
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide

5/1/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Using the Configuration Object Model
Application Block
The Configuration Object Model Application Block is a reusable production-quality component that
provides developers with a consistent and intuitive object model for working with Configuration
Server objects. It has been designed using industry best practices and provided with source code so
it can be used “as is,” extended, or tailored if you need to. Please see the License Agreement for
details.

For information on the other application blocks that ship with the Genesys SDKs, consult Introducing
the Platform SDK.

Java

Architecture and Design

The Configuration Platform SDK allows you to work with objects in the Genesys Configuration Layer
by using the interface provided by Configuration Server. Unfortunately, this interface can be difficult
to work with. For example, in order to update or create Configuration Layer objects, you have to use
special “delta” objects that are distinct from the objects used to retrieve information about
Configuration Layer objects.

The Configuration Object Model Application Block provides a consistent and intuitive object model
that hides many of the complexities involved in working with Configuration Layer objects. This object
model is implemented by way of an event subscription/delivery model, which hides key-value details
of the current protocol, and is integrated with the rest of the object model.

The architecture of the Configuration Object Model Application Block consists of three functional
components:

• Configuration Objects
• Configuration Service
• Query Objects
• Cache Objects

These components are shown below.

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 2

https://docs.genesys.com/Documentation/IW/8.1.4/Developer/IntroducingthePlatformSDK
https://docs.genesys.com/Documentation/IW/8.1.4/Developer/IntroducingthePlatformSDK

Configuration Objects
Classes and Structures

The Configuration Object Model Application Block supports two types of configuration objects:

• Classes, which can be retrieved directly from Configuration Server using queries.
• Structures, which only exist as properties of classes, and cannot be retrieved directly from Configuration

Server.

Classes and structures are different in many ways, but in order to determine whether a given object
is a class or a structure, all you need to do is check to see whether the object has a “DBID” property.
Classes have this property, while structures do not.

Classes and structures are also different in the following ways:

• Each structure is a property of another class or structure, and therefore must have a “parent” class.
• Classes can be changed and saved to the Configuration Server and structures can only be saved

through their “parent” classes.
• Clients can subscribe to events on changes in a class, but not in a structure. To retrieve events on

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 3

changes in a structure, clients have to subscribe to changes in its parent class.

Property Types

Both classes and structures have properties. Each property has its own getter and setter methods,
and each property is an instance of one of the following types:

• Simple — A property that is represented by a value type. Configuration Server supports two types of
simple properties - string and integer. For example, the CfgPerson object has FirstName and
LastName properties, both of the string type.

• KV-list — Tree-like properties that are represented by the KeyValueCollection class in the
Configuration Object Model. Examples of this property include userProperties and CfgPerson.

• Structure — A complex property that includes one or more properties. In the Configuration Object
Model, structures are represented by instances of classes that are similar to configuration objects, but
cannot be created directly. For example, in the CfgPerson class, its AgentInfo property contains
simple, kv-list and other property types.

• List of structures — A property that represents more than one structure. In Configuration Object Model,
lists of structures are represented by a generic type IList<structure_type>, so that the collection is
typed, and clients can easily iterate through the collection.

• Links to a single object — In Configuration Server, these properties are stored as DBIDs of external
objects. The Configuration Object Model automatically resolves these DBIDs into the real objects, which
can be manipulated in the same way as the objects directly retrieved from Configuration Server. Links
are initialized at the time of the initial request to one of its properties.

Tip
For each link, there are two ways to set the new value of a link. There is a setter
method of the property, which uses an object reference to set a new value of a link.
There is also a Set...DBID method, which uses an integer DBID value.

• Links to multiple objects — A property that contains more than one link. In the Configuration Object
Model, lists of structures are represented by a generic type IList<class_type>, so that the collection
is typed, and clients can easily iterate through the collection.

Creating Instances

One way to create an instance of an object in the Configuration Object Model is to invoke a
Retrieve... method of a ConfService class. This set of methods returns instances of objects that
already exist in Configuration Server.

To create a new object in Configuration Server, a client must create a new instance of a COM or
"detached" object. The detached object does not correspond to any objects in Configuration Server
until it is saved. The detached object is created using the regular Object-Oriented language object
instantiation. For example, a new detached CfgPerson object is created using the following
construction:

[Java]

CfgPerson person = new CfgPerson(confService);

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 4

An object instance can also be created by using links to external objects. The Component Object
Model creates a new object instance whenever the link is called, or any of the properties of a linked
object are called. For example, you can write:

[Java]

// person has already been retrieved from Configuration Server.
CfgTenant tenant = person.getTenant(); // this is a link to an external object. It is
initialized internally right now
CfgAddress address = tenant.getAddress();

Common Methods

Each configuration class contains the following methods:

• Generic GetProperty(string propertyName) — Retrieves the property value by its name.
• Generic SetProperty(string propertyName) — Sets the new value of the property by its name.
• Save() — Commits all changes previously made to the object to Configuration Server. If the object was

created detached from Configuration Server and has never been saved, a new object is created in
Configuration Server using the RequestCreateObject method. If the object has been saved or has
been retrieved from Configuration Server, a delta-object, which contains all changes to the object, is
formed and sent to Configuration Server by means of the RequestUpdateObject method.

• Delete() — Deletes the object from the Configuration Server Database.
• Refresh() — Retrieves the latest version of the object and refreshes the value of all its properties.

Tip
In this release, all configuration objects are “static,” which means that if the object
changes in the Configuration Server, the instance of a class is not automatically
changed in the Configuration Object Model. Clients must subscribe to the
corresponding event and manually refresh the COM object in order for these changes
to take effect.

Configuration Service

Tip
The IConfService interface was added to COM in release 8.0. All applications should
now use this interface to work with the configuration service instead of the old
ConfService class. This change is an example of how all COM types in the interface
are now referred to by interface; for instance, if a method previously returned
CfgObject it now returns ICfgObject. This is not compatible with existing code, but
upgrading should not be difficult as the new interfaces support the same methods as
the implementing types.

The Configuration Service (IConfService) interface provides services such as retrieval of objects and

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 5

subscription to events from Configuration Server. Each connection to a Configuration Server
(represented by a ConfServerProtocol class of Platform SDK) requires its own instance of the
IConfService interface.

The protocol class should be created and initialized in the client code prior to IConfService
initialization.

The ConfServiceFactory class is used to create the IConfService. This class uses the following
syntax:

[Java]

IConfService service = ConfServiceFactory.CreateConfService(protocol);

Retrieving Objects

Objects can be retrieved from Configuration Service by using one of the following methods:

• RetrieveObject — Accepts a query that returns one object. If multiple objects are returned, an
exception is thrown.

• RetrieveMultipleObjects — Accepts a query that returns one or more objects. A collection of objects
is returned.

Each of the Retrieve... methods can be either specific (by using generic criteria entries, an object
of a specified type is returned) or general (a general object is returned).

Handling Events

The following methods must be called before receiving events from Configuration Server:

1. Register - The application must register its callback by calling the Register method from the
Configuration Service. This method supplies the client’s filter, which enables the client to receive only
requested events.

2. Subscribe - The application must subscribe to events from Configuration Server by calling the
Subscribe method from the Configuration Service. This method provides a notification query object as
a parameter.

The NotificationQuery object determines whether the object (or set of objects) to which the
client wants to subscribe has changed. The NotificationQuery object contains such parameters
as object type, object DBID and tenant DBID.

After calling the Subscribe method, Configuration Server starts sending events to the client. These
events are objects, which contain information such as:

• which object (ID and type) is affected
• the type of event sent to the client
• any additional information

There are three types of events that the client might receive:

• ObjectCreated — A new object has been added to Configuration Server.
• ObjectChanged — Some of the object properties have been modified in Configuration Server.
• ObjectDeleted — The object has been removed from Configuration Server.

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 6

Releasing a Configuration Service

Whenever a ConfService instance is no longer needed, the ReleaseConfService method can be
used to remove it from the internal list.

[Java]

ConfServiceFactory.ReleaseConfService(service);

Query Objects
A query object is an instance of a class that contains information required for a successful query to a
Configuration Server. This information includes an object type and its attributes (such as name and
tenant), which are used in the search process.

The inheritance structure of configuration server queries is designed to allow for future expansion.
The CfgQuery object is the base class for all query objects. Other classes extend CfgQuery to provide
more specific functionality for different types of queries - for example, all filter-based queries use the
CfgFilterBasedQuery class. This allows room for future query types (such as XPath) to implemented
in this Application Block.

A list of currently available query types is provided below:

• CfgFilterBasedQuery — Contains mapped attribute name-value pairs, as well as the object type.

A special query class is supplied for each configuration object type, in order to facilitate the process
of making queries to Configuration Server. For each searchable attribute, the query class has a
property that can be set. All of these classes inherit attributes from the CfgQuery object, and can be
supplied as parameters to the Retrieve… methods which are used to perform searches in
Configuration Server.

Cache Objects
The cache functionality is intended to enhance the Configuration Object Model by allowing
configuration objects to be stored locally, thereby minimizing requests to configuration server, as well
as enhancing ease of use by providing automatic synchronization between locally stored objects and
their server-side counterparts.

The cache functionality was designed with the following principles in mind:

• The cache functionality is designed to be extendable with custom implementations of provided
interfaces and not via inheritance.

• The cache component is not designed to replicate the Configuration Server query engine or other
Configuration Server functionality on the client side.

• Caching must be an optional feature. Work with Configuration Server should not be affected if caching is
not used.

Use Cases

Analysis of use cases provides insight into the requirements for applications likely to require
configuration cache functionality. The use cases described in the following table were selected for

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 7

analysis in order to highlight different functional requirements. There are several possible actors
which are referenced in the use cases. The actors are as follows:

• Application - Any application which uses the Configuration Object Model application block
• User - Human (or software) user who may perform actions upon objects in the configuration which are

separate from the Application

Use Case Description Actor Steps

PLACE OBJECT INTO
CACHE

Place a configuration
object into the
configuration cache
(note the object must
have been saved — ie
must have a DBID in
order to exist in the
cache).

Application 1. Application adds
object to the cache

PLACE OBJECT INTO
CACHE ON SAVE

Place a newly created
configuration object into
the configuration cache
when it is saved.

Application

1. Application creates
object

2. Application saves
object

3. Configuration Object
Model Application
Block adds object to
the cache

PLACE OBJECT INTO
CACHE ON RETRIEVE

Allow for automatic
insertion of
configuration objects
into the cache upon
retrieval from
configuration server.

Application

1. Application retrieves
configuration object

2. Configuration Object
Model Application
Block retrieves the
configuration object
from the server

3. Configuration Object
Model Application
Block places the
configuration object
into the cache

4. Configuration Object
Model Application
Block returns the
object to the
application

OBJECT REMOVED IN
CONFIGURATION
SERVER

When configuration
objects are deleted in
the configuration server,
the cache can delete
the local representation
of the object as well.

User
1. User deletes object

in the Configuration
Server

2. Cache removes

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 8

Use Case Description Actor Steps

corresponding local
object upon
receiving delete
notification

3. Cache sends
notification of object
deletion to
Application

SYNCHRONIZE OBJECT
PROPERTIES WITH
CONFIGURATION
SERVER

When an object stored
in the cache is updated
in the Configuration
Server the object must
be updated locally as
well.

User

1. User updates a
configuration object

2. Cache receives
notification about
object update

3. Cache updates the
object based on the
received delta

4. Cache fires event
informing any
subscribers of object
change

FIND OBJECT IN CACHE

The cache must support
the ability to find a
specific configuration
object in the cache
using object DBID and
type as the criteria for
the search.

Application

1. Application retrieves
object from cache.

2. If object is in the
cache, the cache
returns the object.
Otherwise the
application is
notified that the
requested object is
not in the cache.

ACCESS CACHED
OBJECTS

The cache must provide
its full object collection
to the application.

Application

1. Application requests
a complete list of
objects from the
cache.

2. The cache returns a
collection of all
cached objects.

RETRIEVE LINKED
OBJECT FROM CACHE

If caching is turned on,
object links which the
Configuration Object
Model currently resolves
through lazy

Application
1. Application accesses

a property which
requires link
resolution

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 9

Use Case Description Actor Steps

initialization (i.e. if a
property linking to
another object is
accessed, we retrieve
the referred-to object
from configuration
server) must be
resolvable through
cache access.

2. Configuration Object
Model Application
Block retrieves the
linked object from
configuration server
and stores it in the
cache before
returning to the
application

3. Application again
accesses the
property and this
time the
Configuration Object
Model Application
Block retrieves the
object from the
cache

PROVIDE CACHE
TRANSPARENCY ON
RETRIEVE

A cache search should
be performed on
attempt to retrieve an
object from
Configuration Server. If
the requested object is
found in the cache then
the Configuration Object
Model should return the
cached object rather
than accessing
Configuration Server.

1. Application creates
query to retrieve
configuration object

2. Application executes
query using the
Configuration Object
Model

3. Configuration Object
Model Application
Block searches the
cache
• If object present,

return the object
• If object not

present, query
configuration
server for the
object

CACHE SERIALIZATION The cache should
support serialization. Application

1. Application provides
a stream to the
cache

2. The cache serializes
itself into the stream
in an XML format

3. Application restarts
4. Application provides

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 10

Use Case Description Actor Steps

the cache a stream
of cache data in the
same XML format as
in step 2

5. Cache restores itself
6. Cache subscribes for

updates on the
restored objects

Implementation Overview

Two new interfaces for cache management have been added to the Configuration Object Model: the
IConfCache interface and a default cache implementation (DefaultConfCache). Note that the
ConfCache also implements the Subscriber interface from MessageBroker so that the user can
subscribe to notifications from Configuration Server, as discussed in Notification And Delta Handling.

The IConfCache interface provides methods for basic functionality such as adding, updating,
retrieving, and removing objects in the cache. It also includes a Policy property that defines cache
behavior and affects method implementation. (For more details about policies, see Cache Policy).

The DefaultConfCache component provides a default implementation of the IConfCache interface. It
serializes and deserializes cache objects using the XML format described in the XML Format section,
below.

To enable and configure caching functionality, and to specify ConfService policy, there are three
CreateConfService methods available from ConfServiceFactory. The original CreateConfService
method (not shown here) creates a ConfService instance that uses the default policy and does not
use caching.

[Java]

public static IConfService createConfService(Protocol protocol, boolean enableCaching)

This method creates an instance of a Configuration Service based on the specified protocol. If caching
is enabled, the default caching policy will be used. If enableCaching is set to true, caching
functionality will be turned on. If caching is disabled, all policy flags related to caching will be false.

[Java]

public static IConfService createConfService(Protocol protocol,
IConfServicePolicy confServicePolicy, IConfCache cache)

This method creates a configuration service with the specified policy information. The created service
will have caching enabled if a cache object (implementing the IConfCache interface) is passed as a
parameter.

[Java]

public static IConfService createConfService(Protocol protocol,
IConfServicePolicy confServicePolicy, IConfCachePolicy confCachePolicy)

This method creates a configuration service with the specified policy information. The created service

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 11

will have caching enabled by default with the cache using the specified cache policy.

XML Format

The "Cache" node will be the root of the configuration cache XML, while "ConfData" is a child of the
"Cache" node. The ConfData node contains a collection of XML representations for each configuration
object in the cache. The XML format of each object is identical to that which is returned by the ToXml
method supported by each the Configuration Object Model configuration object.

The "CacheConfiguration" element is a child of the "Cache" node. There can only be one instance of
this node and it contains all cache configuration parameters, as follows:

• CONFIGURATIONSERVER NODE — There can be 1..n instances of this element. Each one will represent a
configuration server for which the cache is applicable (a cache can be applicable to multiple
configuration servers if they are working with the same database as in the case of a primary and
backup configuration server pair). Each ConfigurationServer element will have a URI attribute
specifying the unique URI identifying the Configuration Server, as well as a Name attribute specifying
the name associated with the endpoint.

The example provided below shows a cache that is applicable for the configuration server at
"server:2020" with some policy details specified. There are two objects in the cache for this example:
a CfgDN and a CfgService object.

[XML]

<Cache>
<CacheConfiguration>

<ConfigurationServer name="serverName" uri="tcp://server:2020"/>
</CacheConfiguration>
<ConfData>

<CfgDN>
<DBID value="267" />
<switchDBID value="111" />
<tenantDBID value="1" />
<type value="3" />
<number value="1111" />
<loginFlag value="1" />
<registerAll value="2" />
<groupDBID value="0" />
<trunks value="0" />
<routeType value="1" />
<state value="1" />
<name value="DNAlias" />
<useOverride value="2" />
<switchSpecificType value="1" />
<siteDBID value="0" />
<contractDBID value="0" />
<accessNumbers />
<userProperties />

</CfgDN>

<CfgService>
<DBID value="102" />
<name value="Solution1" />
<type value="2" />
<state value="1" />
<solutionType value="1" />
<components>

<CfgSolutionComponent>

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 12

<startupPriority value="3" />
<isOptional value="2" />
<appDBID value="153" />

</CfgSolutionComponent>
</components>
<SCSDBID value="102" />
<assignedTenantDBID value="101" />
<version value="7.6.000.00" />
<startupType value="2" />
<userProperties />
<componentDefinitions />
<resources />

</CfgService>
</ConfData>

</Cache>

Cache Policy

The configuration cache can be assigned a policy represented by a Policy interface. A default
implementation of the interface will be provided in the DefaultConfCachePolicy class.

The IConfCache interface interprets the policy as follows:

1. CacheOnCreate — When an object is created in the configuration server, the policy will be checked with
the created object as the parameter. If the method returns true, the object will be added to the cache, if
it is false, the object will not be added. Default implementation will always return false.

2. RemoveOnDelete — When an object is deleted in the configuration server, the policy will be checked
with the deleted object as the parameter. If the method returns true, the object will be deleted in the
cache, if it is false, the notification will be ignored. Default implementation will always return true.

3. TrackUpdates — When an object is updated in the configuration server, the policy will be checked with
the current version of the object as the parameter. If the method returns true, the object will be
updated with the received delta, if it is false, the notification will be ignored. Default implementation
will always return true.

4. ReturnCopies — Determines whether the cache should return copies of objects when they are retrieved
from the cache, or the original, cached versions. False by default.

IConfServicePolicy Interface

The IConfServicePolicy interface can be used to define the policy settings for the ConfService.
Two default implementations are available:

1. DefaultConfServicePolicy contains the settings for a non-caching configuration service. That is, all of
the cache-related policy flags will always return false.

2. CachingConfServicePolicy defines the default behavior for a configuration service with caching
enabled. (Note that when referring to the "default" value below, we will be referring to this
implementation.)

The policy interface settings are interpreted as follows:

• AttemptLinkResolutionThroughCache — Whenever a link resolution attempt is made, this policy will be
checked for the type of object the link refers to. If this method returns true, the link resolution attempt
will first be made through the cache. If the method returns false, or if the object has not been found in
the cache, the server will queried. Default value is always true.

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 13

• CacheOnRetrieve — This method will be called for each object retrieved from the configuration. If the
return value is "true" the object will be added to the cache. Default value is always true.

• CacheOnSave — This method will be called for each object that is being saved. If the return value is true,
the object will be added to the cache. If the object is already in the cache, it will not be overwritten.
Default value is always true.

• ValidateBeforeSave — This is a property from the ConfService which will be moved to the policy
interface and is not related to caching. It is used to indicate whether property values are checked for
valid values against the schema before a save attempt is made. Default value is true.

• QueryCacheOnRetrieve — This method will be called every time a retrieve operation is performed using
a query. The ConfService will first check the cache for the existence of the requested configuration
object. If the object exists, it will be returned and no configuration server request will be made. If there
are no values returned, the ConfService will query the configuration server (see Query Engine).
Default value is always false.

• QueryCacheOnRetrieveMultiple — This method will be called every time a retrieve multiple operation
is performed. The ConfService will first execute the query against cache. If the returned object count
is greater than 0 the found object collection will be returned and no configuration server request will be
made. If there are no values returned, the ConfService will query the configuration server (see Query
Engine). Default value is always false.

Note that the RetrieveMultiple operation is NOT implemented in the default query engine, so
providing a policy where this method returns true will require a new query engine implementation.

Cache Extendability

Consistent with the design principles outlined above, the configuration cache is extendable via
custom implementations of provided interfaces. The two areas of the cache which can be extended
are the cache storage and the cache query engine.

Cache Storage

The storage interface defines the method by which objects are stored in the cache. When an instance
of an implementing object is provided to the cache, the cache will store all cached objects in the
storage component.

The default storage implementation stores cached objects using the object type and DBID as keys.
Note that this means that objects in the cache are assumed to be from one configuration database.
The default implementation is also thread safe using a reader/writer lock which allows for multiple
concurrent readers and one writer. The storage methods are as follows:

• Add — Adds a new object to the storage. If object already exists in the storage, the default
implementation thrown an exception.

• Update — Overwrites an existing object in the storage. If the object is not found in the storage, the
default implementation creates a new version of the object.

• Remove — Removes an object from the storage.
• Retrieve — Retrieves an enumerable list of all objects in the storage (filtered by type), and possibly

influenced by an optional helper parameter. Note that the helper parameter is not meant to provide
querying logic — that should be done in the query engine. Because the query engine is to some degree
dependent on the storage implementation, the helper parameter allows for some flexibility in the way
stored objects are enumerated for the query engine. The default implementation can take a

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 14

CfgObjectType as a helper parameter.
• Clear — Removes all objects in the storage.

Query Engine

The query engine provides the ability to define the method by which objects are located in the cache.

Depending on the IConfService policy, Retrieve requests as well as link resolution can first be
attempted through the cache. If the requested object is found in the cache, then that cached object is
returned instead of sending a request to Configuration Server. If the object is not present in the
cache, a request to Configuration Server is made.

A user-definable query engine module exists inside the cache to achieve this functionality. A query
engine must implement the IConfCacheQueryEngine interface, which provides methods to retrieve
objects (either individually, or as a list) and to test a query and determine if it can be executed.

If enabled by the policy, IConfService will attempt a query to its cache using the cache's query
engine interface. If a result is returned, the IConfService will not query the Configuration Server. By
following this contract, the Configuration Object Model user is then able to create a custom
implementation of the IConfCacheQueryEngine with any extended search capabilities which may be
missing from the simple default implementation.

Two implementations of the IConfCacheQueryEngine interface are provided in the Configuration
Object Model, as described below:

• DEFAULTCONFCACHEQUERYENGINE CLASS - The DefaultConfCacheQueryEngine class is a default
implementation of the IConfCacheQueryEngine interface.

• COMPOSITECONFCACHEQUERYENGINE CLASS - This class is a more advanced implementation of the
query engine which allows child query engine modules to be registered in order to interpret different
types of queries. It does not have a default query engine implementation, only the mechanism for
working with multiple child query engines.

Notification and Delta Handling

The default configuration cache will implement the Subscriber<ConfEvent> interface which will
allow the cache to be subscribed to receive configuration events. When a cache instance is
associated with a Configuration Service, it will automatically be subscribed for configuration events
from that service (note that if a custom cache implementation also implements this interface it will
be subscribed for events as well). The way the cache is updated based on these notifications is
determined by the cache policy.

In addition, a new filter class will be added in order to allow the subscriber to filter the cache events.
The ConfCacheFilter will implement the MessageBroker's Predicate interface, allowing for the filter
to be passed during registration for events via SubscriptionService. The ConfCacheFilter's
properties will specify the parameters by which the events will be filtered. Initially, the supported
parameters will be object type, object DBID, and update type, allowing the user to filter events by
one or a combination of these parameters assuming an AND relationship between the parameters
specified.

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 15

Using the Application Block

Installing the Configuration Object Model Application Block
Before you install the Configuration Object Model Application Block, it is important to review the
software requirements for using it.

Software Requirements

To work with the Configuration Object Model Application Block, you must ensure that your system
meets the software requirements established in the Genesys Supported Operating Environment
Reference Manual, as well as meeting the following minimum software requirements:

• JDK 1.6 or higher
• Genesys Configuration Platform SDK 8.0 or higher

Building the Configuration Object Model Application Block

To build the Configuration Object Model Application Block:

1. Open the <Platform SDK Folder>\applicationblocks\com folder.
2. Run either build.bat or build.sh, depending on your platform.

This will create the comappblock.jar file, located within the <Platform SDK
Folder>\applicationblocks\com\dist\lib directory.

Using the QuickStart Application
The easiest way to start using the Configuration Object Model Application Block is to use the bundled
QuickStart application. This application ships in the same folder as the application block.

Configuring the QuickStart Application

In order to use the QuickStart application, you will need to change some lines of code in the
quickstart.properties file, located in the <Platform SDK Folder>\applicationblocks\com\
quickstart directory. Change the following lines to point to your Configuration Server, and then save
the updated file:

ConfServerUri = tcp://:

ConfServerUser =
ConfServerPassword =

ConfServerClientName = default
ConfServerClientType = CFGSCE

Building the QuickStart Application

1. Open the <Platform SDK Folder>\applicationblocks\com\quickstart folder.

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 16

2. Run either build.bat or build.sh, depending on your platform.

Running the QuickStart Application

1. Open a Command Prompt or Terminal window.
2. Navigate to the <Platform SDK Folder>\applicationblocks\com\quickstart directory.
3. Run either quickstart.bat or quickstart.sh, depending on your platform.

How to Properly Initialize the ConfService Instance

To work with Configuration Server, the ConfService instance needs ConfServerProtocol.

Platform SDK protocol connections allow users to manage connections, setup custom asynchronus
MessageHandler objects, substitute message receivers, and subscribe for protocol messages and
channel events. So, to maintain Platform SDK flexibility, the Configuration Object Model Application
Block does not manage a ConfServerProtocol connection inside of the ConfService - this must be
done by the user. Instead users may create a simple instance and initialize it with
WarmStandbyService.

It is important to note that asycnhronous protocol events may be configured for delivery to a single
destination, with only one MessageHandler or MessageReceiver for one protocol instance. Starting
from Platform SDK release 8.1.1, ConfService may be initialized without use of legacy Message
Broker Application Block. Starting from version 8.5, this is the only way to create ConfService.

If your application needs to receive asynchronous protocol messages from Configuration Server on
the protocol instance where ConfService is initialized, that can be done using
ConfService.setUserMessageHandler(messageHandler).

Protocol Initialization
A ConfServerProtocol instance is required for the creation of ConfService. It should be initialized
with an Endpoint and handshake properties, but without setting either
confServerProtocol.setMessageHandler() or confServerProtocol.setReceiver().

// Initialize ConfService:
PropertyConfiguration config;
ConfServerProtocol confServerProtocol;
IConfService confService;

config = new PropertyConfiguration();
config.setUseAddp(true);
config.setAddpClientTimeout(15);

confServerProtocol = new ConfServerProtocol(new Endpoint("ConfigServer", csHost, csPort,
config));
confServerProtocol.setUserName(userName);
confServerProtocol.setUserPassword(password);
confServerProtocol.setClientName(clientName);
confServerProtocol.setClientApplicationType(clientType.ordinal());

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 17

Important
Do not open the protocol before ConfService is created. ConfService sets its own
internal MessageHandler, and this operation can only be done on a closed channel.

ConfService Initialization
confService = ConfServiceFactory.createConfService(confServerProtocol);
confServerProtocol.open();

ConfService Shutdown
confServerProtocol.close();
ConfServiceFactory.releaseConfService(confService);
confService = null;

Application Components Usage Notes
Older releases of ProtocolManagementService do not support using ConfService without the
Message Broker service - an exception raised when users try to create the ConfService object on a
protocol instance initialized by the Protocol Manager Application Block. To migrate away from Protocol
Manager Application Block usage, we recommend creating and configuring ConfServerProtocol
without Protocol Manager Application Block usage, as shown above.

MessageHandler is not compatible with the deprecated MessageReceiver; it is only possible to use
one of these components on a protocol instance. Specific to Platform SDK for Java is the limitation
that one protocol instance may have only one instance of MessageHandler. So, if an application uses
a custom MessageHandler on a protocol used for ConfService, then only one handler will be able to
receive asynchronous protocol events.

If application overwrites the ConfService object after creation, then that service will be unable to
receive Configuration Server notifications or to perform multiple objects reading operations - a
timeout exception will occur. If there is a need to get those protocol messages separately from
ConfService logic, it is possible to initialize custom MessageHandler with
confService.setUserMessageHandler(messageHandler).

Notes for Previous Releases of Platform SDK
'''[+] Platform SDK 8.1.0 Specific Notes'''
Platform SDK 8.1.0 included some improvements to the Message Broker Application Block.

There was a new EventReceivingBrokerService class that implements the receiver interface, which
can be used as an external receiver for Platform SDK protocols. When this class is in use, protocol
messages will be handled a little bit faster (compared to the older Message Broker service) with no
redundant intermediate queue, and there is no additional thread sleeping/waiting.

EventReceivingBrokerService broker = new EventReceivingBrokerService();
broker.setInvoker(new SingleThreadInvoker("COMBrokerService-" + cfgsrvEndpointName));

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 18

https://docs.genesys.com/Documentation/IW/8.1.4/Developer/UsingtheCOMAB#protoinit

ConfServerProtocol protocol = new ConfServerProtocol(endpoint);
protocol.setReceiver(broker);
protocol.setUserName(...);
protocol.set...();
protocol.open();

IConfService confService = ConfServiceFactory.createConfService(protocol, broker);

To shutdown the Configuration Object Model Application Block, you can use the following code:

protocol.close();
ConfServiceFactory.releaseConfService(confService);

'''[+] Platform SDK 8.0, 7.6 Specific Notes'''
In earlier releases of Platform SDK, the initialization logic could look like this:

ConfServerProtocol protocol = new ConfServerProtocol(endpoint);
protocol.setUserName(...);
protocol.set...();
protocol.open();

EventBrokerService broker = BrokerServiceFactory.CreateEventBroker(protocol);
IConfService confService = ConfServiceFactory.createConfService(protocol, broker);

If the protocol has an external receiver initialized (for example, with Protocol Manager usage), then
the EventBrokerService should be initialized on that receiver instead of the protocol itself:

EventBrokerService broker =
BrokerServiceFactory.CreateEventBroker(protocolManager.getReceiver());

To shutdown the Configuration Object Model Application Block, you can use the following code:

protocol.close();
broker.dispose();
ConfServiceFactory.releaseConfService(confService);

Important
Legacy EventBrokerService objects need to be disposed on shutdown because they
include an internal reading thread which should be stopped.

Editing Capacity Rules

The Configuration Object Model Application Block includes the CapacityRuleHelper class (introduced
in release 8.1.4) which allows you to edit and update Capacity Rules. This helper class presents an
XML representation for CfgScript objects of type CfgScriptType.CFGCapacityRule, which can be
updated and saved to edit existing Capacity Rules.

An example of how to edit capacity rules is provided below.

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 19

IConfService service = (IConfService)ConfServiceFactory.createConfService(protocol);
service.getProtocol().open();
CfgScriptQuery query = new CfgScriptQuery(service);
CfgScript script = (CfgScript)service.retrieveObject(query);

An instance of the CapacityRuleHelper class can now be created with static method create. This
method validates the input script object and can throw an exception: ConfigException if the script
has an invalid format, or IllegalArgumentException if the script is null or the script type is not
valid. Once the instance is created, getXMLPresentation() allows you access to Capacity Rules.

CapacityRuleHelper helper = CapacityRuleHelper.create(script);
Document doc = helper.getXMLPresentation();
// edit xml document here

The setXMLPresentation() method allows you to save changes to the XML into the
CapacityRuleHelper class instance. Once changes have been made to the XML document, apply
your changes using the following code:

helper.setXMLPresentation(doc);
helper.getCfgScript().save();
service.getProtocol().close();
ConfServiceFactory.releaseConfService(service);

.NET

Architecture and Design

The Configuration Object Model Application Block provides a consistent and intuitive object model for
working with Configuration Server objects, as well as a straightforward object model for queries with
different filters. This Application Block hides the complexities of object creation and changing by
means of "delta" objects. It also creates an event subscription/delivery model, which hides key-value
details of the current protocol, and is integrated with the rest of the object model.

The architecture of the Configuration Object Model Application Block consists of three functional
components:

• Configuration Objects
• Configuration Service
• Query Objects
• Cache Objects

These components are shown in the figure below.

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 20

Configuration Objects
Classes and Structures

There are two types of configuration objects are supported by the Configuration Object Model
Application Block:

• Classes, which can be retrieved directly from Configuration Server using queries.
• Structures, which only exist as properties of classes, and cannot be retrieved directly from Configuration

Server.

The main differences between classes and structures are as follows:

1. Each structure is a property of another class or structure, and therefore must have a "parent" class.
2. Classes can be changed and saved to the Configuration Server and structures can only be saved

through their "parent" classes.
3. Clients can subscribe to events on changes in a class, but not in a structure. To retrieve events on

changes in a structure, clients have to subscribe to changes in a parent class.

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 21

Property Types

Both classes and structures have properties. For each property, the object has getter and setter
methods which retrieve the value of the property and set a new value correspondingly. However,
some properties are read-only and therefore will only have a getter method. For each object, its
properties can be one of the following types:

• Simple — A property that is represented by a value type. Configuration Server supports two types of
simple properties - string and integer. For example, the CfgPerson object has FirstName and
LastName properties, both of the string type.

• KV-list — Tree-like properties that are represented by the KeyValueCollection class in the
Configuration Object Model. Examples of this property include userProperties of CfgPerson.

• Structure — A complex property that includes one or more properties. In the Configuration Object
Model, structures are represented by instances of classes that are similar to configuration objects, but
cannot be created directly. For example, in the CfgPerson class, its AgentInfo property contains
simple, kv-list and other property types.

• List of structures — A property that represents more than one structure. In Configuration Object Model,
lists of structures are represented by a generic type IList<structure_type>, so that the collection is
typed, and clients can easily iterate through the collection.

• Links to a single object — In Configuration Server, these properties are stored as DBIDs of external
objects. The Configuration Object Model automatically resolves these DBIDs into the real objects, which
can be manipulated in the same way as the objects directly retrieved from Configuration Server. Links
are initialized at the time of the initial request to one of its properties.

Tip
For each link, there are two ways to set the new value of a link. There is a setter
method of the property, which uses an object reference to set a new value of a link.
There is also a Set DBID method, which uses an integer DBID value.

• Links to multiple objects — A property that contains more than one link. In the Configuration Object
Model, lists of structures are represented by a generic type IList<class_type>, so that the collection
is typed, and clients can easily iterate through the collection.

Creating Instances

One way to create an instance of an object in the Configuration Object Model is to invoke one of the
Retrieve methods of the ConfService class. This set of methods returns instances of objects that
already exist in Configuration Server.

To create a new object in Configuration Server, a client must create a new instance of a COM or
"detached" object. The detached object does not correspond to any objects in Configuration Server
until it is saved. The detached object is created using the regular object-oriented language object
instantiation. For example, a new detached CfgPerson object is created using the following
construction:

[C#]

CfgPerson person = new CfgPerson(confService);

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 22

An object instance can also be created by using links to external objects. The Component Object
Model creates a new object instance whenever the link is called, or any of the properties of a linked
object are called. For example, you can write:

[C#]

// Person has already been retrieved from Configuration Server.
CfgTenant tenant = person.Tenant;
// This is a link to an external object. It is initialized internally right now...
CfgAddress address = tenant.Address;

Common Methods

Each configuration class contains the following methods:

• Generic GetProperty(string propertyName) — Retrieves the property value by its name.
• Generic SetProperty(string propertyName) — Sets the new value of the property by its name.
• Save() — Commits all changes previously made to the object to Configuration Server. If the object was

created detached from Configuration Server and has never been saved, a new object is created in
Configuration Server using the RequestCreateObject method. If the object has been saved or has
been retrieved from Configuration Server, a delta-object, which contains all changes to the object, is
formed and sent to Configuration Server by means of the RequestUpdateObject method.

• Delete() — Deletes the object from the Configuration Server Database.
• Refresh() — Retrieves the latest version of the object and refreshes the value of all its properties.

Tip
In this release, all configuration objects are "static," which means that if the object
changes in the Configuration Server, the instance of a class is not automatically
changed in the Configuration Object Model. Clients must subscribe to the
corresponding event and manually refresh the COM object in order for these changes
to take effect.

Configuration Service

Important
The IConfService interface was added to COM in release 8.0. All applications should
now use this interface to work with the configuration service instead of the old
ConfService class. This change is an example of how all COM types in the interface
are now referred to by interface; for instance, if a method previously returned
CfgObject it now returns ICfgObject. This is not compatible with existing code, but
upgrading should not be difficult as the new interfaces support the same methods as
the implementing types.

The Configuration Service (IConfService) interface provides services such as retrieval of objects and

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 23

subscription to events from Configuration Server. Each connection to a Configuration Server
(represented by a ConfServerProtocol class of Platform SDK) requires its own instance of the
IConfService interface.

The protocol class should be created and initialized in the client code prior to IConfService
initialization.

The ConfServiceFactory class is used to create the IConfService. This class uses the following
syntax:

[C#]

IConfService service = ConfServiceFactory.CreateConfService(protocol);

Retrieving Objects

Objects can be retrieved from Configuration Service by using one of the following methods:

• RetrieveObject — Accepts a query that returns one object. If multiple objects are returned, an
exception is thrown.

• RetrieveMultipleObjects — Accepts a query that returns one or more objects. A collection of objects
is returned.

Each of the Retrieve methods can be can be strongly typed (with use of generics, an object of a
specified type is returned) or general (a general object is returned).

Handling Events

The following methods must be called before receiving events from Configuration Server:

1. Register

The application must register its callback by calling the Register method from the Configuration
Service. This method supplies the client's filter, which enables the client to receive only requested
events.

2. Subscribe

The application must subscribe to events from Configuration Server by calling the Subscribe method
from the Configuration Service. This method provides a notification query object as a parameter.

The NotificationQuery object determines whether the object (or set of objects) to which the client
wants to subscribe has changed. The NotificationQuery object contains such parameters as object
type, object DBID and tenant DBID.

After calling the Subscribe method, Configuration Server starts sending events to the client. These
events are objects, which contain information such as:

• which object (ID and type) is affected
• the type of event sent to the client
• any additional information

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 24

There are three types of events that the client might receive:

• ObjectCreated — A new object has been added to Configuration Server.
• ObjectChanged — Some of the object properties have been modified in Configuration Server.
• ObjectDeleted — The object has been removed from Configuration Server.

Logging Messages

Configuration Object Model Application Block supports logging through the standard Platform SDK
logging interfaces. The IConfService interface inherits the EnableLogging method that provides the
ability to log messages through the provided ILogger interface.

Releasing a Configuration Service

Whenever a ConfService instance is no longer needed, the ReleaseConfService method can be
used to remove it from the internal list.

[C#]

ConfServiceFactory.ReleaseConfService(service);

Query Objects
A query object is an instance of a class that contains information required for a successful query to a
Configuration Server. This information includes an object type and its attributes (such as name and
tenant), which are used in the search process.

The inheritance structure of configuration server queries is designed to allow for future expansion.
The CfgQuery object is the base class for all query objects. Other classes extend CfgQuery to provide
more specific functionality for different types of queries - for example, all filter-based queries use the
CfgFilterBasedQuery class. This allows room for future query types (such as XPath) to be
implemented in this Application Block.

A list of currently available query types is provided below:

• CfgFilterBasedQuery — Contains mapped attribute name-value pairs, as well as the object type.

A special query class is supplied for each configuration object type, in order to facilitate the process
of making queries to Configuration Server. For each searchable attribute, the query class has a
property that can be set. All of these classes inherit attributes from the CfgQuery object, and can be
supplied as parameters to the Retrieve methods which are used to perform searches in
Configuration Server.

Cache Objects
The cache functionality is intended to enhance the Configuration Object Model by allowing
configuration objects to be stored locally, thereby minimizing requests to configuration server, as well
as enhancing ease of use by providing automatic synchronization between locally stored objects and
their server-side counterparts.

The cache functionality was designed with the following principles in mind:

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 25

• The cache functionality is designed to be extendable with custom implementations of provided
interfaces and not via inheritance.

• The cache component is not designed to replicate the Configuration Server query engine or other
Configuration Server functionality on the client side.

• Caching must be an optional feature. Work with Configuration Server should not be affected if caching is
not used.

Use Cases

Analysis of use cases provides insight into the requirements for applications likely to require
configuration cache functionality. The use cases described in the following table were selected for
analysis in order to highlight different functional requirements. There are several possible actors
which are referenced in the use cases. The actors are as follows:

• Application - Any application which uses the Configuration Object Model application block
• User - Human (or software) user who may perform actions upon objects in the configuration which are

separate from the Application

Use Case Description Actor Steps

PLACE OBJECT INTO
CACHE

Place a configuration
object into the
configuration cache
(note the object must
have been saved — ie
must have a DBID in
order to exist in the
cache).

Application 1. Application adds
object to the cache

PLACE OBJECT INTO
CACHE ON SAVE

Place a newly created
configuration object into
the configuration cache
when it is saved.

Application

1. Application creates
object

2. Application saves
object

3. Configuration Object
Model Application
Block adds object to
the cache

PLACE OBJECT INTO
CACHE ON RETRIEVE

Allow for automatic
insertion of
configuration objects
into the cache upon
retrieval from
configuration server.

Application

1. Application retrieves
configuration object

2. Configuration Object
Model Application
Block retrieves the
configuration object
from the server

3. Configuration Object
Model Application
Block places the
configuration object

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 26

Use Case Description Actor Steps

into the cache
4. Configuration Object

Model Application
Block returns the
object to the
application

OBJECT REMOVED IN
CONFIGURATION
SERVER

When configuration
objects are deleted in
the configuration server,
the cache can delete
the local representation
of the object as well.

User

1. User deletes object
in the Configuration
Server

2. Cache removes
corresponding local
object upon
receiving delete
notification

3. Cache sends
notification of object
deletion to
Application

SYNCHRONIZE OBJECT
PROPERTIES WITH
CONFIGURATION
SERVER

When an object stored
in the cache is updated
in the Configuration
Server the object must
be updated locally as
well.

User

1. User updates a
configuration object

2. Cache receives
notification about
object update

3. Cache updates the
object based on the
received delta

4. Cache fires event
informing any
subscribers of object
change

FIND OBJECT IN CACHE

The cache must support
the ability to find a
specific configuration
object in the cache
using object DBID and
type as the criteria for
the search.

Application

1. Application retrieves
object from cache.

2. If object is in the
cache, the cache
returns the object.
Otherwise the
application is
notified that the
requested object is
not in the cache.

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 27

Use Case Description Actor Steps

ACCESS CACHED
OBJECTS

The cache must provide
its full object collection
to the application.

Application

1. Application requests
a complete list of
objects from the
cache.

2. The cache returns a
collection of all
cached objects.

RETRIEVE LINKED
OBJECT FROM CACHE

If caching is turned on,
object links which the
Configuration Object
Model currently resolves
through lazy
initialization (i.e. if a
property linking to
another object is
accessed, we retrieve
the referred-to object
from configuration
server) must be
resolvable through
cache access.

Application

1. Application accesses
a property which
requires link
resolution

2. Configuration Object
Model Application
Block retrieves the
linked object from
configuration server
and stores it in the
cache before
returning to the
application

3. Application again
accesses the
property and this
time the
Configuration Object
Model Application
Block retrieves the
object from the
cache

PROVIDE CACHE
TRANSPARENCY ON
RETRIEVE

A cache search should
be performed on
attempt to retrieve an
object from
Configuration Server. If
the requested object is
found in the cache then
the Configuration Object
Model should return the
cached object rather
than accessing
Configuration Server.

1. Application creates
query to retrieve
configuration object

2. Application executes
query using the
Configuration Object
Model

3. Configuration Object
Model Application
Block searches the
cache
• If object present,

return the object
• If object not

present, query
configuration

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 28

Use Case Description Actor Steps

server for the
object

CACHE SERIALIZATION The cache should
support serialization. Application

1. Application provides
a stream to the
cache

2. The cache serializes
itself into the stream
in an XML format

3. Application restarts
4. Application provides

the cache a stream
of cache data in the
same XML format as
in step 2

5. Cache restores itself
6. Cache subscribes for

updates on the
restored objects

Implementation Overview

Two new interfaces for cache management have been added to the Configuration Object Model: the
IConfCache interface and a default cache implementation (DefaultConfCache). Note that the
ConfCache also implements the ISubscriber interface from MessageBroker. The cache implements
ISubscriber in order to allow the user to subscribe to notifications from Configuration Server, as
discussed in Notification And Delta Handling.

The IConfCache interface provides methods for basic functionality such as adding, updating,
retrieving, and removing objects in the cache. It also includes a Policy property that defines cache
behavior and affects method implementation. (For more details about policies, see Cache Policy).

The DefaultConfCache component provides a default implementation of the IConfCache interface. It
serializes and deserializes cache objects using the XML format described in the XML Format section,
below.

To enable and configure caching functionality, and to specify ConfService policy, there are three
CreateConfService methods available from ConfServiceFactory. The original CreateConfService
method (not shown here) creates a ConfService instance that uses the default policy and does not
use caching.

[C#]

public static IConfService CreateConfService(IProtocol protocol, bool enableCaching)

This method creates an instance of a Configuration Service based on the specified protocol. If caching
is enabled, the default caching policy will be used. If enableCaching is set to true, caching

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 29

functionality will be turned on. If caching is disabled, all policy flags related to caching will be false.

[C#]

public static IConfService CreateConfService(IProtocol protocol,
IConfServicePolicy confServicePolicy, IConfCache cache)

This method creates a configuration service with the specified policy information. The created service
will have caching enabled if a cache object (implementing the IConfCache interface) is passed as a
parameter.

[C#]

public static IConfService CreateConfService(IProtocol protocol,
IConfServicePolicy confServicePolicy, IConfCachePolicy confCachePolicy)

This method creates a configuration service with the specified policy information. The created service
will have caching enabled by default with the cache using the specified cache policy.

XML Format

The "Cache" node will be the root of the configuration cache XML, while "ConfData" is a child of the
"Cache" node. The ConfData node contains a collection of XML representations for each configuration
object in the cache. The XML format of each object is identical to that which is returned by the ToXml
method supported by each the Configuration Object Model configuration object.

The "CacheConfiguration" element is a child of the "Cache" node. There can only be one instance of
this node and it contains all cache configuration parameters, as follows:

• CONFIGURATIONSERVER NODE – There can be 1..n instances of this element. Each one will represent a
configuration server for which the cache is applicable (a cache can be applicable to multiple
configuration servers if they are working with the same database as in the case of a primary and
backup configuration server pair). Each ConfigurationServer element will have a URI attribute
specifying the unique URI identifying the Configuration Server, as well as a Name attribute specifying
the name associated with the endpoint.

The example provided below shows a cache that is applicable for the configuration server at
"server:2020" with some policy details specified. There are two objects in the cache for this example:
a CfgDN and a CfgService object.

[XML]

<Cache>
<CacheConfiguration>

<ConfigurationServer name="serverName" uri="tcp://server:2020"/>
</CacheConfiguration>

<ConfData>
<CfgDN>

<DBID value="267" />
<switchDBID value="111" />
<tenantDBID value="1" />
<type value="3" />
<number value="1111" />
<loginFlag value="1" />
<registerAll value="2" />
<groupDBID value="0" />
<trunks value="0" />

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 30

<routeType value="1" />
<state value="1" />
<name value="DNAlias" />
<useOverride value="2" />
<switchSpecificType value="1" />
<siteDBID value="0" />
<contractDBID value="0" />
<accessNumbers />
<userProperties />

</CfgDN>

<CfgService>
<DBID value="102" />
<name value="Solution1" />
<type value="2" />
<state value="1" />
<solutionType value="1" />
<components>

<CfgSolutionComponent>
<startupPriority value="3" />
<isOptional value="2" />
<appDBID value="153" />

</CfgSolutionComponent>
</components>
<SCSDBID value="102" />
<assignedTenantDBID value="101" />
<version value="7.6.000.00" />
<startupType value="2" />
<userProperties />
<componentDefinitions />
<resources />

</CfgService>
</ConfData>

</Cache>

Cache Policy

The configuration cache can be assigned a policy represented by a Policy interface. A default
implementation of the interface will be provided in the DefaultConfCachePolicy class.

The IConfCache interface will interpret the policy as follows:

1. CacheOnCreate – When an object is created in the configuration server, the policy will be checked with
the created object as the parameter. If the method returns true, the object will be added to the cache, if
it is false, the object will not be added. Default implementation will always return false.

2. RemoveOnDelete – When an object is deleted in the configuration server, the policy will be checked with
the deleted object as the parameter. If the method returns true, the object will be deleted in the cache,
if it is false, the notification will be ignored. Default implementation will always return true.

3. TrackUpdates – When an object is updated in the configuration server, the policy will be checked with
the current version of the object as the parameter. If the method returns true, the object will be
updated with the received delta, if it is false, the notification will be ignored. Default implementation
will always return true.

4. ReturnCopies – Determines whether the cache should return copies of objects when they are retrieved
from the cache, or the original, cached versions. False by default.

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 31

IConfServicePolicy Interface

The IConfServicePolicy interface can be used to define the policy settings for the ConfService.
Two default implementations are available:

1. DefaultConfServicePolicy contains the settings for a non-caching configuration service. That is, all of
the cache-related policy flags will always return false.

2. CachingConfServicePolicy defines the default behavior for a configuration service with caching
enabled. (Note that when referring to the "default" value below, we will be referring to this
implementation.)

The policy interface settings are interpreted as follows:

• AttemptLinkResolutionThroughCache – Whenever a link resolution attempt is made, this policy will be
checked for the type of object the link refers to. If this method returns true, the link resolution attempt
will first be made through the cache. If the method returns false, or if the object has not been found in
the cache, the server will queried. Default value is always true.

• CacheOnRetrieve – This method will be called for each object retrieved from the configuration. If the
return value is "true" the object will be added to the cache. Default value is always true.

• CacheOnSave – This method will be called for each object that is being saved. If the return value is true,
the object will be added to the cache. If the object is already in the cache, it will not be overwritten.
Default value is always true.

• ValidateBeforeSave – This is a property from the ConfService which will be moved to the policy
interface and is not related to caching. It is used to indicate whether property values are checked for
valid values against the schema before a save attempt is made. Default value is true.

• QueryCacheOnRetrieve – This method will be called every time a retrieve operation is performed using
a query. The ConfService will first check the cache for the existence of the requested configuration
object. If the object exists, it will be returned and no configuration server request will be made. If there
are no values returned, the ConfService will query the configuration server (see Query Engine).
Default value is always false.

• QueryCacheOnRetrieveMultiple – This method will be called every time a retrieve multiple operation
is performed. The ConfService will first execute the query against cache. If the returned object count is
greater than 0 the found object collection will be returned and no configuration server request will be
made. If there are no values returned, the ConfService will query the configuration server (see Query
Engine). Default value is always false.

Note that the RetrieveMultiple operation is NOT implemented in the default query engine, so
providing a policy where this method returns true will require a new query engine implementation.

Cache Extendability

Consistent with the design principles outlined above, the configuration cache is extendable via
custom implementations of provided interfaces. The two areas of the cache which can be extended
are the cache storage and the cache query engine.

Cache Storage

The storage interface defines the method by which objects are stored in the cache. When an instance
of an implementing object is provided to the cache, the cache will store all cached objects in the
storage component.

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 32

The default storage implementation stores cached objects using the object type and DBID as keys.
Note that this means that objects in the cache are assumed to be from one configuration database.
The default implementation is also thread safe using a reader/writer lock which allows for multiple
concurrent readers and one writer. The storage methods are as follows:

• Add – Adds a new object to the storage. If object already exists in the storage, the default
implementation thrown an exception.

• Update – Overwrites an existing object in the storage. If the object is not found in the storage, the
default implementation creates a new version of the object.

• Remove – Removes an object from the storage.
• Retrieve – Retrieves an enumerable list of all objects in the storage (filtered by type), and possibly

influenced by an optional helper parameter. Note that the helper parameter is not meant to provide
querying logic – that should be done in the query engine. Because the query engine is to some degree
dependent on the storage implementation, the helper parameter allows for some flexibility in the way
stored objects are enumerated for the query engine. The default implementation can take a
CfgObjectType as a helper parameter.

• Clear–Removes all objects in the storage.

Query Engine

The query engine provides the ability to define the method by which objects are located in the cache.

Depending on the IConfService policy, Retrieve requests as well as link resolution can first be
attempted through the cache. If the requested object is found in the cache, then that cached object is
returned instead of sending a request to Configuration Server. If the object is not present in the
cache, a request to Configuration Server is made.

A user-definable query engine module exists inside the cache to achieve this functionality. A query
engine must implement the IConfCacheQueryEngine interface, which provides methods to retrieve
objects (either individually, or as a list) and to test a query and determine if it can be executed.

If enabled by the policy, IConfService will attempt a query to its cache using the cache's query
engine interface. If a result is returned, the IConfService will not query the Configuration Server. By
following this contract, the Configuration Object Model user is then able to create a custom
implementation of the IConfCacheQueryEngine with any extended search capabilities which may be
missing from the simple default implementation.

Two implementations of the IConfCacheQueryEngine interface are provided in the Configuration
Object Model, as described below:

• DEFAULTCONFCACHEQUERYENGINE CLASS - The DefaultConfCacheQueryEngine class is a default
implementation of the IConfCacheQueryEngine interface.

• COMPOSITECONFCACHEQUERYENGINE CLASS - This class is a more advanced implementation of the
query engine which allows child query engine modules to be registered in order to interpret different
types of queries. It does not have a default query engine implementation, only the mechanism for
working with multiple child query engines.

Notification and Delta Handling

The default configuration cache will implement the ISubscriber<ConfEvent> interface which will
allow the cache to be subscribed to receive configuration events. When a cache instance is

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 33

associated with a Configuration Service, it will automatically be subscribed for configuration events
from that service (note that if a custom cache implementation also implements this interface it will
be subscribed for events as well). The way the cache is updated based on these notifications is
determined by the cache policy.

In addition, a new filter class will be added in order to allow the subscriber to filter the cache events.
The ConfCacheFilter will implement the MessageBroker's IPredicate interface, allowing for the
filter to be passed during registration for events via ISubscriptionService. The ConfCacheFilter's
properties will specify the parameters by which the events will be filtered. Initially, the supported
parameters will be object type, object DBID, and update type, allowing the user to filter events by
one or a combination of these parameters assuming an AND relationship between the parameters
specified.

The Configuration Object Model Application Block Interface

The following figures show the relationships among many of the classes that make up this application
block.

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 34

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 35

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 36

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 37

Using the Application Block

Installing the Configuration Object Model Application Block
Before you install the Configuration Object Model Application Block, it is important to review the
software requirements and the structure of the software distribution.

Software Requirements

To work with the Configuration Object Model Application Block, you must ensure that your system
meets the software requirements established in the Genesys Supported Operating Environment
Reference Manual, as well as meeting the following minimum software requirements:

• Genesys Configuration Platform SDK 8.0 or higher

Configuring the Configuration Object Model Application Block

In order to use the QuickStart application, you will need to set up the XML configuration file that
comes with the application block. This file is located at Quickstart\app.config. This is what the
contents look like:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<appSettings>
<add key="Uri" value="tcp://yourhost:yourport"/>

<add key="ClientName" value="StarterApp"/>

<add key="ClientType" value="CFGAgentDesktop"/>

<add key="UserName" value="default"/>

<add key="Password" value="password"/>

</appSettings>
</configuration>

Follow the instructions in the comments and save the file.

Building the Configuration Object Model Application Block

The Platform SDK distribution includes a
Genesyslab.Platform.ApplicationBlocks.ConfigurationObjectModel.dll file that you can use
as is. This file is located in the bin directory at the root level of the Platform SDK directory. To build
your own copy of this application block, follow the instructions below:

To build the Configuration Object Model Application Block:

1. Open the <Platform SDK Folder>\ApplicationBlocks\Com folder.
2. Double-click Com.sln.
3. Build the solution.

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 38

Using the QuickStart Application
The easiest way to start using the Configuration Object Model Application Block is to use the bundled
QuickStart application. This application ships in the same folder as the application block.

To run the QuickStart application:

1. Open the <Platform SDK Folder>\ApplicationBlocks\Com folder.
2. Double-click ComQuickStart.sln.
3. Build the solution.
4. Find the executable for the QuickStart application, which will be at <Platform SDK

Folder>\ApplicationBlocks\Com\QuickStart\bin\Debug\ComQuickStart.exe.
5. Double-click ComQuickStart.exe.

Editing Capacity Rules

The Configuration Object Model Application Block includes the CapacityRuleHelper class (introduced
in release 8.1.4) which allows you to edit and update Capacity Rules. This helper class presents an
XML representation for CfgScript objects of type CapacityRule, which can be updated and saved to
edit existing Capacity Rules.

An example of how to edit capacity rules is provided below.

IConfService service = ConfServiceFactory.CreateConfService(protocol);
service.Protocol.Open();
CfgScriptQuery query = new CfgScriptQuery(service);
CfgScript script = service.RetrieveObject(query);

An instance of the CapacityRuleHelper class can now be created with static method Create. This
method validates the input script object and can throw an exception (CapacityRuleException) if the
object is not valid. Once the instance is created, the XMLPresentation property allows you access to
Capacity Rules.

CapacityRuleHelper helper = CapacityRuleHelper.Create(script);
Document doc = helper.XMLPresentation;
// edit xml document here

The XMLPresentation property is able to be saved into the CapacityRuleHelper class instance.
Once changes have been made to the XML document, apply your changes using the following code:

helper.XMLPresentation = doc;
helper.Script.Save();
service.Protocol.Close();
ConfServiceFactory.ReleaseConfService(service);

Using the Configuration Object Model Application Block

Platform SDK Developer's Guide 39

	Platform SDK Developer's Guide
	Using the Configuration Object Model Application Block

