
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Lazy Parsing of Message Attributes

Platform SDK Developer's Guide

4/10/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Lazy Parsing of Message Attributes
• 1.1 Introduction to Lazy Parsing
• 1.2 Feature Overview

Platform SDK Developer's Guide 2



Lazy Parsing of Message Attributes
This page provides:

• an overview and list of requirements for the lazy parsing feature
• design details explaining how this feature works
• code examples showing how to implement lazy parsing in your applications

Introduction to Lazy Parsing

Lazy parsing allows users to specify which attributes should always be parsed immediately, and
which attributes should be parsed only on demand.

Some complex attributes (such as the ConfObject attribute found in some Configuration Server
protocol messages) are large and very complex. Unpacking these attributes can be time-consuming
and, in cases when an application is not interested in that data, can affect program performance. This
issue is resolved by using the "lazy parsing" feature included with the Platform SDK 8.1 release,
which is described in this article.

When this feature is turned off, all message attributes are parsed immediately - which is normal
behavior for previous version of the Platform SDK. When lazy parsing is enabled, any attributes that
were tagged for lazy parsing are only parsed on demand. In this case, if the application does not
explicitly check the value of an attribute tagged for lazy parsing then that attribute is never parsed at
all.

Feature Overview

• Platform SDK includes configuration options to turn the lazy parsing functionality on or off for each
individual protocol that supports this feature.

• Potentially time-consuming attributes that are candidates for lazy parsing are selected and marked by
Platform SDK developers. Refer to your Platform SDK API Reference for details.

• To maintain backwards compatibility, there is no change in how user applications access attribute
values.

• Default values:
• In Platform SDK for Java, the lazy parsing feature is turned on by default.

Note: The default value changed in release 8.1.4; in earlier releases of Platform SDK for Java,
lazy parsing is turned off by default.

• In Platform SDK for .NET, the lazy parsing feature is turned off by default.

Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 3



Java

System Requirements

Platform SDK for Java:

• Configuration SDK protocol release 8.1 or later<ref name="ConfObjectJava">Note: Currently, lazy
parsing is only used with the EventObjectsRead.ConfObject property of the Configuration Platform
SDK.</ref>

• Java SE 5, 6, 7

<references/>

Design Details

This section describes the main classes and interfaces you will need to be familiar with to implement
lazy parsing in your own application.

Enabling and Disabling the Lazy Parsing Feature
At any time, a running application can enable or disable lazy parsing for a specific protocol in just a
few lines of code. This is done in three easy steps:

1. Create a new KeyValueCollection object.
2. Set the appropriate value for the Connection.LAZY_PARSING_ENABLED_KEY field. A value of True

enables the feature, while False disables lazy parsing.
3. Use a KeyValueConfiguration object to apply that setting to the desired protocol(s).

Tip
Starting with release 8.1.4, the default value of the
Connection.LAZY_PARSING_ENABLED_KEY field is always True, with the lazy parsing
feature enabled.

Once lazy parsing mode is enabled for a protocol, the change is applied immediately. Every new
message that is received takes the lazy parsing setting into account: parsing entire messages if the
feature is disabled, or leaving some attributes unparsed until their values are requested if the feature
is enabled.

To enable lazy parsing for the Configuration Server protocol, an application would use the following
code:

Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 4



[Java]

KeyValueCollection kv = new KeyValueCollection();
kv.addString(Connection.LAZY_PARSING_ENABLED_KEY, "true");
KeyValueConfiguration kvcfg = new KeyValueConfiguration(kv);
ConfServerProtocol cfgChannel = new ConfServerProtocol(endpoint);
cfgChannel.configure(kvcfg); //lazy parsing is immediately active after this line

To disable lazy parsing for the protocol only the second line of code is changed before re-applying the
configuration, as shown below:

[Java]

kv.addString(Connection.LAZY_PARSING_ENABLED_KEY, "false");

.NET

System Requirements

• Configuration SDK protocol release 8.1 or later<ref name="ConfObjectNet">Note: Currently, lazy
parsing is only used with the EventObjectsRead.ConfObject property of the Configuration Platform
SDK.</ref>

• .NET Framework 3.5, 4.0, 4.5
• Visual Studio 2008 (required for .NET project files)

<references/>

Design Details

This section describes the main classes and interfaces you will need to be familiar with to implement
lazy parsing in your own application.

Enabling and Disabling the Lazy Parsing Feature
At any time, a running application can enable or disable lazy parsing for a specific protocol in just a
few lines of code. This is done in three easy steps:

1. Create a new KeyValueCollection object.
2. Set the appropriate value for the CommonConnection.LazyParsingEnabledKey field. A value of True

enables the feature, while False disables lazy parsing.
3. Use a KeyValueConfiguration object to apply that setting to the desired protocol(s).

Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 5



Tip
The default value of the CommonConnection.LazyParsingEnabledKey field is always
False, with the lazy parsing feature disabled.

Once lazy parsing mode is enabled for a protocol, the change is applied immediately. Every new
message that is received takes the lazy parsing setting into account: parsing entire messages if the
feature is disabled, or leaving some attributes unparsed until their values are requested if the feature
is enabled.

To enable lazy parsing for the Configuration Server protocol, an application would use the following
code:

[C#]

KeyValueCollection kvc = new KeyValueCollection();
kvc[CommonConnection.LazyParsingEnabledKey] = "true";
KeyValueConfiguration kvcfg = new KeyValueConfiguration(kvc);
ConfServerProtocol cfgChannel = new ConfServerProtocol(endpoint);
cfgChannel.Configure(kvcfg); //lazy parsing is immediately active after this line

To disable lazy parsing for the protocol only the second line of code is changed before re-applying the
configuration, as shown below:

[C#]

kvc[CommonConnection.LazyParsingEnabledKey] = "false";

Accessing Attribute Values
There is no difference in how applications access attribute values from returned messages. Whether
the lazy parsing feature is enabled or disabled, whether the attribute being access supports lazy
parsing or not, your code remains exactly the same.

However, you should consider differences in timing when accessing attribute values.

• When lazy parsing is disabled, the entire message is parsed immediately when it is received. Accessing
attribute values is very fast, as the requested information is already prepared.

• When lazy parsing is enabled, the delay to parse the message upon arrival is smaller but accessing any
attributes that support lazy parsing causes a slightly delay as that information must first be parsed.
Note that accessing the same attribute a second time will not result in the attribute information being
parsed a second time; Platform SDK saves parsed data.

Additional Notes

• XML Serialization — The XmlMessageSerializer class has been updated to support lazy parsing. If a
message that contains unparsed attributes is serialized, then XmlMessageSerializer will trigger
parsing before the serialization process begins.

• ToString method — Use of the ToString method does not trigger parsing of attributes that support
lazy parsing. In this case, each unparsed attribute has its name printed along with a value of: "<value

Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 6



is not yet parsed>".

Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 7


	Platform SDK Developer's Guide
	Lazy Parsing of Message Attributes

