
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Using the Platform SDK Commons Library

Platform SDK Developer's Guide

4/29/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Using the Platform SDK Commons Library
• 1.1 Using the Platform SDK Commons Library to Configure TLS

Platform SDK Developer's Guide 2



Using the Platform SDK Commons Library

Using the Platform SDK Commons Library to Configure TLS

Starting with Platform SDK 8.1.1, the only way to configure connections is by using Endpoint objects,
which contain all parameters related to the endpoint connection—including TLS parameters that
indicate whether TLS is enabled and provide details about the SSL context and extended options.

Note: In earlier releases, Platform SDK provided three ways to configure connections:

• using ConnectionConfiguration objects passed to Protocol constructors
• setting parameters in the protocol context
• adding a textual parameter representation to the URL query

The following diagrams show interdependencies among the Platform SDK objects used to establish
network connections and support TLS.

TLS Configuration Objects Containment Hierarchy

This page outlines each step required to create supporting objects for a TLS-enabled Endpoint.

Callback Handlers
In many cases, certificate or key storage is password-protected. This means that Platform SDK will
need the password to access storage. The Java CallbackHandler interface offers a flexible way to
pass this type of credential data:

package javax.security.auth.callback;

Using the Platform SDK Commons Library

Platform SDK Developer's Guide 3



...
public interface CallbackHandler {

void handle(Callback[] callbacks)
throws java.io.IOException, UnsupportedCallbackException;

}

The handle() method accepts credential requests in the form of Callback objects that have
appropriate setter methods. The most common callback implementation is PasswordCallback. User
code may use a GUI to ask the end user to:

• enter a password
• retrieve a password from a file, pipe, network, and so on

Here is an example of a CallbackHandler delegating password retrieval to a GUI:

CallbackHandler callbackHandler = new CallbackHandler() {
public void handle(Callback[] callbacks) throws IOException,

UnsupportedCallbackException {
for (Callback c : callbacks) {

if (c instanceof PasswordCallback) {
PasswordCallback p = (PasswordCallback) c;
p.setPassword(gui.getKeyStorePassword());

}
}

}
};

When No Password is Required

In some cases, certificate storage does not need a password. The API may still dictate that a
CallbackHandler be provided however, so the Platform SDK includes a predefined class that can be
used as a "dummy" CallbackHandler for this scenario:

com.genesyslab.platform.commons.connection.tls.DummyPasswordCallbackHandler

Here is an example of using this dummy class:

CallbackHandler callbackHandler = new DummyPasswordCallbackHandler();

Key Managers
Java provides a KeyManager interface. This interface defines functionality that can be used to load
and contain certificates or keys, or to select appropriate certificates or keys.

Classes based on the KeyManager interface are used by Java TLS support to retrieve certificates that
will be sent over the network to a remote party for validation. They are also used to retrieve the
corresponding private keys. On the client side, KeyManager classes retrieve client certificates or keys;
on the server side they retrieve server certificates or keys.

The Platform SDK Commons library has a helper class, KeyManagerHelper, which makes it easy to
create key managers using several types of key stores and security providers. The built-in key
manager types are:

• PEM — reads certificate/key pairs from X.509 PEM files.
• MSCAPI — uses the Microsoft CryptoAPI and Windows certificate services to retrieve certificate/key

Using the Platform SDK Commons Library

Platform SDK Developer's Guide 4



pairs.
• PKCS11 — delegates to an external security provider plugged in via the PKCS#11 interface, for

example, Mozilla NSS.
• JKS — retrieves a certificate/key pair from a Java Keystore file.
• Empty — does not retrieve anything. This type is for use as a dummy key manager. For example,

clients that do not have certificates can use it.

Here are some examples of key manager creation:

// From PEM file
X509ExtendedKeyManager km = KeyManagerHelper.createPEMKeyManager(

"c:/cert/client-cert.pem", "c:/cert/client-cert-key.pem");

// From MSCAPI
CallbackHandler cbh = new DummyPasswordCallbackHandler();
// Whitespace characters are allowed anywhere inside the string
String certThumbprint =

"4A 3F E5 08 48 3A 00 71 8E E6 C1 34 56 A4 48 34 55 49 D9 0E";
X509ExtendedKeyManager km = KeyManagerHelper.createMSCAPIKeyManager(

cbh, certThumbprint);

// From PKCS11
// This provider does not allow customization of Key Manager
// This is required for FIPS-140 certification
// Dummy callback handler will not work, must use strong password
CallbackHandler passCallback = ...;
X509ExtendedKeyManager km = KeyManagerHelper.createPKCS11KeyManager(

passCallback);

// From JKS
// JKS key store does not allow callback usage (bug in Java?)
// Individual entries in JKS key store can be password-protected
char[] keyStorePass = "keyStorePass".toCharArray();
char[] entryPass = "entryPass".toCharArray();
X509ExtendedKeyManager km = KeyManagerHelper.createJKSKeyManager(

"c:/cert/client-cert.jks", keyStorePass, entryPass);

// Empty key manager
// Using KeyManagerHelper class
X509ExtendedKeyManager km1 = KeyManagerHelper.createEmptyKeyManager();
// Direct creation
X509ExtendedKeyManager km2 = new EmptyX509ExtendedKeyManager();

Trust Managers
A Trust Manager is an entity that decides which certificates from a remote party are to be trusted. It
performs certificate validation, checks the expiration date, matches the host name, checks the
certificate against a CRL list, and builds and validates the chain of trust. The chain of trust starts from
a certificate trusted by both sides (for example, a CA certificate) and continues with second-level
certificates signed by CA, then possibly with third-level certificates signed by second-level authorities
and so on. Chain length can vary, but Platform SDK was designed to explicitly support two-level
chains consisting of a CA certificate and a leaf certificate signed by CA.

Trust manager instances are created based on storage that contains trusted certificates. The number
of trusted certificates can vary depending on the type of trust manager being used. With PEM files,
the storage contains only a single CA certificate; other provider types can have larger sets of trusted
certificates.

Using the Platform SDK Commons Library

Platform SDK Developer's Guide 5



The Platform SDK Commons library has a helper class, TrustManagerHelper, which makes it easy to
create trust managers that use several types of certificate stores and security providers, and which
can accept additional parameters that affect certificate validation. Built-in trust manager types are:

• PEM — Reads a CA certificate from an X.509 PEM file.
• MSCAPI — Uses the Microsoft CryptoAPI and Windows certificate services to retrieve CA certificates and

validate certificates.
• PKCS11 — Delegates certificate validation to an external security provider plugged in via the PKCS#11

interface, for example, Mozilla NSS.
• JKS — Retrieves a CA certificate from a Java Keystore file and uses Java built-in validation logic.
• Default — Uses trusted certificates shipped with or configured in Java Runtime and Java built-in

validation logic.
• TrustEveryone — Trusts any certificates. Can be used on the server side when you do not expect any

certificates from clients, or during testing.

Here are some examples of trust manager creation (with generic crlPath and expectedHostName
parameters defined in the first example):

// Generic parameters for trust manager examples
String crlPath = "c:/cert/ca-crl.pem";
String expectedHostName = "serverhost";
// From PEM file
X509TrustManager tm = TrustManagerHelper.createPEMTrustManager(

"c:/cert/ca.pem", crlPath, expectedHostName);

// From MSCAPI
// CRL is loaded from PEM file (Platform SDK supports only file-base CRLs)
// Concrete CA is not specified, all certificates from WCS Trusted Root are used
CallbackHandler cbh = new DummyPasswordCallbackHandler();
X509TrustManager tm = TrustManagerHelper.createMSCAPITrustManager(

cbh, crlPath, expectedHostName);

// From PKCS#11
// This provider implementation in Java does not allow custom host name check,
// but CRL can still be used
X509TrustManager tm = TrustManagerHelper.createPKCS11TrustManager(

cbh, crlPath);

// From JKS
// JKS key store does not allow callback usage (bug in Java?)
// Certificate-only entries cannot have passwords in JKS key store
// CRL and host name check are supported
char[] keyStorePass = "keyStorePass".toCharArray();
X509ExtendedKeyManager km = KeyManagerHelper.createJKSTrustManager(

"c:/cert/ca-cert.jks", keyStorePass, crlPath, expectedHostName);

// From Java built-in trusted certificates
// This one does not support CRL and host name check
X509ExtendedKeyManager km = KeyManagerHelper.createDefaultTrustManager();

// Trust Everyone
X509ExtendedKeyManager km =

KeyManagerHelper.createTrustEveryoneTrustManager();

Using the Platform SDK Commons Library

Platform SDK Developer's Guide 6



SSLContext and SSLExtendedOptions
An SSLContext instance serves as a container for all SSL and TLS parameters and objects and also as
a factory for SSLEngine instances.

SSLEngine instances contain logic that deals directly with TLS handshaking, negotiation, and data
encryption and decryption. SSLEngine instances are not reusable and must be created anew for each
connection. This is a good reason for requiring users to provide an SSLContext instance rather than
an instance of SSLEngine. SSLEngine instances are created by the Platform SDK connection layer
and are not exposed to user code.

Only some of the parameters for SSLEngine can be pre-set in SSLContext. However, the
SSLExtendedOptions class may be used to collect additional parameters.

SSLExtendedOptions currently contains two parameters:

• the "mutual TLS" flag
• a list of enabled cipher suites

The mutual TLS flag is used only by server applications. When the flag is turned on, the server will
require connecting clients to send their certificates for validation. The connections of any clients that
do not send certificates will fail.

The list of enabled cipher suites contains the names of all cipher suites that will be used as filters for
SSLEngine. As a result, only ciphers that are supported by SSLEngine and that are contained in the
enabled cipher suites list will be enabled for use.

Platform SDK includes the SSLContextHelper helper class to support one-line creation of SSLContext
and SSLExtendedOptions instances.

Here are some examples:

// Creating SSLContext
KeyManager km = ...;
TrustManager tm = ...;
SSLContext sslContext = SSLContextHelper.createSSLContext(km, tm);

String[] cipherList = new String[] {
"TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
"TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA"};

// Can be single String with space-separated suite names
String cipherNames = "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA " +

"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA " +
"TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA";

boolean mutualTLS = false;

// Creating SSLExtendedOptions directly
SSLExtendedOptions sslOpts1 =

new SSLExtendedOptions(mutualTLS, cipherList);
SSLExtendedOptions sslOpts2 =

new SSLExtendedOptions(mutualTLS, cipherNames);

// Create SSLExtendedOptions using the helper class:
SSLExtendedOptions sslOpts3 =

SSLContextHelper.createSSLExtendedOptions(mutualTLS, cipherList);
SSLExtendedOptions sslOpts4 =

Using the Platform SDK Commons Library

Platform SDK Developer's Guide 7



SSLContextHelper.createSSLExtendedOptions(mutualTLS, cipherNames);

Endpoints
Now that supporting objects have been created and configured, you are ready to create an Endpoint.

The connection configuration parameters of an Endpoint are read-only—they cannot be changed
after the Endpoint is created. This configuration information is then used by Protocol instances, the
warm standby service, the connection layer and the TLS layer.

A sample Endpoint configuration is shown below:

ConnectionConfiguration connConf = ...;
SSLContext sslContext = ...;
SSLExtendedOptions sslOpts = ...;
tlsEnabled = true;
// Specifying host name and port.
Endpoint ep1 = new Endpoint("Server-1", "serverhost", 9090, connConf,

tlsEnabled, sslContext, sslOpts);
// Specifying URI. Query part is still supported.
String uri = "tcp://Server-1@serverhost:9090/" +

"?protocol=addp&addp-remote-timeout=5&addp-trace=remote";
Endpoint ep2 = new Endpoint("Server-1", uri, connConf,

tlsEnabled, sslContext, sslOpts);

Note: Configuration parameters can be set directly in a Protocol instance context, but will be
overwritten and lost under the following conditions:

• a new Endpoint is set up
• the protocol is forced to reconnect
• a warm standby switchover occurs

Configuring TLS for Client Connections
Using the information above, you are now ready to configure actual client connections.

Example:

// Get TLS configuration objects for connection
String clientName = "ClientApp";
String host = "serverhost";
int port = 9000;
SSLContext sslContext = ...; // Assume it is created
SSLExtendedOptions sslOptions = ...; // Assume it is created
boolean tlsEnabled = true;

ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
Endpoint epTSrv = new Endpoint(

clientName, host, port, connConf, tlsEnabled, sslContext, sslOptions);

TServerProtocol tsProtocol = new TServerProtocol(epTSrv);
tsProtocol.setClientName(clientName);
tsProtocol.open();

Using the Platform SDK Commons Library

Platform SDK Developer's Guide 8



Configuring TLS for Servers
Using the information above, you are now ready to configure actual server connections.

String serverName = "ServerApp";
String host = "serverhost";
int port = 9000;
SSLContext sslContext = ...; // Assume it is created
SSLExtendedOptions sslOptions = ...; // Assume it is created
boolean tlsEnabled = true;

ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
Endpoint epTSrv = new Endpoint(

serverName, host, port, connConf, tlsEnabled, sslContext, sslOptions);

ExternalServiceProtocolListener serverChannel =
new ExternalServiceProtocolListener(endpoint);

Parameter-based TLS Configuration
Platform SDK has a way to create TLS objects based on a set of parameters in a more declarative
fashion rather than creating them programmatically. This feature was initially developed as a part of
Application Template to configure TLS based on parameters from Configuration objects and then was
generalized to use different parameter sources and moved to Commons. Currently this mechanism
supports only three providers: PEM, MSCAPI and PKCS#11. Usage sequence is the following:

1. Prepare a source of TLS parameters and parse it using TLSConfigurationParser resulting in
TLSConfiguration instance.

2. Customize TLSConfiguration.
1. Add callback handlers.
2. Clients: set expected host name.

3. Create SSLContext and SSLExtendedOptions from TLSConfiguration.

This section continues with step-by-step examples and ends with a more detailed review of helper
classes.

Parsing TLS Parameters

Platform SDK Commons has a few helper classes that make it easier to extract TLS parameters from
a properties files, command-line arguments, etc.: TLSConfiguration and TLSConfigurationParser.
TLSConfiguration is a container for parsed TLS parameters and TLSConfigurationParser provides a
general parsing method and several overloaded shortcut methods for specific cases.

Examples:

// Using KVList as a parameters source
KVList tlsProps = new KeyValueCollection();
tlsProps.addObject("tls", "1");
tlsProps.addObject("certificate", "client-cert.pem");
TLSConfiguration tlsConfClient =

TLSConfigurationParser.parseClientTlsConfiguration(tlsProps);

Using the Platform SDK Commons Library

Platform SDK Developer's Guide 9



TLSConfiguration tlsConfServer =
TLSConfigurationParser.parseServerTlsConfiguration(tlsProps);

// Using Map as a parameters source
Map<String, String> tlsProps = new HashMap<String, String>();
tlsProps.put("tls", "1");
tlsProps.put("certificate", "client-cert.pem");
TLSConfiguration tlsConfClient =

TLSConfigurationParser.parseClientTlsConfiguration(tlsProps);
TLSConfiguration tlsConfServer =

TLSConfigurationParser.parseServerTlsConfiguration(tlsProps);

// Using Properties as a parameters source
Properties tlsProps = new Properties();
tlsProps.load(new FileInputStream("tls.properties"));
TLSConfiguration tlsConfClient =

TLSConfigurationParser.parseClientTlsConfiguration(tlsProps);
TLSConfiguration tlsConfServer =

TLSConfigurationParser.parseServerTlsConfiguration(tlsProps);

// Using String as a parameters source
// Format corresponds to Transport Parameters as they appear in Configuration Manager
String tlsProps = "tls=1;certificate=client-cert.pem"; // No spaces around ";"
TLSConfiguration tlsConfClient =

TLSConfigurationParser.parseClientTlsConfiguration(tlsProps);
TLSConfiguration tlsConfServer =

TLSConfigurationParser.parseServerTlsConfiguration(tlsProps);

Customizing TLS Configuration

When TLSConfiguration is prepared, it may still need some customization. Callback handlers for
password retrieval, for example, cannot be configured in parameters and must be set explicitly. They
should be set always, even if not used, because some security providers require them.

Specifying expected host name is not very straightforward and some aspects should be considered.
When configuring TLS on client side, expected host names are in most cases different for primary and
for backup connections. Though, on some virtualized environments, they can be the same. Users may
choose to use IP addresses instead of DNS host names, or use DNS names with wildcards. Either way,
expected host name must match one of names specified in server’s certificate and in extreme cases
it may not relate to actual host name at all. To account for these cases, setting expected host name is
not automated in Platform SDK and left for user code. Example code below shows how to set this
value to actual host name of target server.

According to X.509 specification, certificate may contain not just host name or IP address, but also
URI or e-mail address. Platform SDK supports only host names and IP addresses, but host name may
use wildcard: a star symbol, “*”, can be used instead of any one level of domain name.

Examples:

TLSConfiguration tlsConfiguration = ...;

// Applicable to both clients and servers
// Passwords are not used, so set dummies:
tlsConfiguration.setKeyStoreCallbackHandler(

new DummyPasswordCallbackHandler());
tlsConfiguration.setTrustStoreCallbackHandler(

new DummyPasswordCallbackHandler());

// In case some real password is needed:
tlsConfiguration.setKeyStoreCallbackHandler(new CallbackHandler() {

Using the Platform SDK Commons Library

Platform SDK Developer's Guide 10



public void handle(Callback[] callbacks) {
char[] password = new char[] {

'p', 'a', 's', 's', 'w', 'o', 'r', 'd'};
for (Callback c : callbacks) {

if (c instanceof PasswordCallback) {
((PasswordCallback) c).setPassword(password);

}
}

}
}

);

// Expected host name may contain exact host name, ...
tlsConfiguration.setExpectedHostname("someserver.ourdomain.com");
// wildcard host name, ...
tlsConfiguration.setExpectedHostname("*.ourdomain.com");
tlsConfiguration.setExpectedHostname("someserver.*.com");

// IPv4 address, ...
tlsConfiguration.setExpectedHostname("192.168.1.1");
// IPv6 address.
tlsConfiguration.setExpectedHostname("fe80::ffff:ffff:fffd");

Creating SSLContext

Platform SDK Commons has helper class – TLSConfigurationHelper, which creates SSLContext and
SSLExtendOptions based on TLSConfiguration object. TLSConfigurationHelper has two methods:

public static SSLContext createSslContext(TLSConfiguration config);

and

static SSLExtendedOptions createSslExtendedOptions(TLSConfiguration config);

Method createSSLContext() determines security provider type if it is not set explicitly, creates
necessary key store objects, key manager, trust manager, and finally wraps it all into SSLContext.

Method createSSLExtendedOptions() does not contain any logic, it just creates new
SSLExtendedOptions with the exact parameters taken from TLSConfiguration.

Usage of both methods is shown in code sample below.

Example:

// TLS preparation section follows
KVList tlsProps = new KeyValueCollection();
tlsProps.addObject("tls", "1");
tlsProps.addObject("certificate", "client-cert.pem");
TLSConfiguration tlsConf =

TLSConfigurationParser. parseClientTlsConfiguration(tlsProps);

boolean tlsEnabled = true;

SSLContext sslContext =
TLSConfigurationHelper.createSslContext(tlsConfiguration);

SSLExtendedOptions sslOptions =
TLSConfigurationHelper.createSslExtendedOptions(tlsConfiguration);

// The same as above, using shortcut methods:
sslContext = tlsConfiguration.createSslContext();

Using the Platform SDK Commons Library

Platform SDK Developer's Guide 11



sslOptions = tlsConfiguration.createSslExtendedOptions();

Endpoint ep = new Endpoint(appName, host, port, null, tlsEnabled, sslContext, sslOptions);

TLSConfiguration Class

TLSConfiguration class is used as intermediate container to keep stronger-typed TLS parameters
extracted from a parameter source. It contains the following:

Properties

TLSConfiguration Properties List
Name Type Description

tlsEnabled boolean

Correspond to TLS parameters in
Configuration; please see the list
of TLS Parameters in
Configuration Manager for
details.

provider String
certificate String
certificateKey String
trustedCaCertificate String
mutual boolean
crl String
targetNameCheckEnabled boolean
cipherList String
fips140Enabled boolean

clientMode boolean

Should be set to true for client-
side of connection and false for
server-side.
TLSConfigurationParser
specialized methods set it
automatically.

expectedHostname String

Host name to check against,
used when
targetNameCheckEnabled is
turned on. Typically is used by
client side and assigned to the
host/domain part of target URL.

keyStoreCallbackHandler CallbackHandler Please see Callback Handlers for
details.

trustStoreCallbackHandler CallbackHandler

Methods

TLSConfiguration Methods List
Signature Description

SSLContext createSslContext() A shortcut for
TLSConfigurationHelper.createSslContext

Using the Platform SDK Commons Library

Platform SDK Developer's Guide 12

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUsingPSDKCommonsLibrary#Callback_Handlers


Signature Description
method. Creates and configures SSLContext object
based on the properties values.

SSLExtendedOptions createSslExtendedOptions()
A shortcut for
TLSConfigurationHelper.createSslExtendedOptions
method. Creates SSLExtendedOptions object
based on the properties values.

Constants

The following constants define supported values for a provider property:

• String TLS_PROVIDER_PEM_FILE;
• String TLS_PROVIDER_PKCS11;
• String TLS_PROVIDER_MSCAPI;

TLSConfigurationParser Class

TLSConfigurationParser class has methods that extract TLS parameters from different sources and
create TLSConfiguration instance containing the parameters. It uses interface PropertyReader and
several classes implementing this interface to read TLS parameters.

Methods

TLSConfiguration Methods List
Signature Description

public static TLSConfiguration
parseTlsConfiguration(final PropertyReader prop,
final boolean clientMode)

This is the main and most generic method. It reads
all possible TLS parameters (parameter names and
possible values are detailed in the list of TLS
Parameters in Configuration Manager), converts
them and assigns them to TLSConfiguration
properties.

public static TLSConfiguration
parseServerTlsConfiguration(KVList kvl)

These methods provide shortcuts to parse TLS
configuration from different source types.

public static TLSConfiguration
parseClientTlsConfiguration(KVList kvl)
public static TLSConfiguration
parseServerTlsConfiguration(Map<String, String>
map)
public static TLSConfiguration
parseClientTlsConfiguration(Map<String, String>
map)
public static TLSConfiguration
parseServerTlsConfiguration(Properties prop)
public static TLSConfiguration
parseClientTlsConfiguration(Properties prop)

Using the Platform SDK Commons Library

Platform SDK Developer's Guide 13

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters


Signature Description
public static TLSConfiguration
parseServerTlsConfiguration(String
transportParams)
public static TLSConfiguration
parseClientTlsConfiguration(String
transportParams)

Interface PropertyReader and Implementing Classes

Interface PropertyReader contains just one method:

String getProperty(String key)

Here, key argument contains name of parameter to extract. Implementing classes contain code that
actually extract and return value corresponding to the key. Currently there are five implementations:

1. GConfigTlsPropertyReader - This class belongs to Application Template and is used to extract TLS
parameters from a set of related Configuration objects. It cannot be included to Commons library since
it would cause circular references between the Commons and Application Template.

2. KVListPropertyReader - Extracts String value from a KVList instance.
3. MapPropertyReader - Extracts value from a Map<String, String> instance.
4. PropertiesReader - Extracts value from a Properties instance.
5. TransportParamsPropertyReader - Parses transport parameters as they appear in Configuration

Manager, for example:

“tls=1;certificate=c:/cert/cert.pem;mutual=1”.

Using the Platform SDK Commons Library

Platform SDK Developer's Guide 14


	Platform SDK Developer's Guide
	Using the Platform SDK Commons Library

