
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Interaction Server

Platform SDK Developer's Guide

11/18/2024

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Interaction Server
You can use the Open Media Platform SDK to write Java or .NET applications that handle third-party
work items in conjunction with the Genesys Interaction Server. You can also use it to work with
servers that implement the Genesys External Service Protocol.

This document shows how to implement the basic functions you will need to write simple Interaction
Server–based email applications. The first application is a simple media server that submits a new
third-party work item. The second application enables an agent to receive a third-party work item,
accept it for processing, and mark it done.

Java

Setting Up Interaction Server Protocol Objects

The first thing you need to do to use the Open Media Platform SDK is instantiate a Protocol object. To
do that, you must supply information about the server you want to connect with. This example uses
an InteractionServerProtocol object, supplying its URI, but you can also use name, host, and port
information:

[Java]

InteractionServerProtocol interactionServerProtocol =
new InteractionServerProtocol(

new Endpoint(
InteractionServerUri));

After instantiating the InteractionServerProtocol object, you need to open a connection to
Interaction Server:

[Java]

interactionServerProtocol.open();

Creating a Simple Media Server

The Open Media Platform SDK makes it easy to write a simple server that can submit third-party work
items to Interaction Server. To write one, start by entering configuration information:

[Java]

// Enter configuration information here:
private String interactionServerName = "<server name>";
private String interactionServerHost = "<host>";
private int interactionServerport = <port>;

Interaction Server

Platform SDK Developer's Guide 2



private int tenantId = 101;
private String inboundQueue = "<queue>";
private String mediaType = "<media type>";
// End of configuration information.

Now you will need to set up a protocol object:

[Java]

interactionServerUri = new Uri("tcp://"
+ interactionServerHost + ":"
+ interactionServerport);

InteractionServerProtocol interactionServerProtocol =
new InteractionServerProtocol(
new Endpoint(interactionServerName, interactionServerUri));

Once you have set up the protocol object, you can tell it the name of your application and let it know
that it is a media server:

[Java]

interactionServerProtocol.setClientName("EntityListener");
interactionServerProtocol.setClientType(

InteractionClient.MediaServer);

At this point, you can add user data associated with the new interaction:

[Java]

KeyValueCollection userData =
new KeyValueCollection();

userData.add("Subject",
"New Interaction Created by a Custom Media Server");

Now you can open the protocol object, and prepare the interaction to be submitted:

[Java]

try
{

interactionServerProtocol.open();

RequestSubmit requestSubmit = RequestSubmit.create(
inboundQueue,
mediaType,
"Inbound");

requestSubmit.setTenantId(tenantId);
requestSubmit.setInteractionSubtype("InboundNew");
requestSubmit.setUserData(userData);

If you use the Request method, you will receive a synchronous response containing a message from
Interaction Server:

[Java]

Message response =
interactionServerProtocol.request(requestSubmit);

System.out.println("Response: " + response.messageName() + ".\n\n");

Interaction Server

Platform SDK Developer's Guide 3



Closing the Connection

Finally, when you are finished communicating with Interaction Server, you should close the
connection to minimize resource utilization:

[Java]

interactionServerProtocol.close();

.NET

Setting Up Interaction Server Protocol Objects

The first thing you need to do to use the Open Media Platform SDK is instantiate a Protocol object. To
do that, you must supply information about the server you want to connect with. This example uses
an InteractionServerProtocol object, supplying its URI, but you can also use name, host, and port
information:

[C#]

InteractionServerProtocol interactionServerProtocol =
new InteractionServerProtocol(

new Endpoint(
InteractionServerUri));

After instantiating the InteractionServerProtocol object, you need to open a connection to
Interaction Server:

[C#]

interactionServerProtocol.Open();

Creating a Simple Media Server

The Open Media Platform SDK makes it easy to write a simple server that can submit third-party work
items to Interaction Server. To write one, start by entering configuration information:

[C#]

// Enter configuration information here:
private string interactionServerName = "<server name>";
private string interactionServerHost = "<host>";
private int interactionServerport = <port>;
private int tenantId = 101;
private string inboundQueue = "<queue>";
private string mediaType = "<media type>";
// End of configuration information.

Interaction Server

Platform SDK Developer's Guide 4



Now you will need to set up a protocol object:

[C#]

interactionServerUri = new Uri("tcp://"
+ interactionServerHost + ":"
+ interactionServerport);

InteractionServerProtocol interactionServerProtocol =
new InteractionServerProtocol(
new Endpoint(interactionServerName, interactionServerUri));

Once you have set up the protocol object, you can tell it the name of your application and let it know
that it is a media server:

[C#]

interactionServerProtocol.ClientName = "EntityListener";
interactionServerProtocol.ClientType =

InteractionClient.MediaServer;

At this point, you can add user data associated with the new interaction:

[C#]

KeyValueCollection userData =
new KeyValueCollection();

userData.Add("Subject",
"New Interaction Created by a Custom Media Server");

Now you can open the protocol object, and prepare the interaction to be submitted:

[C#]

try
{

interactionServerProtocol.Open();

RequestSubmit requestSubmit = RequestSubmit.Create(
inboundQueue,
mediaType,
"Inbound");

requestSubmit.TenantId = tenantId;
requestSubmit.InteractionSubtype = "InboundNew";
requestSubmit.UserData = userData;

If you use the Request method, you will receive a synchronous response containing a message from
Interaction Server:

[C#]

IMessage response =
interactionServerProtocol.Request(requestSubmit);

LogAreaRichTextBox.Text = LogAreaRichTextBox.Text
+ "Response: " + response.Name + ".\n\n";

Interaction Server

Platform SDK Developer's Guide 5



Closing the Connection

Finally, when you are finished communicating with Interaction Server, you should close the
connection to minimize resource utilization:

[C#]

interactionServerProtocol.Close();

Additional Topics

As support for the Platform SDKs continues to grow, new topics and examples that illustrate best-
practice approaches to common tasks are being added to the documentation. For more information
about using the Open Media Platform SDK, including functional code snippets, please read the
following topics:

• Creating an Email - This article discusses how to use the Open Media and Contacts Platform SDKs in
conjunction to create outgoing email messages. You can also apply the concepts illustrated here to
other types of Interactions.

Interaction Server

Platform SDK Developer's Guide 6

https://docs.genesys.com/Documentation/IW/9.0.x/Developer/CreatinganE-Mail

	Platform SDK Developer's Guide
	Interaction Server

