
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide

4/30/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Event Handling Using the Message Broker
Application Block

Important
The Message Broker Application Block is considered a legacy product as of release
8.1.1 due to changes to the default event-receiving mechanism. Documentation
related to this application block is retained for backwards compatibility. For
information about event handling without use of the deprecated Message Broker
Application Block, refer to the Event Handling article.

Once you have connected to a server using the Protocol Manager Application Block, much of the work
of your application will be to send messages to that server and then handle the events you receive
from it.

Genesys recommends that you use the Message Broker Application Block for most of your event
handling needs. This article shows how to send and receive simple synchronous events without using
Message Broker and then discusses how to use Message Broker for asynchronous event handling.

Tip
It is important to determine whether your application needs to use synchronous or
asynchronous messages. In general, you will probably use only one or the other type
in your application. If you decide to use synchronous messages, you must make sure
that your code handles all of the messages you receive from your servers. For
example, if you send a RequestReadObjects message to Configuration Server, you
will receive several EventObjectsRead messages, followed by an EventObjectsSent
message. If your application does not handle all of these messages, it will not work
properly.

The messages you send to a server are in the form of requests. For example, you may send a request
to log in an agent or to gather statistics. You might also send a request to update a configuration
object, or to shut down an application.

In each of these cases, the server will respond with an event message, as shown below.

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 2

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB


Some of the requests you send may best be handled with a synchronous response, while others may
best be handled asynchronously. Let’s talk about synchronous requests first.

Java

Synchronous Requests

Sometimes you might want a synchronous response to your request. For example, if you are using
the Open Media Platform SDK, you may want to log in an agent. To do this, you need to let the server
know that you want to log in. And then you need to wait for confirmation that your login was
successful.

The first thing you need to do is to create a login request, as shown here:

[Java]

RequestAgentLogin requestAgentLogin =
RequestAgentLogin.create(

tenantId,
placeId,
reason);

This version of RequestAgentLogin.Create specifies most of the information you will need in order
to perform the login, but there is one more piece of data required. Here is how to add it:

[Java]

requestAgentLogin.setMediaList(mediaList);

Once you have created the request and set all required properties, you can make a synchronous
request by using the request method of your ProtocolManagementService object, like this:

[Java]

Message response = null;
response = protocolManagementServiceImpl.getProtocol("Interaction_Server_App")

.request(requestAgentLogin);

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 3



Tip
For information on how to use the ProtocolManagementServiceImpl class of the
Protocol Manager Block to communicate with a Genesys server, see the article on
Connecting to a Server.

There are two important things to understand when you use the request method:

• When you execute this method call, the calling thread will be blocked until it has received a response
from the server.

• This method call will only return one message from the server. If the server returns subsequent
messages in response to this request, you must process them separately. This can happen in the
example of sending a RequestReadObjects message to Configuration Server, as mentioned at the
beginning of this article.

The response from the server will come in the form of a Message. This is the interface implemented
by all events in the Platform SDK. Some types of requests will be answered by an event that is
specific to the request, while others may receive a more generic response of EventAck, which simply
acknowledges that your request was successful. If a request fails, the server will send an
EventError.

A successful RequestAgentLogin will receive an EventAck, while an unsuccessful one will receive an
EventError. You can use a switch statement to test which response you received, as outlined here:

[Java]

switch(response.messageId())
{

case EventAck.ID:
OnEventAck(response);

case EventError.ID:
OnEventError(response);

...
}

Using Message Broker to Handle Asynchronous Requests

There are times when you need to receive asynchronous responses from a server.

First of all, some requests to a server can result in multiple events. For example, if you send a
RequestReadObjects message, which is used to read objects from the Genesys Configuration Layer,
Configuration Server may send more than one EventObjectsRead messages in response, depending
on whether there is too much data to be handled by a single EventObjectsRead.

In other cases, events may be unsolicited. To continue with our example, once you have received all
of the EventObjectsRead messages, Configuration Server will also send an EventObjectsSent,
which confirms that it has completed your request.

To make an asynchronous request, you would use the send method of your
ProtocolManagementServiceImpl class. For example, you might need to fetch information about

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 4



some objects in the Genesys Configuration Layer. Here is how to set up a RequestReadObjects,
followed by the send:

[Java]

KeyValueCollection filterKey = new KeyValueCollection();
filterKey.addObject("switch_dbid", 113);
filterKey.addObject("dn_type", CfgDNType.CFGExtension.asInteger());
RequestReadObjects requestReadObjects = RequestReadObjects.create(

CfgObjectType.CfgDN.asInteger(), filterKey);
protocolManagementServiceImpl.getProtocol("Config_Server_App")

.send(requestReadObjects);

This snippet is searching for all DNs that have a type of Extension and are associated with the switch
that has a database ID of 113.

There are several ways to handle the response from the server, but Genesys recommends that you
use the Message Broker Application Block, which is included with the Platform SDK. Message Broker
allows you to set up individual classes to handle specific events. It receives the events from the
servers you are working with, and sends them to the appropriate handler class. Message Broker is a
high-performance way to hide the complexity of event-driven programming — so you can focus on
other areas of your application.

To use the Message Broker Application Block, add the following .jar file to the classpath for your
application:

• messagebrokerappblock.jar

This .jar file was precompiled using the default Application Block code, and can be located at:
<Platform SDK Folder>\lib.

Tip
You can also view or modify the Message Broker Application Block source code. To do
this, open the Message Broker Java source files that were installed with the Platform
SDK. The Java source files for this project are located at: <Platform SDK
Folder>\applicationblocks\messagebroker\src\java. If you make any changes to
the project, you will have to run Ant (or use the build.bat file for this Application
Block) to rebuild the .jar archive listed above. After you run Ant, add the resulting .jar
to your classpath.

Now you can add the appropriate import statements to your source code. For example:

[Java]

import com.genesyslab.platform.applicationblocks.commons.broker.*;

In order to use the Message Broker Application Block, you need to create an EventBrokerService
object to handle the events your application receives. Since you are using the Protocol Manager
Application Block to connect to your servers, as shown in the section on Connecting to a Server, you
should specify the ProtocolManagementServiceImpl object in the EventBrokerService constructor:

[Java]

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 5

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB


EventBrokerService mEventBrokerService = new EventBrokerService(
(MessageReceiverSupport) protocolManagementServiceImpl

.getReceiver());

You also need to set up the appropriate filters for your event handlers and register the handlers with
the EventBrokerService. This allows that service to determine which classes will be used for event-
handling. Note that you should register these classes before you open the connection to the server.
Otherwise, the server might send events before you are ready to handle them. The sample below
shows how to filter on Message ID, which is an integer associated with a particular message:

[Java]

mEventBrokerService.register(new ConfObjectsReadHandler(),
new MessageIdFilter(EventObjectsRead.ID));

mEventBrokerService.register(new ConfObjectsSentHandler(),
new MessageIdFilter(EventObjectsSent.ID));

mEventBrokerService.register(new StatPackageInfoHandler(),
new MessageIdFilter(EventPackageInfo.ID));

Once you have registered your event-handling classes, you can activate the EventBrokerService
and open the connection to your server. In the following snippet, connections are being opened to
both Configuration Server and Stat Server:

[Java]

mEventBrokerService.activate();

protocolManagementServiceImpl.getProtocol("Config_Server_App")
.open();

protocolManagementServiceImpl.getProtocol("Stat_Server_App").open();

At this point, you are ready to set up classes to handle the events you have received from the server.
Here is a simple class that handles the EventObjectsRead messages:

[Java]

class ConfObjectsReadHandler implements Action {

public void handle(Message obj) {
EventObjectsRead objectsRead = (EventObjectsRead) obj;
// Add processing here...

}
}

As mentioned earlier, once Configuration Server has sent all of the information you requested, it will
let you know it has finished by sending an EventObjectsSent message. Note that this handler has a
structure that is similar to the one for EventObjectsRead:

[Java]

class ConfObjectsSentHandler implements Action {

public void handle(Message obj) {
EventObjectsSent objectsSent = (EventObjectsSent) obj;
// Add processing here...

}
}

Message Broker only routes non-null messages of the type you specify to your message

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 6



handlers. For example, if you send a RequestReadObjects and no objects in the
Configuration Layer meet your filtering criteria, you will not receive an
EventObjectsRead. In that case, you will only receive an EventObjectsSent. Therefore,
you do not need to check for a null message in your EventObjectsRead handler.|2

The EventPackageInfo handler also has a similar structure, but in this case, we show how to print
information about the statistics contained in the requested package:

[Java]

class StatPackageInfoHandler implements Action {

public void handle(Message obj) {
EventPackageInfo eventPackageInfo = (EventPackageInfo) obj;
if (eventPackageInfo != null)
{

int statisticsCount = eventPackageInfo.getStatistics().getCount();
StatisticsCollection statisticsCollection = eventPackageInfo.getStatistics();

for (int i = 0; i < statisticsCount; i++)
{

Statistic statistic = statisticsCollection.getStatistic(i);

System.out.println("\nStatistic Metric is: " +
statistic.getMetric().toString());

System.out.println("Statistic Object is: " +
statistic.getObject());

System.out.println("Statistic IntValue is: " +
statistic.getIntValue());

System.out.println("Statistic StringValue is: " +
statistic.getStringValue());

System.out.println("Statistic ObjectValue is: " +
statistic.getObjectValue());

System.out.println("Statistic ExtendedValue is: " +
statistic.getExtendedValue());

System.out.println("Statistic Tenant is: " +
statistic.getObject().getTenant());

System.out.println("Statistic Type is: " +
statistic.getObject().getType());

System.out.println("Statistic Id is: " +
statistic.getObject().getId());

System.out.println("Statistic TimeProfile is: " +
statistic.getMetric().getTimeProfile());

System.out.println("Statistic StatisticType is: " +
statistic.getMetric().getStatisticType());

System.out.println("Statistic TimeRange is: " +
statistic.getMetric().getTimeRange());

}
}

}
}

Filtering Messages by Server
Each server in the Genesys environment makes use of a particular set of events that corresponds to
the tasks of that server. For example, Configuration Server sends EventObjectsRead and
EventObjectsSent messages, among others, while Stat Server's events include EventPackageInfo
and EventPackageOpened. Although your applications can identify each of these events by name, it is
more efficient to use the ID field associated with an event, which you specify as an int. You can do
this by using a MessageIdFilter, as shown here:

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 7



[Java]

mEventBrokerService.register(new ConfEventErrorHandler(),
new MessageIdFilter(EventError.ID));

However, the integer used for the Message ID of, say, a Configuration Server message, could be
same as the integer used for a completely different message on another server. This could lead to
problems if your application works with messages from more than one server. For example, if a multi-
server application includes a handler that processes a specific type of message from the first server
and that message has an ID of 12, any messages from the other servers that also have a Message ID
of 12 will be sent by your MessageIdFilter to the same handler.

Fortunately, the Platform SDK allows you to filter messages on a server-by-server basis in addition to
filtering on MessageId. Here is how to set up a Protocol Description object that allows you to specify
that you want some of your handlers to work only with events that are coming from Configuration
Server:

[Java]

ConfServerProtocol confServerProtocol = (ConfServerProtocol)
protocolManagementServiceImpl.getProtocol("Config_Server_App");

ProtocolDescription configProtocolDescription = null;
if (confServerProtocol != null)
{

configProtocolDescription =
confServerProtocol.getProtocolDescription();

}

Once you have set up this Protocol Description, you can use it to indicate that you only want to
process events associated with that server, in addition to specifying which event or events you want
each handler to process:

[Java]

mEventBrokerService.register(new ConfEventErrorHandler(),
new MessageIdFilter(configProtocolDescription, EventError.ID));

You are now ready to open the connection to Configuration Server:

[Java]

protocolManagementServiceImpl.
getProtocol("Config_Server_App").open();

Using One Handler for Multiple Events
There may be times when you would like to use a single event handler for more than one event. In
that case, you can create the handler and then register the appropriate events with it. For example,
you might create a handler for both EventObjectsRead and EventObjectsSent:

[Java]

class ConfEventHandler implements Action {
...

}

You might use a case statement inside the handler, in order to process each event appropriately. In
any case, once you have set up this handler, all you need to do is register both events with it, as

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 8



shown here:

[Java]

mEventBrokerService.register(new ConfEventHandler(),
new MessageIdFilter(configProtocolDescription, EventObjectsRead.ID));

mEventBrokerService.register(new ConfEventHandler(),
new MessageIdFilter(configProtocolDescription, EventObjectsSent.ID));

These are the basics of how to use the Message Broker Application Block. For more information, see
the Using the Message Broker Application Block article.

.NET

Synchronous Requests

Sometimes you might want a synchronous response to your request. For example, if you are using
the Open Media Platform SDK, you may want to log in an agent. To do this, you need to let the server
know that you want to log in. And then you need to wait for confirmation that your login was
successful.

The first thing you need to do is to create a login request, as shown here:

[C#]

RequestAgentLogin requestAgentLogin =
RequestAgentLogin.Create(

tenantId,
placeId,
reason);

This version of RequestAgentLogin.Create specifies most of the information you will need in order
to perform the login, but there is one more piece of data required. Here is how to add it:

[C#]

requestAgentLogin.MediaList = mediaList;

Once you have created the request and set all required properties, you can make a synchronous
request by using the Request method of your ProtocolManagementService object, like this:

[C#]

IMessage response =
protocolManagementService["InteractionServer"].

Request(requestAgentLogin);

Tip

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 9

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheMessageBrokerAB


For information on how to use the ProtocolManagementService class of the Protocol
Manager Application Block to communicate with a Genesys server, see the article on
Connecting to a Server Using the Protocol Manager Application Block.

There are two important things to understand when you use the Request method:

• When you execute this method call, the calling thread will be blocked until it has received a response
from the server.

• This method call will only return one message from the server. If the server returns subsequent
messages in response to this request, you must process them separately. This can happen in the
example of sending a RequestReadObjects message to Configuration Server, as mentioned at the
beginning of this article.

The response from the server will come in the form of an IMessage. This is the interface implemented
by all events in the Platform SDK. Some types of requests will be answered by an event that is
specific to the request, while others may receive a more generic response of EventAck, which simply
acknowledges that your request was successful. If a request fails, the server will send an
EventError.

A successful RequestAgentLogin will receive an EventAck, while an unsuccessful one will receive an
EventError. You can use a switch statement to test which response you received, as outlined here:

[C#]

switch(response.Id)
{

case EventAck.MessageId:
OnEventAck(response);

case EventError.MessageId:
OnEventError(response);

...
}

Using Message Broker to Handle Asynchronous Requests

There are times when you need to receive asynchronous responses from a server.

First of all, some requests to a server can result in multiple events. For example, if you send a
RequestReadObjects message, which is used to read objects from the Genesys Configuration Layer,
Configuration Server may send more than one EventObjectsRead messages in response, depending
on whether there is too much data to be handled by a single EventObjectsRead.

In other cases, events may be unsolicited. To continue with our example, once you have received all
of the EventObjectsRead messages, Configuration Server will also send an EventObjectsSent,
which confirms that it has completed your request.

To make an asynchronous request, you would use the Send method of your
ProtocolManagementService class. Here is how to set up a RequestReadObjects, followed by the
Send:

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 10

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB


[C#]

KeyValueCollection filterKey = new KeyValueCollection();
filterKey.Add("switch_dbid", 113);
filterKey.Add("dn_type", (int) CfgDNType.Extension);
RequestReadObjects requestReadObjects =

RequestReadObjects.Create(
(int) CfgObjectType.CFGDN,
filterKey);

protocolManagementService["ConfigServer"].Send(requestReadObjects);

This snippet is searching for all DNs that have a type of Extension and are associated with the switch
that has a database ID of 113.

There are several ways to handle the response from the server, but Genesys recommends that you
use the Message Broker Application Block, which is included with the Platform SDK. Message Broker
allows you to set up individual handlers for specific events. It receives the events from the servers
you are working with, and sends them to the appropriate handler. Message Broker is a high-
performance way to hide the complexity of event-driven programming — so you can focus on other
areas of your application.

To use the Message Broker Application Block, open the Solution Explorer for your application project
and add a reference to the following file:

• Genesyslab.Platform.ApplicationBlocks.Commons.Broker.dll

This dll file is precompiled using the default Application Block code, and can be located at: <Platform
SDK Folder>\Bin.

Tip
You can also view or modify the Message Broker Application Block source code. To do
this, open the Message Broker Visual Studio project that was installed with the
Platform SDK. The solution file for this project is located at: <Platform SDK
Folder>\ApplicationBlocks\MessageBroker. If you make any changes to the
project, you will have to rebuild the .dll file listed above.

Once you have added the reference, you can add a using statement to your source code:

[C#]

using Genesyslab.Platform.ApplicationBlocks.Commons.Broker;

In order to use the Message Broker Application Block, you need to create an EventBrokerService
object to handle the events your application receives. Declare this object with your other fields:

[C#]

EventBrokerService eventBrokerService;

Then you can set up the EventBrokerService to receive events from the Protocol Manager
Application Block's ProtocolManagementService class, which you are using to connect to your
servers, as shown in the section on Connecting to a Server:

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 11



[C#]

eventBrokerService = new EventBrokerService(protocolManagementService.Receiver);

Now you are ready to set up your event handlers.

Note that there are two ways to do this. In 7.5, when Message Broker was introduced, you needed to
use attributes to filter the events you wanted processed by a particular handler. Starting in 7.6, you
can still do it that way, but you can also set up your filters in the statement that registers an event
handler with the Event Broker service, rather than using attributes that are associated with the
handler itself. This new method may perform better than the old way, but we will show you how to
use both.

Using Event Handlers Without Attributes
Let us start by setting up a couple of event handlers. First, here is a simple handler for the
EventError message:

[C#]

private void OnConfEventError(IMessage theMessage)
{

EventError eventError = theMessage as EventError;
/// Add processing here...

}

And here is one for the EventObjectsRead message:

[C#]

private void OnConfEventObjectsRead(IMessage theMessage)
{

EventObjectsRead objectsRead = theMessage as EventObjectsRead;
/// Add processing here...

}

As mentioned earlier, once Configuration Server has sent all of the information you requested, it will
let you know it has finished by sending an EventObjectsSent message. Here is a handler for that:

[C#]

private void OnConfEventObjectsSent(IMessage theMessage)
{

EventObjectsSent objectsSent = theMessage as EventObjectsSent;
/// Add processing here...

}

Now you can set up the appropriate filters for your event handlers and register the handlers with the
EventBrokerService. This allows that service to determine which classes will be used for event-
handling. Note that you should register these handlers before you open the connection to the server.
Otherwise, the server might send events before you are ready to handle them. The sample below
shows how to filter on Message ID, which is an integer associated with a particular message:

[C#]

eventBrokerService.Register(
this.OnConfEventError,
new MessageIdFilter(EventError.MessageId));

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 12



eventBrokerService.Register(
this.OnConfEventObjectsRead,
new MessageIdFilter(EventObjectsRead.MessageId));

eventBrokerService.Register(
this.OnConfEventObjectsSent,
new MessageIdFilter(EventObjectsSent.MessageId));

Message Broker only routes non-null messages of the type you specify to your message
handlers. For example, if you send a RequestReadObjects and no objects in the
Configuration Layer meet your filtering criteria, you will not receive an
EventObjectsRead. In that case, you will only receive an EventObjectsSent. Therefore,
you do not need to check for a null message in your EventObjectsRead handler.

Filtering Messages by Server
Each server in the Genesys environment makes use of a particular set of events that corresponds to
the tasks of that server. For example, Configuration Server sends EventObjectsRead and
EventObjectsSent messages, among others, while Stat Server's events include EventPackageInfo
and EventPackageOpened. Although your applications can identify each of these events by name, it is
more efficient to use the ID field associated with an event, which you specify as an int. You can do
this by using a MessageIdFilter, as shown here:

[C#]

eventBrokerService.Register(this.OnConfEventError);

However, the integer used for the Message ID of, say, a Configuration Server message, could be
same as the integer used for a completely different message on another server. This could lead to
problems if your application works with messages from more than one server. For example, if a multi-
server application includes a handler that processes a specific type of message from the first server
and that message has an ID of 12, any messages from the other servers that also have a Message ID
of 12 will be sent by your MessageIdFilter to the same handler.

Fortunately, the Platform SDK allows you to filter messages on a server-by-server basis in addition to
filtering on MessageId. Here is how to set up a Protocol Description object that allows you to specify
that you want some of your handlers to work only with events that are coming from Configuration
Server:

[C#]

ConfServerProtocol confServerProtocol =
protocolManagementService["Config_Server_App"]

as ConfServerProtocol;
ProtocolDescription configProtocolDescription = null;
if (confServerProtocol != null)
{

configProtocolDescription =
confServerProtocol.ProtocolDescription;

}

Once you have set up this Protocol Description, you can use it to indicate that you only want to
process events associated with that server, in addition to specifying which event or events you want
each handler to process:

[C#]

eventBrokerService.Register(

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 13



this.OnConfEventError,
new MessageIdFilter(

configProtocolDescription,
EventError.MessageId));

eventBrokerService.Register(
this.OnConfEventObjectsRead,

new MessageIdFilter(
configProtocolDescription,
EventObjectsRead.MessageId));

eventBrokerService.Register(
this.OnConfEventObjectsSent,

new MessageIdFilter(
configProtocolDescription,
EventObjectsSent.MessageId));

You are now ready to open the connection to Configuration Server:

[C#]

protocolManagementService["Config_Server_App"].Open();

Using One Handler for Multiple Events
There may be times when you would like to use a single event handler for more than one event. In
that case, you can create the handler and then register the appropriate events with it. For example,
you might create a handler for both EventObjectsRead and EventObjectsSent:

[C#]

private void OnConfEvents (IMessage theMessage) {
...

}

You might use a case statement inside the handler, in order to process each event appropriately. In
any case, once you have set up this handler, all you need to do is register both events with it, as
shown here:

[C#]

eventBrokerService.Register(
this.OnConfEvents,

new MessageIdFilter(
configProtocolDescription,
EventObjectsRead.MessageId));

eventBrokerService.Register(
this.OnConfEvents,

new MessageIdFilter(
configProtocolDescription,
EventObjectsSent.MessageId));

Using Attributes with Your Event Handlers
As mentioned above, you can also use attributes to filter your event handlers. It is important to note
that this may not perform as well as the method outlined above, but in case you would like to use
attributes in your application, here is how to proceed.

When you use attributes, you have to specify the name of the protocol object you are using, and the
name of the SDK it is part of, as shown here:

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 14



[C#]

private const string protocolName = "ConfServer";
private const string sdkName = "Configuration";

These values can be determined by accessing the ProtocolDescription.ProtocolName and
ProtocolDescription.SdkName properties of your protocol object. They are also provided in the
following table.

SDK SdkName Protocol Object ProtocolName
Configuration Platform
SDK Configuration ConfServerProtocol ConfServer

Contacts Platform SDK Contacts UniversalContactServerProtocolContactServer

Management Platform
SDK Management

• LocalControlAgentProtocol
• MessageServerProtocol
• SolutionControlServerProtocol

• LocalControlAgent
• MessageServer
• SolutionControlServer

Open Media Platform
SDK OpenMedia

• InteractionServerProtocol
• ExternalServiceProtocol

• InteractionServer
• ExternalService

Outbound Contact
Platform SDK Outbound OutboundServerProtocol OutboundServer

Routing Platform SDK Routing
• RoutingServerProtocol
• UrsCustomProtocol

• RoutingServer
• CustomServer

Statistics Platform SDK Reporting StatServerProtocol StatServer
Voice Platform SDK Voice TServerProtocol TServer

Web Media Platform
SDK WebMedia

• BasicChatProtocol
• FlexChatProtocol
• EmailProtocol
• EspEmailProtocol
• CallbackProtocol

• BasicChat
• FlexChat
• Email
• EspEmail
• Callback

Table 1: Platform SDK SdkName and ProtocolName Values

You also need to register the methods you will handle your events with. This allows the
EventBrokerService to determine which methods will be used for event-handling. When registering
for event handlers that use attributes, you only specify the name of the event-handling method. In
this case, you need to handle three different events. Note that you should register these methods
before you open the connection to the server, as shown here. Otherwise, the server might send
events before you are ready to handle them:

[C#]

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 15



eventBrokerService.Register(this.OnConfEventObjectsRead);
eventBrokerService.Register(this.OnConfEventObjectsSent);
eventBrokerService.Register(this.OnConfEventError);
protocolManagementService["Config_Server_App"].Open();

At this point, you are ready to set up methods to handle the events you have received from the
server. Here is a simple method that handles the EventError message:

[C#]

[MessageIdFilter(EventError.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]
private void OnConfEventError(IMessage theMessage)
{

EventError eventError = theMessage as EventError;
/// Add processing here...

}

Notice that there is a MessageIdFilter attribute right before the method body. This attribute
indicates that all EventError messages for the Configuration Platform SDK's Configuration protocol
will be handled by this method.

The attributes and methods for EventObjectsRead have a similar structure:

[C#]

[MessageIdFilter(EventObjectsRead.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]
private void OnConfEventObjectsRead(IMessage theMessage)
{

EventObjectsRead objectsRead = theMessage as EventObjectsRead;
/// Add processing here...

}

And so do the attributes and methods for EventObjectsSent:

[C#]

[MessageIdFilter(EventObjectsSent.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]
private void OnConfEventObjectsSent(IMessage theMessage)
{

//protocolManagementService["Config_Server_App"].Close();
EventObjectsSent objectsSent = theMessage as EventObjectsSent;
/// Add processing here...

}

If you want to process more than one event with a single handler, you can set up multiple attributes
for that handler, like this:

[C#]

[MessageIdFilter(EventObjectsRead.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]
[MessageIdFilter(EventObjectsSent.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 16



private void OnConfEvents (IMessage theMessage) {
...

}

These are the basics of how to use the Message Broker Application Block. For more information, see
the Using the Message Broker Application Block article.

Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 17

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheMessageBrokerAB

	Platform SDK Developer's Guide
	Event Handling Using the Message Broker Application Block

