
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Using the Switch Policy Library

Platform SDK Developer's Guide

4/30/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Using the Switch Policy Library
This document shows how to add simple T-Server functionality to your applications by using the
Switch Policy Library.

The Platform SDK Switch Policy Library (SPL) can be used in applications that need to perform agent-
related switch activity with a variety of T-Servers, without knowing beforehand what kinds of T-
Servers will be used. It simplifies these applications by indicating which switch functions are available
at any given time and also by showing how you can use certain switch features in your applications.
However, if your application works with only one kind of T-Server, you may want to have your
application communicate directly with the T-Server, rather than using SPL.

Switch Policy Library Overview

Some telephony applications need to work with more than one type of switch. Unfortunately,
however, one switch may not perform a particular telephony function in the same way as another
switch. This means that it can be useful to have an abstraction layer of some kind when working with
multiple switches, so that you do not need custom code for each switch that is used by the
application. The Switch Policy Library is designed with just this kind of abstraction in mind.

Java

Setting Up Switch Policy Library

SPL should be used by your agent desktop applications as a library, which means that it would be
located within the agent desktop application shown above. The application can call SPL for guidance
on how to send requests to or process events from your T-Server, as shown in the Code Samples
section.

SPL is driven by an XML-based configuration file that supports many commonly-used switches in
performing agent-related functions. Your application can query SPL to determine whether a particular
feature is supported for the switch you want to work with. If a feature you need is not supported for
the switches you need to work with, you can make a copy of the default configuration file and modify
it as needed.

Important
Genesys does not support modifications to the SPL configuration file. Any
modifications you make are performed at your own risk.

Using the Switch Policy Library

Platform SDK Developer's Guide 2

A copy of the default configuration file is included inside the Switch Policy Library JAR file. You can
extract the XML configuration file from switchpolicy.jar, modify it, and pass it as an argument to
the corresponding method of the SwitchPolicyServiceFactory factory class.

Code Samples

This section contains examples of how to perform useful functions with SPL.

These samples each require a valid instance of the ISwitchPolicyService, which can be created as
shown here:

[Java]

ISwitchPolicyService service =
SwitchPolicyServiceFactory.createSwitchPolicyService();

Tip
The DN classes specified below implement the IDNContext interface, while the Party
classes implement the IPartyContext interface, and the Call classes implement the
ICallContext interface.

Customizing the XML Configuration File
The following code samples create a service using the default configuration. As noted above,
Genesys does not support modifications to the default SPL configuration file. Should you decide to
assume the risk of creating a custom XML configuration file, your application can access this file as
shown here:

[Java]

public void serviceCreationWithParent(ApplicationContext parent) {
final String file_path =

"<Path to XML Configuration File>";
FileSystemResource resource =

new FileSystemResource(file_path);
ISwitchPolicyService service =

SwitchPolicyServiceFactory.createSwitchPolicyService(parent, resource);
}

Get A Phone Set Configuration
On some switches, phone sets are presented as more than one Directory Number (DN). These DNs
may also have different types, such as Position and Extension. Because these configurations vary by
switch type, an application needs to know how the phone set configuration for a particular switch is
structured. For example, it needs to know how many DNs are used to represent a phone set, and
what their types are. To retrieve this phone set configuration information, perform the following steps:

1. Create an instance of PhoneSetConfigurationContext, specifying the switch type.

Using the Switch Policy Library

Platform SDK Developer's Guide 3

2. Call ISwitchPolicyService.getPolicy, using this PhoneSetConfigurationContext.
3. Analyze the returned PhoneSetConfigurationPolicy. The

PhoneSetConfigurationPolicy.getConfigurations method will return all possible phone set
configurations for the specified switch.

The following code snippet shows how to do this:

[Java]

ISwitchPolicyService service =
SwitchPolicyServiceFactory.createSwitchPolicyService();

PhoneSetConfigurationContext context =
new PhoneSetConfigurationContext("SwitchName");

PhoneSetConfigurationPolicy policy =
service.getPolicy(PhoneSetConfigurationPolicy.class, context);

System.out.println(policy);

Get Phone Set Availability Information
When working with a phone set, additional information about the included DNs may be required. This
could include information about which of the DNs should be available to the end user (for example,
which ones should be visible in the user interface), which of them is callable, and which number (the
Callable Number) the application should use to reach the agent who is logged into the phone set. To
retrieve this phone set availability information, perform the following steps:

1. Create an instance of DNAvailabilityContext and populate it with the following required information:
1. Specify the switch type.
2. Specify the Agent ID.
3. Fill the DN collection with valid implementations of IDNContext.

2. Call ISwitchPolicyService.getPolicy, using this DNAvailabilityContext.
3. Analyze the returned DNAvailabilityPolicy. The DNAvailabilityPolicy.getDNStatuses method will

return availability information for each DN in the request.

The following code snippet shows how to do this:

[Java]

String extDN = "1001";
String posDN = "2001";
String agentID = "9999";
// logout, in service
DNAvailabilityContext context = new DNAvailabilityContext(switchname);
context.setAgentId(agentID);
DNContextStub ext = new DNContextStub(); // implements IDNContext interface
ext.setIdentifier(extDN);
ext.setAgentStatus(AgentStatus.LOGOUT);
ext.setServiceStatus(ServiceStatus.IN_SERVICE);
ext.setType(AddressType.DN);

DNContextStub pos = new DNContextStub(); // implements IDNContext interface
pos.setIdentifier(posDN);
pos.setAgentStatus(AgentStatus.LOGOUT);
pos.setServiceStatus(ServiceStatus.IN_SERVICE);
pos.setType(AddressType.Position);

Using the Switch Policy Library

Platform SDK Developer's Guide 4

ArrayList<IDNContext> dns = new ArrayList<IDNContext>();
dns.add(ext);
dns.add(pos);
context.setDNs(dns);

// here service is correctly initialized instance of ISwitchPolicyService
DNAvailabilityPolicy policy = service.getPolicy(DNAvailabilityPolicy.class, context);
System.out.println(policy);

Get Function Availability Information for the Current Context
Some switches differ in when they allow certain functions to be performed. Also, some functions can
always be performed on certain switches, while others may be impossible to perform. For example,
RequestMergeCalls can never be performed on some switches. For other functions, whether or not
the function can be performed varies depending on context. For example, on some switches
RequestReleaseCall can only be used when a call is in a Held, Dialing, or Established state, while on
other switches it is also possible to release a call when it is in a Ringing state. In addition to this, on
some switches the phone set is presented as more than one Directory Number (DN) and each DN can
have a different type, such as Position and Extension. Some functions are allowed for both types,
while some other functions may be restricted to a certain DN type. To retrieve this kind of function
availability information for the current context, perform the following steps:

1. Create an instance of FunctionHandlingContext and populate it with the following required
information:
1. Specify the switch type.
2. Specify the request by calling the setMessage method.
3. Describe the context as fully as possible.

2. Call ISwitchPolicyService.getPolicy, using this FunctionHandlingContext.
3. Analyze the returned FunctionAvailabilityPolicy. If the specified request is possible in the given

context, the getIsFunctionAvailable method will return true. However, if the request is not
supported, SPL will return null.

The following code snippet shows how to do this:

[Java]

DNContextStub dn = new DNContextStub();// implements IDNContext
dn.setIdentifier("1001");
dn.setType(AddressType.DN);
dn.setAgentStatus(AgentStatus.READY);
dn.setServiceStatus(ServiceStatus.IN_SERVICE);

DNContextStub otherdn = new DNContextStub();
otherdn.setIdentifier("2001");
otherdn.setType(AddressType.DN);
otherdn.setAgentStatus(AgentStatus.READY);
otherdn.setServiceStatus(ServiceStatus.IN_SERVICE);

PartyContextStub mainparty = new PartyContextStub();// implements IPartyContext
mainparty.setIdentifier("9841");
mainparty.setStatus(PartyStatus.ESTABLISHED);
mainparty.setIsConferencing(true);
mainparty.setIsTransferring(true);

Using the Switch Policy Library

Platform SDK Developer's Guide 5

mainparty.setDN(dn);

PartyContextStub otherParty = new PartyContextStub();
otherParty.setIdentifier(mainparty.getIdentifier());
otherParty.setStatus(PartyStatus.ESTABLISHED);
otherParty.setIsConferencing(true);
otherParty.setIsTransferring(true);
otherParty.setDN(otherdn);

CallContextStub call = new CallContextStub();// Implements ICallContext
call.setStatus(CallStatus.ESTABLISHED);
call.setDestination(mainparty);
call.setOrigination(otherParty);
call.setIdentifier(mainparty.getIdentifier());
call.setConferencing(true);
call.setTransferring(true);
call.setParties(Arrays.<IPartyContext> asList(mainparty, otherParty));

for (String swtype : new String[] { swtypeA4400Classic, swtypeA4400Emul, swtypeA4400Subs }) {
for (CallType callType : GEnum.valuesBy(CallType.class)) {

FunctionHandlingContext context = new FunctionHandlingContext(swtype);
context.setMessage(RequestHoldCall.create());
context.setDN(dn);
mainparty.setCallType(callType);
otherParty.setCallType(callType);
call.setCallType(callType);
context.setParty(mainparty);
context.setCall(call);
FunctionAvailabilityPolicy policy =

service.getPolicy(FunctionAvailabilityPolicy.class, context);
System.out.println(policy);

}
}

Get Instructions On How To Implement a Feature
Some switches differ in how certain features can be accessed. The majority of their features may
map directly to individual switch functions, but this is not always so. For example, for some switches
it is not possible to log the agent out while the agent is in the ready state. So, the feature which
implements agent logout for these switches would require two steps:

1. Make sure the agent is in a NotReady state
2. Log the agent out

SPL implements a feature handler for each feature that it supports. To create and run a feature
handler, perform the following steps:

1. Create a new instance of FunctionHandlingContext and populate it with the following required
information:
1. Specify the switch type.
2. Specify the request by calling the setMessage method. This step can be omitted if a feature handler

is going to be created by using the featureName parameter in the
ISwitchPolicyService.createFeatureHandler(String featureName,
FunctionHandlingContext context) method.

3. Provide a valid Protocol instance by calling the setProtocol method.

Using the Switch Policy Library

Platform SDK Developer's Guide 6

4. Describe the context as fully as possible.

2. Call ISwitchPolicyService.createFeatureHandler and pass this FunctionHandlingContext, either
alone or with the name of the feature.

3. Call the beginExecute method of IFeatureHandler on the returned handler, passing the same instance
of FunctionHandlingContext.

4. The remainder of the processing depends on the implementation, but the general approach is to
perform the following actions while the status of the handler is Executing:
1. Receive event from T-Server.
2. Update FunctionHandlingContext based on the received event.
3. Assign the received event by calling the setMessage method of your FunctionHandlingContext

instance.
4. Call the handle method of IFeatureHandler passing with it the updated

FunctionHandlingContext.

The following code snippet shows how to do this:

[Java]

public void LogoutReadyAgent(Protocol protocol,
ISwitchPolicyService service, String thisDN, String switchType)
throws IllegalStateException, InterruptedException,
SwitchPolicyException {

FunctionHandlingContext context =
new FunctionHandlingContext(switchType);

context.setMessage(RequestAgentLogout.create(thisDN));
DNContextStub dn = new DNContextStub(); // implements IDNContext interface
dn.setAgentStatus(AgentStatus.READY);
dn.setAgentWorkMode(AgentWorkMode.Unknown);
dn.setIdentifier(thisDN);
dn.setType(AddressType.DN);
dn.setServiceStatus(ServiceStatus.IN_SERVICE);
context.setDN(dn);
context.setProtocol(protocol);

IFeatureHandler handler = service.createFeatureHandler(context);
if (handler != null) {

handler.beginExecute(context);
while (handler.getStatus() == FeatureStatus.EXECUTING) {

Message message = (Message) protocol.receive();
// update context due to received message
//
context.setMessage(message);
handler.handle(context);

}
}

}

Get Instructions On How To Accomplish Complex Functionality
Your application may sometimes need access to functionality that depends on the switch type. For
example, when an application receives events from the T-Server, the way a given event's fields are
used can depend on both the call scenario and the switch type. To retrieve this information, perform
the following steps:

Using the Switch Policy Library

Platform SDK Developer's Guide 7

1. Create a MessageHandlingContext and populate it with the following required information:
1. Name of switch.
2. Name of handler.

2. Call ISwitchPolicyService.createMessageHandler, pass this context into it, and receive the resulting
IMessageHandler.

3. Call the IMessageHandler.handle method on the received handler.

The following code snippet shows how to do this:

[Java]

EventRinging msgRinging =
EventRinging.create(TimeStamp.create(1249566176, 312000));

KeyValueCollection p = new KeyValueCollection();
p.addInt("BusinessCall", 0);
p.addInt("GCTI_BUSINESS_CALL", 0);
p.addString("GCTI_SUB_THIS_DN", "18101");
p.addString("GCTI_SUB_OTHER_DN", "18100");
p.addString("GCTI_OTHER_DEVICE_NAME", "18100");
p.addString("GCTI_PARTY_NAME", "18100");
msgRinging.setExtensions(p);
msgRinging.setEventSequenceNumber(0x0000000000000399);
msgRinging.setOtherDN("11100");
msgRinging.setOtherDNRole(DNRole.RoleOrigination);//
msgRinging.setOtherTrunk(521);
msgRinging.setThisDNRole(DNRole.RoleOrigination);//
msgRinging.setThisDN("11101");
msgRinging.setDNIS("18101");
msgRinging.setThisTrunk(522);
msgRinging.setCallUuid("BTMT3AJVT17QPE364J2DV9V5I000005P");
msgRinging.setConnID(new ConnectionId("022701b746b29021"));
msgRinging.setCallID(3648);
msgRinging.setCallType(CallType.Internal);
msgRinging.setNetworkCallID(0x1ee07a4a400e0100l);
msgRinging.setCallState(0);
msgRinging.setAgentID("18101");
msgRinging.setPropagatedCallType(CallType.Internal);

MessageHandlingContext context = new MessageHandlingContext(Switchname);
context.setHandlerName("OtherDN");
IMessageHandler othDNH = service.createMessageHandler(context);
String otherDN = (String) othDNH.handle(msgRinging); System.out.println(otherDN);

Add Logging Support
You can add support for logging by providing an application context with a registered ILogger bean.
This logger will be used by the Switch Policy Library. Here is a code sample:

[Java]

AnnotationConfigApplicationContext context =
new AnnotationConfigApplicationContext();

context.register(ConsoleLogger.class);

// ConsoleLogger implements ILogger interface
context.refresh();

Using the Switch Policy Library

Platform SDK Developer's Guide 8

ISwitchPolicyService service =
SwitchPolicyServiceFactory.createSwitchPolicyService(context);

.NET

Setting Up Switch Policy Library

SPL should be used by your agent desktop applications as a library, which means that it would be
located within the agent desktop application shown above. The application can call SPL for guidance
on how to send requests to or process events from your T-Server, as shown in the Code Samples
section.

SPL is driven by an XML-based configuration file that supports many commonly-used switches in
performing agent-related functions. Your application can query SPL to determine whether a particular
feature is supported for the switch you want to work with. If a feature you need is not supported for
the switches you need to work with, you can make a copy of the default configuration file and modify
it as needed.

Important
Genesys does not support modifications to the SPL configuration file. Any
modifications you make are performed at your own risk.

A copy of the default configuration file is included inside the Switch Policy Library DLL. There is also a
copy in the Bin directory of the Platform SDK installation package. If you need to modify the
configuration file, you can use the app.config file for SPL to point to your copy.

Code Samples

This section contains examples of how to perform useful functions with SPL.

These samples each require a valid instance of the ISwitchPolicyService, which can be created as
shown here:

[C#]

ISwitchPolicyService policyService =
SwitchPolicyFactory.CreateSwitchPolicyService();

Tip

Using the Switch Policy Library

Platform SDK Developer's Guide 9

The DN classes specified below implement the IDNContext interface, while the Party
classes implement the IPartyContext interface, and the Call classes implement the
ICallContext interface.

Get A Phone Set Configuration
On some switches, phone sets are presented as more than one Directory Number (DN). These DNs
may also have different types, such as Position and Extension. Because these configurations vary by
switch type, an application needs to know how the phone set configuration for a particular switch is
structured. For example, it needs to know how many DNs are used to represent a phone set, and
what their types are. To retrieve this phone set configuration information, perform the following steps:

1. Create an instance of PhoneSetConfigurationContext, specifying the switch type.
2. Call ISwitchPolicyService.GetPolicy, using this PhoneSetConfigurationContext.
3. Analyze the returned PhoneSetConfigurationPolicy. The

PhoneSetConfigurationPolicy.Configurations property will contain all possible phone set
configurations for the specified switch.

The following code snippet shows how to do this:

[C#]

PhoneSetConfigurationContext context =
new PhoneSetConfigurationContext("SomeSwitch");

PhoneSetConfigurationPolicy policy =
switchPolicyService.GetPolicy<PhoneSetConfigurationPolicy>(context);
foreach (PhoneSetConfiguration configuration in policy.Configurations)
{

Console.WriteLine(configuration);
}

Get Phone Set Availability Information
When working with a phone set, additional information about the included DNs may be required. This
could include information about which of the DNs should be available to the end user (for example,
which ones should be visible in the user interface), which of them is callable, and which number (the
Callable Number) the application should use to reach the agent who is logged into the phone set. To
retrieve this phone set availability information, perform the following steps:

1. Create an instance of DNAvailabilityContext and populate it with the following required information:
• Specify the switch type.
• Specify the Agent ID.
• Fill the DN collection with valid implementations of IDNContext.

2. Call ISwitchPolicyService.GetPolicy, using this DNAvailabilityContext.
3. Analyze the returned DNAvailabilityPolicy. The DNAvailabilityPolicy.DNStatuses property will

contain availability information for each DN in the request.

Using the Switch Policy Library

Platform SDK Developer's Guide 10

The following code snippet shows how to do this:

[C#]

private static void DemonstrateDNAvailability(ISwitchPolicyService service)
{

DNAvailabilityContext dnacontext =
new DNAvailabilityContext("SomeSwitch");

dnacontext.AgentId = "AgentLogin1000";
dnacontext.DNs.Add(new Dn
{

AgentStatus = AgentStatus.Ready,
Identifier = "1000",
ServiceStatus = ServiceStatus.InService,
Type = AddressType.DN

});
dnacontext.DNs.Add(new Dn
{

AgentStatus = AgentStatus.Ready,
Identifier = "2000",
ServiceStatus = ServiceStatus.InService,
Type = AddressType.Position

});

DNAvailabilityPolicy dnpolicy =
service.GetPolicy<DNAvailabilityPolicy>(dnacontext);

DisplayInColor(dnpolicy, ConsoleColor.Red);
}

Get Function Availability Information for the Current Context
Some switches differ in when they allow certain functions to be performed. Also, some functions can
always be performed on certain switches, while others may be impossible to perform. For example,
RequestMergeCalls can never be performed on some switches. For other functions, whether or not
the function can be performed varies depending on context. For example, on some switches
RequestReleaseCall can only be used when a call is in a Held, Dialing, or Established state, while on
other switches it is also possible to release a call when it is in a Ringing state. In addition to this, on
some switches the phone set is presented as more than one Directory Number (DN) and each DN can
have a different type, such as Position and Extension. Some functions are allowed for both types,
while some other functions may be restricted to a certain DN type. To retrieve this kind of function
availability information for the current context, perform the following steps:

1. Create an instance of FunctionHandlingContext and populate it with the following required
information:
• Specify the switch type.
• Specify the request by setting the Message property.
• Describe the context as fully as possible.

2. Call ISwitchPolicyService.GetPolicy, using this FunctionHandlingContext.
3. Analyze the returned FunctionAvailabilityPolicy. If the specified request is possible in the given

context, the IsFunctionAvailable property will be true. However, if the request is not supported, SPL
will return null.

The following code snippet shows how to do this:

Using the Switch Policy Library

Platform SDK Developer's Guide 11

[C#]

foreach (string switchType in new[] { swTypeA4400Classic, swTypeA4400emul, swTypeA4400Subs })
{

DNContext dn = new DNContext //implements IDNContext
{

Identifier = "1001",
Type = AddressType.DN,
AgentStatus = AgentStatus.Ready,
ServiceStatus = ServiceStatus.InService,
DndStatus = FunctionStatus.Off,
ForwardStatus = FunctionStatus.Off

};

DNContext otherDN = new DNContext
{

Identifier = "2001",
Type = AddressType.DN,
AgentStatus = AgentStatus.Ready,
ServiceStatus = ServiceStatus.InService,
DndStatus = FunctionStatus.Off,
ForwardStatus = FunctionStatus.Off

};

foreach (CallType callType in Enum.GetValues(typeof(CallType)))
{

PartyContext mainParty = new PartyContext //implements IPartyContext
{

Identifier = "1002",
Status = PartyStatus.Established,
CallType = callType,
IsConferencing = true,
IsTransferring = true,
DN = dn

};

PartyContext otherParty = new PartyContext
{

Identifier = "1002",
CallType = callType,
DN = otherDN,
IsConferencing = true,
IsTransferring = true,
Status = PartyStatus.Established

};
CallContextStub ccontext = new CallContextStub //implements ICallContext
{

CallType = callType,
Destination = mainParty,
Origination = otherParty,
Identifier = "1002",
IsConferencing = true,
IsTransferring = true,
Parties = new List<IPartyContext>{mainParty,otherParty},
Parent = null//no parentCall - our call is solitary call.

};

FunctionHandlingContext context = new FunctionHandlingContext(switchType)
{

Message = RequestHoldCall.Create(),
DN = dn,
Party = mainParty,
Call = ccontext

Using the Switch Policy Library

Platform SDK Developer's Guide 12

};
FunctionAvailabilityPolicy policy =

service.GetPolicy<FunctionAvailabilityPolicy>(context);

Console.WriteLine(policy);
}

}

Get Instructions On How To Implement a Feature
Some switches differ in how certain features can be accessed. The majority of their features may
map directly to individual switch functions, but this is not always so. For example, for some switches
it is not possible to log the agent out while the agent is in the ready state. So, the feature which
implements agent logout for these switches would require two steps:

1. Make sure the agent is in a NotReady state
2. Log the agent out

SPL implements a feature handler for each feature that it supports. To create and run a feature
handler, perform the following steps:

1. Create a new instance of FunctionHandlingContext and populate it with the following required
information:
• Specify the switch type.
• Specify the request by setting the Message property. This step can be omitted if the feature handler

is created by using the featureName parameter in the
ISwitchPolicyService.CreateFeatureHandler(String featureName,
FunctionHandlingContext context) method.

• Provide a valid IProtocol instance as the value of the Protocol property.
• Describe the context as fully as possible.

2. Call the ISwitchPolicyService.CreateFeatureHandler and pass this FunctionHandlingContext,
either alone or with the name of the feature.

3. Call the BeginExecute method on the returned handler, passing the same instance of
FunctionHandlingContext.

4. The remainder of the processing depends on the implementation, but the general approach is to
perform the following actions while the status of the handler is Executing:
1. Receive event from TServer.
2. Update FunctionHandlingContext based on the received event.
3. Assign the received event to the Message property of your FunctionHandlingContext instance.
4. Call the Handle method of IFeatureHandler passing with it the updated

FunctionHandlingContext.

The following code snippet shows how to do this:

[C#]

private static void LoginReadyAgent(IProtocol protocol,
ISwitchPolicyService service, string thisdn, string agentID)

Using the Switch Policy Library

Platform SDK Developer's Guide 13

{
FunctionHandlingContext context = new FunctionHandlingContext("SomeSwitch");
RequestAgentLogin requestAgentLogin = RequestAgentLogin.Create();
requestAgentLogin.ThisDN = thisdn;
requestAgentLogin.AgentID = agentID;
requestAgentLogin.AgentWorkMode = AgentWorkMode.AutoIn;
context.Message = requestAgentLogin;
context.Protocol = protocol;

IFeatureHandler loginHandler = service.CreateFeatureHandler(context);

if(loginHandler == null)
{

protocol.Send(requestAgentLogin);
// Process the incoming events for the scenario
return;

}

// Processing feature handler
loginHandler.BeginExecute(context);
while (loginHandler.Status == FeatureStatus.Executing)
{

context.Message = context.Protocol.Receive();
// Update the context based on the received T-Server event
loginHandler.Handle(context);

}
}

Get Instructions On How To Accomplish Complex Functionality
Your application may sometimes need access to functionality that depends on the switch type. For
example, when an application receives events from the T-Server, the way a given event's fields are
used can depend on both the call scenario and the switch type. To retrieve this information, perform
the following steps:

1. Create a MessageHandlingContext and populate it with the following required information:
• Name of switch.
• Name of handler.

2. Call ISwitchPolicyService.CreateMessageHandler, pass this context into it, and receive the resulting
IMessageHandler.

3. Call the IMessageHandler.Handle method on the received handler.

The following code snippet shows how to do this:

[C#]

private static void DemonstrateMessageHandler(ISwitchPolicyService service)
{

EventRinging message = EventRinging.Create();
message.ThirdPartyDN = "12345";
message.DNIS = "18009870987";
message.CallType = CallType.Internal;
message.OtherDN = "9875";
MessageHandlingContext context35 =

new MessageHandlingContext("AlcatelA4400DHS3::Classic")
{ HandlerName = "OtherDN" };

IMessageHandler handler = service.CreateMessageHandler(context35);

Using the Switch Policy Library

Platform SDK Developer's Guide 14

string res = (string)handler.Handle(message);
DisplayInColor(res, ConsoleColor.Yellow);

}

Add Logging Support
To add logging support, carry out the following steps:

1. Create an instance of IUnityContainer and register an anonymous instance or type mapping for the
ILogger interface.

2. Pass the IUnityContainer created during the previous step to the factory method, which creates an
instance of ISwitchPolicyService.

The following code snippet shows how to do this:

[C#]

IUnityContainer root = new UnityContainer();
root.RegisterInstance(new ConsoleLogger());
ISwitchPolicyService service =

SwitchPolicyFactory.CreateSwitchPolicyService(root);

SPL also provides the following options:

• Your application can log the topmost messages into a distinct log. To use this option, call the
CreateSwitchPolicyService(IUnityContainer container, ILogger logger) method of the
SwitchPolicyServiceFactory class. The passed logger (if it is not null) will be used for logging the
topmost messages.

• You can configure any switch container to use a specific logger. Objects created by the Unity container
(feature handlers, policy providers and so on) can use the container to resolve the ILogger for further
logging.

Tip
the classes provided by SPL resolve the ILogger (if there is one) at creation time. So,
if your application changes the ILogger resolution rule for the root container that was
previously passed into the SwitchPolicyService constructor after the corresponding
method call, this will not affect:

• Existing instances.
• Objects which are created in the container(s), for which special ILogger mapping rule is

configured.

Supported Functions

As mentioned above, SPL is driven by a configuration file that makes it possible to support a wide
variety of switch functions. The following table shows functions that are supported by SPL at

Using the Switch Policy Library

Platform SDK Developer's Guide 15

installation time, using the default configuration file.

Switch Functions Supported by SPL At Installation Time

Switch Function Description
DN and Agent Functions

RequestAgentLogin
Logs in the agent specified by the AgentId
parameter to the ACD group specified by the
parameter.

RequestAgentLogout Logs the agent out of the ACD group specified by
the Queue parameter.

RequestAgentNotReady

Sets a state in which the agent is not ready to
receive calls. The agents telephone set is specified
by the DN parameter; the ACD group into which the
agent is logged is specified by the Queue
parameter.

RequestAgentReady
Sets a state in which the agent is ready to receive
calls. The agents phone set is specified by the DN
parameter; the ACD group into which the agent is
logged is specified by the Queue parameter.

RequestCallForwardCancel Sets the Forwarding feature to Off for the telephony
object that is specified by the DN parameter.

RequestCallForwardSet Sets the Forwarding feature to On for the telephony
object that is specified by the DN parameter.

RequestCancelMonitoring

A request by a supervisor to cancel monitoring the
calls delivered to the agent. If this request is
successful, T-Server distributes
EventMonitoringCancelled to all clients registered
on the supervisor's and agent's DNs.

RequestMonitorNextCall

A request by a supervisor to monitor (be
automatically conferenced in as a party on) the
next call delivered to an agent. Supervisors can
request to monitor one subsequent call or all calls
until the request is explicitly canceled. If a request
is successful, EventMonitoringNextCall is
distributed to all clients registered on the
supervisor's and agent's DNs. Supervisors start
monitoring each call in Mute mode. To speak, they
must execute the function

RequestSetDNDOff Sets the Do-Not-Disturb (DND) feature to Off for the
telephony object specified by the DN parameter.

RequestSetDNDOn Sets the Do-Not-Disturb (DND) feature to On for the
telephony object specified by the DN parameter.

RequestSetMuteOff On an existing conference call, cancels the Mute
mode for the party specified by the DN parameter.

RequestSetMuteOn On an existing conference call, sets Mute mode for
the party specified by the DN parameter.

Call Handling Functions

RequestAlternateCall On behalf of the telephony object specified by the
DN parameter, places the active call specified by

Using the Switch Policy Library

Platform SDK Developer's Guide 16

Switch Function Description
thecurrent_conn_id parameter on hold and
connects the call specified by the held_conn_id
parameter.

RequestAnswerCall Answers the alerting call specified by the conn_id
parameter.

RequestAttachUserData

On behalf of the telephony object specified by the
DN parameter, attaches the user data structure
specified by the user_data parameter to the T-
Server information that is related to the call
specified by the conn_id parameter.

RequestClearCall
Deletes all parties, that is, all telephony objects,
from the call specified by conn_id and disconnects
the call.

RequestCompleteConference

Completes a previously-initiated conference by
merging the held call specified by the held_conn_id
parameter with the active consultation call
specified by the current_conn_id parameter on
behalf of the telephony object specified by the DN.
Assigns the held_conn_id to the resulting
conference call. Clears the consultation call
specified by the current_conn_id parameter.

RequestCompleteTransfer

On behalf of the telephony object specified by the
DN parameter, completes a previously initiated
two-step transfer by merging the held call specified
by the conn_id parameter with the active
consultation call specified by the current_conn_id
parameter. Assigns held_conn_id to the resulting
call. Releases the telephony object specified by the
DN parameter from both calls and clears the
consultation call specified by the current_conn_id
parameter.

RequestDeleteFromConference

A telephony object specified by DN deletes the
telephony object specified by dn_to_drop from the
conference call specified by conn_id. The client that
invokes this service must be a party on the call in
question.

RequestDeletePair
On behalf of the telephony object specified by the
DN parameter, deletes the key-value pair specified
by the key parameter from the user data attached
to the call specified by the conn_id parameter.

RequestDeleteUserData
On behalf of the telephony object specified by the
DN parameter, deletes all of the user data attached
to the call specified by the conn_id parameter.

RequestHoldCall
On behalf of the telephony object specified by the
DN parameter, places the call specified by the
conn_id parameter on hold.

RequestInitiateConference

On behalf of the telephony object specified by the
DN parameter, places the existing call specified by
the conn_id parameter on hold and originates a
consultation call from the same telephony object to
the called party, which is specified by the

Using the Switch Policy Library

Platform SDK Developer's Guide 17

Switch Function Description
destination parameter with the purpose of a
conference call.

RequestInitiateTransfer

On behalf of the telephony object specified by the
DN parameter, places the existing call specified by
the conn_id parameter on hold and originates a
consultation call from the same telephony object to
the called party, which is specified by the
destination parameter for the purpose of a two-
step transfer.

RequestListenDisconnect

On an existing conference call, sets Deaf mode for
the party specified by the listener_dn parameter.
For example, if two agents wish to consult
privately, the subscriber may temporarily be
placed in Deaf mode.

RequestListenReconnect On an existing conference call, cancels Deaf mode
for the party defined by the listener_dn parameter.

RequestMakeCall
Originates a regular call from the telephony object
specified by the DN parameter to the called party
specified by the Destination parameter.

RequestMakePredictiveCall

Makes a predictive call from the thisDN DN to the
otherDN called party. A predictive call occurs
before any agent-subscriber interaction is created.
For example, if a fax machine answers the call, no
agent connection occurs. The agent connection
occurs only if there is an actual subscriber
available on line.

RequestMergeCalls

On behalf of the telephony object specified by the
DN parameter, merges the held call specified by
the held_conn_id parameter with the active call
specified by the current_conn_id parameter in a
manner specified by the merge_type parameter.
The resulting call will have the same conn_id as the
held call.

RequestMuteTransfer

Initiates a transfer of the call specified by the
conn_id parameter from the telephony object
specified by the DN parameter to the party
specified by the destination parameter; completes
the transfer without waiting for the destination
party to pick it up. Releases the telephony object
specified by the DN parameter from the call.

RequestQueryCall
Requests the information specified by info_type
about the telephony object specified by conn_id. If
the query type is supported, the requested
information will be returned in EventPartyInfo.

RequestReconnectCall

Releases the telephony object specified by the DN
parameter from the active call specified by the
current_conn_id parameter and retrieves the
previously held call, specified by the held_conn_id
parameter, to the same object. This function is
commonly used to clear an active call and to return
to a held call, or to cancel a consult call (due to

Using the Switch Policy Library

Platform SDK Developer's Guide 18

Switch Function Description
lack of an answer, because the device is busy, and
so on) and then to return to a held call.

RequestRedirectCall
Requests that the call be redirected, without an
answer, from the party specified by the DN
parameter to the party specified by the dest_dn
parameter.

RequestRegisterAddress Registers for a DN. Your application must register
the DN before sending the RequestAgentLogin.

RequestReleaseCall
Releases the telephony object specified by the DN
parameter from the call specified by the conn_id
parameter.

RequestRetrieveCall
Connects the held call specified by the conn_id
parameter to the telephony object specified by the
DN parameter.

RequestSendDtmf
On behalf of the telephony object specified by the
DN parameter, sends the digits that are expected
by an interactive voice response system.

RequestSetCallInfo

Changes the call attributes.
Warning: Improper use of this function may result in
unpredictable behavior on the part of the T-Server and the
Genesys Framework. If you have any doubt on how to use it,
please consult with Genesys.

RequestSetMessageWaitingOff Sets the Message Waiting indication to off for the
telephony object specified by the DN parameter.

RequestSetMessageWaitingOn Sets the Message Waiting indication to on for the
telephony object specified by the DN parameter.

RequestSetMuteOff On an existing conference call, cancels the Mute
mode for the party specified by the DN parameter.

RequestSetMuteOn On an existing conference call, sets Mute mode for
the party specified by the DN parameter.

RequestSingleStepConference Adds a new party to an existing call and creates a
conference.

RequestSingleStepTransfer
Transfers the call from a specified directory number
DN that is currently engaged in the call specified
by the conn_id parameter to a destination DN that
is specified by the destination parameter.

RequestUnregisterAddress Unregisters a DN.

RequestUpdateUserData

On behalf of the telephony object specified by the
DN parameter, updates the user data that is
attached to the call specified by the conn_id
parameter with the data specified by the user_data
parameter.

Using the Switch Policy Library

Platform SDK Developer's Guide 19

	Platform SDK Developer's Guide
	Using the Switch Policy Library

