
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Creating an E-Mail

Platform SDK Developer's Guide

4/13/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Creating an E-Mail

Java

This article discusses the general process used to create e-mail messages, and provides suggestions
about how you should work with those protocols.

Overview of Creating a New E-Mail Message

To create a new e-mail message, there are four basic steps you should follow:

1. Connect to Genesys Servers - Use the Protocol Manager Application Block to access the appropriate
Genesys Servers.

2. Create a new Interaction - Request a new Interaction that will be used to manage the e-mail message
within Interaction Server.

3. Store e-mail details in UCS - Once the Interaction is available, you can use the unique InteractionId
that is returned to create a new UCS entry that contains details and contents for the e-mail message.

4. Place the Interaction in the appropriate queue - When both parts of the e-mail message have been
stored, move the Interaction into the correct queue for processing.

A quick overview of these steps, and an outline of the key requests sent to Genesys servers, is shown
below.

Creating an E-Mail

Platform SDK Developer's Guide 2

Tip
The order of the second and third steps can be reversed, if desired, as long as the
final UCS entry contains the correct InteractionId value. In this case you would need to
update the UCS entry after creating the new Interaction.

The following sections include code snippets that show one possible approach for handling each of
these steps. The snippets have been simplified to focus only on code related to Genesys-specific
functions.

Connecting to Genesys Servers
When creating and handling e-mail interactions, it is important to remember how e-mail messages
are stored within the Genesys environment, and which Genesys servers you are interacting with.

Each e-mail message is stored as two separate pieces: an Interaction, and an entry in the Universal
Contact Server (UCS) database. The e-mail is represented as an Interaction so that it can be sorted
and processed using queues that have defined behavior. Even though e-mails are managed through
Interaction Server, the actual contents and subject matter of each message must be stored in the
UCS database. Any attempt to create or handle e-mail messages will require access to both Genesys
Servers: Interaction Server (using the Open Media protocol) and UCS (using the Contacts Platform
SDK protocol).

Before writing your e-mail application, some fairly standard code must be added to allow access to
these Genesys servers. First, all necessary references and import statements must be added to your
project. This includes the two specific protocols mentioned above, together with some common
Genesys libraries and the Protocol Manager Application Block.

With those statements in place, we configure the Protocol Manager Application Block to handle
communication with Genesys servers using the ProtocolManagementServiceImpl object, which is
defined and configured as shown below.

[Java]

private InteractionServerProtocol interactionServerProtocol;
private UniversalContactServerProtocol contactServerProtocol;

public void connectToProtocols() throws URISyntaxException, ProtocolException
{

Endpoint interactionServerEndpoint = new Endpoint(new URI("tcp://ixnServer:7005"));
interactionServerProtocol = new InteractionServerProtocol(interactionServerEndpoint);
interactionServerProtocol.setClientName("EmailSample");
interactionServerProtocol.setClientType(InteractionClient.AgentApplication);

Endpoint contactServerEndpoint = new Endpoint(new URI("tcp://ucsServer:7006"));
contactServerProtocol = new UniversalContactServerProtocol(contactServerEndpoint);
contactServerProtocol.setClientName("EmailSample");

interactionServerProtocol.beginOpen();
contactServerProtocol.beginOpen();

}

For more information about the Protocol Manager Application Block, see the Connecting to a Server
article found in this guide.

Creating an E-Mail

Platform SDK Developer's Guide 3

https://docs.genesys.com/Documentation/IW/8.1.4/Developer/ConnectingtoaServer

Creating an Interaction
With connections to the Genesys servers established, we are ready to request a new Interaction that
will represent our e-mail message in Interaction Server. You accomplish this by creating a new
RequestSubmit, setting a few parameters to indicate that this Interaction represents an e-mail
message, and then sending the request to Interaction Server with your ProtocolManagementService
object.

[Java]

public void createInteraction(String ixnType, String ixnSubtype, String queue) throws
Exception
{

RequestSubmit req = RequestSubmit.create();
req.setInteractionType(ixnType);
req.setInteractionSubtype(ixnSubtype);
req.setQueue(queue);
req.setMediaType("email");

Message response = interactionServerProtocol.request(req);
if(response == null || response.messageId() != EventAck.ID) {

// For this sample, no error handling is implemented
return;

}

EventAck event = (EventAck)response;
mInteractionId = event.getExtension().getString("InteractionId");

}

A full list of properties that need to be set is included in the table below. Note that the
InteractionType and InteractionSubtype properties must match existing business attributes, as
specified in Configuration Server.

Property Name Description

InteractionType
Interaction type for this e-mail message. Must
match an Interaction Type Business Attribute, as
specified in Configuration Server.

InteractionSubtype
Interaction subtype for this e-mail message. Must
match an Interaction Subtype Business Attribute,
as specified in Configuration Server.

Queue

Queue that this Interaction will be placed in
initially. Must be defined in Configuration Server.
When creating a new e-mail Interaction, the initial
queue should not process the message (because
additional information needs to be stored in UCS
first).

MediaType
Primary media type of the interaction that is being
submitted to Interaction Server. Intended for Media
Server.

Once a response is received from Interaction Server, you can confirm that an EventAck response was
returned and that the request was processed successfully. If an EventError response is returned
instead, then you will need to implement some error handling code.

It is also important to save and track the InteractionId value of the newly created Interaction. This

Creating an E-Mail

Platform SDK Developer's Guide 4

https://docs.genesys.com/Documentation/IW/8.1.4/Developer/CreatinganE-Mail#Other_Considerations

ID needs to be specified in UCS entries that hold details related to the e-mail message, and is also
required for moving the Interaction to an appropriate queue when you are ready to process the e-
mail. In this example we are storing the InteractionId value in a simple variable named
mInteractionId, which is assumed to be defined for your project. In larger samples (or full projects),
a more robust way of tracking and handling Interactions may be required.

Storing E-Mail Details in UCS
With the ID of your newly created Interaction available, it is time to store details about the e-mail you
are sending in the UCS database.

There are three types of information that must be stored in the UCS database:

• Interaction Attributes - Define details about the related Interaction for this information.
• Entity Attributes - Define where the e-mail message is coming from and going to. You will use

EmailOutEntityAttributes for storing outbound e-mail messages, and EmailInEntityAttributes for
storing inbound e-mail messages.

• Interaction Content - Define the actual contents of the email message, including the main text and any
MIME attachments.

Creating and configuring a RequestInsertInteraction object with this information can be easily
accomplished, as shown below.

[Java]

public void storeDetails(String ixnType, String ixnSubtype) throws Exception
{

// Set Interaction Attributes
InteractionAttributes ixnAttributes = new InteractionAttributes();
ixnAttributes.setId(mInteractionId);
ixnAttributes.setMediaTypeId("email");
ixnAttributes.setTypeId(ixnType);
ixnAttributes.setSubtypeId(ixnSubtype);
ixnAttributes.setTenantId(101);
ixnAttributes.setStatus(Statuses.Pending);
ixnAttributes.setSubject("Sample e-mail subject");
ixnAttributes.setEntityTypeId(EntityTypes.EmailOut);

// Set Entity Attributes
EmailOutEntityAttributes entityAttributes = new EmailOutEntityAttributes();
entityAttributes.setFromAddress("sending@email.com");
entityAttributes.setToAddresses("receiving@email.com");
entityAttributes.setCcAddresses("copying@email.com");
...

// Set Interaction Content
InteractionContent content = new InteractionContent();
content.setText("This is the e-mail body.");
...

// Send the request
RequestInsertInteraction req = new RequestInsertInteraction();
req.setInteractionAttributes(ixnAttributes);
req.setEntityAttributes(entityAttributes);
req.setInteractionContent(content);

contactServerProtocol.send(req);

Creating an E-Mail

Platform SDK Developer's Guide 5

}

A list of InteractionAttributes properties that need to be set for an email message is provided in
the following table. The properties shown for EmailOutEntityAttributes and InteractionContent
represent some of those most commonly used with email. Please check the documentation provided
for each class to see a full list of available properties.

Interaction Attribute Name Description

EntityTypeId Indicates whether this is an outgoing or incoming
e-mail.

Id Interaction ID of the related Interaction record,
created earlier.

MediaTypeId
Primary media type of the Interaction you are
submitting to Interaction Server. Intended for
Media Server.

Subject Subject line for this e-mail message.

SubtypeId
Interaction subtype for this e-mail message. Must
match an Interaction Subtype Business Attribute,
as specified in Configuration Server.

Status Current status of the e-mail message.
TenantId ID of the Tenant where this e-mail belongs.

TypeId
Interaction type for this e-mail message. Must
match an Interaction Type Business Attribute, as
specified in Configuration Server.

Placing the Interaction in the Appropriate Queue
When an Interaction has been created to handle the e-mail, and all content has been stored in the
UCS database, you are free to begin processing the message as you would process any normal
Interaction. This is accomplished by moving the Interaction that you created into the appropriate
queue for e-mail processing, as defined in Interaction Routing Designer.

[Java]

public void placeInQueue(String queue) throws Exception
{

RequestPlaceInQueue req = RequestPlaceInQueue.create();
req.setInteractionId(mInteractionId);
req.setQueue(queue);

interactionServerProtocol.send(req);
}

Replying to an E-Mail Message

Replying to an existing e-mail message follows the same basic process outlined above, but requires a
few additional parameters to be set in your requests. These changes are described in the following
subsections.

Creating an E-Mail

Platform SDK Developer's Guide 6

Changes to Creating an Interaction
When creating the Interaction, you need to specify one additional parameter before submitting your
RequestSubmit. Take the InteractionId of the Interaction that represents the original e-mail
message, and use that value as the ParentInteractionId parameter in your request, as shown
below:

[Java]

RequestSubmit req = RequestSubmit.create();

...

req.setParentInteractionId = parentInteractionId;

The following table describes these additional attributes.

Attribute Name Description

ParentInteractionId
InteractionId of a parent e-mail Interaction. Only
set this value when replying to an existing e-mail
message.

Changes to Storing E-Mail Details in UCS
When storing e-mail details in UCS, you need to specify values for three additional interaction
attributes before sending your RequestInsertInteraction. These attributes (shown in the code
snippet below) provide a link between the parent entry in UCS and any related children, as well as
specifying a common thread ID.

[Java]

InteractionAttributes ixnAttributes = new InteractionAttributes();

...

ixnAttributes.setParentId(parentInteractionId);
ixnAttributes.setCanBeParent(False);
ixnAttributes.setThreadId(parentThreadId);

The table below describes these additional attributes.

Attribute Name Description

CanBeParent Boolean value that indicates whether this message
can be a parent.

ParentId Interaction ID for the parent e-mail Interaction.

ThreadId Unique value that is shared between all UCS
entries in an e-mail conversation.

Creating an E-Mail

Platform SDK Developer's Guide 7

Other Considerations

Although this introduction to creating and handling e-mail messages is not intended to be a
comprehensive guide, it is useful to quickly introduce some other considerations and basic concepts
regarding how requests are submitted and how errors should be handled.

• The first consideration to take into account is how you submit requests using the Protocol Management
Application Block. In the code provided here, a simple send method is used to submit most requests
without waiting for a response from the server. However, in more complicated samples or
implementations you may need to process responses, or store and use values returned (such as the
InteractionId in this example) once a request is processed.

Please read the article on Event Handling provided in this document for a better understanding of
how to handle incoming responses in both a synchronous and asynchronous fashion. This allows
better error handling to be implemented if a request fails.

• A second consideration to be aware of is how records in Interaction Server and UCS are related when
implementing error handling. If you have already created a new Interaction when your
RequestInsertInteraction fails, then you will need to either resubmit the UCS record or delete the
related Interaction by submitting a RequestStopProcessing. (If you reversed the steps shown here and
created a UCS record first, then the same concept applies for removing that record when a new
Interaction request fails.)

.NET

Overview of Creating a New E-Mail Message

To create a new e-mail message, there are four basic steps you should follow:

1. Connect to Genesys Servers - Use the Protocol Manager Application Block to access the appropriate
Genesys Servers.

2. Create a new Interaction - Request a new Interaction that will be used to manage the e-mail message
within Interaction Server.

3. Store e-mail details in UCS - Once the Interaction is available, you can use the unique InteractionId that
is returned to create a new UCS entry that contains details and contents for the e-mail message.

4. Place the Interaction in the appropriate queue - When both parts of the e-mail message have been
stored, move the Interaction into the correct queue for processing.

A quick overview of these steps, and an outline of the key requests sent to Genesys servers, is shown
below.

Creating an E-Mail

Platform SDK Developer's Guide 8

https://docs.genesys.com/Documentation/IW/8.1.4/Developer/EventHandling

Tip
The order of the second and third steps can be reversed, if desired, as long as the
final UCS entry contains the correct InteractionId value. In this case you would
need to update the UCS entry after creating the new Interaction.

The following sections include code snippets that show one possible approach for handling each of
these steps. The snippets have been simplified to focus only on code related to Genesys-specific
functions.

Connecting to Genesys Servers
When creating and handling e-mail interactions, it is important to remember how e-mail messages
are stored within the Genesys environment, and which Genesys servers you are interacting with.

Each e-mail message is stored as two separate pieces: an Interaction, and an entry in the Universal
Contact Server (UCS) database. The e-mail is represented as an Interaction so that it can be sorted
and processed using queues that have defined behavior. Even though e-mails are managed through
Interaction Server, the actual contents and subject matter of each message must be stored in the
UCS database. Any attempt to create or handle e-mail messages will require access to both Genesys
Servers: Interaction Server (using the Open Media protocol) and UCS (using the Contacts Platform
SDK protocol).

Before writing your e-mail application, some fairly standard code must be added to allow access to
these Genesys servers. First, all necessary references and using statements must be added to your
project.

[C#]

private InteractionServerProtocol interactionServerProtocol;
private UniversalContactServerProtocol contactServerProtocol;

Creating an E-Mail

Platform SDK Developer's Guide 9

public void ConnectToProtocols()
{

var interactionServerEndpoint = new Endpoint(new Uri("tcp://ixnServer:7005"));
interactionServerProtocol = new InteractionServerProtocol(interactionServerEndpoint);
interactionServerProtocol.ClientName = "EmailSample";
interactionServerProtocol.ClientType = InteractionClient.AgentApplication;

var contactServerEndpoint = new Endpoint(new Uri("tcp://ucsServer:7006"));
contactServerProtocol = new UniversalContactServerProtocol(contactServerEndpoint);
contactServerProtocol.ClientName = "EmailSample";

interactionServerProtocol.BeginOpen();
contactServerProtocol.BeginOpen();

}

Creating an Interaction

With connections to the Genesys servers established, we are ready to request a new Interaction that
will represent our e-mail message in Interaction Server. All you need to do to accomplish this is to
create a new RequestSubmit, set a few parameters to indicate that this Interaction represents an e-
mail message, and then use your InteractionServerProtocol object to send that request to
Interaction Server.

Unlike other requests shown in this article, RequestSubmit is sent using the BeginRequest method
so that we can receive and process the response from Interaction Server.

[C#]

public void CreateInteraction(string ixnType, string ixnSubtype, string queue)
{
var req = RequestSubmit.Create();
req.InteractionType = ixnType;
req.InteractionSubtype = ixnSubtype;
req.MediaType = "email";
req.Queue = queue;

interactionServerProtocol.BeginRequest(req, new AsyncCallback(OnCreateInteractionComplete),
null);
}

A full list of properties that need to be set is included in the following table. Note that the
InteractionType and InteractionSubtype properties must match existing business attributes, as
specified in Configuration Server.

Property Name Description

InteractionSubtype
Interaction subtype for this e-mail message. Must
match an Interaction Subtype Business Attribute,
as specified in Configuration Server.

InteractionType
Interaction type for this e-mail message. Must
match an Interaction Type Business Attribute, as
specified in Configuration Server.

MediaType Primary media type of the interaction that is being
submitted to Interaction Server. Intended for Media

Creating an E-Mail

Platform SDK Developer's Guide 10

Property Name Description
Server.

Queue

Queue that this Interaction will be placed in
initially. Must be defined in Configuration Server.
When creating a new e-mail Interaction, the initial
queue should not process the message (because
additional information needs to be stored in UCS
first).

Once a response is received from Interaction Server, you can confirm that an EventAck response was
returned and that the request was processed successfully. If an EventError response is returned
instead, then you will need to implement some error handling code.

You should also save and track the InteractionId value of the newly created Interaction. This ID
needs to be specified in UCS entries that hold details related to the e-mail message, and is also
required for moving the Interaction to an appropriate queue when you are ready to process the e-
mail.

[C#]

private void OnCreateInteractionComplete(IAsyncResult result)
{

var response = interactionServerProtocol.EndRequest(result);
if (response == null || response.Id != EventAck.MessageId)

// for this sample, no error handling is implemented
return;

var @event = response as EventAck;
mInteractionId = (string)@event.Extension["InteractionId"];

}

In this example we are storing the InteractionId value in a simple variable named
mInteractionId, which is assumed to be defined for your project. In larger samples (or full projects),
a more robust way of tracking and handling Interactions may be required.

Storing E-Mail Details in UCS
With the ID of your newly created Interaction available, it is time to store details about the e-mail you
are sending in the UCS database.

There are three types of information that must be stored in the UCS database:

• Interaction Attributes - Define details about the related Interaction for this information.
• Entity Attributes - Define where the e-mail message is coming from and going to. You will use

EmailOutEntityAttributes for storing outbound e-mail messages, and EmailInEntityAttributes for storing
inbound e-mail messages.

• Interaction Content - Define the actual contents of the email message, including the main text and any
MIME attachments.

Creating and configuring a RequestInsertInteraction object with this information can be easily
accomplished, as shown below.

[C#]

Creating an E-Mail

Platform SDK Developer's Guide 11

public void StoreDetails(string ixnType, string ixnSubtype)
{

var req = new RequestInsertInteraction();
req.InteractionAttributes = new InteractionAttributes()
{

Id = mInteractionId,
MediaTypeId = "email",
TypeId = ixnType,
SubtypeId = ixnSubtype,
TenantId = 101,
Status = new NullableStatuses(Statuses.Pending),
Subject = "Sample e-mail subject",
EntityTypeId = new NullableEntityTypes(EntityTypes.EmailOut),

};
req.EntityAttributes = new EmailOutEntityAttributes()
{

FromAddress = "sending@email.com",
ToAddresses = "receiving@email.com",
CcAddresses = "copied@email.com",
...

};
req.InteractionContent = new InteractionContent()
{

Text = "This is the e-mail body.",
...

};
contactServerProtocol.Send(req);

}

A list of InteractionAttributes properties that need to be set for an email message is provided in
the following table. The properties shown for EmailOutEntityAttributes and InteractionContent
represent some of those most commonly used with email. Please check the documentation provided
for each class to see a full list of available properties.

Interaction Attribute Name Description

EntityTypeId Indicates whether this is an outgoing or incoming
e-mail.

Id Interaction ID of the related Interaction record,
created earlier.

MediaTypeId
Primary media type of the Interaction you are
submitting to Interaction Server. Intended for
Media Server.

Subject Subject line for this e-mail message.

SubtypeId
Interaction subtype for this e-mail message. Must
match an Interaction Subtype Business Attribute,
as specified in Configuration Server.

Status Current status of the e-mail message.
TenantId ID of the Tenant where this e-mail belongs.

TypeId
Interaction type for this e-mail message. Must
match an Interaction Type Business Attribute, as
specified in Configuration Server.

Creating an E-Mail

Platform SDK Developer's Guide 12

Placing the Interaction in the Appropriate Queue
When an Interaction has been created to handle the e-mail, and all content has been stored in the
UCS database, you are free to begin processing the message as you would process any normal
Interaction. This is accomplished by moving the Interaction that you created into the appropriate
queue for e-mail processing, as defined in Interaction Routing Designer.

[C#]

public void PlaceInQueue(string queue)
{

var req = RequestPlaceInQueue.Create();
req.InteractionId = mInteractionId;
req.Queue = queue;

interactionServerProtocol.Send(req);
}

Replying to an E-Mail Message

Replying to an existing e-mail message follows the same basic process outlined above, but requires a
few additional parameters to be set in your requests. These changes are described in the following
subsections.

Changes to Creating an Interaction
When creating the Interaction, you need to specify one additional parameter before submitting your
RequestSubmit. Take the InteractionId of the Interaction that represents the original e-mail
message, and use that value as the ParentInteractionId parameter in your request, as shown
below:

[C#]

var req = RequestSubmit.Create();
...
req.ParentInteractionId = parentInteractionId;

The following table describes these additional attributes.

Attribute Name Description

ParentInteractionId
InteractionId of a parent e-mail Interaction. Only
set this value when replying to an existing e-mail
message.

Changes to Storing E-Mail Details in UCS
When storing e-mail details in UCS, you need to specify values for three additional interaction
attributes before sending your RequestInsertInteraction. These attributes (shown in the code
snippet below) provide a link between the parent entry in UCS and any related children, as well as
specifying a common thread ID.

Creating an E-Mail

Platform SDK Developer's Guide 13

[C#]

var req = new RequestInsertInteraction();
...
req.InteractionAttributes.ParentId = parentInteractionId;
req.InteractionAttributes.CanBeParent = False;
req.InteractionAttributes.ThreadId = parentThreadId;

The following table describes these additional attributes.

Attribute Name Description

CanBeParent Boolean value that indicates whether this message
can be a parent.

ParentId Interaction ID for the parent e-mail Interaction.

ThreadId Unique value that is shared between all UCS
entries in an e-mail conversation.

Other Considerations

Although this introduction to creating and handling e-mail messages is not intended to be a
comprehensive guide, it is useful to quickly introduce some other considerations and basic concepts
regarding how requests are submitted and how errors should be handled.

The first consideration to take into account is how you submit requests. In the code provided here, a
simple Send method is used to submit most requests without waiting for a response from the server.
However, for more complicated samples or implementations you should consider using the
BeginRequest method with a callback handler instead.

Using BeginRequest allows requests to be submitted without waiting for a response, but provides the
ability to confirm the result and response of each request. This allows better error handling to be
implemented if a request fails. Creating an Interaction uses the BeginRequest method and a callback
handler to capture the InteractionID that is returned.

A second consideration to be aware of is how records in Interaction Server and UCS are related when
implementing error handling. If you have already created a new Interaction and then the
RequestInsertInteraction fails, you need to either resubmit the UCS record or delete the related
Interaction by submitting a RequestStopProcessing. (If you reversed those steps and created a UCS
record first, then the same idea must be applied if the request to create a new Interaction fails.)

Creating an E-Mail

Platform SDK Developer's Guide 14

	Platform SDK Developer's Guide
	Creating an E-Mail

