
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Using the Warm Standby Application Block

Platform SDK Developer's Guide

5/2/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Using the Warm Standby Application Block
The Warm Standby Application Block is a reusable production-quality component that enables
developers to switch to a backup server in case their primary server fails, without needing to
guarantee the integrity of existing interactions. It has been designed using industry best practices
and provided with source code so it can be used "as is," extended, or tailored if you need to. Please
see the License Agreement for details.

This article examines the architecture and design of the Warm Standby Application Block, as well as
giving details about how to setup the QuickStart application that ships with this application block.

Java

Architecture and Design

Many contact center environments require redundant backup servers that are able to take over
quickly if a primary server fails. In this situation, the primary server operates in active mode,
accepting connections and exchanging messages with clients. The backup server, on the other hand,
is in standby mode. If the primary server fails, the backup server switches to active mode, assuming
the role and behavior of the primary server.

There are two standby modes: warm standby and hot standby. The main difference between them is
that warm standby mode does not ensure the continuation of interactions in progress when a failure
occurs, while hot standby mode does.

The Client Channel Architecture
Since the Warm Standby Application Block is designed to be used in the context of a Client Channel
architecture, it is important to understand that architecture before talking about the application block
itself.

To start with, this architecture consists of three functional components:

• A connection
• A client channel
• A protocol channel

These components are shown in the following figure.

Using the Warm Standby Application Block

Platform SDK Developer's Guide 2



The connection controls all necessary TCP/IP connection activities, while the client channel contains
the protocol- and server-independent channel functionality that is common for a protocol channel.
Finally, the protocol channel controls all of the client channel activities that are dependent on the
protocol and the server.

Client Channel State

The state of a client channel is based on the state of the corresponding connection. There are four
major states:

• Opening (Registration)
• Opened
• Closing
• Closed

The figure below shows a detailed client channel state diagram.

In addition to establishing a TCP/IP connection, several activities may take place when a client
channel opens. These activities can include things like:

• A preliminary exchange of messages with the server, which is known as registration
• Reading the client channel’s locally stored configuration information

Using the Warm Standby Application Block

Platform SDK Developer's Guide 3



You can often determine the cause of a client channel failure by checking the state of the client
channel just before it closed. There are exceptions to this rule, however, such as a registration failure,
which is protocol-specific.

Client Channel Failure Scenarios
There are several common client channel failure scenarios:

Client Channel Failure Scenarios

Scenario Description Source
States Condition Target State Protocol-

Dependent

Opening Timed
Out

Channel tries
to open
connection to
non-existing
URI

Opening
Connection
opening
timeout

Closed No

Wrong URI

Channel tries
to open
connection to
non-existing
URI

Opening Incorrect URI
exception Closed No

Connection
Problem

Channel
connection
detects a
connection
problem

Opened
Opening

Server
disconnected Closed No

Network
Problem
(ADDP)

Channel
connection
detects a
network
problem
(ADDP)

Opened
Opening

Network
problem
(ADDP)

Closed No

Wrong Server
or Protocol

Channel tries
to open
connection
with an
incorrect
server or
protocol

Opening
Registration
Failed/
ProtocolException

Closing Yes

Registration
Failure

One of the
channel
registration
steps failed

Opening
Registration
Failed/
ProtocolException

Closing Yes

Note that the first four scenarios, Opening timed-out, Wrong URI, Connection Problem, and Network
Problem happen with the connection (TCP/IP) component. They do not involve protocol- or server-
specific elements, whether in terms of failure-specific data or in terms of channel recovery actions
and data.

The Wrong Server or Protocol and Registration Failure scenarios are protocol- or server-dependent
and can be different for each type of protocol channel.

Using the Warm Standby Application Block

Platform SDK Developer's Guide 4



Application Block Architecture
The Warm Standby Application Block’s functionality is based on intercepting the channel's transition
from a non-closed state to the Closed state. As you can see in the following figure, the application
block is able to pick up this information because it sits between the client and protocol channels.

Upon receiving the channel’s Closed event, the application block uses diagnostic information to
determine why the channel has closed. This diagnostic information is necessary to determine what
actions, if any, the application block should take to restore the channel’s connectivity to the server.

The Warm Standby Application Block can take several different steps to recover channel connectivity.
These steps are:

• Do nothing (close the channel by request of the user application)
• Attempt to open the channel without switching over its connectivity configuration from primary to

backup
• Attempt to open the channel, switching its connectivity configuration from primary to backup
• Deactivate, in case of a fatal failure

Any application block activity will be followed by a corresponding event generated by the application
block. These events will provide user applications with the opportunity to monitor and react to all of
the application block’s activities and failures

To control channel connectivity with a warm standby mechanism, the user application should activate
the Warm Standby Application Block instance that is responsible for handling the particular channel's
connectivity failure and recovery.

Warm Standby Application Block Algorithm
The Warm Standby Application Block has 4 states, as shown below.

Using the Warm Standby Application Block

Platform SDK Developer's Guide 5



As soon as a channel’s Warm Standby Application Block is activated, it goes into the idle state,
waiting for the channel’s Closed event. When the channel issues a Closed event, the application
block checks to see if the channel was closed due to a connectivity failure. If so, the application block
instance starts the channel connectivity recovery procedure, as shown below.

Here is the procedure for the Warm Standby Application Block:

• The user should activate the Warm Standby Application Block for every channel he or she intends to
work with.

• In the active state, the application block waits for the channel’s Closed event.
• On receiving the channel’s Closed event, the application block activates the channel connectivity

recovery procedure.

Using the Warm Standby Application Block

Platform SDK Developer's Guide 6



Application Block Components
The Warm Standby Application Block distribution consists of two main components:

1. The application block itself, which provides an interface that you can use to integrate it into different
GUI applications.

2. A sample application, the WarmStandbyQuickStart application, which is built on the Warm Standby
Application Block

As shown below, the application block itself runs on top of the Platform SDK, while the QuickStart
application runs on top of the application block.

The Warm Standby Application Block Interface
The Warm Standby Application Block consists of the following classes:

• WarmStandbyService

• WarmStandbyConfiguration

The WarmStandbyService class monitors and controls the connectivity of the channel it is responsible
for, while the WarmStandbyConfiguration class handles all the parameters that are needed for the
proper functioning of the warm standby process.

Starting with release 8.1.1, default behavior for the WarmStandbyService connection restoration
includes the following improvements to provide improved performance:

• Following a switchover or the first reconnection attempt, WarmStandbyService no longer waits for a
timeout to occur.

• Check backup server availability by performing a fast first switchover.

User applications can subscribe to the controlled channel’s Closed and Opened events in order to
monitor and handle channel connectivity.

WarmStandbyService's StateChanged event is fired on any change of state in WarmStandby,
providing the means for a user application to monitor state changes and to control the application

Using the Warm Standby Application Block

Platform SDK Developer's Guide 7



block's activities.

Using the Warm Standby Application Block

Installing the Warm Standby Application Block
Before you install the Warm Standby Application Block, it is important to review the software
requirements and the structure of the software distribution.

Software Requirements

To work with the Warm Standby Application Block, you must ensure that your system meets the
software requirements established in the Genesys Supported Operating Environment Reference
Manual, as well as meeting the following minimum software requirements:

• JDK 1.6 or higher

Building the Warm Standby Application Block
To build the Warm Standby Application Block:

1. Open the <Platform SDK Folder>\applicationblocks\warmstandby folder.
2. Run either build.bat or build.sh, depending on your platform.

You may need to edit the path specified in the quickstart file by adding quotation marks if your
ANT_HOME environment variable contains spaces.

This build file will create the warmstandbyappblock.jar file, located within the <Platform SDK
Folder>\applicationblocks\warmstandby\dist\lib directory.

Now you are ready to add the appropriate import statements to your source code and start using the
Warm Standby Application Block:

[Java]
import com.genesyslab.platform.applicationblocks.warmstandby.*;

Using the QuickStart Application
The easiest way to start using the Warm Standby Application Block is to use the bundled QuickStart
application. This application ships in the same folder as the application block.

To run the QuickStart application:

1. Open the \ApplicationBlocks\WarmStandby\quickstart folder.
2. Run either quickstart.bat or quickstart.sh, depending on your platform.

You may need to edit the path specified in the quickstart file by adding quotation marks if your

Using the Warm Standby Application Block

Platform SDK Developer's Guide 8



ANT_HOME environment variable contains spaces.

After you start the application, you will see the user interface shown below.

On startup, the QuickStart application uses values specified by the quickstart.properties configuration
file. You can change these values either by editing that file or by overwriting them after running the
user interface.

This form has two main sections. The left side enables you to set up a connection for the application
indicated in the Name field, using the protocol specified in the Protocol field. To open the connection,
press the Open button. Press the Close button to close it.

The right side of the form lets you specify primary and backup servers. It also lets you specify the
number of times the warm standby mechanism will try to contact the primary server, and what the
timeout value should be for each attempt.

Once you have the desired values, you can press the Start button to turn on the warm standby
feature. If you would like to change the configuration after warm standby is turned on, simply modify
the configuration information and press the Reconfigure button. The warm standby configuration will
be changed dynamically.

.NET

Architecture and Design

Many contact center environments require redundant backup servers that are able to take over
quickly if a primary server fails. In this situation, the primary server operates in active mode,
accepting connections and exchanging messages with clients. The backup server, on the other hand,
is in standby mode. If the primary server fails, the backup server switches to active mode, assuming
the role and behavior of the primary server.

There are two standby modes: warm standby and hot standby. The main difference between them is
that warm standby mode does not ensure the continuation of interactions in progress when a failure

Using the Warm Standby Application Block

Platform SDK Developer's Guide 9



occurs, while hot standby mode does.

The Client Channel Architecture
Since the Warm Standby Application Block is designed to be used in the context of a Client Channel
architecture, it is important to understand that architecture before talking about the application block
itself.

To start with, this architecture consists of three functional components:

• A connection
• A client channel
• A protocol channel

These components are shown in the following figure.

The connection controls all necessary TCP/IP connection activities, while the client channel contains
the protocol- and server-independent channel functionality that is common for a protocol channel.
Finally, the protocol channel controls all of the client channel activities that are dependent on the
protocol and the server.

Client Channel State

The state of a client channel is based on the state of the corresponding connection. There are four
major states:

• Opening (Registration)
• Opened
• Closing
• Closed

The figure below shows a detailed client channel state diagram.

Using the Warm Standby Application Block

Platform SDK Developer's Guide 10



In addition to establishing a TCP/IP connection, several activities may take place when a client
channel opens. These activities can include things like:

• A preliminary exchange of messages with the server, which is known as registration
• Reading the client channel’s locally stored configuration information

You can often determine the cause of a client channel failure by checking the state of the client
channel just before it closed. There are exceptions to this rule, however, such as a registration failure,
which is protocol-specific.

Client Channel Failure Scenarios
There are several common client channel failure scenarios:

Client Channel Failure Scenarios

Scenario Description Source
States Condition Target State Protocol-

Dependent

Opening Timed
Out

Channel tries
to open
connection to
non-existing
URI

Opening
Connection
opening
timeout

Closed No

Wrong URI

Channel tries
to open
connection to
non-existing
URI

Opening Incorrect URI
exception Closed No

Connection
Problem

Channel
connection
detects a
connection

Opened
Opening

Server
disconnected Closed No

Using the Warm Standby Application Block

Platform SDK Developer's Guide 11



Scenario Description Source
States Condition Target State Protocol-

Dependent
problem

Network
Problem
(ADDP)

Channel
connection
detects a
network
problem
(ADDP)

Opened
Opening

Network
problem
(ADDP)

Closed No

Wrong Server
or Protocol

Channel tries
to open
connection
with an
incorrect
server or
protocol

Opening
Registration
Failed/
ProtocolException

Closing Yes

Registration
Failure

One of the
channel
registration
steps failed

Opening
Registration
Failed/
ProtocolException

Closing Yes

Note that the first four scenarios, Opening timed-out, Wrong URI, Connection Problem, and Network
Problem happen with the connection (TCP/IP) component. They do not involve protocol- or server-
specific elements, whether in terms of failure-specific data or in terms of channel recovery actions
and data.

The Wrong Server or Protocol and Registration Failure scenarios are protocol- or server-dependent
and can be different for each type of protocol channel.

Application Block Architecture
The Warm Standby Application Block’s functionality is based on intercepting the channel's transition
from a non-closed state to the Closed state. As you can see in the following figure, the application
block is able to pick up this information because it sits between the client and protocol channels.

Upon receiving the channel’s Closed event, the application block uses diagnostic information to
determine why the channel has closed. This diagnostic information is necessary to determine what
actions, if any, the application block should take to restore the channel’s connectivity to the server.

The Warm Standby Application Block can take several different steps to recover channel connectivity.
These steps are:

Using the Warm Standby Application Block

Platform SDK Developer's Guide 12



• Do nothing (close the channel by request of the user application)
• Attempt to open the channel without switching over its connectivity configuration from primary to

backup
• Attempt to open the channel, switching its connectivity configuration from primary to backup
• Deactivate, in case of a fatal failure

Any application block activity will be followed by a corresponding event generated by the application
block. These events will provide user applications with the opportunity to monitor and react to all of
the application block’s activities and failures

To control channel connectivity with a warm standby mechanism, the user application should activate
the Warm Standby Application Block instance that is responsible for handling the particular channel's
connectivity failure and recovery.

Warm Standby Application Block Algorithm
The Warm Standby Application Block has 4 states, as shown below.

As soon as a channel’s Warm Standby Application Block is activated, it goes into the idle state,
waiting for the channel’s Closed event. When the channel issues a Closed event, the application
block checks to see if the channel was closed due to a connectivity failure. If so, the application block
instance starts the channel connectivity recovery procedure, as shown below.

Using the Warm Standby Application Block

Platform SDK Developer's Guide 13



Here is the procedure for the Warm Standby Application Block:

• The user should activate the Warm Standby Application Block for every channel he or she intends to
work with.

• In the active state, the application block waits for the channel’s Closed event.
• On receiving the channel’s Closed event, the application block activates the channel connectivity

recovery procedure.

Application Block Components
The Warm Standby Application Block distribution consists of two main components:

1. The application block itself, which provides an interface that you can use to integrate it into different
GUI applications.

2. A sample application, the WarmStandbyQuickStart application, which is built on the Warm Standby
Application Block

As shown below, the application block itself runs on top of the Platform SDK, while the QuickStart
application runs on top of the application block.

Using the Warm Standby Application Block

Platform SDK Developer's Guide 14



The Warm Standby Application Block Interface
The Warm Standby Application Block consists of the following classes:

• WarmStandbyService

• WarmStandbyConfiguration

These classes are shown in greater detail below.

Using the Warm Standby Application Block

Platform SDK Developer's Guide 15



The WarmStandbyService class monitors and controls the connectivity of the channel it is responsible
for, while the WarmStandbyConfiguration class handles all the parameters that are needed for the
proper functioning of the warm standby process.

Starting with release 8.1.1, default behavior for the WarmStandbyService connection restoration
includes the following improvements to provide improved performance:

• Following a switchover or the first reconnection attempt, WarmStandbyService no longer waits for a
timeout to occur.

• Check backup server availability by performing a fast first switchover.

User applications can subscribe to the controlled channel’s Closed and Opened events in order to
monitor and handle channel connectivity.

Using the Warm Standby Application Block

Platform SDK Developer's Guide 16



WarmStandbyService's StateChanged event is fired on any change of state in WarmStandby,
providing the means for a user application to monitor state changes and to control the application
block's activities.

Using the Warm Standby Application Block

Installing the Warm Standby Application Block
Before you install the Warm Standby Application Block, it is important to review the software
requirements and the structure of the software distribution.

Software Requirements

To work with the Warm Standby Application Block, you must ensure that your system meets the
software requirements established in the Genesys Supported Operating Environment Reference
Manual.

Configuring the Warm Standby Application Block
In order to use the QuickStart application, you need to set up the XML configuration file that comes
with the application block. This file is located at Quickstart\app.config. This is what the contents look
like:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>

</configSections>
<WarmStandbyQuickStart>

<Channel
ClientType="19"
ProtocolName="ConfigurationServer"
ClientName="default"

/>
<WarmStandby

PrimaryServer="tcp://hostname:9999"
BackupServer="tcp://hostname:9999"
Attempts="3"
Timeout="10"
Switchovers="3"

/>
<ConfServer

UserName="default"
UserPassword="password"

/>
</WarmStandbyQuickStart>

</configuration>

Follow the instructions in the comments and save the file.

Using the Warm Standby Application Block

Platform SDK Developer's Guide 17



Building the Warm Standby Application Block
The Platform SDK distribution includes a Genesyslab.Platform.ApplicationBlocks.WarmStandby.dll file
that you can use as is. This file is located in the bin directory at the root level of the Platform SDK
directory. To build your own copy of this application block, follow the instructions below:

To build the Warm Standby Application Block:

1. Open the <Platform SDK Folder>\ApplicationBlocks\WarmStandby folder.
2. Double-click WarmStandby.sln.
3. Build the solution.

Using the QuickStart Application
The easiest way to start using the Warm Standby Application Block is to use the bundled QuickStart
application. This application ships in the same folder as the application block.

To run the QuickStart application:

1. Open the <Platform SDK Folder>\ApplicationBlocks\WarmStandby folder.
2. Double-click WarmStandbyQuickStart.sln.
3. Build the solution.
4. Find the executable for the QuickStart application, which will be at <Platform SDK

Folder>\ApplicationBlocks\WarmStandby\QuickStart\bin\Debug\WarmStandbyQuickStart.exe.
5. Double-click WarmStandbyQuickStart.exe.

After you start the application, you will see the user interface shown below.

Using the Warm Standby Application Block

Platform SDK Developer's Guide 18



This form has two main sections. The left side enables you to set up a connection for the application
indicated in the Name field, using the protocol specified in the Protocol field. To open the connection,
press the Open button. Press the Close button to close it.

The right side of the form lets you specify primary and backup servers. It also lets you specify the
number of times the warm standby mechanism will try to contact the primary server, and what the
timeout value should be for each attempt. On startup, these values are picked up from the
configuration file, but you can change them in the user interface.

Once you have the desired values, you can press the Start button to turn on the warm standby
feature. If you would like to change the configuration after warm standby is turned on, simply modify
the configuration information and press the Reconfigure button. The warm standby configuration will
be changed dynamically.

Using the Warm Standby Application Block

Platform SDK Developer's Guide 19


	Platform SDK Developer's Guide
	Using the Warm Standby Application Block

