
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Configuration

Platform SDK Developer's Guide

5/2/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Configuration
You can use the Configuration Platform SDK to write Java or .NET applications that access and update
information from the Genesys Configuration Layer. These applications can range from the simple to
the advanced.

This article shows how to implement the basic functions you will need to write a simple Configuration
Layer application.

Once you have reviewed the information in this document, you should familiarize yourself with
Configuration Layer Objects. Since the Configuration Platform SDK uses these objects for nearly
everything it does, you will need to understand them before you start using this SDK.

Tip
The Platform SDK includes the Configuration Object Model Application Block, which is
a high-performance component you can use to query on, and to create, update, and
delete, Configuration Layer objects. Genesys recommends that you use this
application block for most of the work you do with Configuration Layer objects.

When you are ready to write more complicated applications, take a look at the classes and methods
described in the Platform SDK API Reference.

Java

Setting Up a ConfServerProtocol Object

The first thing you need to do to use the Configuration Platform SDK is instantiate a
ConfServerProtocol object. To do that, you must supply information about the Configuration Server
you want to connect with. This example uses the URI of the Configuration Server, but you can also
use the server's name, host, and port information:

[Java]

ConfServerProtocol confServerProtocol =
new ConfServerProtocol(

new Endpoint(
confServerUri));

Configuration Server needs some additional information in order to create a successful connection.
This information includes the type of client you wish to create, your client's name, and your user
name and password:

Configuration

Platform SDK Developer's Guide 2

https://docs.genesys.com/Documentation/IW/8.1.4/Developer/IntrotoConfigLayerObjects
https://docs.genesys.com/Documentation/IW/8.1.4/Developer/UsingtheCOMAB
https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome

[Java]

confServerProtocol.setClientApplicationType(CfgAppType.CFGSCE.asInteger());
confServerProtocol.setClientName("default");
confServerProtocol.setUserName(userName);
confServerProtocol.setUserPassword(password);

After instantiating the ConfServerProtocol object, you need to open the connection to the
Configuration Server:

[Java]

confServerProtocol.open();

Creating a Query

Now that you have opened a connection, you can create a query and send it to Configuration Server.
Let's say that you want to get information about a particular agent. To do this, you will need to supply
the agent's user name using a filter key.

The filter key tells Configuration Server to narrow your query to a specific agent, rather than
retrieving information about all of the persons in your contact center:

[Java]

KeyValueCollection filterKey = new KeyValueCollection();
filterKey.addObject("user_name", userName);

You can find the names of the filter keys for Person objects by looking in the Filter Keys section of the
CfgPerson entry.

Tip
A similar reference page is available for each Configuration Layer object.

Now you are ready to create the request.

As you may know, Configuration Server considers agents to be objects of type CfgPerson. So you will
need to create a request for information about a Person who has the user name you specified in the
filter key:

[Java]

CfgObjectType objectType = CfgObjectType.CFGPerson;
int intPerson = objectType.asInteger();
RequestReadObjects requestReadObjects =

RequestReadObjects.create(
intPerson,
filterKey);

Configuration

Platform SDK Developer's Guide 3

https://docs.genesys.com/Documentation/IW/8.1.4/Developer/CfgPerson
https://docs.genesys.com/Documentation/IW/8.1.4/Developer/IntrotoConfigLayerObjects
https://docs.genesys.com/Documentation/IW/8.1.4/Developer/CfgPerson

Important
While the Configuration Layer supports the full character set in defining object names,
using certain characters can cause problems in the behavior of some Genesys
applications. Avoid using spaces, dashes, periods, or special characters in object
names. Consider using underscores where you might normally use spaces or dashes.

After you have created your request, you can send it to Configuration Server, as shown here:

[Java]

confServerProtocol.send(requestReadObjects);

If the request is successful, you will receive an EventObjectsRead message.

Tip
When you send a RequestReadObjects message, Configuration Server may send more
than one EventObjectsRead messages in response, depending on whether there is
too much data to be handled by a single EventObjectsRead. Once you have received
all of the EventObjectsRead messages, Configuration Server will also send an
EventObjectsSent, which confirms that it has completed your request. For more
information, refer to the article on event handling.

Interpreting the Response

The information you asked for is returned by invoking the getConfObject method of the
EventObjectsRead message. This method returns an org.w3c.dom.Document representation of the
object.

Here is a sample of how you might print the XML document:

[Java]

EventObjectsRead objectsRead =
(EventObjectsRead) theMessage;

System.out.println(theMessage.messageName());
System.out.println("There are "

+ objectsRead.getObjectTotalCount() + " objects of this type.");
Document resultDocument =

(Document) objectsRead.getConfObject();

... Add code to parse and print...

And this is what the XML document might look like:

<ConfData>
<CfgPerson>

<DBID value="105"/>

Configuration

Platform SDK Developer's Guide 4

https://docs.genesys.com/Documentation/IW/8.1.4/Developer/EventHandling

<tenantDBID value="101"/>
<lastName value="agent1"/>
<firstName value="Agent"/>
<employeeID value="agent1"/>
<userName value="agent1"/>
<password value="204904E461002B28511D5880E1C36A0F"/>
<isAgent value="2"/>
<CfgAgentInfo>

<placeDBID value="102"/>
<skillLevels>

<CfgSkillLevel>
<skillDBID value="101"/>
<level value="9"/>

</CfgSkillLevel>
</skillLevels>
<agentLogins>

<CfgAgentLoginInfo>
<agentLoginDBID value="103"/>
<wrapupTime value="0"/>

</CfgAgentLoginInfo>
</agentLogins>
<capacityRuleDBID value="127"/>

</CfgAgentInfo>
<isAdmin value="1"/>
<state value="1"/>
<userProperties>

<list_pair key="desktop-redial">
<str_pair key="phone-number0" value="5551212"/>
<str_pair key="phone-number1" value=""/>
<str_pair key="phone-number2" value=""/>
<str_pair key="phone-number3" value=""/>
<str_pair key="phone-number4" value=""/>
<str_pair key="phone-number5" value=""/>
<str_pair key="phone-number6" value=""/>
<str_pair key="phone-number7" value=""/>
<str_pair key="phone-number8" value=""/>
<str_pair key="phone-number9" value=""/>

</list_pair>
<list_pair key="multimedia">

<str_pair key="last-media-logged"
value="voice,email"/>

</list_pair>
</userProperties>
<emailAddress value="agent1@techpubs3"/>

</CfgPerson>
</ConfData>

This XML document contains information about a Person. To interpret the information contained in
the document, look at the Parameters section for CfgPerson.

If you compare the elements in this XML document to the CfgPerson entry, you can see that some of
them contain information that is explained in detail in another entry. For example, the CfgAgentInfo
element contains information that is described in the CfgAgentInfo entry. Similarly, the
CfgAgentLoginInfo element contains information described in the CfgAgentLoginInfo entry.

Updating an Object

You can update a Configuration Layer object by passing in an XML Document containing the

Configuration

Platform SDK Developer's Guide 5

https://docs.genesys.com/Documentation/IW/8.1.4/Developer/CfgPerson
https://docs.genesys.com/Documentation/IW/8.1.4/Developer/CfgPerson
https://docs.genesys.com/Documentation/IW/8.1.4/Developer/CfgAgentInfo
https://docs.genesys.com/Documentation/IW/8.1.4/Developer/CfgAgentLoginInfo

appropriate information about that object:

[Java]

CfgObjectType objectType = CfgObjectType.CFGPerson;
int intPerson = objectType.asInteger();
RequestUpdateObject requestUpdateObject =

RequestUpdateObject.create(
intPerson,
xmlDocument);

Creating a New Object

You can also create a new Configuration Layer object by sending an XML Document to Configuration
Server, as shown here:

[Java]

CfgObjectType objectType = CfgObjectType.CFGPerson;
int intPerson = objectType.asInteger();
RequestCreateObject requestCreateObject =

RequestCreateObject.create(
intPerson,
xmlDocument);

Closing the Connection

Finally, when you are finished communicating with the Configuration Server, you should close the
connection, in order to minimize resource utilization:

[Java]

confServerProtocol.close();

Working with Delta Objects

When using the Configuration Platform SDK to change attribute values of a configuration object, it is
important to understand how "delta structures" work.

A delta structure contains values for each attribute in the configuration object. When a change is
requested, a delta object is created that contains values for each attribute. Delta values are
initialized to either zero (for integer values) or a null string - defaults that indicate no change should
be made for that attribute. To change attributes of a configuration object, you first set the delta value
for that attribute and then send the request to Configuration Server to be processed. Only attribute
values that are changing should be specified in the delta structure for that object.

Any attributes with a delta value set to zero are left unchanged, so there are two special cases to
remember when updating integer values in a configuration object:

Configuration

Platform SDK Developer's Guide 6

• leaving the integer as 0 (zero) means that attribute does not change;
• setting a delta value to the current value of the configuration object attribute will change that attribute

value to zero.

For example, if an Agent skill level is currently set to 5, then the following table illustrates the effect
of various delta structure values:

Initial Attribute Value Delta Structure Value Updated Attribute
Value Comment

5 3 3

Setting the delta
structure value to a
non-zero integer will
change the attribute to
that value.

5 0 5
Leaving the delta
structure value as zero
will leave the attribute
unchanged.

5 5 0

Setting the delta
structure value to the
current attribute value
will change the attribute
to zero.

Requests sent by SOAP clients and formed in an XML format do not use delta structures, because
these types of request do not require all attributes to be present. The COM application block (which is
shipped with the Platform SDKs) also does not use delta objects, as shown in the following code
snippet:

[Java]

//retrieve an agent that has a single skill, with skill level set to 5
CfgPersonQuery query = new CfgPersonQuery();
query.setUserName("userName");
CfgPerson person = confService.retrieveObject(CfgPerson.class, query);

//Setting the skill level to 5 again will NOT result in a change in skill level (ie: it will
remain 5).
((List<CfgSkillLevel>)person.getAgentInfo().getSkillLevels()).get(0).setLevel(5);
person.save();

//Setting the skill level to 0 will actually change the current skill level value.
((List<CfgSkillLevel>)person.getAgentInfo().getSkillLevels()).get(0).setLevel(0);
person.save();

.NET

Configuration

Platform SDK Developer's Guide 7

Setting Up a ConfServerProtocol Object

The first thing you need to do to use the Configuration Platform SDK is instantiate a
ConfServerProtocol object. To do that, you must supply information about the Configuration Server
you want to connect with. This example uses the URI of the Configuration Server, but you can also
use the server's name, host, and port information:

[C#]

ConfServerProtocol confServerProtocol =
new ConfServerProtocol(

new Endpoint(
confServerUri));

Configuration Server needs some additional information in order to create a successful connection.
This information includes the type of client you wish to create, your client's name, and your user
name and password:

[C#]

confServerProtocol.ClientApplicationType = (int) CfgAppType.CFGSCE;
confServerProtocol.ClientName = clientName;
confServerProtocol.UserName = userName;
confServerProtocol.UserPassword = password;

After instantiating the ConfServerProtocol object, you need to open the connection to the
Configuration Server:

[C#]

confServerProtocol.Open();

Creating a Query

Now that you have opened a connection, you can create a query and send it to Configuration Server.
Let's say that you want to get information about a particular agent. To do this, you will need to supply
the agent's user name using a filter key.

The filter key tells Configuration Server to narrow your query to a specific agent, rather than
retrieving information about all of the persons in your contact center:

[C#]

KeyValueCollection filterKey = new KeyValueCollection();
filterKey.Add("user_name", userName);

You can find the names of the filter keys for Person objects by looking in the Filter Keys section of the
CfgPerson entry in the Configuration Objects section of this API reference. This section has a similar
reference page for each Configuration Layer object.

Now you are ready to create the request.

As you may know, Configuration Server considers agents to be objects of type CfgPerson. So you will

Configuration

Platform SDK Developer's Guide 8

https://docs.genesys.com/Documentation/IW/8.1.4/Developer/CfgPerson
https://docs.genesys.com/Documentation/IW/8.1.4/Developer/CfgPerson

need to create a request for information about a Person who has the user name you specified in the
filter key:

[C#]

RequestReadObjects requestReadObjects =
RequestReadObjects.Create(

(int) CfgObjectType.CFGPerson,
filterKey);

Important
While the Configuration Layer supports the full character set in defining object names,
using certain characters can cause problems in the behavior of other Genesys
applications. Avoid spaces, dashes, periods, or special characters in object names.
Consider using underscores where you might normally use spaces or dashes.

After you have created your request, you can send it to Configuration Server, as shown here:

[C#]

confServerProtocol.Send(requestReadObjects);

If the request is successful, you will receive an EventObjectsRead message.

Tip
When you send a RequestReadObjects message, Configuration Server may send
more than one EventObjectsRead messages in response, depending on whether
there is too much data to be handled by a single EventObjectsRead. Once you have
received all of the EventObjectsRead messages, Configuration Server will also send
an EventObjectsSent, which confirms that it has completed your request. For more
information, refer to the article on event handling at the beginning of this API
Reference.

Interpreting the Response

The information you asked for is returned in the ConfObject property of the EventObjectsRead
message.

Here is a sample of how you might print the XML document:

[C#]

EventObjectsRead objectsRead = theMessage;

StringBuilder xmlAsText = new StringBuilder();
XmlWriterSettings xmlSettings = new XmlWriterSettings();

Configuration

Platform SDK Developer's Guide 9

xmlSettings.Indent = true;

using (XmlWriter xmlWriter =
XmlWriter.Create(xmlAsText, xmlSettings))

{
XDocument resultDocument = objectsRead.ConfObject;
resultDocument.WriteTo(xmlWriter);

}

Console.WriteLine("This is the response:\n"
+ xmlAsText.ToString() + "\n\n");

And this is what the XML document might look like:

<ConfData>
<CfgPerson>

<DBID value="105"/>
<tenantDBID value="101"/>
<lastName value="agent1"/>
<firstName value="Agent"/>
<employeeID value="agent1"/>
<userName value="agent1"/>
<password value="204904E461002B28511D5880E1C36A0F"/>
<isAgent value="2"/>
<CfgAgentInfo>

<placeDBID value="102"/>
<skillLevels>

<CfgSkillLevel>
<skillDBID value="101"/>
<level value="9"/>

</CfgSkillLevel>
</skillLevels>
<agentLogins>

<CfgAgentLoginInfo>
<agentLoginDBID value="103"/>
<wrapupTime value="0"/>

</CfgAgentLoginInfo>
</agentLogins>
<capacityRuleDBID value="127"/>

</CfgAgentInfo>
<isAdmin value="1"/>
<state value="1"/>
<userProperties>

<list_pair key="desktop-redial">
<str_pair key="phone-number0" value="5551212"/>
<str_pair key="phone-number1" value=""/>
<str_pair key="phone-number2" value=""/>
<str_pair key="phone-number3" value=""/>
<str_pair key="phone-number4" value=""/>
<str_pair key="phone-number5" value=""/>
<str_pair key="phone-number6" value=""/>
<str_pair key="phone-number7" value=""/>
<str_pair key="phone-number8" value=""/>
<str_pair key="phone-number9" value=""/>

</list_pair>
<list_pair key="multimedia">

<str_pair key="last-media-logged"
value="voice,email"/>

</list_pair>
</userProperties>
<emailAddress value="agent1@techpubs3"/>

</CfgPerson>
</ConfData>

Configuration

Platform SDK Developer's Guide 10

This XML document contains information about a Person. To interpret the information contained in the
document, look at the Parameters section of the CfgPerson entry in the list of Configuration Objects.

If you compare the elements in this XML document to the CfgPerson entry, you can see that some of
them contain information that is explained in detail in another entry. For example, the CfgAgentInfo
element contains information that is described in the CfgAgentInfo entry. Similarly, the
CfgAgentLoginInfo element contains information described in the CfgAgentLoginInfo entry.

Updating an Object

You can update a Configuration Layer object by passing in an XML document (of type XDocument)
containing the appropriate information about that object:

[C#]

RequestUpdateObject requestUpdateObject =
RequestUpdateObject.Create(

(int) CfgObjectType.CFGPerson,
xDocument);

Creating a New Object

You can also create a new Configuration Layer object by sending an XML Document (of type
XDocument) to Configuration Server, as shown here:

[C#]

RequestCreateObject requestCreateObject =
RequestCreateObject.Create(

(int) CfgObjectType.CFGPerson,
xDocument);

Closing the Connection

Finally, when you are finished communicating with the Configuration Server, you should close the
connection, in order to minimize resource utilization:

[C#]

confServerProtocol.Close();

Working with Delta Objects

When using the Configuration Platform SDK to change attribute values of a configuration object, it is
important to understand how "delta structures" work.

Configuration

Platform SDK Developer's Guide 11

https://docs.genesys.com/Documentation/IW/8.1.4/Developer/CfgPerson
https://docs.genesys.com/Documentation/IW/8.1.4/Developer/CfgPerson
https://docs.genesys.com/Documentation/IW/8.1.4/Developer/CfgAgentInfo
https://docs.genesys.com/Documentation/IW/8.1.4/Developer/CfgAgentLoginInfo

A delta structure contains values for each attribute in the configuration object. When a change is
requested, a delta object is created that contains values for each attribute. Delta values are
initialized to either zero (for integer values) or a null string - defaults that indicate no change should
be made for that attribute. To change attributes of a configuration object, you first set the delta value
for that attribute and then send the request to Configuration Server to be processed. Only attribute
values that are changing should be specified in the delta structure for that object.

Any attributes with a delta value set to zero are left unchanged, so there are two special cases to
remember when updating integer values in a configuration object:

• leaving the integer as 0 (zero) means that attribute does not change;
• setting a delta value to the current value of the configuration object attribute will change that attribute

value to zero.

For example, if an Agent skill level is currently set to 5, then the following table illustrates the effect
of various delta structure values:

Initial Attribute Value Delta Structure Value Updated Attribute
Value Comment

5 3 3

Setting the delta
structure value to a
non-zero integer will
change the attribute to
that value.

5 0 5
Leaving the delta
structure value as zero
will leave the attribute
unchanged.

5 5 0

Setting the delta
structure value to the
current attribute value
will change the attribute
to zero.

Note that requests sent by SOAP clients and formed in an XML format do not use delta structures,
because these types of request do not require all attributes to be present. The COM application block
(which is shipped with the Platform SDKs) also does not use delta objects, as shown in the following
code snippet:

[C#]

//retrieve a particular agent whose last name is "Jones"
CfgPersonQuery query = new CfgPersonQuery();
query.UserName = "userName";
query.LastName = "Jones";
CfgPerson person = myConfService.RetrieveObject<CfgPerson>(query);

//Setting the last name to the same value will NOT result in a change
person.LastName = "Jones";
person.Save();

//Setting the last name to a different value will change the actual value
person.LastName = "Smith";
person.Save();

Configuration

Platform SDK Developer's Guide 12

	Platform SDK Developer's Guide
	Configuration

