
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

LCA Hang-Up Detection Support

Platform SDK Developer's Guide

5/5/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 LCA Hang-Up Detection Support
• 1.1 Introduction to LCA Hang-up Detection Support
• 1.2 Feature Overview
• 1.3 Design Details

Platform SDK Developer's Guide 2

LCA Hang-Up Detection Support
This page provides:

• an overview and list of requirements for the LCA Hang-Up Detection Support feature
• design details explaining how this feature works
• code examples showing how to implement LCA Hang-Up Detection Support in your applications

Introduction to LCA Hang-up Detection Support

Beginning with release 8.1, the Platform SDKs now allow user-developed application to include hang-
up detection functionality.

The Genesys Management Layer relies on Local Control Agent (LCA) to monitor and control
applications. An open connection between LCA and Genesys applications is typically used to
determine which applications are running or stopped. However, if an application that has stopped
responding still has a connection to LCA then it could appear to be running correctly - preventing
Management Layer from switching over to a backup application or taking other actions to restore
functionality.

Hang-up detection allows Local Control Agent (LCA) to detect unresponsive Genesys applications by
checking for regular heartbeat messages. When an unresponsive application is found, pre-configured
actions can be taken - including triggering alarms or restarting the application.

Tip
Hang-up detection functionality has been available in the Genesys Management Layer
since release 8.0.1. For more information, refer to the Framework 8.0 Management
Layer User's Guide. For details about related configuration options, refer to the
Framework 8.0 Configuration Options Reference Manual.

Two levels of hang-up detection are available: implicit and explicit.

Implicit Hang-up Detection
The easiest form of hang-up detection to implement is implicit hang-up detection.

In this scenario, application status is monitored through the connection between your application and
LCA. This functionality can be extended by adding a requirement that your application periodically
interacts with LCA (either responding to ping request or sending its own heart-beat messages) as a
necessary condition of application liveliness.

This simple form of hang-up detection can be implemented internally by using the

LCA Hang-Up Detection Support

Platform SDK Developer's Guide 3

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#Implicit_Hang-up_Detection
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#Explicit_Hang-up_Detection

LocalControlAgentProtocol to connect to LCA. In this case, existing applications only need to be
rebuilt with a version of LocalControlAgentProtocol that supports hang-up detection functionality -
no coding changes are required - and given the appropriate configuration options in Genesys
Management Layer.

Explicit Hang-up Detection
Explicit hang-up detection offers more robust protection from applications that may become
unresponsive, but is also more complex.

The periodic interaction that is monitored by implicit hang-up detection only confirms that your
application can interact with LCA. In most cases this means that the application is able to
communicate with other apps and that the thread responsible for communicating with LCA is still
active. However, multi-threaded applications may contain other threads that are blocked or have
stopped responding without interrupting communication with LCA. Explicit hang-up detection allows
you to determine when only part of your application hangs-up by monitoring individual threads in the
application.

In addition to allowing your application to register (or unregister) individual threads to be monitored,
explicit hang-up detection also allows your application to stop or delay the monitoring process.
Threads that execute synchronous functions (which can block thread execution for some extended
periods) or other features that prevent accurate monitoring should take advantage of this feature.

Feature Overview

• To maintain backwards compatibility, hang-up detection must be explicitly enabled in the application
configuration.

• Implicit hang-up detection can be used for applications that do not require complex monitoring
functionality. No code changes are required, just rebuild your application using the new version of
LocalControlAgentProtocol.

• Explicit hang-up detection requires minimal application participation - enabling monitoring, registering
and unregistering execution threads, and providing heartbeats. Most hang-up detection functionality is
implemented within the Management Layer component, while all timing information (such as maximum
allowed period between heartbeats) is configured through Genesys Management Layer.

Design Details

This section provides an overview of the main classes and interfaces used to add thread monitoring
functionality for Explicit hang-up detection. Before using the classes and methods described here, be
sure that you have implemented basic LCA Integration in your application using
LocalControlAgentProtocol.

Although the details of thread monitoring implementation are slightly differently for Java and .NET,
the basic idea is the same: to create and update a thread monitoring table that LCA can use to
confirm the status of your application.

Note that for implicit hang-up detection you are only required to rebuild your application and make

LCA Hang-Up Detection Support

Platform SDK Developer's Guide 4

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#Explicit_Hang-up_Detection
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#Java_Implementation
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#.NET_Implementation
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#Thread_Monitoring_Table
https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#Implicit_Hang-up_Detection

adjustments to the configuration options in Genesys Management Layer; the details described below
are not required for simple application monitoring.

Thread Monitoring Table
The new thread monitoring functions described below allow LocalControlAgentProtocol to create
and maintain a thread monitoring table within the application. This table tracks basic thread status.

Sample Thread Monitoring Table

OS Thread ID Logical Thread
ID Thread Class Heartbeat

Counter Flags

0 «main» 1 444345 active
1 «pool_1» 2 354354 suspend
2 «pool_2» 2 432432 deleted
3 «pool_3» 2 434323 active
4 «DB_store» 3 31212 active
....

Each row corresponds to a monitored thread. Columns of the table are:

• OS Thread ID—The OS-specific thread ID, used for thread identification during monitoring. OS thread ID
is not passed by application but is received directly from system.

• Logical Thread ID – Application logical thread ID (or logical name, in Java). Used for logging and thread
identification.

• Thread Class—Thread class integer. This value is only meaningful within the scope of the application;
threads with the same thread class value in a different application can have different roles. Examples of
thread classes might be the main loop thread, pool threads, or special threads (such as external
authentication threads in ConfigServer).

• Heartbeat Counter—Cumulative counter of Heartbeat() calls made by the corresponding thread.
Incrementing this value is the main way to indicate that the thread is still alive.

Tip
This value is initialized with a random value when the thread is registered for
monitoring. This prevents incorrect hang-up detection if threads are created and
terminated with high frequency, leading to repeating OS thread IDs.

• Flag—Special flags.
• Suspended/Resumed—Corresponds to the state of thread monitoring.
• Deleted—Used internally to notify LCA that a thread was unregistered from monitoring.

.NET Implementation
ThreadMonitoring Class

LCA Hang-Up Detection Support

Platform SDK Developer's Guide 5

The ThreadMonitoring class is defined in the Genesyslab.Diagnostics namespace of
Genesyslab.Core.dll. This class contains the following public static methods:

• Register(int threadClass, string threadLogicId)—enables monitoring for this thread
• Unregister()—removes this thread from monitoring
• Heartbeat()—increases heartbeat counter for this thread (indicating that thread is still alive)
• SuspendMonitoring()—suspend monitoring for this thread
• ResumeMonitoring()—resumes monitoring for this thread

Tip
Each method should be called from within the thread that is being monitored.

When a thread is registered for monitoring, the following parameters are included:

• threadClass—Any positive integer that represents the type of thread, allowing you to specify different
monitoring settings for groups of threads within an application.

• threadLogicId—A logical, descriptive thread ID that is independent from thread ID provided by OS.
This value is used for thread identification within LCA and for logging purposes. This ID should be
unique within the application.

PerformanceCounter Constants

The following String constants (names) are defined in the ThreadMonitoring class:

public const string CategoryName = "Genesyslab PSDK .NET";
public const string HeartbeatCounterName = "Thread Heartbeat";
public const string StateCounterName = "Thread State";
public const string ProcessIdCounterName = "ProcessId";
public const string OsThreadIdCounterName = "OsThreadId";

The Platform SDK thread monitoring functionality uses these constants to manage
PerformanceCounter values. In addition to these custom performance counters, you can also use
standard ones, such as those defined in Thread category: "% Processor Time", "% User Time", etc.

See MSDN PerformanceCounter Class for details about performance counters.

Tip
Use of PerformanceCounters is optional, and is not required for LCA hang-up detection
functionality.

Java Implementation
ThreadHeartbeatCounter class

LCA Hang-Up Detection Support

Platform SDK Developer's Guide 6

The ThreadHeartbeatCounter class is defined in the
com.genesyslab.platform.commons.threading package, located within commons.jar. This class is
designed as a JMX (see JMX: Java Management Extensions) MBean and implements the public
ThreadHeartbeatCounterMBean interface which is accessible through Java management framework.

There is no public constructor for the ThreadHeartbeatCounter class; each thread that you want to
monitor should create its own instance with following static method:

public static ThreadHeartbeatCounter createThreadHeartbeatCounter(
String threadLogicalName,
int threadClass);

When a thread is registered for monitoring, the following parameters are included:

• threadLogicalName—A logical, descriptive thread name that is used to identify the thread within LCA
and for logging purposes. This name should be unique within the application.

• threadClass—Any positive integer that represents the type of thread, allowing you to specify different
monitoring settings for groups of threads within an application.

One key difference from thread monitoring using .NET is the need to create a monitoring object
instance. The lifecycle of this object, including MBeanServer registration, is supported by the parent
class PSDKMBeanBase and is shown in the five steps below:

1. Start monitoring a thread:

ThreadHeartbeatCounter monitor =
ThreadHeartbeatCounter.createThreadHeartbeatCounter(

threadId, threadClass);
monitor.initialize();

2. Notify LCA that thread is still alive (increase heartbeat counter):

monitor.alive();

3. Suspend monitoring of this thread:

monitor.setActive(false);

4. Resume monitoring of this thread:

monitor.setActive(true);

5. Finish monitoring and unregister this thread:

monitor.unregister();

Tip
Each of these methods must be called from within the thread that is being monitored.

Once a ThreadHeartbeatCounter object is unregistered, that instance cannot be reused. To begin

LCA Hang-Up Detection Support

Platform SDK Developer's Guide 7

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/LCAHang-UpDetectionSupport#ThreadHeartbeatCounterMBean_interface

monitoring that thread again (or any other) you first need to create a new instance of the thread
monitoring object.

ThreadHeartbeatCounterMBean interface

The ThreadHeartbeatCounterMBean interface is intended to present an open API to the JMX MBean.
This interface contains the following publicly accessible methods:

public long getThreadSystemId();
public String getLogicalName();
public int getThreadClass();
public void setThreadClass(int newThreadClass);
public int getHeartbeatCounter();
public void setActive(boolean isActive);
public boolean isActive();

These methods are "MBean client-side" methods and are used by LCA protocol to get actual
information about the thread for the monitoring table. They also allow users to change the thread
class and suspend or resume thread monitoring (using setActive(false/true)) of a particular
thread at application runtime.

LCA Hang-Up Detection Support

Platform SDK Developer's Guide 8

	Platform SDK Developer's Guide
	LCA Hang-Up Detection Support

