
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Introduction to the Configuration Layer Objects

Platform SDK Developer's Guide

4/9/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Introduction to the Configuration Layer Objects
• 1.1 General Parameters
• 1.2 Configuration Object Association
• 1.3 Filters

Platform SDK Developer's Guide 2



Introduction to the Configuration Layer
Objects
Once you have reviewed the information in this section, you can look at the Configuration Layer
Objects Reference Guide for detailed descriptions of available objects and enumerations.

The Genesys Configuration Layer is a database containing information about the objects in your
contact center environment. You may need to get information about these objects. You may also want
to add, update, or delete them. The Configuration Platform SDK gives you the means to do that.

This article contains information that is common to all of these Configuration Layer objects.

General Parameters

The following parameters are common to objects of all types. They will not be described again in the
listings for individual objects.

• DBID — An identifier of this object in the Configuration Database. Generated by Configuration Server, it
is unique within an object type. Identifiers of deleted objects are not used again. Read-only.

• state — Current object state. Mandatory. Refer to CfgObjectState in section Variable Types.

Tip
Change in the state of a parent object will cause the states of all its child objects to
change accordingly. Configuration Server will provide a notification for each
elementary change. Changing the state of a parent object will not be allowed unless
the client application has privileges to change all of the child objects of this parent
object.

• userProperties — In objects, a pointer to the list of user-defined properties. In delta objects, a pointer
to a list of user-defined properties added to the existing list. Parameter userProperties has the
following structure: Each key-value pair of the primary list (TKVList *userProperties) uses the key
for the name of a user-defined section, and the value for a secondary list, that also has the TKVList
structure and specifies the properties defined within that section. Each key-value pair of the secondary
list uses the key for the name of a user-defined property, and the value for its current setting. User
properties can be defined as variables of integer, character, or binary type. Names of sections must be
unique within the primary list. Names of properties must be unique within the secondary list.

Tip

Introduction to the Configuration Layer Objects

Platform SDK Developer's Guide 3

https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/ConfigLayerObjectsList
https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/ConfigLayerObjectsList


Configuration Server is not concerned with logical meanings of user-defined sections,
properties, or their values.

• deletedUserProperties — A pointer to the list of deleted user-defined properties. Has the same
structure as parameter userProperties above. A user-defined property is deleted by specifying the
name of the section that this property belongs to, and the name of the property itself with any value. A
whole section is deleted by specifying the name of that section and an empty secondary list.

• changedUserProperties — A pointer to the list of user-defined properties whose values have been
changed. Has the same structure as parameter userProperties above. A value of a user-defined
property is changed by specifying the name of the section that this property belongs to, the name of
the property itself, and a new value of that property.

• flexibleProperties — In objects, a pointer to the list of additional properties. In delta objects, a
pointer to a list of user-defined properties added to the existing list. This parameter has the following
structure: Each key-value pair of the primary list (TKVList * flexibleProperties) uses the key for
the name of the section, and the value for a secondary list, that also has the TKVList structure and
specifies either properties defined within that section or another section name. Each key-value pair of
the secondary list uses the key for the name of a property, and the value for its current setting.
Properties can be defined as variables of integer, character, or binary type or as the name of another
list of properties. Names of sections must be unique within the primary list. Names of properties must
be unique within the list. The data structure within the flexibleProperties property is object-type
specific and hard-coded within Configuration Server. Each key-value in the TKVList *
flexibleProperties is controlled and processed by Configuration Server only in the same manner as
any other property in contrast with user-properties the contents of which are not Configuration Server
concerned. If the structure of the property's Extension is not specified, the value is NULL. For more
information, see the detailed object descriptions in this document.

Configuration Object Association

Configuration Objects can be associated with each other in a number of different ways that can be
generally classified as follows:

• Parent-child relationship, where a child object cannot be created without a parent and will be deleted
automatically if its parent object is deleted. Most of the object types will have an explicit reference to
their parents which is marked with an asterisk in the specification below. For the object types that do
not have such a reference, it is implied that their parent is the Service Provider (that is, the imaginary
tenant with DBID = 1).

• Exclusive association, where an object cannot be associated in the same manner with more than one
other object.

• Non-exclusive association, where an object can be associated in the same manner with more than one
other object. Unless expressly noted otherwise, a reference to the DBID of another object without an
asterisk indicates a non-exclusive assignment.

The parameters of all object-related structures are optional unless otherwise noted. However, all
variables of character type must be initialized at the time an object is created. The variables of
character type that are not mandatory may be initialized with an empty string (the recommended
default value unless otherwise noted). The variables of character type that are mandatory may not

Introduction to the Configuration Layer Objects

Platform SDK Developer's Guide 4



be initialized with an empty string. Variables of character type may accept values of up to 255
symbols in length unless otherwise noted. The recommended default value for optional parameters of
other types is zero or NULL, unless otherwise noted.

Filters

Filters are used to specify more precisely the kind of information that the client application is
interested in. Filters reduce both volumes of data communicated by Configuration Server and data-
processing efforts on the client side. Filters are structured as key-value pairs where the value of each
key defines a certain condition of data selection. Filter keys are defined as variables of integer type
unless otherwise noted.

Important
Although your application can use "and" to combine multiple filters when retrieving a
set of matching configuration objects, specifying a DBID value as one of the filters
causes all other filters in that request to be ignored. This is by design, as only a single
configuration object can match the specified DBID value. However, this behavior could
create unexpected results if your application intended to use filters as a method for
checking whether a known configuration object also matches additional filter values.

Here is a list of common filter types:

• folder_dbid — A unique identifier of a folder. If specified, Configuration Server will return information
only about objects of specific type located under specified folder. See also the description of the
ConfGetObjectInfo function.

• delegate_dbid — A unique identifier of an account on behalf of which current query is to be executed.
Produced result set will be calculated using a superposition of the registered account permissions and
that passed in delegate_dbid filter. Must be used in conjunction with delegate_type filter in order to
specify account type (CFGPerson or CFGAccessGroup).

• delegate_type — Object type of the account (CFGPerson or CFGAccessGroup) on behalf of which the
current query is to be executed. Must be used in conjunction with delegate_dbid.

• object_path — A flag that causes Configuration Server to return a full path of the object in the folder
hierarchy for every object in the result set. The path string will be returned in the cfgDescription field
of the CFGObjectInfo event.

• cmp_insensitive — A flag that causes Configuration Server to perform case-insensitive comparison of
string values in the filter. Supported from Configuration Server 7.2.000.00.

• read_folder_dbid — A flag that causes Configuration Server to return a Folder DBID for every object in
the result set. The folder will be returned in the cfgExtraInfo3 field of the CFGObjectInfo event.
Supported from Configuration Server 7.2.000.00.

Introduction to the Configuration Layer Objects

Platform SDK Developer's Guide 5


	Platform SDK Developer's Guide
	Introduction to the Configuration Layer Objects

