to know that your event-handling logic will be executed by using the
protocol invoker. Please set the appropriate invoker for your application needs. For
more information about the protocol invoker and how to set it, refer to Connecting to
a Server.

Once you have configured your protocol, you can open your connection to the LCA:

lcaProtocol.Open();

Updating the Application Status

When you need to update the status of your application, send a RequestUpdateStatus. Here is how
to indicate that the application is running:

RequestUpdateStatus requestUpdateStatus = RequestUpdateStatus.Create();
requestUpdateStatus.ApplicationName = lcaProtocol.ClientName;
requestUpdateStatus.ControlStatus = (int)ApplicationStatus.Running;
lcaProtocol.Send(requestUpdateStatus);

The LCA will not return an event when you change the application status. So for this particular task,
you will not need any more code.

Execution Mode and Event Handling

As mentioned, the LCA will not return an event when you change the application status. But when
Solution Control Server going to change your execution mode — for example, from Primary to
Backup — you will receive an EventChangeExecutionMode. Unlike most events you receive in the
Platform SDK, this event requires a response from your application. If the Management Layer does
not know that your application is expecting to work in Primary mode, for example, it cannot rely on
the stability of the Genesys environment.

If you do not respond within the configured timeout period, your application will be
terminated by the Management Layer.

After receiving the EventChangeExecutionMode, your application must send a
ResponseExecutionModeChanged to indicate to the Management Layer that you are now ready to run
in the new execution mode.

In order to handle these events, you need to setup message handler for a LCA protocol object as
shown in the article above.

Implement your event-handling logic:

private void OnLcaMessageReceived(object sender, EventArgs args)

{

IMessage message = ((MessageEventArgs)args).Message;

Platform SDK Developer's Guide 10

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/ConnectingtoaServer

Management Layer

switch (message.Id)
{
case EventChangeExecutionMode.Messageld:
OnEventChangeExecutionMode (message) ;
break;
//

Here is a sample of the handler you might set up for the EventChangeExecutionMode. This handler
includes your ResponseExecutionModeChanged:

private void OnEventChangeExecutionMode(IMessage theMessage)

EventChangeExecutionMode eventChangeExecutionMode = theMessage as EventChangeExecutionMode;
if (eventChangeExecutionMode != null)
{

ApplicationExecutionMode mode = eventChangeExecutionMode.ExecutionMode;
ResponseExecutionModeChanged response = ResponseExecutionModeChanged.Create(mode);
Console.WriteLine("Sending response: " + response);

lcaProtocol.Send(response);

Tip

However, if your real application did not successfully do the switchover, you can skip
sending ResponseExecutionModeChanged. That way SCS will revert the switchover
and put the application in Unknown status - a convenient event for administrators as
they can have alarms trigger.

Closing the Connection
When you are finished, close the connection to the LCA:

lcaProtocol.Close();

Monitoring Your Application with Solution Control Server

Solution Control Server can be used to monitor applications running in the Genesys environment.
Here is how to obtain information about hosts and applications.

Connecting to Solution Control Server

Create protocol instance and supply the necessary parameters. The ClientName is the name of a
Solution Control application that has been set up in the Configuration Layer, while the ClientId is
the DBID of that application:

Platform SDK Developer's Guide 11

Management Layer

var scsProtocol = new SolutionControlServerProtocol(new Endpoint("host", port));
scsProtocol.ClientName = applicationName;

scsProtocol.ClientId applicationDBid;

scsProtocol.UserName userName;

Once you have configured your protocol, you can open your connection to the SCS:

scsProtocol.Open();

Setting Up Event Handling

You will need to set up some event handling code, since Solution Control Server will return EventInfo
or EventError messages in response to your requests for information. The code for this is similar to
the LCA-related code shown above:

scsProtocol.Received += OnScsMessageReceived;

private void OnScsMessageReceived(object sender, EventArgs args)
{

IMessage message = ((MessageEventArgs)args).Message;

switch (message.Id)

{
case EventInfo.Messageld:
OnEventInfo(message);
break;
//case ... other message
}

private void OnEventInfo(IMessage theMessage)
{
var eventInfo = theMessage as EventInfo;
if (eventInfo !'= null)
{
Console.WriteLine("EventInfo received: \n{0}", eventInfo);
// Handle this event
}
)

Requesting Application Information
Here is how to request the status of an application, using its DBID:

var requestGetApplicationInfo = RequestGetApplicationInfo.Create(applicationDbid);
scsProtocol.Send(requestGetApplicationInfo);

When you send this request, you will receive an EventInfo that includes the status of the
application:

'"EventInfo' ('1')

message attributes:
attr _app work mode [int] = 0 [Primary]
attr client [int] 660
attr ref id [int] 4
attr message [str] = "APP_STATUS RUNNING"
attr obj live status [int] = 6 [Running]
attr cfg obj id [int] = 109

Platform SDK Developer's Guide 12

Management Layer

attr cfg obj type [int] = 9 [Application]
If you want to be notified when the status of an application changes, send a RequestSubscribe.

RequestSubscribe requestSubscribeApp = RequestSubscribe.Create();
requestSubscribeApp.ControlObjectType = ControlObjectType.Application;
requestSubscribeApp.ControlObjectId = applicationDbid;
scsProtocol.Send(requestSubscribeApp);

Whenever the application's status changes, you will receive an EventInfo that informs you of the
new status.

Requesting Host Information

You can also request information about the status of a host. But in this case, you must issue a
RequestSubscribe before you will receive any information about the host. Here is how:

RequestSubscribe requestSubscribeHost = RequestSubscribe.Create();
requestSubscribeHost.ControlObjectType = ControlObjectType.Host;

requestSubscribeHost.ControlObjectId = HostDbid;
scsProtocol.Send(requestSubscribeHost);

RequestGetHostInfo requestGetHostInfo = RequestGetHostInfo.Create();
requestGetHostInfo.ControlObjectId = HostDbid;
scsProtocol.Send(requestGetHostInfo);

If you just send the RequestSubscribe, you will be notified any time the host status changes. If you
also send the RequestGetHostInfo, you will also receive an immediate notification of the host's
status, whether it has changed or not. Here is a sample of the information you will receive.

'"EventInfo' ('1')

message attributes:
attr client [int] 660
attr ref id [int] 3
attr message [str] = "HOST STATUS RUNNING"
attr obj live status [int] = 2 [StopTransition]
attr cfg obj id [int] = 111
attr cfg obj type [int] = 10 [Host]

Once you have subscribed to a host, you can send a RequestGetHostInfo at any time to receive
information about its status.

Closing the Connection

When you are finished, close the connection to Solution Control Server:

scsProtocol.Close();

Sending a Log Message to Message Server

You can easily send log messages to Message Server using the Management Platform SDK. This
sample shows how to log application events, raise alarms and view them in Solution Control
Interface.

Platform SDK Developer's Guide 13

Management Layer

First you need to create the Protocol object:

MessageServerProtocol messageServerProtocol = new MessageServerProtocol(new Endpoint(new
Uri(serverURI)));

Now you can configure the Protocol object and open the connection to Message Server. Specify the
application type, application name, host on which the application is running, and application DBID.
Note that the CfgAppType enum is defined in the Configuration Protocol namespace:
Genesyslab.Platform.Configuration.Protocols.Types

messageServerProtocol.ClientType
messageServerProtocol.ClientName "Primary Server App";
messageServerProtocol.ClientHost = applicationHostName;
messageServerProtocol.ClientId = applicationDBID;

(int) CfgAppType.CFGGenericServer;

Now you can configure the Protocol object and open the connection to Message Server:
messageServerProtocol.Open();

Create RequestLogMessage to log an application event. To raise an Alarm with this event, specify
requestLogMessage.EntryId equal to the alarm detect ID. (There is more information about
configuring Alarm conditions in Configuration Manager at the end of the article.)

RequestLogMessage requestlLogMessage = RequestlLogMessage.Create();
requestLogMessage.EntryId = 9600;

requestLogMessage.EntryCategory = LogCategory.Application;
requestLogMessage.EntryText = "Primary Server App out of service...";
requestLogMessage.Level = LogLevel.Alarm;

Once you have created the request, you can send it to Message Server.

messageServerProtocol.Send(requestLogMessage);
Thread.Sleep(15000); //stop execution to view raised alarm in SCI

You can cancel an alarm after your application is restored. Specify the cancel alarm event ID and
send that message to Message Server.

requestLogMessage = RequestLogMessage.Create();

requestLogMessage.EntryId = 9601;

requestLogMessage.EntryCategory = LogCategory.Application;

requestLogMessage.EntryText = "Primary Server App back in service...";

requestLogMessage.Level = LogLevel.Alarm;

messageServerProtocol.Send(requestLogMessage);
When you are finished, you should close the connection:

messageServerProtocol.Close();

Configuring Genesys Management Framework

You can view event logs and active alarms created by this code snippet in Solution Control Interface.
However, Genesys Management Framework should be configured according to the list of required
settings, below:

¢ Solution Control Server must be connected to Message Server. See the Connections tab in the Solution
Control Server properties dialog.

Platform SDK Developer's Guide 14

Management Layer

¢ Solution Control Interface must be connected to Solution Control Server. See the Connections tab in the
Solution Control Interface properties dialog.

¢ Solution Control Interface must be connected to the DataBase Access Point. See the Connections tab in
the Solution Control Interface properties dialog.

¢ Message Server must be connected to the DataBase Access Point. See the Connections tab in the
Message Server properties dialog.

* Message Server must have the db_storage=true property. See the messages section under Options of
the Solution Control Interface properties dialog. This option is required to store messages in the
database.

¢ The DataBase Access Point must be associated with DBServer. See the General tab of the DataBase
Access Point. Check that the DB Info tab has the proper connection options to SQL Server.

Configuring Alarm Conditions

You need to create the Alarm Condition that will trigger an Alarm for log events sent by the code
snippet. To do this, open Configuration Manager, find the Alarm Conditions section and create a new

Condition.
¢ On the General tab specify a condition name and description, then select Major for the category.

* On the Detect Event tab specify a Log event ID that will raise the alarm. This refers to the
RequestlLogMessage.EntryId value.

¢ On the Detect Event tab choose Select By Application for the Selection Mode and choose the application
for which an event will be triggered.

* On the Detect Event tab specify a Log event ID that will cancel the alarm. This refers to the
RequestlLogMessage.EntryId value.

You can observe the results of running the application from Solution Control Interface.

Here is what the log messages look like in SCI:

! I (0] I Generated I Text | Type I
(1] 00-09a01 11/18/201312:22:... Primary_Server_App back in service.. Genesys Gene...
o 00-09600 11/18/201312:22:... Primary_Server_App out of service.., Genesys Gene..
o 00-09601 11/18/201312:21:... Primary_Server_App back in service.. Genesys Gene...
g 00-09600 11/18/201312:21:... Primary_Server_App out of service... Genesys Gene...

And here is what the alarm entry looks like while the alarm is active:

E@ psdkw2k3:6000 [default] I 1D | Application | Message I Generated
g Ad“'_e Alarms (1) D 14 Primary_Server_App Primary_Server_App out of service... 15.11.2013 18:08:26

Platform SDK Developer's Guide 15

	Platform SDK Developer's Guide
	Management Layer

