
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Platform SDK 8.1.3

Platform SDK Developer's Guide

12/29/2021

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Welcome to the Developer's Guide! 4
Introductory Topics 6

Introducing the Platform SDK 7
Architecture of the Platform SDK 12
Connecting to a Server 14
Configuring Platform SDK Channel Encoding for String Values 25
Using the Warm Standby Application Block 27
Event Handling 45
Setting up logging in Platform SDK 56

Advanced Platform SDK Topics 60
Secure connections using TLS 61

Quick Start 65
Using the Platform SDK Commons Library 68
Using the Application Template Application Block 80
Configuring TLS Parameters in Configuration Manager 86
Using and Configuring Security Providers 106
OpenSSL Configuration File 117
Use Cases 124

Lazy Parsing of Message Attributes 127
Server-Specific Overviews 131

Telephony (T-Server) 132
List of TLib Functions 143
List of TLib Datatypes 144
List of TLib Unstructured Data 145

Configuration 146
Connecting Using UTF-8 Character Encoding 157
Change Password On Next Login 160
Getting the Last Login Info 161
Using the Configuration Object Model Application Block 163
Introduction to the Configuration Layer Objects 200
List of Configuration Layer Objects 203
List of Configuration Layer Enumerations 204

Stat Server 205
Interaction Server 219
Universal Contact Server 224

Creating an E-Mail 232
Chat 245
Outbound 252
Management Layer 254

LCA Hang-Up Detection Support 268
Handle Application "Graceful Stop" with the LCA Protocol 274

Routing Server 276
Component Overviews 288

Using the Log Library 289
Using the Switch Policy Library 306

Legacy Topics 324
Using the Message Broker Application Block 325
Event Handling Using the Message Broker Application Block 337
Using the Protocol Manager Application Block 353
Connecting to a Server Using the Protocol Manager Application Block 374
Explicitly Choosing a Netty or Mina Connection Layer 383

Platform SDK Resources 385

Welcome to the Developer's Guide!
This guide offers a collection of articles that will help you get started with Platform SDK development.

For detailed information about the Platform SDKs, please refer to the Platform SDK API Reference for
your specific release.

Introductory Topics
The following articles give information about common Platform SDK functionality and protocol usage
that all developers should be aware of:

• Introducing the Platform SDK
• Architecture of the Platform SDK
• Connecting to a Server
• Configuring Platform SDK Channel Encoding for String Values
• Using the Warm Standby Application Block
• Event Handling
• Setting Up Logging in Platform SDK

Advanced Platform SDK Topics
The following articles provide details about advanced Platform SDK features you may want to take
advantage of:

• Secure Connections Using TLS
• Lazy Parsing of Message Attributes

Server-Specific Overviews

• Telephony (T-Server)
• List of TLib Functions
• List of TLib Datatypes
• List of TLib Unstructured Data

• Configuration
• Connecting Using the UTF-8 Enconding
• Change Password On Next Login
• Getting the Last Login Info
• Using the Configuration Object Model Application Block

Welcome to the Developer's Guide!

Platform SDK Developer's Guide 4

https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IntroducingthePlatformSDK
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ChannelEncodingStringValues
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingWarmStandbyAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/SettingUpLogging
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/PlatformSDKImplementationofTLS
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/LazyParsingofMessageAttributes
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/T-Server
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLibFunctions
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TlibDatatypes
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLibUnstructuredData
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConfigurationServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectUsingUTF8Enconding
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ChangePasswordOnNextLogin
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/GettingLastLoginInfo
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheCOMAB

• Introduction to Configuration Layer Objects
• List of Configuration Layer Objects
• List of Configuration Layer Enumerations

• Stat Server
• Interaction Server
• Universal Contact Server

• Creating an E-Mail

• Chat
• Outbound
• Management Layer

• LCA Hang-Up Detection Support
• Handle Application "Graceful Stop" with the LCA Protocol

• Routing Server

Component Overviews

• Using the Log Library
• Using the Switch Policy Library

Legacy Topics
Topics in this section are no longer applicable for new development, but are maintained here for
backwards compatibility.

• Using the Message Broker Application Block
• Event Handling Using the Message Broker Application Block
• Using the Protocol Manager Application Block
• Connecting to a Server Using the Protocol Manager Application Block
• Explicitly Choosing a Netty or Mina Connection Layer

Additional Resources
The following page contains reference materials that may be useful when developing applications
with Platform SDK, including links to related documents and downloadable code samples.

• Platform SDK Resources

Welcome to the Developer's Guide!

Platform SDK Developer's Guide 5

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IntrotoConfigLayerObjects
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConfigLayerObjectsList
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConfigLayerEnumList
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/StatServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/InteractionServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UniversalContactServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CreatinganE-Mail
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/WebMediaServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/OutboundContactServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ManagementServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/LCAHang-UpDetectionSupport
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/HandleGracefulStopWithLCA
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UniversalRoutingServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheLogLibrary
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheSwitchPolicyLibrary
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheProtocolManagerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ChooseNettyMinaConnection
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/PlatformSDKResources

Introductory Topics
The following articles give information about common Platform SDK functionality and protocol usage
that all developers should be aware of:

• Introducing the Platform SDK
• Architecture of the Platform SDK
• Connecting to a Server
• Configure Platform SDK Channel Encoding for String Values
• Using the Warm Standby Application Block
• Event Handling
• Setting Up Logging in Platform SDK

Introductory Topics

Platform SDK Developer's Guide 6

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IntroducingthePlatformSDK
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ChannelEncodingStringValues
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingWarmStandbyAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/SettingUpLogging

Introducing the Platform SDK
The Platform SDK exposes the protocols of Genesys servers as an API. This means you can write .NET
and Java applications that communicate with these servers in their native protocols.

You can use the Platform SDK to do two main things:

• Establish and maintain a connection to each Genesys server used by your application
• Send and receive messages to and from each of these Genesys servers

In addition to enabling these two basic functions, the Platform SDK ships with application blocks,
which have been built on top of the Platform SDK in order to provide simple yet high-performance
ways to do things like configuring warm standby settings for your connections and working with
configuration objects.

The following image shows the relationship between the Platform SDK protocol objects and the
servers each of them connects with.

Each protocol object subclasses ClientChannel, which in turn subclasses DuplexChannel and
implements the Protocol interface. This means they all share a common interface to the Genesys
servers. The protocol objects communicate with the corresponding Genesys servers over a TCP
connection, with each one using the native protocol of the server it connects with. For example, the
TServerProtocol object communicates over TCP with a T-Server, using the TLIB protocol that is
native to the T-Server.

As mentioned above, the Platform SDK also includes reusable production-quality application blocks
that can be dropped into your code to provide simple yet high-performance ways to carry out
important functions that are commonly needed by applications that communicate with Genesys
servers.

As shown below, there are two main types of application blocks.

Introductory Topics Introducing the Platform SDK

Platform SDK Developer's Guide 7

The generic Warm Standby Application Block can be used to great effect either in conjunction with
Hot Standby or on its own. Generic Protocol Manager and Message Broker application blocks have
been marked as legacy items in the 8.1.1 release of Platform SDK. Documentation for legacy
application blocks is still included to support backwards compatibility, but improvements to the
Platform SDK code mean they are no longer recommended for use in new development.

The Configuration Object Model Application Block provides more specific functionality, and will only
be beneficial for specific types of applications. This application block makes it easy to work with
objects in the Genesys Configuration Layer, and is not required unless you are writing an application
that requires this functionality.

Finally, the Platform SDK includes additional components designed to make development of custom
applications easier. These components offer support for useful features such as customized logging
or switch abstraction.

The Protocols

The Platform SDK is divided into separate “protocols.” Each component works with one or more of
Genesys servers.

The following table shows the servers each of the Platform SDK protocols connects with, and gives
the names of the native protocols that are used to communicate with each server.

Platform SDK Protocol Name Genesys Servers Native Protocols
Configuration Platform SDK Configuration Server CFGLIB
Contacts Platform SDK Universal Contact Server UCS Protocol

Management Platform SDK • Message Server • GMESSAGELIB

Introductory Topics Introducing the Platform SDK

Platform SDK Developer's Guide 8

Platform SDK Protocol Name Genesys Servers Native Protocols

• Solution Control Server
• Local Control Agent

• SCSLIB
• LCALIB

Open Media Platform SDK Interaction Server ITX, ESP

Outbound Contact Platform SDK Outbound Contact Server
• CMLIB
• OCS-Desktop Protocol

Routing Platform SDK
• Universal Routing Server
• Custom Server

• URS Protocol
• Custom Server Protocol

Statistics Platform SDK Stat Server STATLIB

Voice Platform SDK T-Servers
• TLIB
• Preview Interaction Protocol

Web Media Platform SDK
• Chat Server
• E-Mail Server Java
• Callback Server

• MCR Chat Lib
• MCR E-Mail Lib
• MCR Callback Lib
• ESP E-Mail Lib

Configuration Platform SDK

The Configuration Platform SDK enables you to build applications that use the services of the
Genesys Configuration Server. This allows these applications to either query on objects in the
Configuration Layer of your Genesys environment or to add, modify, and delete information about
those objects, while taking advantage of an environment in which Configuration Server carries out
several important administrative functions.

Contacts Platform SDK

The Contacts Platform SDK allows you to build applications that view, or interact with, the contact
information for your contact center. This SDK accesses information directly from Universal Contact
Server, allowing you to design applications that access contact information when dealing with
multimedia interactions such as chat or e-mail, for example.

Management Platform SDK

The Management Platform SDK enables you to write applications that interact with Message Server,
Solution Control Server, and Local Control Agents.

Open Media Platform SDK

With the Open Media Platform SDK, you can build client applications that feed open media

Introductory Topics Introducing the Platform SDK

Platform SDK Developer's Guide 9

interactions into your Genesys environment, or applications that act as custom media servers to
perform external service processing (ESP) on interactions that have already entered it.

Outbound Contact Platform SDK

The Outbound Contact Platform SDK can be used to build applications that allow you to manage
outbound campaigns.

Routing Platform SDK

The Routing Platform SDK allows you to write Java applications that combine logic from your custom
application with the router-based logic of URS, in order to solve many common interaction-related
tasks.

Statistics Platform SDK

With the Statistics Platform SDK, you can build applications that use the services of Stat Server in
order to solicit and monitor statistics from your Genesys environment.

Stat Server tracks information about customer interaction networks (contact center, enterprise-wide,
or multi-enterprise telephony and computer networks). It also converts the data accumulated for
directory numbers (DNs), agents, agent groups, and non-telephony–specific object types, such as e-
mail and chat sessions, into statistically useful information.

Voice Platform SDK

The Voice Platform SDK enables you to design applications that monitor and handle voice interactions
from a traditional or IP-based telephony device.

Web Media Platform SDK

The Web Media Platform SDK can be used to build applications that interact with Chat Server, E-Mail
Server Java, and Callback Server through a web server interface.

The Application Blocks

Genesys application blocks are reusable production-quality components that provide specific
functionality needed by a broad range of Genesys customers. They have been designed using
industry best practices and provided with source code so they can be used “as is”, extended, or
tailored if you need to. Please see the License Agreement for details.

Tip
If you have questions or suggestions about the application blocks, please contact us in
the Genesys Forums.

Configuration Object Model Application Block

The Configuration Object Model (COM) Application Block provides a consistent and intuitive object

Introductory Topics Introducing the Platform SDK

Platform SDK Developer's Guide 10

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheCOMAB

model for applications that need to work with Configuration Server objects. Use the COM Application
Block when you need to create, update, or delete Configuration Layer Objects.

Warm Standby Application Block

You can use the Warm Standby Application Block to switch to a backup server in case your primary
server fails, in cases where you do not need to guarantee the integrity of existing interactions.

Message Broker Application Block (deprecated)

The Message Broker Application Block makes it easy for your applications to handle events in an
efficient way.

Important
This application block is considered a legacy product starting with release 8.1.1.
Documentation is provided for backwards compatibility, but new development should
consider using the improved method of message handling.

Protocol Manager Application Block (deprecated)

The Protocol Manager Application Block allows for simplified communication with more than one
server. It takes care of opening and closing connections to many different servers, as well as handling
the reconfiguration of high availability connections.

Important
This application block is considered a legacy product starting with release 8.1.1.
Documentation is provided for backwards compatibility, but new development should
consider using the improved method of connecting to servers.

The Components

Additional components are included to provide useful functionality for creating custom applications
with the Platform SDK, even if that doesn't necessarily involve communicating with Genesys servers.

Platform SDK Switch Policy Library

The Platform SDK Switch Policy Library can be used in applications that need to perform agent-
related switch activity with a variety of T-Servers, without knowing beforehand what kinds of T-
Servers will be used.

Platform SDK Log Library

The Platform SDK Log Library for .NET presents an easy-to-use API for logging messages in custom-
built applications.

Introductory Topics Introducing the Platform SDK

Platform SDK Developer's Guide 11

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingWarmStandbyAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheProtocolManagerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheProtocolManagerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer

Architecture of the Platform SDK
The Platform SDKs enable you to write client or server applications that use messages to
communicate with Genesys servers.

Each SDK has one or more Protocol objects that you can use in your client applications to establish
communication with the appropriate server. These objects use the native protocols of the Genesys
servers they are designed to work with.

From a conceptual standpoint, your application's Protocol object, will be communicating directly
with the appropriate server using the server's protocol running on TCP/IP, as shown below.

Once you have opened a connection to the server, you are ready to send and receive messages. The
Platform SDK supports two message exchange patterns. In some cases, you will need to follow the
Request/Response pattern. That is, you will send a message and wait for a response, as shown below.

At other times, following the Unsolicited Event pattern, you simply need to wait for unsolicited
messages of a certain type.

Introductory Topics Architecture of the Platform SDK

Platform SDK Developer's Guide 12

The messages you send will be in the form of Request classes, such as RequestAgentLogin or
RequestAnswerCall. The messages you receive, whether solicited or not, will be in the form of Event
classes, such as EventAck or EventDialing.

As you can see, the architecture of the Platform SDKs is fairly simple — but you can use it to do some
powerful things.

Introductory Topics Architecture of the Platform SDK

Platform SDK Developer's Guide 13

Connecting to a Server

Java

The applications you write with the Platform SDK need to communicate with one or more Genesys
servers, so the first thing you need to do is create connections with these servers. You will have to
reference libraries and add import statements to your project for each specific protocol you are
working with. These steps are not explicitly described here because the files and packages required
will vary depending on which protocols you plan to use.

Important
Starting with release 8.1.1, the Platform SDK uses Netty by default for the
implementation of its transport layer. Therefore, your project will need to reference
Netty as well.

Once you have connected to a server, you use that connection to exchange messages with the
server. For details about sending and recieving messages to and from a server, refer to the event
handling article.

Creating a Protocol Object

To connect to a Genesys server, you create an instance of the associated protocol class. As an
example, this article will describe a conntection to a Genesys T-Server using the TServerProtocol
class. (For different applications, please use this API Reference to check protocol details for the
specific server that you wish to connect to.)

In order to create a protocol object, you will first need to create an Endpoint object which acts as a
container for generic connection parameters. An Endpoint object contains, at a minimum, a server
name, the host name where the server is running, and the port on which the server is listening. The
server name will appear in logs but does not affect protocol behavior; it may be any name that is
significant to you.

[Java]

Endpoint tserverEndpoint = new Endpoint("T-Server", TSERVER_HOST, TSERVER_PORT);
TServerProtocol tserverProtocol = new TServerProtocol(tserverEndpoint);

After creating your protocol object, you need to specify some connection parameters that are specific
to that protocol. These parameters will differ depending on which server you are connecting to.
Please check to the sections specific to the server that you wish to connect to for more information.

Once configuration is complete, you can open the connection to your server.

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 14

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling

Opening a Synchronous Connection
The easiest way to open a connection to your server is to do it synchronously, which means that the
method will block any additional processing until the server connection has either opened
successfully or failed definitively. This is commonly used for non-interactive, batch applications. In
this case, you can add code for using the protocol directly after opening. In the case of failure, the
open method will throw an exception that should be caught and handled.

[Java]

tserverProtocol.open();
// You can start sending requests here.

Opening an Asynchronous Connection
You may prefer to open a connection using asynchronous (non-blocking) methods. This is usually
preferred for user-interactive applications, in order to avoid blocking the GUI thread so that the
application does not appear "frozen" to the user.

Important
Be careful when using this method. Connecting asynchronously means that you need
to be sure that the Opened event is received before you send any requests. Otherwise,
you might be trying to use a connection that is not yet open.

[Java]

tserverProtocol.beginOpen();
// Watch for an Opened event before trying to send or recieve messages.

Important
When using the BeginOpen() method, make sure that your code waits for the Opened
event to fire before attempting to send or receive messages.

Closing a Connection
When you have finished communicating with your servers, you can close the connection. Similar to
how a connection is opened, you can also choose to close a connection either synchronrously or
asynchronously by using one of the following methods:

[Java]

// Synchronous
tserverProtocol.close();

Or:

[Java]

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 15

// Asyncronous
tserverProtocol.beginClose();

You may want to set up a connection to more than one server. To do that, you will need to repeat the
steps outlined above for every server you connect to.

Configuring ADDP

The Advanced Disconnection Detection Protocol (ADDP) is a Genesys proprietary add-on to the TCP/IP
stack. It implements a periodic poll when no actual activity occurs over a given connection. If a
configurable timeout expires without a response from the opposite process, the connection is
considered lost.

To enable ADDP, use the configuration options of your Endpoint object. Set the UseAddp property to
true and configure the rest of the properties based on your desired performance. For a description of
all ADDP-related options, please refer to the API Reference.

[Java]

PropertyConfiguration tserverConfig = new PropertyConfiguration();
tserverConfig.setUseAddp(true);
tserverConfig.setAddpServerTimeout(10);
tserverConfig.setAddpClientTimeout(10);
tserverConfig.setAddpTrace("both");

Endpoint tserverEndpoint = new Endpoint("T-Server", TSERVER_HOST, TSERVER_PORT,
tserverConfig);
TServerProtocol tserverProtocol = new TServerProtocol(tserverEndpoint);

Configuring Warm Standby

The WarmStandby Application Block will help you connect or reconnect to your Genesys servers. You
will benefit by using the WarmStandby for every application that needs to maintain open connections
to Genesys servers, whether you use hot standby or you are only connecting to a single server with
no backup redundancy configured.

If you use hot standby, use the WarmStandby Application Block when retrying the connection to your
primary or backup server until success, or for reconnecting after both the primary and backup servers
are unavailable.

If you are connecting to a single server, use the WarmStandby Application Block to retry the first
connection or to reconnect after that server has been unavailable. In this case, configure the
WarmStandbyService to use the same Endpoint as primary and backup.

Activating the WarmStandby Application Block
To activate the WarmStandby Application Block, you create, configure and start a
WarmStandbyService object. Two Endpoint objects must be defined: one with parameters for
connecting to your primary server and one for connecting to your backup server. You must also

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 16

remember to start the WarmStandbyService before opening the protocol.

[Java]

Endpoint tserverEndpoint = new Endpoint("T-Server", TSERVER_HOST, TSERVER_PORT,
tserverConfig);
Endpoint tserverBackupEndpoint = new Endpoint("T-Server", TSERVER_BACKUP_HOST,
TSERVER_BACKUP_PORT, tserverConfig);

TServerProtocol tserverProtocol = new TServerProtocol(tserverEndpoint);

WarmStandbyConfiguration warmStandbyConfig = new WarmStandbyConfiguration(tserverEndpoint,
tserverBackupEndpoint);
warmStandbyConfig.setTimeout(5000);
warmStandbyConfig.setAttempts((short)2);

WarmStandbyService warmStandby = new WarmStandbyService(tserverProtocol);
warmStandby.applyConfiguration(warmStandbyConfig);
warmStandby.start();

tserverProtocol.open();

Stopping the WarmStandby Application Block
Stop the WarmStandbyService object when your application does not need to maintain the
connection with the server any longer. This is typically done at the end of your program.

[Java]

warmStandby.stop();
tserverProtocol.close();

For more information about how the WarmStandby Application Block works, please refer to the
WarmStandby Application Block documentation.

AsyncInvokers

AsyncInvokers are an important aspect of the Platform SDK protocols. They encapsulate the way a
piece of code is executed. By using invokers, you can customize what thread executes protocol
channel events and handles protocol events. You can also use a thread-pool for parsing protocol
messages.

For GUI applications, you normally want most of the logic to happen in the context of the GUI thread.
That will enable you to update GUI elements directly, and will simplify your code because you will not
have to care about multithreading.

For instance, if you are working with a Swing application, you can use the following AsyncInvoker
implementation:

[Java]

public class SwingInvoker implements AsyncInvoker {

@Override
public void invoke(Runnable target) {

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 17

SwingUtilities.invokeLater(target);
}

@Override
public void dispose() {}

}

Assigning a Protocol Invoker
The protocol invoker is in charge of executing channel events (such as channel closed and channel
opened) and protocol events (received messages from the server). Usually, when developing a GUI
application, you will want to use the GUI thread for handling all kinds of protocol events. By using the
AsyncInvoker class described in the section before, you can assign a protocol invoker like this:

[Java]

TServerProtocol tserverProtocol = new TServerProtocol(tserverEndpoint);
tserverProtocol.setInvoker(new SwingInvoker());

The protocol invoker is of utmost importance for your application. If you do not explicitly set an
invoker, then a default internal Platform SDK thread is used, and you will need to use care with
possible multithreading issues.

Enabling ADDP on Platform SDK Protocol Client Connections

ADDP is enabled as part of the configuration process for a particular protocol connection instance,
and can either be initialized before the connection is open or reconfigured on already opened
connection.

The ConnectionConfiguration interface describes all connection properties (including details about
ADDP, TLS, and the channel character set encoding) for a single instance. For example, if a
connection has already configured TLS and later needs to add or change ADDP options then a new
ConnectionConfiguration should be initialized with the previously set TLS options (along with and
other values which are to be preserved) and then have new ADDP options added. The latest
configuration applied with overwrite previously set properties.

Tip
Changing the configuration immediately after a connection is opened, or from the
channel event handlers, is not recommended. Some connection configuration options
(including ADDP) can be changed on the fly, however the channel configuration is not
expected to change often or quickly - options are not treated as if they are dynamic
values.

Platform SDK connections have the following ADDP configuration options available:

• set the protocol option value to addp to enable ADDP;
• addp timeout - specifies how often the client will send ADDP ping requests and wait for responses;

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 18

• addp remote timeout - specifies how often the server will send ADDP ping requests and wait for
responses;

• addp tracing enable - this option is used to enable logging of ADDP activities on both the client and
server; can be set to "none", "local", "remote", "full" (or "both").

Here is an initialization code sample:

protocol = <SomePsdkProtocol>(<Endpoint>);
protocol.set<ProtoSpecificOptions>(<val>);
PropertyConfiguration conf = new PropertyConfiguration();
conf.setOption(AddpInterceptor.PROTOCOL_NAME_KEY, AddpInterceptor.NAME);
conf.setOption(AddpInterceptor.TIMEOUT_KEY, "10");
conf.setOption(AddpInterceptor.REMOTE_TIMEOUT_KEY, "11.5");
conf.setOption(AddpInterceptor.TRACE_KEY, "full");
protocol.configure(conf);
protocol.open();

Note that timeout values are stored as strings and parsed as "Float". So, it is ok to have:

conf.setOption(AddpInterceptor.TIMEOUT_KEY, "10");
conf.setInteger(AddpInterceptor.TIMEOUT_KEY, 10); // its the same value
conf.setOption(AddpInterceptor.TIMEOUT_KEY, "11.5"); // = is treated as 11500 ms

Also note that in conf.setOption(AddpInterceptor.TRACE_KEY, "full"), the
conf.setOption(..) method accepts string values for the option and it does not know
CfgTraceMode enumeration - it is defined in configuration protocol which is out of the Platform SDK
common libraries.

In release 8.1.0 of Platform SDK for Java, this property handling logic was improved with truncation of
the "CFGTM" prefix. Platform SDK for .NET includes this feature starting from release 8.1.1.

So, if you use latest Platform SDK 8.1.0 version for Java, writing
CfgTraceMode.CFGTMBoth.toString() is acceptable, but earlier versions of Platform SDK or Platform
SDK for .NET require that you translate the enumeration values to the corresponding string values.

Possible values can be ["full", "local", "remote", "none"]:

• "local" means logging of ADDP activities locally on client side.
• "remote" for Platform SDK means sending of special initialization bit in ADDP initialization message to

server side to ask server to write own ADDP tracing records to server side log.
• "full" means "local" + "remote".

Unknown values are treated as “none”.

Note that comparison is case-insensitive for option values, so "FULL" == "Full" == "full".

.NET

The applications you write with the Platform SDK need to communicate with one or more Genesys
servers, so the first thing you need to do is create connections with these servers. You will have to

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 19

reference libraries and add using statements to your project for each specific protocol you are
working with. These steps are not explicitly described here because the files and packages required
will vary depending on which protocols you plan to use. Once you have connected to a server, you
use that connection to exchange messages with the server. For details about sending and receiving
messages to and from a server, refer to the Event Handling article.

Creating a Protocol Object

To connect to a Genesys server, you create an instance of the associated protocol class. As an
example, this article will describe a conntection to a Genesys T-Server using the TServerProtocol
class. (For different applications, please use this API Reference to check protocol details for the
specific server that you wish to connect to.)

In order to create a protocol object, you will first need to create an Endpoint object which acts as a
container for generic connection parameters. An Endpoint object contains, at a minimum, a server
name, the host name where the server is running, and the port on which the server is listening. The
server name will appear in logs but does not affect protocol behavior; it may be any name that is
significant to you.

[C#]

var tserverEndpoint = new Endpoint("T-Server", TServerHost, TServerPort);
var tserverProtocol = new TServerProtocol(tserverEndpoint);

After creating your protocol object, you need to specify some connection parameters that are specific
to that protocol. These parameters will differ depending on which server you are connecting to.
Please check to the sections specific to the server that you wish to connect to for more information.

Once configuration is complete, you can open the connection to your server.

Opening a Synchronous Connection
The easiest way to open a connection to your server is to do it synchronously, which means that the
method will block any additional processing until the server connection has either opened
successfully or failed definitively. This is commonly used for non-interactive, batch applications. In
this case, you can add code for using the protocol directly after opening. In the case of failure, the
open method will throw an exception that should be caught and handled.

[C#]

tserverProtocol.Open();
// You can start sending requests here.

Opening an Asynchronous Connection
You may prefer to open a connection using asynchronous (non-blocking) methods. This is usually
preferred for user-interactive applications, in order to avoid blocking the GUI thread so that the
application does not appear "frozen" to the user.

Important: Be careful when using this method. Connecting asynchronously means that you need to
be sure that the Opened event is received before you send any requests. Otherwise, you might be

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 20

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling

trying to use a connection that is not yet open.

[C#]

tserverProtocol.BeginOpen();
// Watch for an Opened event before trying to send or recieve messages.

Important
When using the BeginOpen() method, make sure that your code waits for the Opened
event to fire before attempting to send or receive messages.

Closing a Connection
When you have finished communicating with your servers, you can close the connection. Similar to
how a connection is opened, you can also choose to close a connection either synchronously or
asynchronously by using one of the following methods:

[C#]

tserverProtocol.Close();

Or:

[C#]

tserverProtocol.BeginClose();

Or:

[C#]

tserverProtocol.Dispose();

You may want to set up a connection to more than one server. To do that, you will need to repeat the
steps outlined above for every server.

Configuring ADDP

The Advanced Disconnection Detection Protocol (ADDP) is a Genesys proprietary add-on to the TCP/IP
stack. It implements a periodic poll when no actual activity occurs over a given connection. If a
configurable timeout expires without a response from the opposite process, the connection is
considered lost.

To enable ADDP, use the configuration options of your Endpoint object. Set the UseAddp property to
true and configure the rest of the properties based on your desired performance. For a description of
all ADDP-related options, please refer to the API Reference.

[C#]

var tserverConfig = new PropertyConfiguration();

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 21

tserverConfig.UseAddp = true;
tserverConfig.AddpServerTimeout = 10;
tserverConfig.AddpClientTimeout = 10;
tserverConfig.AddpTrace = "both";

var tserverEndpoint = new Endpoint("T-Server", TServerHost, TServerPort, tserverConfig);
var tserverProtocol = new TServerProtocol(tserverEndpoint);

Configuring Warm Standby

The Warm Standby Application Block will help you connect or reconnect to your Genesys servers. You
will benefit by using the Warm Standby for every application that needs to maintain open
connections to Genesys servers, whether you use hot standby or you are only connecting to a single
server with no backup redundancy configured.

If you use hot standby, use the Warm Standby Application Block when retrying the connection to your
primary or backup server until success, or for reconnecting after both the primary and backup servers
are unavailable.

If you are connecting to a single server, use the Warm Standby Application Block to retry the first
connection or to reconnect after that server has been unavailable. In this case, configure the
WarmStandbyService to use the same Endpoint as primary and backup.

Activating the WarmStandby Application Block
To activate the Warm Standby Application Block, you create, configure and start a
WarmStandbyService object. Two Endpoint objects must be defined: one with parameters for
connecting to your primary server and one for connecting to your backup server. You must also
remember to start the WarmStandbyService before opening the protocol.

[C#]

var tserverEndpoint = new Endpoint("T-Server", TServerHost, TServerPort, tserverConfig);
var tserverBackupEndpoint = new Endpoint("T-Server", TServerBackupHost, TServerBackupPort,
tserverConfig);

var tserverProtocol = new TServerProtocol(tserverEndpoint);

var warmStandbyConfig = new WarmStandbyConfiguration(tserverEndpoint, tserverBackupEndpoint);
warmStandbyConfig.Timeout = 5000;
warmStandbyConfig.Attempts = 2;

var warmStandby = new WarmStandbyService(tserverProtocol);
warmStandby.ApplyConfiguration(warmStandbyConfig);
warmStandby.Start();

tserverProtocol.Open();

Stopping the WarmStandby Application Block
Stop the WarmStandbyService object when your application does not need to maintain the
connection with the server any longer. This is typically done at the end of your program.

[C#]

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 22

warmStandby.Stop();
tserverProtocol.Dispose();

For more information about how the Warm Standby Application Block works, please refer to the Warm
Standby Application Block documentation.

AsyncInvokers

AsyncInvokers are an important aspect of the Platform SDK protocols. They encapsulate the way a
piece of code is executed. By using invokers, you can customize what thread executes protocol
channel events and handles protocol events. You can also use a thread-pool for parsing protocol
messages.

For GUI applications, you normally want most of the logic to happen in the context of the GUI thread.
That will enable you to update GUI elements directly, and will simplify your code because you will not
have to care about multi-threading.

For instance, if you are working with a Windows Forms or WPF application,, you can use the following
IAsyncInvoker implementation:

[C#]

public class SyncContextInvoker : IAsyncInvoker
{

private readonly SynchronizationContext syncContext;

public SyncContextInvoker()
{

this.syncContext = SynchronizationContext.Current;
}

public void Invoke(Delegate d, params object[] args)
{

syncContext.Post(s => { d.DynamicInvoke(args); }, null);
}

public void Invoke(WaitCallback callback, object state)
{

syncContext.Post(s => { callback(state); }, null);
}

public void Invoke(EventHandler handler, object sender, EventArgs args)
{

syncContext.Post(s => { handler(sender, args); }, null);
}

}

The Protocol Invoker
The protocol invoker is in charge of executing channel events (such as channel closed and channel
opened) and protocol events (received messages from the server). Usually, when developing a GUI
application, you will want to use the GUI thread for handling all kinds of protocol events. By using the
class implemented in the section before, you can assign a protocol invoker like this:

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 23

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingWarmStandbyAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingWarmStandbyAB

[C#]

var tserverProtocol = new TServerProtocol(tserverEndpoint);
tserverProtocol.Invoker = new SyncContextInvoker();

The protocol invoker is of utmost importance for your application. If you do not explicitly set an
invoker, then a default internal Platform SDK thread is used, and you will need to use care with multi-
threading issues.

Advanced: Multithreaded Message Parsing

Tip
Please apply this section only if your application is suffering from performance
problems because of large message parsing. You should identify the bottleneck using
profiling techniques, and should measure the effect after making these changes by
using the same profiling techniques.

Take into account that the technique described here can affect the correctness of your application,
since concurrently parsing messages can affect the order in which those messages are received. So
use this technique only selectively and in places where order of received messages is not relevant.

Every message you receive from a Genesys server is formatted in some way. Most Genesys servers
use binary protocols, while some use XML-based protocols. When your application receives one of
these messages, it parses the message and places it in the message queue for the appropriate
protocol.

By default, the Platform SDK uses a single thread for parsing all messages. This parsing can be time-
consuming in certain cases, and some applications may face performance issues. For example, some
applications may receive lots of large binary-format messages, such as some of the statistics
messages generated by Stat Server, while others might need to parse messages in non-binary
formats, such as the XML format used to communicate with Genesys Multimedia (or e-Services)
servers.

If message parsing becomes a bottleneck for your application, you can try to enable multi-threaded
message parsing. This is done by setting the protocol connection invoker to an invoker that
dispatches work to a pool of threads. One such invoker is provided out-of-the-box:

[C#]

statServerProtocol.SetConnectionInvoker(DefaultInvoker.InvokerSingleton);

Introductory Topics Connecting to a Server

Platform SDK Developer's Guide 24

Configuring Platform SDK Channel
Encoding for String Values
While sending string attributes/values to a server (or to the other side of any connection), Platform
SDK packs strings to their binary representation. The binary representation depends on actual
charset encoding, so it is important that this data will be unpacked with correct encoding when
received on the other side of the connection.

Genesys protocols do not allow client and server sides to synchronize (that is, exchange) the
encoding being used<ref>Exception: A Configuration Server 8.1.2+ deployment that is configured
as UTF-8 multi-lingual can automatically synchronize UTF-8 encoding with Platform SDK 8.1.3 or later.
For details, see Connecting Using UTF-8 Character Encoding.</ref>, so application developers may
need to handle this configuration manually. The most common situation requiring this type of
configuration occurs when a Genesys server and the application using Platform SDK to connect with
that server have different localization settings, causing default encoding to be different on both sides.

There are two possible solutions for synchronizing the client side encoding with that of the server
side:

1. (Java only) Change default jvm encoding with the jvm argument: java -Dfile.encoding=...
This changes the charset encoding for the entire jvm, so will affect the main application and any
Platform SDK connections to other servers. It may affect the client application relation with other
components on the client host.

2. (Java only) Starting with Platform SDK 8.1.3, the new com.genesyslab.platform.defaultcharset
system property can be used to set default charset encoding for Platform SDK connections without the
need to change default encoding for whole jvm.

Platform SDK checks this property once before opening the first connection, and if a value is
specified then it will be used as the default encoding for all Platform SDK connections (instead of
the value defined for the jvm).

3. Configure a particular Platform SDK connection to use the server side encoding with following
connection configuration option (added in Platform SDK 8.0.1):

[Java]

protocol = ...;

PropertyConfiguration conf = new PropertyConfiguration();
conf.setOption(Connection.STR_ATTR_ENCODING_NAME_KEY, "windows-1252");

protocol.configure(conf);
protocol.open();

[C#]

protocol = ...;

PropertyConfiguration conf = new PropertyConfiguration();
conf.SetOption(ConnectionBase.StringAttributeEncodingKey, "windows-1252");

protocol.Configure(conf);
protocol.Open();

Introductory Topics Configuring Platform SDK Channel Encoding for String Values

Platform SDK Developer's Guide 25

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectUsingUTF8Enconding

<references/>

Introductory Topics Configuring Platform SDK Channel Encoding for String Values

Platform SDK Developer's Guide 26

Using the Warm Standby Application Block
The Warm Standby Application Block is a reusable production-quality component that enables
developers to switch to a backup server in case their primary server fails, without needing to
guarantee the integrity of existing interactions. It has been designed using industry best practices
and provided with source code so it can be used "as is," extended, or tailored if you need to. Please
see the License Agreement for details.

This article examines the architecture and design of the Warm Standby Application Block, as well as
giving details about how to setup the QuickStart application that ships with this application block.

Java

Architecture and Design

Many contact center environments require redundant backup servers that are able to take over
quickly if a primary server fails. In this situation, the primary server operates in active mode,
accepting connections and exchanging messages with clients. The backup server, on the other hand,
is in standby mode. If the primary server fails, the backup server switches to active mode, assuming
the role and behavior of the primary server.

There are two standby modes: warm standby and hot standby. The main difference between them is
that warm standby mode does not ensure the continuation of interactions in progress when a failure
occurs, while hot standby mode does.

The Client Channel Architecture
Since the Warm Standby Application Block is designed to be used in the context of a Client Channel
architecture, it is important to understand that architecture before talking about the application block
itself.

To start with, this architecture consists of three functional components:

• A connection
• A client channel
• A protocol channel

These components are shown in the following figure.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 27

The connection controls all necessary TCP/IP connection activities, while the client channel contains
the protocol- and server-independent channel functionality that is common for a protocol channel.
Finally, the protocol channel controls all of the client channel activities that are dependent on the
protocol and the server.

Client Channel State

The state of a client channel is based on the state of the corresponding connection. There are four
major states:

• Opening (Registration)
• Opened
• Closing
• Closed

The figure below shows a detailed client channel state diagram.

In addition to establishing a TCP/IP connection, several activities may take place when a client
channel opens. These activities can include things like:

• A preliminary exchange of messages with the server, which is known as registration
• Reading the client channel’s locally stored configuration information

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 28

You can often determine the cause of a client channel failure by checking the state of the client
channel just before it closed. There are exceptions to this rule, however, such as a registration failure,
which is protocol-specific.

Client Channel Failure Scenarios
There are several common client channel failure scenarios:

Client Channel Failure Scenarios

Scenario Description Source
States Condition Target State Protocol-

Dependent

Opening Timed
Out

Channel tries
to open
connection to
non-existing
URI

Opening
Connection
opening
timeout

Closed No

Wrong URI

Channel tries
to open
connection to
non-existing
URI

Opening Incorrect URI
exception Closed No

Connection
Problem

Channel
connection
detects a
connection
problem

Opened
Opening

Server
disconnected Closed No

Network
Problem
(ADDP)

Channel
connection
detects a
network
problem
(ADDP)

Opened
Opening

Network
problem
(ADDP)

Closed No

Wrong Server
or Protocol

Channel tries
to open
connection
with an
incorrect
server or
protocol

Opening
Registration
Failed/
ProtocolException

Closing Yes

Registration
Failure

One of the
channel
registration
steps failed

Opening
Registration
Failed/
ProtocolException

Closing Yes

Note that the first four scenarios, Opening timed-out, Wrong URI, Connection Problem, and Network
Problem happen with the connection (TCP/IP) component. They do not involve protocol- or server-
specific elements, whether in terms of failure-specific data or in terms of channel recovery actions
and data.

The Wrong Server or Protocol and Registration Failure scenarios are protocol- or server-dependent
and can be different for each type of protocol channel.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 29

Application Block Architecture
The Warm Standby Application Block’s functionality is based on intercepting the channel's transition
from a non-closed state to the Closed state. As you can see in the following figure, the application
block is able to pick up this information because it sits between the client and protocol channels.

Upon receiving the channel’s Closed event, the application block uses diagnostic information to
determine why the channel has closed. This diagnostic information is necessary to determine what
actions, if any, the application block should take to restore the channel’s connectivity to the server.

The Warm Standby Application Block can take several different steps to recover channel connectivity.
These steps are:

• Do nothing (close the channel by request of the user application)
• Attempt to open the channel without switching over its connectivity configuration from primary to

backup
• Attempt to open the channel, switching its connectivity configuration from primary to backup
• Deactivate, in case of a fatal failure

Any application block activity will be followed by a corresponding event generated by the application
block. These events will provide user applications with the opportunity to monitor and react to all of
the application block’s activities and failures

To control channel connectivity with a warm standby mechanism, the user application should activate
the Warm Standby Application Block instance that is responsible for handling the particular channel's
connectivity failure and recovery.

Warm Standby Application Block Algorithm
The Warm Standby Application Block has 4 states, as shown below.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 30

As soon as a channel’s Warm Standby Application Block is activated, it goes into the idle state,
waiting for the channel’s Closed event. When the channel issues a Closed event, the application
block checks to see if the channel was closed due to a connectivity failure. If so, the application block
instance starts the channel connectivity recovery procedure, as shown below.

Here is the procedure for the Warm Standby Application Block:

• The user should activate the Warm Standby Application Block for every channel he or she intends to
work with.

• In the active state, the application block waits for the channel’s Closed event.
• On receiving the channel’s Closed event, the application block activates the channel connectivity

recovery procedure.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 31

Application Block Components
The Warm Standby Application Block distribution consists of two main components:

1. The application block itself, which provides an interface that you can use to integrate it into different
GUI applications.

2. A sample application, the WarmStandbyQuickStart application, which is built on the Warm Standby
Application Block

As shown below, the application block itself runs on top of the Platform SDK, while the QuickStart
application runs on top of the application block.

The Warm Standby Application Block Interface
The Warm Standby Application Block consists of the following classes:

• WarmStandbyService

• WarmStandbyConfiguration

The WarmStandbyService class monitors and controls the connectivity of the channel it is responsible
for, while the WarmStandbyConfiguration class handles all the parameters that are needed for the
proper functioning of the warm standby process.

Starting with release 8.1.1, default behavior for the WarmStandbyService connection restoration
includes the following improvements to provide improved performance:

• Following a switchover or the first reconnection attempt, WarmStandbyService no longer waits for a
timeout to occur.

• Check backup server availability by performing a fast first switchover.

User applications can subscribe to the controlled channel’s Closed and Opened events in order to
monitor and handle channel connectivity.

WarmStandbyService's StateChanged event is fired on any change of state in WarmStandby,
providing the means for a user application to monitor state changes and to control the application

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 32

block's activities.

Using the Warm Standby Application Block

Installing the Warm Standby Application Block
Before you install the Warm Standby Application Block, it is important to review the software
requirements and the structure of the software distribution.

Software Requirements

To work with the Warm Standby Application Block, you must ensure that your system meets the
software requirements established in the Genesys Supported Operating Environment Reference
Manual, as well as meeting the following minimum software requirements:

• JDK 1.6 or higher

Building the Warm Standby Application Block
To build the Warm Standby Application Block:

1. Open the <Platform SDK Folder>\applicationblocks\warmstandby folder.
2. Run either build.bat or build.sh, depending on your platform.

You may need to edit the path specified in the quickstart file by adding quotation marks if your
ANT_HOME environment variable contains spaces.

This build file will create the warmstandbyappblock.jar file, located within the <Platform SDK
Folder>\applicationblocks\warmstandby\dist\lib directory.

Now you are ready to add the appropriate import statements to your source code and start using the
Warm Standby Application Block:

[Java]
import com.genesyslab.platform.applicationblocks.warmstandby.*;

Using the QuickStart Application
The easiest way to start using the Warm Standby Application Block is to use the bundled QuickStart
application. This application ships in the same folder as the application block.

To run the QuickStart application:

1. Open the \ApplicationBlocks\WarmStandby\quickstart folder.
2. Run either quickstart.bat or quickstart.sh, depending on your platform.

You may need to edit the path specified in the quickstart file by adding quotation marks if your

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 33

ANT_HOME environment variable contains spaces.

After you start the application, you will see the user interface shown below.

On startup, the QuickStart application uses values specified by the quickstart.properties configuration
file. You can change these values either by editing that file or by overwriting them after running the
user interface.

This form has two main sections. The left side enables you to set up a connection for the application
indicated in the Name field, using the protocol specified in the Protocol field. To open the connection,
press the Open button. Press the Close button to close it.

The right side of the form lets you specify primary and backup servers. It also lets you specify the
number of times the warm standby mechanism will try to contact the primary server, and what the
timeout value should be for each attempt.

Once you have the desired values, you can press the Start button to turn on the warm standby
feature. If you would like to change the configuration after warm standby is turned on, simply modify
the configuration information and press the Reconfigure button. The warm standby configuration will
be changed dynamically.

.NET

Architecture and Design

Many contact center environments require redundant backup servers that are able to take over
quickly if a primary server fails. In this situation, the primary server operates in active mode,
accepting connections and exchanging messages with clients. The backup server, on the other hand,
is in standby mode. If the primary server fails, the backup server switches to active mode, assuming
the role and behavior of the primary server.

There are two standby modes: warm standby and hot standby. The main difference between them is
that warm standby mode does not ensure the continuation of interactions in progress when a failure

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 34

occurs, while hot standby mode does.

The Client Channel Architecture
Since the Warm Standby Application Block is designed to be used in the context of a Client Channel
architecture, it is important to understand that architecture before talking about the application block
itself.

To start with, this architecture consists of three functional components:

• A connection
• A client channel
• A protocol channel

These components are shown in the following figure.

The connection controls all necessary TCP/IP connection activities, while the client channel contains
the protocol- and server-independent channel functionality that is common for a protocol channel.
Finally, the protocol channel controls all of the client channel activities that are dependent on the
protocol and the server.

Client Channel State

The state of a client channel is based on the state of the corresponding connection. There are four
major states:

• Opening (Registration)
• Opened
• Closing
• Closed

The figure below shows a detailed client channel state diagram.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 35

In addition to establishing a TCP/IP connection, several activities may take place when a client
channel opens. These activities can include things like:

• A preliminary exchange of messages with the server, which is known as registration
• Reading the client channel’s locally stored configuration information

You can often determine the cause of a client channel failure by checking the state of the client
channel just before it closed. There are exceptions to this rule, however, such as a registration failure,
which is protocol-specific.

Client Channel Failure Scenarios
There are several common client channel failure scenarios:

Client Channel Failure Scenarios

Scenario Description Source
States Condition Target State Protocol-

Dependent

Opening Timed
Out

Channel tries
to open
connection to
non-existing
URI

Opening
Connection
opening
timeout

Closed No

Wrong URI

Channel tries
to open
connection to
non-existing
URI

Opening Incorrect URI
exception Closed No

Connection
Problem

Channel
connection
detects a
connection

Opened
Opening

Server
disconnected Closed No

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 36

Scenario Description Source
States Condition Target State Protocol-

Dependent
problem

Network
Problem
(ADDP)

Channel
connection
detects a
network
problem
(ADDP)

Opened
Opening

Network
problem
(ADDP)

Closed No

Wrong Server
or Protocol

Channel tries
to open
connection
with an
incorrect
server or
protocol

Opening
Registration
Failed/
ProtocolException

Closing Yes

Registration
Failure

One of the
channel
registration
steps failed

Opening
Registration
Failed/
ProtocolException

Closing Yes

Note that the first four scenarios, Opening timed-out, Wrong URI, Connection Problem, and Network
Problem happen with the connection (TCP/IP) component. They do not involve protocol- or server-
specific elements, whether in terms of failure-specific data or in terms of channel recovery actions
and data.

The Wrong Server or Protocol and Registration Failure scenarios are protocol- or server-dependent
and can be different for each type of protocol channel.

Application Block Architecture
The Warm Standby Application Block’s functionality is based on intercepting the channel's transition
from a non-closed state to the Closed state. As you can see in the following figure, the application
block is able to pick up this information because it sits between the client and protocol channels.

Upon receiving the channel’s Closed event, the application block uses diagnostic information to
determine why the channel has closed. This diagnostic information is necessary to determine what
actions, if any, the application block should take to restore the channel’s connectivity to the server.

The Warm Standby Application Block can take several different steps to recover channel connectivity.
These steps are:

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 37

• Do nothing (close the channel by request of the user application)
• Attempt to open the channel without switching over its connectivity configuration from primary to

backup
• Attempt to open the channel, switching its connectivity configuration from primary to backup
• Deactivate, in case of a fatal failure

Any application block activity will be followed by a corresponding event generated by the application
block. These events will provide user applications with the opportunity to monitor and react to all of
the application block’s activities and failures

To control channel connectivity with a warm standby mechanism, the user application should activate
the Warm Standby Application Block instance that is responsible for handling the particular channel's
connectivity failure and recovery.

Warm Standby Application Block Algorithm
The Warm Standby Application Block has 4 states, as shown below.

As soon as a channel’s Warm Standby Application Block is activated, it goes into the idle state,
waiting for the channel’s Closed event. When the channel issues a Closed event, the application
block checks to see if the channel was closed due to a connectivity failure. If so, the application block
instance starts the channel connectivity recovery procedure, as shown below.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 38

Here is the procedure for the Warm Standby Application Block:

• The user should activate the Warm Standby Application Block for every channel he or she intends to
work with.

• In the active state, the application block waits for the channel’s Closed event.
• On receiving the channel’s Closed event, the application block activates the channel connectivity

recovery procedure.

Application Block Components
The Warm Standby Application Block distribution consists of two main components:

1. The application block itself, which provides an interface that you can use to integrate it into different
GUI applications.

2. A sample application, the WarmStandbyQuickStart application, which is built on the Warm Standby
Application Block

As shown below, the application block itself runs on top of the Platform SDK, while the QuickStart
application runs on top of the application block.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 39

The Warm Standby Application Block Interface
The Warm Standby Application Block consists of the following classes:

• WarmStandbyService

• WarmStandbyConfiguration

These classes are shown in greater detail below.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 40

The WarmStandbyService class monitors and controls the connectivity of the channel it is responsible
for, while the WarmStandbyConfiguration class handles all the parameters that are needed for the
proper functioning of the warm standby process.

Starting with release 8.1.1, default behavior for the WarmStandbyService connection restoration
includes the following improvements to provide improved performance:

• Following a switchover or the first reconnection attempt, WarmStandbyService no longer waits for a
timeout to occur.

• Check backup server availability by performing a fast first switchover.

User applications can subscribe to the controlled channel’s Closed and Opened events in order to
monitor and handle channel connectivity.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 41

WarmStandbyService's StateChanged event is fired on any change of state in WarmStandby,
providing the means for a user application to monitor state changes and to control the application
block's activities.

Using the Warm Standby Application Block

Installing the Warm Standby Application Block
Before you install the Warm Standby Application Block, it is important to review the software
requirements and the structure of the software distribution.

Software Requirements

To work with the Warm Standby Application Block, you must ensure that your system meets the
software requirements established in the Genesys Supported Operating Environment Reference
Manual.

Configuring the Warm Standby Application Block
In order to use the QuickStart application, you need to set up the XML configuration file that comes
with the application block. This file is located at Quickstart\app.config. This is what the contents look
like:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>

</configSections>
<WarmStandbyQuickStart>

<Channel
ClientType="19"
ProtocolName="ConfigurationServer"
ClientName="default"

/>
<WarmStandby

PrimaryServer="tcp://hostname:9999"
BackupServer="tcp://hostname:9999"
Attempts="3"
Timeout="10"
Switchovers="3"

/>
<ConfServer

UserName="default"
UserPassword="password"

/>
</WarmStandbyQuickStart>

</configuration>

Follow the instructions in the comments and save the file.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 42

Building the Warm Standby Application Block
The Platform SDK distribution includes a Genesyslab.Platform.ApplicationBlocks.WarmStandby.dll file
that you can use as is. This file is located in the bin directory at the root level of the Platform SDK
directory. To build your own copy of this application block, follow the instructions below:

To build the Warm Standby Application Block:

1. Open the <Platform SDK Folder>\ApplicationBlocks\WarmStandby folder.
2. Double-click WarmStandby.sln.
3. Build the solution.

Using the QuickStart Application
The easiest way to start using the Warm Standby Application Block is to use the bundled QuickStart
application. This application ships in the same folder as the application block.

To run the QuickStart application:

1. Open the <Platform SDK Folder>\ApplicationBlocks\WarmStandby folder.
2. Double-click WarmStandbyQuickStart.sln.
3. Build the solution.
4. Find the executable for the QuickStart application, which will be at <Platform SDK

Folder>\ApplicationBlocks\WarmStandby\QuickStart\bin\Debug\WarmStandbyQuickStart.exe.
5. Double-click WarmStandbyQuickStart.exe.

After you start the application, you will see the user interface shown below.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 43

This form has two main sections. The left side enables you to set up a connection for the application
indicated in the Name field, using the protocol specified in the Protocol field. To open the connection,
press the Open button. Press the Close button to close it.

The right side of the form lets you specify primary and backup servers. It also lets you specify the
number of times the warm standby mechanism will try to contact the primary server, and what the
timeout value should be for each attempt. On startup, these values are picked up from the
configuration file, but you can change them in the user interface.

Once you have the desired values, you can press the Start button to turn on the warm standby
feature. If you would like to change the configuration after warm standby is turned on, simply modify
the configuration information and press the Reconfigure button. The warm standby configuration will
be changed dynamically.

Introductory Topics Using the Warm Standby Application Block

Platform SDK Developer's Guide 44

Event Handling

Java

Once you have connected to a server, much of the work for your application will involves sending
messages to that server and handling the events you receive from the server. This article describes
how to send and receive messages from a server.

Messages: Overview of Events and Requests

Messages you send to a server are called requests, while messages you receive are called events. An
event that is received from a server as the result of executing a request is called a response. In
summary, messages can be classified by using the following taxonomy:

• Requests: sent to the server
• Events: received from the server

• Responses: received as the result of a request
• Unsolicited events: not a direct result of a request

Tip
On this page, we will use the more general term "message" instead of "event", in
order to avoid confusion between protocol events and programming events.

For example, you may send a request to log in an agent or to gather statistics. You might also send a
request to update a configuration object, or to shut down an application.

In each of these cases, the server will respond with an event message, as shown below.

Introductory Topics Event Handling

Platform SDK Developer's Guide 45

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer

You may also get unsolicited events from the server. That means receiving events that are not a
response to a specific request. For example, EventRinging will notify you of a call ringing on an
extension that you are currently monitoring.

Receiving Messages

With the Platform SDK, you can receive messages synchronously or asynchronously. It is important
that you define the way your application will work in this aspect. In general, you will probably use
only one type or the other in the same application.

Interactive applications normally use asynchronous message handling, because that will prevent the
UI thread from being blocked, which could make the application appear "frozen" to a user. On the
other hand, non-interactive batch applications commonly use synchronous response handling, as that
allows writing easy code that performs step-by-step.

Receiving Messages Asynchronously
Most Platform SDK applications need to handle unsolicited events. This is particularly true for
applications that monitor the status of contact center resources, such as extensions.

You receive server messages by implementing a MessageHandler that contains the event-handling
logic:

[Java]

MessageHandler tserverMessageHandler = new MessageHandler() {
@Override
public void onMessage(Message message) {

// your event-handling code goes here
}

};

Then you set your implementation as the protocol MessageHandler.

[Java]

tserverProtocol.setMessageHandler(tserverMessageHandler);

Introductory Topics Event Handling

Platform SDK Developer's Guide 46

Important
You need to know that your event-handling logic will be executed by using the
protocol invoker. Please set the invoker appropriate for your application needs. For
more information about the protocol invoker and how to set it, refer to Connecting to
a Server.

Inside your event-handling code, you will want to execute different logic for different kinds of events.
A typical way to do this is using a switch statement, based on the event identifier:

[Java]

switch (message.messageId()) {
case EventAgentLogin.ID:

OnEventAgentLogin(message);
break;

case EventAgentLogout.ID:
OnEventAgentLogout(message);
break;

}

Receiving Messages Synchronously
Some kinds of applications, such as batch applications, benefit from receiving messages
synchronously. This means that received messages will queue up and be handled by the application
on demand.

In order to receive messages this way, you simply do not set a protocol MessageHandler as
described in the previous section.

Tip
For releases prior to Platform SDK 8.1.1, messages were received synchronously by
default. Please note that 8.1.1 behavior is backwards-compatible, and pre-8.1.1
applications will continue to work as expected without any modification.

To receive a message synchronously, use the Receive method. This method blocks processing,
waiting for the next message to be received before continuing. Take into account that the maximum
time to wait is set by a configurable timeout value. If the timeout expires and no event is received,
you will receive a null value.

[Java]

Message message = tserverProtocol.receive();

If you want to set your own timeout, you can use the Receive method overload that takes a timeout
parameter. Otherwise, if you use Receive with no parameters, the protocol Timeout property will be
used.

Introductory Topics Event Handling

Platform SDK Developer's Guide 47

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer

Sending Requests Asynchronously

This is the easiest way to send a message to a server. Suppose you have created and filled a request
object, for example, a RequestAgentLogin message for Interaction Server:

[Java]

RequestAgentLogin loginRequest = RequestAgentLogin.create();
loginRequest.setTenantId(tenantId);
loginRequest.setAgentId(agentId);
loginRequest.setPlaceId(placeId);

You can then send it to the server using the following code:

[Java]

interactionServerProtocol.send(loginRequest);

This will result in your application receiving a response from the Interaction Server: either an
EventAck or an EventError message. By using the Send method, you will ignore that response at the
place where you make the request. You will get the response, like any other unsolicited event, using
the techniques described in the Receiving Messages section.

Handling Responses

The understanding of how to send requests and receive events is all you need to communicate with
Genesys servers. However, the Platform SDK also provides the ability to easily associate a response
with the particular request that originated it.

Receiving a Response Synchronously
The easiest way to handle responses is with the Request method. This is a blocking method, as your
application stops to wait for a response to come from the server. Using the same request example
above:

[Java]

Message response = interactionServerProtocol.request(loginRequest);
if (response.messageId() == EventAck.ID) {

EventAck eventAck = (EventAck)response;
// continue here

}
else {

// handle the error here
}

Notice that you will need to cast the message to a specific message type in order to access its
attributes. If a request fails on the server side, you will typically receive an EventError.

Take into account that the Request method blocks until a message is received or a timeout occurs. If
the timeout elapses and no response was received from the server, then a null value is received.
The timeout parameter can be specified in the request method. If you do not use the timeout
parameter then, then the protocol Timeout property is used.

Introductory Topics Event Handling

Platform SDK Developer's Guide 48

The Request method will only return one message from the server. In the case that the server returns
subsequent messages, apart from the first response, as a result of the requested operation, then you
must process those messages separately as unsolicited events. Please make sure that your code
handles all messages received from your servers.

When using the Request method, your application only receives the response to that request as a
return value. The response will not be received as an unsolicited event as well. (You can change this
behavior by using the CopyResponse protocol property, described below.)

Receiving a Response Asynchronously
For many applications, blocking your thread while waiting for a response to your request is not
appropriate. For example GUI applications, where the GUI can appear "frozen" if the response takes
too much time to be received. It can also be true for batch applications that may want to send
multiple requests at the same time, while waiting for all responses concurrently. For these scenarios it
is possible to receive responses asynchronously.

Receiving a Response Asynchronously Using a Callback

By using requestAsync, your thread will not block, and it will permit you to handle the response by
using callback methods that will get called asynchronously.

First, you will need to implement a CompletionHandler which will contain the logic for handling the
response to your request:

[Java]

private static final CompletionHandler loginResponseHandler = new CompletionHandler() {

@Override
public void completed(Message message, Void notUsed) {

// handle message here
}

@Override
public void failed(Throwable exc, Void notUsed) {

// handle error here
}

};

Important
The CompletionHandler callback methods will be executed by the protocol invoker.

Then you can use the CompletionHandler as a parameter to the requestAsync method:

[Java]

interactionServerProtocol.requestAsync(loginRequest, null, loginResponseHandler);

Notice that in this example, the attachment parameter has not been used. If you are sharing the
same CompletionHandler implementation for handling the responses to different requests then you

Introductory Topics Event Handling

Platform SDK Developer's Guide 49

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling#CopyResponse

may want to use an attachment to make it easy to differentiate among those requests.

Receiving the Response as a Future

Alternatively, you may want to handle responses using the same thread that did the request, but
have the option to do something concurrently while waiting for the response. To accomplish this, use
the beginRequest method.

As an example, you might perform two agent login requests concurrently: one for logging into the T-
Server, and another for logging into Interaction Server.

[Java]

RequestFuture loginVoiceFuture = tserverProtocol.beginRequest(loginVoiceRequest);
RequestFuture loginMultimediaFuture =
interactionServerProtocol.beginRequest(loginMultimediaRequest);

Message loginVoiceResponse = loginVoiceFuture.get();
Message loginMultimediaResponse = loginMultimediaFuture.get();

// handle responses, both are available now

When using the requestAsync or beginRequest methods, you will not receive the response as an
unsolicited event. (You can change this behavior by using the CopyResponse protocol property,
described below).

CopyResponse

Previously it was stated that responses returned by request methods are not received as unsolicited
events by default. This behavior can be modified by using the protocol CopyResponse property. The
default value is false, but it can be set to true like this:

[Java]

tserverProtocol.setCopyResponse(true);

This is particularly useful for protocols which define events that can be both received unsolicited and
as a response to a client request (such as EventAgentLogin defined by the T-Server protocol). By
setting the CopyResponse property to true, you can execute your agent state change logic only when
handling the message as an unsolicited event, and you do not need to include it when receiving the
message as a response.

.NET

Once you have connected to a server, much of the work for your application will involves sending
messages to that server and handling the events you receive from the server. This article describes
how to send and receive messages from a server.

Introductory Topics Event Handling

Platform SDK Developer's Guide 50

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling#CopyResponse
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer

Messages: Overview of Events and Requests

Messages you send to a server are called requests, while messages you receive are called events. An
event that is received from a server as the result of executing a request is called a response. In
summary, messages can be classified by using the following taxonomy:

• Requests: sent to the server
• Events: received from the server

• Responses: received as the result of a request
• Unsolicited events: not a direct result of a request

Tip
On this page, we will use the more general term "message" instead of "event", in
order to avoid confusion between protocol events and programming events.

For example, you may send a request to log in an agent or to gather statistics. You might also send a
request to update a configuration object, or to shut down an application.

In each of these cases, the server will respond with an event message, as shown below.

You may also get unsolicited events from the server. That means receiving events that are not a
response to a specific request. For example, EventRinging will notify you of a call ringing on an
extension that you are currently monitoring.

Receiving Messages

With the Platform SDK, you can receive messages synchronously or asynchronously. It is important
that you define the way your application will work in this aspect. In general, you will probably use
only one type or the other in the same application.

Introductory Topics Event Handling

Platform SDK Developer's Guide 51

Interactive applications normally use asynchronous message handling, because that will prevent the
UI thread from being blocked, which could make the application appear "frozen" to a user. On the
other hand, non-interactive batch applications commonly use synchronous response handling, as that
allows writing easy code that performs step-by-step.

Receiving Messages Asynchronously
Most Platform SDK applications need to handle unsolicited events. This is particularly true for
applications that monitor the status of contact center resources, such as extensions.

You receive server messages asynchronously by subscribing to the Received .NET event:

[C#]

tserverProtocol.Received += OnTServerMessageReceived;

Then you can implement your event-handling logic:

[C#]

void OnTServerMessageReceived(object sender, EventArgs e)
{

IMessage message = ((MessageEventArgs)e).Message;
// your event-handling code goes here

}

Important
You need to know that your event-handling logic will be executed by using the
protocol invoker. Please set the invoker appropriate for your application needs. For
more information about the protocol invoker and how to set it, refer to Connecting to
a Server.

Inside your event-handling code, you will want to execute different logic for different kinds of events.
A typical way to do this is using a switch statement, based on the event identifier:

[C#]

switch (message.Id)
{

case EventAgentLogin.MessageId:
OnEventAgentLogin(message);
break;

case EventAgentLogout.MessageId:
OnEventAgentLogout(message);
break;

}

Receiving Messages Synchronously
Some kinds of applications, such as batch applications, benefit from receiving messages
synchronously. This means that received messages will queue up and be handled by the application
on demand.

Introductory Topics Event Handling

Platform SDK Developer's Guide 52

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer

In order to receive messages this way, you simply do not subscribe to the Received .NET event as
described in the previous section.

Tip
For releases prior to Platform SDK 8.1.1, messages were received synchronously by
default. Please note that 8.1.1 behavior is backwards-compatible, and pre-8.1.1
applications will continue to work as expected without any modification.

To receive a message synchronously, use the Receive method. This method blocks processing,
waiting for the next message to be received before continuing. Take into account that the maximum
time to wait is set by a configurable timeout value. If the timeout expires and no event is received,
you will receive a null value.

[C#]

IMessage message = tserverProtocol.Receive();

If you want to set your own timeout, you can use the Receive method overload that takes a timeout
parameter. Otherwise, if you use Receive with no parameters, the protocol Timeout property will be
used.

Sending Requests Asynchronously
This is the easiest way to send a message to a server. Suppose you have created and filled a request
object, for example, a RequestAgentLogin message for Interaction Server:

[C#]

var loginRequest = RequestAgentLogin.Create();
loginRequest.TenantId = tenantId;
loginRequest.AgentId = agentId;
loginRequest.PlaceId = placeId;

Then you can send it to the server:

[C#]

interactionServerProtocol.Send(loginRequest);

This will result in your application receiving a response from the Interaction Server: either an
EventAck or an EventError message. By using the Send method, you will ignore that response at the
place where you make the request. You will get the response, like any other unsolicited event, using
the techniques described in the Receiving Messages section.

Handling Responses

The understanding of how to send requests and receive events is all you need to communicate with
Genesys servers. However, the Platform SDK also provides the ability to easily associate a response
with the particular request that originated it.

Introductory Topics Event Handling

Platform SDK Developer's Guide 53

Receiving a Response Synchronously
The easiest way to handle responses is with the Request method. This is a blocking method, as your
application stops to wait for a response to come from the server. Using the same request example
above:

[C#]

IMessage response = interactionServerProtocol.Request(loginRequest);
if (response.Id == EventAck.MessageId)
{

var eventAck = (EventAck)response;
// continue here

}
else
{

// handle the error here
}

Notice that you will need to cast the message to a specific message type in order to access its
attributes. If a request fails on the server side, you will typically receive an EventError.

Take into account that the Request method blocks until a message is received or a timeout occurs. If
the timeout elapses and no response was received from the server, then a null value is received.
The timeout parameter can be specified in the request method. If you do not use the timeout
parameter then the protocol Timeout property is used.

The request method will only return one message from the server. In the case that the server returns
subsequent messages, apart from the first response, as a result of the requested operation, then you
must process those messages separately as unsolicited events. Please make sure that your code
handles all messages received from your servers.

When using the Request method, your application only receives the response to that request as a
return value. The response will not be received as an unsolicited event as well. (You can change this
behavior by using the CopyResponse protocol property, described below).

Receiving a Response Asynchronously
For many applications, blocking your thread while waiting for a response to your request is not
appropriate. For example GUI applications, where the GUI can appear "frozen" if the response takes
too much time to be received. It can also be true for batch applications that may want to send
multiple requests at the same time, while waiting for all responses concurrently. For these scenarios it
is possible to receive responses asynchronously.

By using BeginRequest, your thread will not block, and it will permit you to handle the response the
way that best suits your application. This method complies with .NET "Asynchronous Programming
Model". You can find more information about the "Asynchronous Programming Model" in the Web.

For example, your application can handle responses asynchronously by using a callback, which is a
piece of logic that executes asynchronously when the response is received. Define a callback method
like this:

[C#]

void OnLoginResponseReceived(IAsyncResult result) {
IMessage response = interactionServerProtocol.EndRequest(result);

Introductory Topics Event Handling

Platform SDK Developer's Guide 54

if (response.Id == EventAck.MessageId)
{

var eventAck = (EventAck)response;
// continue here

}
else
{

// handle the error here
}

}

Then you can submit your request using the callback method.

[C#]

interactionServerProtocol.BeginRequest(loginRequest, OnLoginResponseReceived, null);

As an alternative, you may want to do something concurrently, while waiting for the response. For
example, you could perform two agent login requests concurrently: one for logging the agent into the
T-Server, and another for logging the agent into Interaction Server.

[C#]

var resultLoginVoice = tserverProtocol.BeginRequest(loginVoiceRequest, null, null);
var resultLoginMultimedia = interactionServerProtocol.BeginRequest(loginMultimediaRequest,
null, null);

var loginVoiceResponse = tserverProtocol.EndRequest(resultLoginVoice);
var loginMultimediaResponse = interactionServerProtocol.EndRequest(resultLoginMultimedia);

// handle responses, both are available now

When using the BeginRequest method, your application receives the response to your request as the
return value of EndRequest. You will not receive the response as an unsolicited event. (You can
change this behavior by using the CopyResponse protocol property, described below).

CopyResponse

Previously it was stated that responses returned by request methods are not received as unsolicited
events by default. This behavior can be modified by using the protocol CopyResponse property. The
default value is false, but it can be set to true like this:

[C#]

tserverProtocol.CopyResponse = true;

This is particularly useful for protocols which define events that can be both received unsolicited and
as a response to a client request (such as EventAgentLogin defined by the T-Server protocol). By
setting the CopyResponse property to true, you can execute your agent state change logic only when
handling the message as an unsolicited event, and you do not need to include it when receiving the
message as a response.

Introductory Topics Event Handling

Platform SDK Developer's Guide 55

Setting up logging in Platform SDK

Logging for Java

Setting up log4j logging
The easiest way to set up Platform SDK logging in Java is to use the built-in integration with log4j.
There are two possible ways to do this:

• Using code, by creating a Log4JLoggerFactoryImpl instance and setting it as the global logger factory
for Platform SDK at the beginning of your program, like this:

com.genesyslab.platform.commons.log.Log.setLoggerFactory(new Log4JLoggerFactoryImpl());

Or:

• Using a Java system variable, by setting com.genesyslab.platform.commons.log.loggerFactory to
the fully qualified name of the ILoggerFactory implementation class. For example, to set up log4j as
the logging implementation you can start your application using the following command:

java
-Dcom.genesyslab.platform.commons.log.loggerFactory=com.genesyslab.platform.commons.log.Log4JLoggerFactoryImpl
<MyMainClass>

Providing a custom logging implementation
If log4j does not fit your needs, it is also possible to provide your own implementation of logging.

In order to do that, you will need to complete the following steps:

1. Implement the ILogger interface, which contains the methods that the Platform SDK uses for logging
messages, by extending the AbstractLogger class.

2. Implement the ILoggerFactory interface, which should create instances of your ILogger
implementation.

3. Finally, set up your ILoggerFactory implementation as the global Platform SDK LoggerFactory, as
described above.

Setting Up Internal Logging for Platform SDK
To use internal logging in Platform SDK, you have to set a logger implementation in Log class before
making any other call to Platform SDK. There are two ways to accomplish this:

1. Set the com.genesyslab.platform.commons.log.loggerFactory system property to the fully qualified

Introductory Topics Setting up logging in Platform SDK

Platform SDK Developer's Guide 56

name of the factory class
2. Use the Log.setLoggerFactory(...) method

The only log factory available in Platform SDK itself is
com.genesyslab.platform.commons.log.Log4JLoggerFactoryImpl which uses log4j. You will have
to setup log4j according to your needs, but a simple log4j configuration file is shown below as an
example.

log4j.logger.com.genesyslab.platform=DEBUG, A1
log4j.appender.A1=org.apache.log4j.FileAppender
log4j.appender.A1.file=psdk.log
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %-25.25c %x - %m%n

The easiest way to set system property is to use -D switch when starting your application:

-Dcom.genesyslab.platform.commons.log.loggerFactory=com.genesyslab.platform.commons.log.Log4JLoggerFactoryImpl

Logging with AIL

In Interaction SDK (AIL) and Genesys Desktop applications, you can enable the Platform SDK logs by
setting the option log/psdk-debug = true.

At startup, AIL calls: Log.setLoggerFactory(new Log4JLoggerFactoryImpl());

The default level of the logger com.genesyslab.platform is WARN (otherwise, applications would be
literally overloaded with logs). The option is dynamically taken into account; it turns the logger level
to DEBUG when set to true, and back to WARN when set to false.

Truncating Large Logs Using PSDK.DATA

Starting from PSDK 8.1.1, a special logger was added (in terms of log4j configuration) with the name:
PSDK.DATA. It was initially designed for the configuration server protocol to:

1. truncate main Platform SDK logs, and
2. allow creation of logs with full protocol data dumps.

A sample of log4j configuration follows:

log4j.logger.com.genesyslab.platform=TRACE, A1
log4j.logger.PSDK.DATA=TRACE, A2

log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %-25.25c %x - %m%n

log4j.appender.A2=org.apache.log4j.FileAppender
log4j.appender.A2.File=d:\\psdkdata.log
log4j.appender.A2.Append=true
log4j.appender.A2.Threshold=TRACE
log4j.appender.A2.layout=org.apache.log4j.PatternLayout
log4j.appender.A2.layout.ConversionPattern=%-4r [%t] %-5p %-25.25c %x - %m%n

Introductory Topics Setting up logging in Platform SDK

Platform SDK Developer's Guide 57

Tip
This feature has side effect: when log4j is configured to use "rootLogger" for all logs
(including Platform SDK) then it may record protocol messages twice - once for the
main logger and again for the data logger.

The goal of the extension is to resolve issues where large log files affect application performance. For
example, an application may read a lot of configuration objects and require Platform SDK logging to
be enabled. In this case, a configuration protocol message that arrives containing 1 MB of packed
data could lead to roughly 6 MB of log data which (in most cases) is not required. These large log
records can be truncated, recording enough data to ensure that configuration information is available
and that data flow is ok.

In some case, a full data dump may be required in logs. In this case, the truncation enabling
parameter is passed to the static context of ToStringHelper, which generates a string
representation of abstract protocol messages with attributes. Creating an additional logger that
manages separated protocol messages with this context may be useful at times, while initializing the
com.genesyslab.platform logger for general Platform SDK logging without enabling full dumps by
default is better in most cases.

Using JVM system properties, which are checked before log record generation and can enable/disable
full data dumps, is an alternative way to handle this scenario. It may be a preferred solution, although
usage of system properties may not work depending on how application containers are used.

Logging for .NET

Setting up logging
For .NET development, the EnableLogging method allows logging to be easily set up for any classes
that implement the ILogEnabled interface. This includes:

• All protocol classes: TServerProtocol, StatServerProtocol, etc.
• The WarmStandbyService class of the Warm Standby Application Block.

For example:

tserverProtocol.EnableLogging(new MyLoggerImpl());

Providing a Custom Logging Implementation
You can provide your custom logging functionality by implementing the ILogger interface. Samples
of how to do this are provided in the following section.

Samples
You can download some samples of classes that implement the ILogger interface:

Introductory Topics Setting up logging in Platform SDK

Platform SDK Developer's Guide 58

• AbstractLogger: This class can make it easier to implement a custom logger, by providing a default
implementation of ILogger methods.

• TraceSourceLogger: A logger that uses the .NET TraceSource framework. It adapts the Platform SDK
logger hierarchy to the non-hierarchical TraceSource configuration.

• Log4netLogger: A logger that uses the log4net libraries.

Introductory Topics Setting up logging in Platform SDK

Platform SDK Developer's Guide 59

Advanced Platform SDK Topics
Advanced Platform SDK Topics
The following articles provide details about advanced Platform SDK features you may want to take
advantage of:

• Secure Connections Using TLS
• Quick Start
• Using the Platform SDK Commons Library
• Using the Application Template Application Block
• Configuring TLS Parameters in Configuration Manager
• Using and Configuring Security Providers
• OpenSSL Configuration File
• Use Cases

• Lazy Parsing of Message Attributes

Advanced Platform SDK Topics Setting up logging in Platform SDK

Platform SDK Developer's Guide 60

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/PlatformSDKImplementationofTLS
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSQuickStart
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUsingPSDKCommonsLibrary
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUsingApplicationTemplateAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSOpenSSLConfigurationFile
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUseCases
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/LazyParsingofMessageAttributes

Secure connections using TLS
This page provides an introduction to creating and configuring Transport Layer Security (TLS) for your
Platform SDK connections, as introduced in release 8.1.1.

Introduction to TLS

This page provides an overview of the TLS implementation provided in the 8.1.1 release of Platform
SDK. It introduces Platform SDK users to TLS concepts and then provides links to expanded articles
and examples that describe implementation details.

Before working with TLS to create secure connections, you should have a basic awareness of how
public key cryptography works.

Certificates
Transport Layer Security (TLS) technology uses public key cryptography, where the key required to
encrypt and decrypt information is divided into two parts: a public key and a private key. These parts
are reciprocal in the sense that data encrypted using a private key can be decrypted with the public
key and vice versa, but cannot be decrypted using the same key that was used for encryption.

There is an X.509 standard for public key (certificate) format, and public-key cryptography standards
(PKCS) that define format for private key (PKCS#8) and related data structures.

Certificate Authority (CA)
In the context of TLS, a CA is an entity that is trusted by both sides of network connection. Each CA
has a public X.509 certificate and owns a related private key that kept secret. A CA can generate and
sign certificates for other parties using its private key, and then that CA certificate can be used by
the parties to validate their certificates. A CA can also issue public Certificate Revocation Lists (CRLs),
which are also used by parties for certificate validation.

The relation between certificates and CRL can be depicted like this:

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 61

Certificate Usage
To create a secure connection, each party must have a copy of:

• a public CA certificate
• a CRL issued by the CA
• their own public certificate (with a corresponding private key)

When a network connection is established, the client initiates a TLS handshake process during which
the parties exchange their public certificates, prove that they own corresponding private keys, create
a shared session encryption key, and negotiate which cipher suite will be used.

Placement and exchange of certificate data is shown on the following diagram:

TLS only requires that servers send their certificates, but the client certificates can also be
exchanged depending on server settings. Cases where the client certificates are demanded by the
server are called “Mutual TLS”, as both sides send their certificates.

If all certificates pass validation and the ciphers are negotiated successfully, then a TLS connection is
established and higher-level protocols may proceed.

Implementing and Configuring TLS

Genesys strongly recommends reading all TLS in Platform SDK articles in order to get understanding
of how TLS works in general and how it is supported in Platform SDK. A Quick Start page is provided
for reference, but the specific implementation details and expanded information provided in other
pages will help you to better understand how to provide TLS support in your applications. Once you
have an understanding of how TLS is implemented, you can use the Use Case guide to quickly find
code snippets or relevant links for common tasks.

There are two main ways to implement TLS in your Platform SDK code:

1. Use the Platform SDK Commons Library to specify TLS settings directly when creating endpoints
2. Use the Application Template Application Block to read connection parameters inside configuration

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 62

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSQuickStart
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUseCases
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUsingPSDKCommonsLibrary
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUsingApplicationTemplateAB

objects retrieved from Configuration Server, then use those parameters to configure TLS settings.

Note: If using the Application Template Application Block, you will need to configure TLS Parameters
in Configuration Manager before the application is tested.

Recommendations are also provided for the configuration and use of security providers. The security
providers discussed on that page have been tested within the described configurations, and worked
reliably.

Migrating TLS Support From Previous Versions of Platform SDK

Platform SDK for Java

Platform SDK 8.1.0 had the following connection configuration parameters for TLS:

• Connection.TLS_KEY

• Connection.SSL_KEYSTORE_PATH_KEY

• Connection.SSL_KEYSTORE_PASS

The TLS_KEY parameter is the equivalent of enableTls flag in the current release, while the other
parameters specified the location and password for the Java keystore file containing certificates that
were used by the application to authenticate itself. TLS configuration code looked like this:

ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
connConf.setOption(Connection.TLS_KEY, "1");
connConf.setOption(Connection.SSL_KEYSTORE_PATH_KEY, "c:/certificates/client-certs.keystore");
connConf.setOption(Connection.SSL_KEYSTORE_PASS, "pa$$w0rd");

In Platform SDK 8.1.1, this code can be translated to the following:

boolean tlsEnabled = true;
// By default, PSDK 8.1.0 trusted any certificate
TrustManager trustManager = TrustManagerHelper.createTrustEveryoneTrustManager();
// Keystore entries may be protected with individual password,
// but usually, these passwords are the same as keystore password
KeyManager keyManager = KeyManagerHelper.createJKSKeyManager(

"c:/certificates/client-certs.keystore", "pa$$w0rd", "pa$$w0rd");
SSLContext sslContext = SSLContextHelper.createSSLContext(keyManager,
trustManager);

In most cases, certificates from other parties will need to be validated. Assuming there is a separate
keystore file with a CA certificate, this can be achieved with the following code:

TrustManager trustManager = TrustManagerHelper.createJKSTrustManager(
"c:/certificates/CA-cert.keystore", "pa$$w0rd", null, null);

Please note that different keystore files are used for the KeyManager and TrustManager objects. For
more information, see Using the Platform SDK Commons Library.

Platform SDK for .Net

There were no significant changes to interfaces for the .NET version of Platform SDK 8.1.1. In this

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 63

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUsingPSDKCommonsLibrary

case, the same code would work for 8.1.0 and 8.1.1 releases:

KeyValueConfiguration config = new KeyValueConfiguration(new KeyValueCollection());
config.TLSEnabled = true;
config.TlsCertificate = "29 3f 0d d9 65 a1 a9 92 dd 1c 8c 2a e7 20 74 06 c5 ba 0f 10";
Endpoint ep = new Endpoint(AppName, Host, Port, config);

Known Issues

For more details about the known issues listed here, refer to Using and Configuring Security
Providers.

• Java 5: MSCAPI provider is not supported.
• Java 6:

• MSCAPI provider is only supported in 32-bit version since update 27: http://bugs.sun.com/
bugdatabase/view_bug.do?bug_id=6931562.

• MSCAPI provider is only supported in 64-bit version since update 38: http://bugs.sun.com/
bugdatabase/view_bug.do?bug_id=2215540.

• CRLs located in WCS are ignored, please use CRLs as files.

• Java 7:
• CRL files without extension section cannot be loaded: http://bugs.sun.com/bugdatabase/

view_bug.do?bug_id=7166885.
Note: Although the bug is marked as "Will not fix", it seems to be fixed since Java 7 update 7.

• CRLs located in WCS are ignored, please use CRLs as files.

• MSCAPI: MSCAPI does not have a documented way of programmatic setting of password to private key
stored in WCS. Regardless of password returned by CallbackHandler; if private key is protected with
confirmation prompt or password prompt, user will be shown OS popup dialog.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 64

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSSecurityProviders

Quick Start

Understanding Port Modes

TLS is configured differently depending on target port mode:

• default - Default mode ports do not use or understand TLS protocol.
• upgrade - Upgrade mode ports allow unsecured connections to be made, switching to TLS mode only

after TLS settings are retrieved from Configuration Server.
• secure - Secure mode ports require TLS to be started immediately, before sending any requests to

server.

Connecting to Default Mode Ports
Default mode is supported for all protocols; no specific configuration is needed for it to work.

Example:

Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort);
ConfServerProtocol protocol = new ConfServerProtocol(cfgServerEndpoint);
protocol.setClientName(appName);
protocol.setClientApplicationType(appType);
protocol.setUserName(username);
protocol.setUserPassword(password);
protocol.open();

It is also OK to specify explicit null parameters for the connection configuration and TLS parameters:

// Explicit null ConnectionConfiguration
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort, null);

// Explicit null ConnectionConfiguration and TLS parameters
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort, null, false, null, null);

Connecting to Upgrade Mode Ports
TLS upgrade mode is supported only for Configuration Protocol, since the TLS settings for connecting
clients must be retrieved from Configuration Server. No specific options are required; the TLS upgrade
logic works by default.

If a user has provided custom settings, then those settings are used if the TLS parameters received
from Configuration Server are empty. The only requirement that the tlsEnabled parameter in the
Endpoint constructor is not to true, otherwise the client side starts TLS immediately and the
connection would fail because an upgrade mode port expects the connection to be unsecured
initially.

// Setting tlsEnabled to true would cause failure when connecting to upgrade port:
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort,

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 65

connConf, true, sslContext, sslOptions);

Connecting to Secure Mode Port
Secure mode is supported for all protocols. TLS configuration objects/properties must be specified
before the connection is opened, and the tlsEnabled parameter must be set to true. Secure port
mode expects the client to start TLS negotiation immediately after connecting, otherwise the
connection fails.

Example:

boolean tlsEnabled = true;
// Here, the minimal TLS configuration is used, see the following section for details
TrustManager trustManager = TrustManagerHelper.createTrustEveryoneTrustManager();
KeyManager keyManager = KeyManagerHelper.createEmptyKeyManager();
SSLContext sslContext = SSLContextHelper.createSSLContext(keyManager, trustManager);
ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort,

connConf, tlsEnabled, sslContext, sslOptions);
ConfServerProtocol protocol = new ConfServerProtocol(cfgServerEndpoint);
protocol.setClientName(appName);
protocol.setClientApplicationType(appType);
protocol.setUserName(username);
protocol.setUserPassword(password);
protocol.open();

TLS Minimal Configuration

Frequently, there is a need to quickly set up code for working TLS connections, dealing with detailed
TLS configuration later. The minimal configuration settings described below do exactly that.

Platform SDK for Java

The following code creates an SSLContext object that can be used to configure a connection to a
secure port or to configure a secure server socket. This code uses EmptyKeyManager which indicates
that the party opening connection/socket would not have any certificate to authenticate itself, and
TrustEveryoneTrustManager which trusts any certificate presented by the other party - even expired
or revoked certificates.

boolean tlsEnabled = true;
TrustManager trustManager = TrustManagerHelper.createTrustEveryoneTrustManager();
KeyManager keyManager = KeyManagerHelper.createEmptyKeyManager();
SSLContext sslContext = SSLContextHelper.createSSLContext(keyManager,
trustManager);

Note: Connections using this configuration would have a working encryption layer, but they are not
secure because they can neither authenticate themselves nor validate credentials provided by the
other party.

Note: If a server uses mutual TLS mode, then it requires the client to present a certificate. Minimal
configuration does not have certificates, so in this case the TLS negotiation would fail.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 66

Platform SDK for .Net

Platform SDK for .Net requires less configuration, because it always uses the MSCAPI security
provider and Windows Certificate Services (WCS) by default. The following code would trust all
certificates located in the WCS Trusted Root Certificates folder for the current user account.

KeyValueConfiguration config = new KeyValueConfiguration(new KeyValueCollection());
config.TLSEnabled = true;
Endpoint ep = new Endpoint(AppName, Host, Port, config);

Note: If a server uses mutual TLS mode, then it requires clients to present a certificate. Minimal
configuration does not have certificates, so in this case the TLS negotiation would fail.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 67

Using the Platform SDK Commons Library

Using the Platform SDK Commons Library to Configure TLS

Starting with Platform SDK 8.1.1, the only way to configure connections is by using Endpoint objects,
which contain all parameters related to the endpoint connection—including TLS parameters that
indicate whether TLS is enabled and provide details about the SSL context and extended options.

Note: In earlier releases, Platform SDK provided three ways to configure connections:

• using ConnectionConfiguration objects passed to Protocol constructors
• setting parameters in the protocol context
• adding a textual parameter representation to the URL query

The following diagrams show interdependencies among the Platform SDK objects used to establish
network connections and support TLS.

TLS Configuration Objects Containment Hierarchy

This page outlines each step required to create supporting objects for a TLS-enabled Endpoint.

Callback Handlers
In many cases, certificate or key storage is password-protected. This means that Platform SDK will
need the password to access storage. The Java CallbackHandler interface offers a flexible way to
pass this type of credential data:

package javax.security.auth.callback;

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 68

...
public interface CallbackHandler {

void handle(Callback[] callbacks)
throws java.io.IOException, UnsupportedCallbackException;

}

The handle() method accepts credential requests in the form of Callback objects that have
appropriate setter methods. The most common callback implementation is PasswordCallback. User
code may use a GUI to ask the end user to:

• enter a password
• retrieve a password from a file, pipe, network, and so on

Here is an example of a CallbackHandler delegating password retrieval to a GUI:

CallbackHandler callbackHandler = new CallbackHandler() {
public void handle(Callback[] callbacks) throws IOException,

UnsupportedCallbackException {
for (Callback c : callbacks) {

if (c instanceof PasswordCallback) {
PasswordCallback p = (PasswordCallback) c;
p.setPassword(gui.getKeyStorePassword());

}
}

}
};

When No Password is Required

In some cases, certificate storage does not need a password. The API may still dictate that a
CallbackHandler be provided however, so the Platform SDK includes a predefined class that can be
used as a "dummy" CallbackHandler for this scenario:

com.genesyslab.platform.commons.connection.tls.DummyPasswordCallbackHandler

Here is an example of using this dummy class:

CallbackHandler callbackHandler = new DummyPasswordCallbackHandler();

Key Managers
Java provides a KeyManager interface. This interface defines functionality that can be used to load
and contain certificates or keys, or to select appropriate certificates or keys.

Classes based on the KeyManager interface are used by Java TLS support to retrieve certificates that
will be sent over the network to a remote party for validation. They are also used to retrieve the
corresponding private keys. On the client side, KeyManager classes retrieve client certificates or keys;
on the server side they retrieve server certificates or keys.

The Platform SDK Commons library has a helper class, KeyManagerHelper, which makes it easy to
create key managers using several types of key stores and security providers. The built-in key
manager types are:

• PEM — reads certificate/key pairs from X.509 PEM files.
• MSCAPI — uses the Microsoft CryptoAPI and Windows certificate services to retrieve certificate/key

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 69

pairs.
• PKCS11 — delegates to an external security provider plugged in via the PKCS#11 interface, for

example, Mozilla NSS.
• JKS — retrieves a certificate/key pair from a Java Keystore file.
• Empty — does not retrieve anything. This type is for use as a dummy key manager. For example,

clients that do not have certificates can use it.

Here are some examples of key manager creation:

// From PEM file
X509ExtendedKeyManager km = KeyManagerHelper.createPEMKeyManager(

"c:/cert/client-cert.pem", "c:/cert/client-cert-key.pem");

// From MSCAPI
CallbackHandler cbh = new DummyPasswordCallbackHandler();
// Whitespace characters are allowed anywhere inside the string
String certThumbprint =

"4A 3F E5 08 48 3A 00 71 8E E6 C1 34 56 A4 48 34 55 49 D9 0E";
X509ExtendedKeyManager km = KeyManagerHelper.createMSCAPIKeyManager(

cbh, certThumbprint);

// From PKCS11
// This provider does not allow customization of Key Manager
// This is required for FIPS-140 certification
// Dummy callback handler will not work, must use strong password
CallbackHandler passCallback = ...;
X509ExtendedKeyManager km = KeyManagerHelper.createPKCS11KeyManager(

passCallback);

// From JKS
// JKS key store does not allow callback usage (bug in Java?)
// Individual entries in JKS key store can be password-protected
char[] keyStorePass = "keyStorePass".toCharArray();
char[] entryPass = "entryPass".toCharArray();
X509ExtendedKeyManager km = KeyManagerHelper.createJKSKeyManager(

"c:/cert/client-cert.jks", keyStorePass, entryPass);

// Empty key manager
// Using KeyManagerHelper class
X509ExtendedKeyManager km1 = KeyManagerHelper.createEmptyKeyManager();
// Direct creation
X509ExtendedKeyManager km2 = new EmptyX509ExtendedKeyManager();

Trust Managers
A Trust Manager is an entity that decides which certificates from a remote party are to be trusted. It
performs certificate validation, checks the expiration date, matches the host name, checks the
certificate against a CRL list, and builds and validates the chain of trust. The chain of trust starts from
a certificate trusted by both sides (for example, a CA certificate) and continues with second-level
certificates signed by CA, then possibly with third-level certificates signed by second-level authorities
and so on. Chain length can vary, but Platform SDK was designed to explicitly support two-level
chains consisting of a CA certificate and a leaf certificate signed by CA.

Trust manager instances are created based on storage that contains trusted certificates. The number
of trusted certificates can vary depending on the type of trust manager being used. With PEM files,
the storage contains only a single CA certificate; other provider types can have larger sets of trusted
certificates.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 70

The Platform SDK Commons library has a helper class, TrustManagerHelper, which makes it easy to
create trust managers that use several types of certificate stores and security providers, and which
can accept additional parameters that affect certificate validation. Built-in trust manager types are:

• PEM — Reads a CA certificate from an X.509 PEM file.
• MSCAPI — Uses the Microsoft CryptoAPI and Windows certificate services to retrieve CA certificates and

validate certificates.
• PKCS11 — Delegates certificate validation to an external security provider plugged in via the PKCS#11

interface, for example, Mozilla NSS.
• JKS — Retrieves a CA certificate from a Java Keystore file and uses Java built-in validation logic.
• Default — Uses trusted certificates shipped with or configured in Java Runtime and Java built-in

validation logic.
• TrustEveryone — Trusts any certificates. Can be used on the server side when you do not expect any

certificates from clients, or during testing.

Here are some examples of trust manager creation (with generic crlPath and expectedHostName
parameters defined in the first example):

// Generic parameters for trust manager examples
String crlPath = "c:/cert/ca-crl.pem";
String expectedHostName = "serverhost";
// From PEM file
X509TrustManager tm = TrustManagerHelper.createPEMTrustManager(

"c:/cert/ca.pem", crlPath, expectedHostName);

// From MSCAPI
// CRL is loaded from PEM file (Platform SDK supports only file-base CRLs)
// Concrete CA is not specified, all certificates from WCS Trusted Root are used
CallbackHandler cbh = new DummyPasswordCallbackHandler();
X509TrustManager tm = TrustManagerHelper.createMSCAPITrustManager(

cbh, crlPath, expectedHostName);

// From PKCS#11
// This provider implementation in Java does not allow custom host name check,
// but CRL can still be used
X509TrustManager tm = TrustManagerHelper.createPKCS11TrustManager(

cbh, crlPath);

// From JKS
// JKS key store does not allow callback usage (bug in Java?)
// Certificate-only entries cannot have passwords in JKS key store
// CRL and host name check are supported
char[] keyStorePass = "keyStorePass".toCharArray();
X509ExtendedKeyManager km = KeyManagerHelper.createJKSTrustManager(

"c:/cert/ca-cert.jks", keyStorePass, crlPath, expectedHostName);

// From Java built-in trusted certificates
// This one does not support CRL and host name check
X509ExtendedKeyManager km = KeyManagerHelper.createDefaultTrustManager();

// Trust Everyone
X509ExtendedKeyManager km =

KeyManagerHelper.createTrustEveryoneTrustManager();

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 71

SSLContext and SSLExtendedOptions
An SSLContext instance serves as a container for all SSL and TLS parameters and objects and also as
a factory for SSLEngine instances.

SSLEngine instances contain logic that deals directly with TLS handshaking, negotiation, and data
encryption and decryption. SSLEngine instances are not reusable and must be created anew for each
connection. This is a good reason for requiring users to provide an SSLContext instance rather than
an instance of SSLEngine. SSLEngine instances are created by the Platform SDK connection layer
and are not exposed to user code.

Only some of the parameters for SSLEngine can be pre-set in SSLContext. However, the
SSLExtendedOptions class may be used to collect additional parameters.

SSLExtendedOptions currently contains two parameters:

• the "mutual TLS" flag
• a list of enabled cipher suites

The mutual TLS flag is used only by server applications. When the flag is turned on, the server will
require connecting clients to send their certificates for validation. The connections of any clients that
do not send certificates will fail.

The list of enabled cipher suites contains the names of all cipher suites that will be used as filters for
SSLEngine. As a result, only ciphers that are supported by SSLEngine and that are contained in the
enabled cipher suites list will be enabled for use.

Platform SDK includes the SSLContextHelper helper class to support one-line creation of SSLContext
and SSLExtendedOptions instances.

Here are some examples:

// Creating SSLContext
KeyManager km = ...;
TrustManager tm = ...;
SSLContext sslContext = SSLContextHelper.createSSLContext(km, tm);

String[] cipherList = new String[] {
"TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
"TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA"};

// Can be single String with space-separated suite names
String cipherNames = "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA " +

"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA " +
"TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA";

boolean mutualTLS = false;

// Creating SSLExtendedOptions directly
SSLExtendedOptions sslOpts1 =

new SSLExtendedOptions(mutualTLS, cipherList);
SSLExtendedOptions sslOpts2 =

new SSLExtendedOptions(mutualTLS, cipherNames);

// Create SSLExtendedOptions using the helper class:
SSLExtendedOptions sslOpts3 =

SSLContextHelper.createSSLExtendedOptions(mutualTLS, cipherList);
SSLExtendedOptions sslOpts4 =

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 72

SSLContextHelper.createSSLExtendedOptions(mutualTLS, cipherNames);

Endpoints
Now that supporting objects have been created and configured, you are ready to create an Endpoint.

The connection configuration parameters of an Endpoint are read-only—they cannot be changed
after the Endpoint is created. This configuration information is then used by Protocol instances, the
warm standby service, the connection layer and the TLS layer.

A sample Endpoint configuration is shown below:

ConnectionConfiguration connConf = ...;
SSLContext sslContext = ...;
SSLExtendedOptions sslOpts = ...;
tlsEnabled = true;
// Specifying host name and port.
Endpoint ep1 = new Endpoint("Server-1", "serverhost", 9090, connConf,

tlsEnabled, sslContext, sslOpts);
// Specifying URI. Query part is still supported.
String uri = "tcp://Server-1@serverhost:9090/" +

"?protocol=addp&addp-remote-timeout=5&addp-trace=remote";
Endpoint ep2 = new Endpoint("Server-1", uri, connConf,

tlsEnabled, sslContext, sslOpts);

Note: Configuration parameters can be set directly in a Protocol instance context, but will be
overwritten and lost under the following conditions:

• a new Endpoint is set up
• the protocol is forced to reconnect
• a warm standby switchover occurs

Configuring TLS for Client Connections
Using the information above, you are now ready to configure actual client connections.

Example:

// Get TLS configuration objects for connection
String clientName = "ClientApp";
String host = "serverhost";
int port = 9000;
SSLContext sslContext = ...; // Assume it is created
SSLExtendedOptions sslOptions = ...; // Assume it is created
boolean tlsEnabled = true;

ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
Endpoint epTSrv = new Endpoint(

clientName, host, port, connConf, tlsEnabled, sslContext, sslOptions);

TServerProtocol tsProtocol = new TServerProtocol(epTSrv);
tsProtocol.setClientName(clientName);
tsProtocol.open();

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 73

Configuring TLS for Servers
Using the information above, you are now ready to configure actual server connections.

String serverName = "ServerApp";
String host = "serverhost";
int port = 9000;
SSLContext sslContext = ...; // Assume it is created
SSLExtendedOptions sslOptions = ...; // Assume it is created
boolean tlsEnabled = true;

ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
Endpoint epTSrv = new Endpoint(

serverName, host, port, connConf, tlsEnabled, sslContext, sslOptions);

ExternalServiceProtocolListener serverChannel =
new ExternalServiceProtocolListener(endpoint);

Parameter-based TLS Configuration
Platform SDK has a way to create TLS objects based on a set of parameters in a more declarative
fashion rather than creating them programmatically. This feature was initially developed as a part of
Application Template to configure TLS based on parameters from Configuration objects and then was
generalized to use different parameter sources and moved to Commons. Currently this mechanism
supports only three providers: PEM, MSCAPI and PKCS#11. Usage sequence is the following:

1. Prepare a source of TLS parameters and parse it using TLSConfigurationParser resulting in
TLSConfiguration instance.

2. Customize TLSConfiguration.
1. Add callback handlers.
2. Clients: set expected host name.

3. Create SSLContext and SSLExtendedOptions from TLSConfiguration.

This section continues with step-by-step examples and ends with a more detailed review of helper
classes.

Parsing TLS Parameters

Platform SDK Commons has a few helper classes that make it easier to extract TLS parameters from
a properties files, command-line arguments, etc.: TLSConfiguration and TLSConfigurationParser.
TLSConfiguration is a container for parsed TLS parameters and TLSConfigurationParser provides a
general parsing method and several overloaded shortcut methods for specific cases.

Examples:

// Using KVList as a parameters source
KVList tlsProps = new KeyValueCollection();
tlsProps.addObject("tls", "1");
tlsProps.addObject("certificate", "client-cert.pem");
TLSConfiguration tlsConfClient =

TLSConfigurationParser.parseClientTlsConfiguration(tlsProps);

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 74

TLSConfiguration tlsConfServer =
TLSConfigurationParser.parseServerTlsConfiguration(tlsProps);

// Using Map as a parameters source
Map<String, String> tlsProps = new HashMap<String, String>();
tlsProps.put("tls", "1");
tlsProps.put("certificate", "client-cert.pem");
TLSConfiguration tlsConfClient =

TLSConfigurationParser.parseClientTlsConfiguration(tlsProps);
TLSConfiguration tlsConfServer =

TLSConfigurationParser.parseServerTlsConfiguration(tlsProps);

// Using Properties as a parameters source
Properties tlsProps = new Properties();
tlsProps.load(new FileInputStream("tls.properties"));
TLSConfiguration tlsConfClient =

TLSConfigurationParser.parseClientTlsConfiguration(tlsProps);
TLSConfiguration tlsConfServer =

TLSConfigurationParser.parseServerTlsConfiguration(tlsProps);

// Using String as a parameters source
// Format corresponds to Transport Parameters as they appear in Configuration Manager
String tlsProps = "tls=1;certificate=client-cert.pem"; // No spaces around ";"
TLSConfiguration tlsConfClient =

TLSConfigurationParser.parseClientTlsConfiguration(tlsProps);
TLSConfiguration tlsConfServer =

TLSConfigurationParser.parseServerTlsConfiguration(tlsProps);

Customizing TLS Configuration

When TLSConfiguration is prepared, it may still need some customization. Callback handlers for
password retrieval, for example, cannot be configured in parameters and must be set explicitly. They
should be set always, even if not used, because some security providers require them.

Specifying expected host name is not very straightforward and some aspects should be considered.
When configuring TLS on client side, expected host names are in most cases different for primary and
for backup connections. Though, on some virtualized environments, they can be the same. Users may
choose to use IP addresses instead of DNS host names, or use DNS names with wildcards. Either way,
expected host name must match one of names specified in server’s certificate and in extreme cases
it may not relate to actual host name at all. To account for these cases, setting expected host name is
not automated in Platform SDK and left for user code. Example code below shows how to set this
value to actual host name of target server.

According to X.509 specification, certificate may contain not just host name or IP address, but also
URI or e-mail address. Platform SDK supports only host names and IP addresses, but host name may
use wildcard: a star symbol, “*”, can be used instead of any one level of domain name.

Examples:

TLSConfiguration tlsConfiguration = ...;

// Applicable to both clients and servers
// Passwords are not used, so set dummies:
tlsConfiguration.setKeyStoreCallbackHandler(

new DummyPasswordCallbackHandler());
tlsConfiguration.setTrustStoreCallbackHandler(

new DummyPasswordCallbackHandler());

// In case some real password is needed:
tlsConfiguration.setKeyStoreCallbackHandler(new CallbackHandler() {

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 75

public void handle(Callback[] callbacks) {
char[] password = new char[] {

'p', 'a', 's', 's', 'w', 'o', 'r', 'd'};
for (Callback c : callbacks) {

if (c instanceof PasswordCallback) {
((PasswordCallback) c).setPassword(password);

}
}

}
}

);

// Expected host name may contain exact host name, ...
tlsConfiguration.setExpectedHostname("someserver.ourdomain.com");
// wildcard host name, ...
tlsConfiguration.setExpectedHostname("*.ourdomain.com");
tlsConfiguration.setExpectedHostname("someserver.*.com");

// IPv4 address, ...
tlsConfiguration.setExpectedHostname("192.168.1.1");
// IPv6 address.
tlsConfiguration.setExpectedHostname("fe80::ffff:ffff:fffd");

Creating SSLContext

Platform SDK Commons has helper class – TLSConfigurationHelper, which creates SSLContext and
SSLExtendOptions based on TLSConfiguration object. TLSConfigurationHelper has two methods:

public static SSLContext createSslContext(TLSConfiguration config);

and

static SSLExtendedOptions createSslExtendedOptions(TLSConfiguration config);

Method createSSLContext() determines security provider type if it is not set explicitly, creates
necessary key store objects, key manager, trust manager, and finally wraps it all into SSLContext.

Method createSSLExtendedOptions() does not contain any logic, it just creates new
SSLExtendedOptions with the exact parameters taken from TLSConfiguration.

Usage of both methods is shown in code sample below.

Example:

// TLS preparation section follows
KVList tlsProps = new KeyValueCollection();
tlsProps.addObject("tls", "1");
tlsProps.addObject("certificate", "client-cert.pem");
TLSConfiguration tlsConf =

TLSConfigurationParser. parseClientTlsConfiguration(tlsProps);

boolean tlsEnabled = true;

SSLContext sslContext =
TLSConfigurationHelper.createSslContext(tlsConfiguration);

SSLExtendedOptions sslOptions =
TLSConfigurationHelper.createSslExtendedOptions(tlsConfiguration);

// The same as above, using shortcut methods:
sslContext = tlsConfiguration.createSslContext();

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 76

sslOptions = tlsConfiguration.createSslExtendedOptions();

Endpoint ep = new Endpoint(appName, host, port, null, tlsEnabled, sslContext, sslOptions);

TLSConfiguration Class

TLSConfiguration class is used as intermediate container to keep stronger-typed TLS parameters
extracted from a parameter source. It contains the following:

Properties

TLSConfiguration Properties List
Name Type Description

tlsEnabled boolean

Correspond to TLS parameters in
Configuration; please see the list
of TLS Parameters in
Configuration Manager for
details.

provider String
certificate String
certificateKey String
trustedCaCertificate String
mutual boolean
crl String
targetNameCheckEnabled boolean
cipherList String
fips140Enabled boolean

clientMode boolean

Should be set to true for client-
side of connection and false for
server-side.
TLSConfigurationParser
specialized methods set it
automatically.

expectedHostname String

Host name to check against,
used when
targetNameCheckEnabled is
turned on. Typically is used by
client side and assigned to the
host/domain part of target URL.

keyStoreCallbackHandler CallbackHandler Please see Callback Handlers for
details.

trustStoreCallbackHandler CallbackHandler

Methods

TLSConfiguration Methods List
Signature Description

SSLContext createSslContext() A shortcut for
TLSConfigurationHelper.createSslContext

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 77

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUsingPSDKCommonsLibrary#Callback_Handlers

Signature Description
method. Creates and configures SSLContext object
based on the properties values.

SSLExtendedOptions createSslExtendedOptions()
A shortcut for
TLSConfigurationHelper.createSslExtendedOptions
method. Creates SSLExtendedOptions object
based on the properties values.

Constants

The following constants define supported values for a provider property:

• String TLS_PROVIDER_PEM_FILE;
• String TLS_PROVIDER_PKCS11;
• String TLS_PROVIDER_MSCAPI;

TLSConfigurationParser Class

TLSConfigurationParser class has methods that extract TLS parameters from different sources and
create TLSConfiguration instance containing the parameters. It uses interface PropertyReader and
several classes implementing this interface to read TLS parameters.

Methods

TLSConfiguration Methods List
Signature Description

public static TLSConfiguration
parseTlsConfiguration(final PropertyReader prop,
final boolean clientMode)

This is the main and most generic method. It reads
all possible TLS parameters (parameter names and
possible values are detailed in the list of TLS
Parameters in Configuration Manager), converts
them and assigns them to TLSConfiguration
properties.

public static TLSConfiguration
parseServerTlsConfiguration(KVList kvl)

These methods provide shortcuts to parse TLS
configuration from different source types.

public static TLSConfiguration
parseClientTlsConfiguration(KVList kvl)
public static TLSConfiguration
parseServerTlsConfiguration(Map<String, String>
map)
public static TLSConfiguration
parseClientTlsConfiguration(Map<String, String>
map)
public static TLSConfiguration
parseServerTlsConfiguration(Properties prop)
public static TLSConfiguration
parseClientTlsConfiguration(Properties prop)

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 78

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters

Signature Description
public static TLSConfiguration
parseServerTlsConfiguration(String
transportParams)
public static TLSConfiguration
parseClientTlsConfiguration(String
transportParams)

Interface PropertyReader and Implementing Classes

Interface PropertyReader contains just one method:

String getProperty(String key)

Here, key argument contains name of parameter to extract. Implementing classes contain code that
actually extract and return value corresponding to the key. Currently there are five implementations:

1. GConfigTlsPropertyReader - This class belongs to Application Template and is used to extract TLS
parameters from a set of related Configuration objects. It cannot be included to Commons library since
it would cause circular references between the Commons and Application Template.

2. KVListPropertyReader - Extracts String value from a KVList instance.
3. MapPropertyReader - Extracts value from a Map<String, String> instance.
4. PropertiesReader - Extracts value from a Properties instance.
5. TransportParamsPropertyReader - Parses transport parameters as they appear in Configuration

Manager, for example:

“tls=1;certificate=c:/cert/cert.pem;mutual=1”.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 79

Using the Application Template Application
Block

Introduction

Instead of using the Platform SDK Commons Library to configure TLS connections with hard-coded
values, you can use the Platform SDK Application Template Application Block to retrieve configuration
objects from Configuration Server which contain parameters that are used to configure your TLS
settings.

The steps do accomplish this are as follows:

1. Parse a configuration object.
2. Create a TLSConfiguration object for the configuration object.
3. Customize your TLSConfiguration object:

• Add callback handlers.
• For clients, set the expected host names for primary and backup servers.

4. Create SSLContext and SSLExtendedOptions objects based on your TLSConfiguration object.
5. Use your SSLContext and SSLExtendedOptions objects to create Endpoints and/or

WarmStandbyConfiguration objects.
6. Use your Endpoints and/or WarmStandbyConfiguration objects to create Protocol instances.

The sections below describe these steps in more detail. If you plan on using this method to configure
TLS settings, be sure that related application objects in Configuration Manager have been configured
with TLS parameters.

Note: If you aren't familiar with TLS configuration settings then please read Using the Platform SDK
Commons Library to gain a better understanding of what is required.

Parsing Configuration Objects

The Platform SDK Application Template has a helper class, GConfigTlsPropertyReader, which makes
it easy to extract TLS parameters from Configuration Server. When used in conjunction with
TLSConfigurationParser, TLSConfigurationHelper, ClientConfigurationHelper and
ServerConfigurationHelper classes, all of the connection-related options found in Configuration
Server are covered. They also provide other useful functionality.

TLSConfigurationParser has two constructors:

public GConfigTlsPropertyReader(

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 80

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUsingPSDKCommonsLibrary
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUsingPSDKCommonsLibrary
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUsingPSDKCommonsLibrary

IGApplicationConfiguration appConfig,
IGApplicationConfiguration.IGPortInfo portConfig);

and

public GConfigTlsPropertyReader(
IGApplicationConfiguration appConfig,
IGApplicationConfiguration.IGAppConnConfiguration connConfig);

The first one is used for server-side connections while the second is for client-side connections.

For example:

// Client side
// Prepare configuration objects
String clientAppName = "<my-app-name>";
CfgAppType targetServerType = CfgAppType.CFGTServer;
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(clientAppName));
GCOMApplicationConfiguration appConfiguration =

new GCOMApplicationConfiguration(cfgApplication);
IGApplicationConfiguration.IGAppConnConfiguration connConfig =

appConfiguration.getAppServer(targetServerType);

// Parse TLS parameters
PropertyReader reader = new GConfigTlsPropertyReader(appConfiguration, connConfig);
TLSConfiguration tlsConfiguration =

TLSConfigurationParser.parseTlsConfiguration(reader, true);
// At this point, tlsConfiguration contains TLS parameters read from
// configuration objects

// Server side
// Prepare configuration objects
String serverAppName = "<my-app-name>";
String portID = "secure";
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(serverAppName));
GCOMApplicationConfiguration appConfiguration =

new GCOMApplicationConfiguration(cfgApplication);
IGApplicationConfiguration.IGPortInfo portConfig =

appConfiguration.getPortInfo(portID);

// Parse TLS parameters
PropertyReader reader = new GConfigTlsPropertyReader(appConfiguration, portConfig);
TLSConfiguration tlsConfiguration =

TLSConfigurationParser.parseTlsConfiguration(reader, false);

Customizing TLS Configuration

When Configuration objects are used as a source of TLS parameters, they can also provide values for
expected host names.

Examples:

TLSConfiguration tlsConfiguration = ...;

// Client side
// Prepare configuration objects

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 81

String clientAppName = "<my-app-name>";
CfgAppType targetServerType = CfgAppType.CFGTServer;
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(clientAppName));
GCOMApplicationConfiguration appConfiguration =

new GCOMApplicationConfiguration(cfgApplication);
IGApplicationConfiguration.IGAppConnConfiguration connConfig =

appConfiguration.getAppServer(targetServerType);

// TLS-specific part
IGApplicationConfiguration.IGServerInfo primaryServer =

connConfig.getTargetServerConfiguration().getServerInfo();
IGApplicationConfiguration.IGServerInfo backupServer =

primaryServer.getBackup().getServerInfo();

tlsConfiguration.setExpectedHostname(primaryServer.getHost().getName());
// Or:
// tlsConfiguration.setExpectedHostname(backupServer.getHost().getName());

Creating SSLContext Objects

SSLContext and SSLExtendedOptions are created either using TLSConfigurationHelper or with
TLSConfiguration shortcut methods:

Examples:

SSLContext sslContext =
TLSConfigurationHelper.createSslContext(tlsConfiguration);

SSLExtendedOptions sslOptions =
TLSConfigurationHelper.createSslExtendedOptions(tlsConfiguration);

// The same as above, using shortcut methods:
sslContext = tlsConfiguration.createSslContext();
sslOptions = tlsConfiguration.createSslExtendedOptions();

Configuring TLS for Client Connections

Platform SDK has a helper class, ClientConfigurationHelper, that makes it easier to prepare
connections for client applications. This class has the following methods:

public static Endpoint createEndpoint(
IGApplicationConfiguration appConfig,
IGAppConnConfiguration connConfig,
IGApplicationConfiguration targetServerConfig);

public static Endpoint createEndpoint(
IGApplicationConfiguration appConfig,
IGAppConnConfiguration connConfig,
IGApplicationConfiguration targetServerConfig,
boolean tlsEnabled,
SSLContext sslContext,
SSLExtendedOptions sslOptions);

public static WarmStandbyConfiguration createWarmStandbyConfig(
IGApplicationConfiguration appConfig,

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 82

IGAppConnConfiguration connConfig);

public static WarmStandbyConfiguration createWarmStandbyConfig(
IGApplicationConfiguration appConfig,
IGAppConnConfiguration connConfig,
boolean primaryTLSEnabled,
SSLContext primarySSLContext,
SSLExtendedOptions primarySSLOptions,
boolean backupTLSEnabled,
SSLContext backupSSLContext,
SSLExtendedOptions backupSSLOptions);

Two of these methods simply accept TLS-specific parameters and pass them through to the Endpoint
and WarmStandbyConfiguration instances being created. A code sample using the
createEndpoint() method is shown here:

String clientAppName = "<my-app-name>";
CfgAppType targetServerType = CfgAppType.CFGTServer;
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(clientAppName));

GCOMApplicationConfiguration appConfiguration =
new GCOMApplicationConfiguration(cfgApplication);

IGAppConnConfiguration connConfig =
appConfiguration.getAppServer(targetServerType);

// TLS preparation section follows
PropertyReader reader = new GConfigTlsPropertyReader(appConfiguration, connConfig);
TLSConfiguration tlsConfiguration =

TLSConfigurationParser.parseTlsConfiguration(reader, true);

// TLS customization code goes here...
// As an example, host name verification is turned on
IGApplicationConfiguration.IGServerInfo targetServer =

connConfig.getTargetServerConfiguration().getServerInfo();
tlsConfiguration.setExpectedHostname(targetServer.getHost().getName());

// Get TLS configuration objects for connection
SSLContext sslContext = tlsConfiguration.createSslContext();
SSLExtendedOptions sslOptions = tlsConfiguration.createSslExtendedOptions();
boolean tlsEnabled = tlsConfiguration.isTlsEnabled();
// TLS preparation section ends

Endpoint epTSrv = ClientConfigurationHelper.createEndpoint(
appConfiguration, connConfig,
connConfig.getTargetServerConfiguration(),
tlsEnabled, sslContext, sslOptions);

TServerProtocol tsProtocol = new TServerProtocol(epTSrv);
tsProtocol.setClientName(clientName);
tsProtocol.open();

Configuring Warm Standby
In cases when the target server has a backup in warm standby mode, configuration requires a little
extra effort, as shown in the following code sample.

Note: Configuring TLS for primary and backup servers in Warm Standby mode has some specifics
that may not be obvious. Primary and backup servers typically share the same settings. Thus, when a

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 83

server is selected as a backup for another server (the primary server), Configuration Manager copies
settings from the primary server to the backup server to make them the same. This is also true of TLS
settings, and the same TLSConfiguration object can be used to configure both the primary and
backup connections. On the other hand, primary and backup servers usually reside on different hosts.
This means that if a hostname check is used, each of these servers must have different
expectedHostname parameter values. This is not hard to do, as the following code sample
demonstrates, but it is not always obvious.

String clientAppName = "<my-app-name>";
CfgAppType targetServerType = CfgAppType.CFGStatServer;
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(appName));

GCOMApplicationConfiguration appConfiguration =
new GCOMApplicationConfiguration(cfgApplication);

IGAppConnConfiguration connConfig =
appConfiguration.getAppServer(targetServerType);

// TLS preparation section follows
PropertyReader reader = new GConfigTlsPropertyReader(appConfiguration, connConfig);
TLSConfiguration tlsConfiguration =

TLSConfigurationParser.parseTlsConfiguration(reader, true);

IGApplicationConfiguration.IGServerInfo primaryServer =
connConfig.getTargetServerConfiguration().getServerInfo();

IGApplicationConfiguration.IGServerInfo backupServer =
primaryServer.getBackup().getServerInfo();

// Configure TLS for Primary
tlsConfiguration.setExpectedHostname(primaryServer.getHost().getName());
SSLContext primarySslContext = tlsConfiguration.createSslContext();
SSLExtendedOptions primarySslOptions = tlsConfiguration.createSslExtendedOptions();
boolean primaryTlsEnabled = tlsConfiguration.isTlsEnabled();

// Configure TLS for Backup
tlsConfiguration.setExpectedHostname(backupServer.getHost().getName());
SSLContext backupSslContext = tlsConfiguration.createSslContext();
SSLExtendedOptions backupSslOptions = tlsConfiguration.createSslExtendedOptions();
boolean backupTlsEnabled = tlsConfiguration.isTlsEnabled();
// TLS preparation section ends

WarmStandbyConfiguration wsConfig =
ClientConfigurationHelper.createWarmStandbyConfig(

appConfiguration, connConfig,
primaryTlsEnabled, primarySslContext, primarySslOptions,
backupTlsEnabled, backupSslContext, backupSslOptions);

StatServerProtocol statProtocol =
new StatServerProtocol(wsConfig.getActiveEndpoint());

statProtocol.setClientName(clientName);

WarmStandbyService wsService = new WarmStandbyService(statProtocol);
wsService.applyConfiguration(wsConfig);
wsService.start();
statProtocol.beginOpen();

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 84

Configuring TLS for Servers

Platform SDK has a helper class, ServerConfigurationHelper, that makes it easier to prepare
listening sockets for server applications. This class has the following methods:

public static Endpoint createListeningEndpoint(
IGApplicationConfiguration application,
IGApplicationConfiguration.IGPortInfo portInfo);

public static Endpoint createListeningEndpoint(
IGApplicationConfiguration application,
IGApplicationConfiguration.IGPortInfo portInfo,
boolean tlsEnabled,
SSLContext sslContext,
SSLExtendedOptions sslOptions);

The overloaded version of the createListeningEndpoint() method accepts TLS parameters and
passes them through to the Endpoint object that is being created. The following code sample shows
how this is done:

String serverAppName = "<my-app-name>";
String portID = "secure";
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(appName));
GCOMApplicationConfiguration appConfig =

new GCOMApplicationConfiguration(cfgApplication);
IGApplicationConfiguration.IGPortInfo portConfig =

appConfig.getPortInfo(portID);

// TLS preparation section follows
PropertyReader reader = new GConfigTlsPropertyReader(appConfiguration, portConfig);
TLSConfiguration tlsConfiguration =

TLSConfigurationParser.parseTlsConfiguration(reader, false);

// TLS customization code goes here...
// As an example, mutual TLS mode is turned on
tlsConfiguration.setMutual(true);

// Get TLS configuration objects for connection
SSLContext sslContext = tlsConfiguration.createSslContext();
SSLExtendedOptions sslOptions = tlsConfiguration.createSslExtendedOptions();
boolean tlsEnabled = tlsConfiguration.isTlsEnabled();
// TLS preparation section ends

Endpoint endpoint = ServerConfigurationHelper.createListeningEndpoint(
appConfig, portConfig,
tlsEnabled, sslContext, sslOptions);

ExternalServiceProtocolListener serverChannel =
new ExternalServiceProtocolListener(endpoint);

...

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 85

Configuring TLS Parameters in
Configuration Manager

Introduction

As described earlier, the Platform SDK Application Template Application Block allows both client and
server applications to read TLS parameters from configuration objects. This page describes how to
set TLS parameters correctly in those configuration objects.

Configuration objects that will be used, and their relations, are shown in the diagram below:

To edit TLS-related parameters for these objects, you will need to have access to the Annex tab in
Configuration Manager.

Precedence of Configuration Objects
Platform SDK uses different sets of configuration objects to configure client- and server-side TLS
settings. For TLS parameters, these objects are searched from the most specific object to the most
general one. Parameters found in specific objects take precedence over those in more general
objects.

Note: This search occurs independently for each supported TLS parameter.

Location of specific TLS parameters can differ for each object, but is detailed in the appropriate
section on this page.

Configuration Object Precedence

Application type Configuration Objects Used, in Order of
Precedence

Client 1. Connection from the client application to the
server.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 86

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUsingApplicationTemplateAB

Application type Configuration Objects Used, in Order of
Precedence

2. Application of the client.
3. Host where client application resides.
4. Port of the target server that client connects

to.[1]

Server
1. Port of the server application.
2. Application of the server.
3. Host where the server application resides.

1. If the tls parameter is not set to 1 in both the client Application and Connection objects, then the client
application will look to the Port object for the target server to determine if TLS should be turned on.
Configuration Manager does not automatically add the tls=1 parameter to Connection Transport
parameters when it is linked to a server's secure Port. This is the only case when a client application
considers settings in the server's configuration objects.

Displaying the Annex Tab in Configuration Manager
By default, Configuration Manager does not show Annex tab in Object Properties windows. This tab
can contain TLS parameters for Host and Application objects.

To show the Annex tab, select View > Options... from the main menu and ensure the Show Annex tab
in object properties and Show Advanced Security Information options are selected.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 87

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#1

Application Objects

Host Object
The properties window for a Host object includes most common TLS parameters on the General tab:

• Certificate
• Certificate Key
• Trusted CA

These fields allow copy/paste operations, so they can be set manually by copying and pasting the
"Thumbprint" field values from certificates in Windows Certificate Services (WCS) into the related
field in Configuration Manager.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 88

To select a certificate, use the button next to Certificate field. This opens the Select certificate
window, displaying a list of certificates installed in WCS under the Local Computer account for the
local machine.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 89

The Annex tab contains a security section that holds TLS settings for this object. Any change made to
TLS-related fields on the General tab are mirrored between the Annex tab automatically. You can also
specify additional TLS parameters here that aren't reflected on the General tab.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 90

Server Application Object
For the server Application object, TLS-related fields are located on the Server Info tab of the
properties window. Note the Certificate View controls group, where the server can be set to use Host
TLS parameters (generally recommended for Genesys Framework) or application-specific ones.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 91

If using application-specific TLS parameters, use the button next to the certificate information field to
open a certificate selection window where you can choose from a list of certificates installed for the
Local Computer account or manually enter certificate information:

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 92

Port Object
For port objects, TLS-related fields are located on the Server Info tab of the properties window. You
can see here whether a port is secured (TLS-enabled) or not, and have the option to edit existing
ports to update TLS parameters or to add new ports.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 93

When adding or editing a port, TLS parameters are specified on the following tabs:

• Port Info — Turn on Secured listening mode for the port (the same as adding the tls=1 string to
transport parameters).

• Certificate — Show certificate information, open a certificate selection window, or delete the current
certificate information.

• Advanced — Manually edit the Transport Protocol Parameters field. TLS parameters not reflected on the
Certificate tab can be added here.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 94

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 95

Client Application Object
For client Application objects, TLS-related fields are located under the security sections of both the
Options and Annex tabs. There is no certificate selection window provided, but TLS parameters can
be configured manually in either section.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 96

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 97

When processing a client Application object, Platform SDK looks at parameters from both sections. If
any parameters are specified in both places, then the values from the Options tab take precedence.

Connection Object
The properties window for all Application objects includes a Connection tab where connections to
servers can be added or edited. Each connection determines if TLS mode should be enabled based on
port settings for the target server.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 98

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 99

Similar to the Port properties window, the Certificate tab allows you to select from a list of certificates
or manually edit certificate properties. You can also use the Advanced tab to edit TLS settings not
included with the certificate. However, the Transport Protocol Parameters field behaves differently for
this object — which may result in lost or incorrect settings in some cases. See the Notes and Issues
section for details.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 100

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#Notes_and_Issues

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 101

List of TLS Parameters

The following table lists all TLS parameters supported by Platform SDK, with their valid value ranges
and purpose:

Parameter Name Acceptable Values Purpose

tls

Boolean value.
Possible values are "1"/"0", "yes"/"no",
"on"/"off", "true"/"false".

Example:

• "tls=1"

Client:
1 - perform TLS handshake immediately
after connecting to server. 0 – do not turn
on TLS immediately but autodetect can
still work.

provider

"PEM", "MSCAPI", "PKCS11"
Not case-sensitive.

Example:

• "provider=MSCAPI"

Explicit selection of security
provider to be used. For example,
MSCAPI and PKCS11 providers
can contain all other parameters
in their internal database. This
parameter allow configuration of
TLS through security provider
tools.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 102

Parameter Name Acceptable Values Purpose

certificate

PEM provider: path to a X.509
certificate file in PEM format.
Path can use both forward and
backward slash characters.
MSCAPI provider: thumbprint of a
certificate – string with hexadecimal
SHA-1 hash code of the certificate.
Whitespace characters are allowed
anywhere within the string. PKCS11
provider: this parameter is ignored.

Examples:

• "certificate= C:\certs\client-
cert-3-cert.pem"

• "certificate=A4 7E A6 E4 7D
45 6A A6 2F 15 BE 89 FD 46
F0 EE 82 1A 58 B9"

Specifies location of X.509
certificate to be used by
application.
MSCAPI provider keeps certificates in
internal database and can identify them
by hash code; so called thumbprint.

In Java, PKCS#11 provider does not allow
selection of the certificate; it must be
configured using provider tools.

Note: When using autodetect (upgrade)
TLS connection, this option MUST be
specified in application configuration,
otherwise Configuration Server would
return empty TLS parameters even if
other options are set.

certificate-key

PEM provider: path to a PKCS#8
private key file without password
protection in PEM format. Path
can use both forward and
backward slash characters.

• MSCAPI provider: this
parameter is ignored; key is
taken from the entry
identified by "certificate"
field.

• PKCS11 provider: this
parameter is ignored.

Examples:

• "certificate-key= C:\certs\
client-cert-3-key.pem"

Specifies location of PKCS#8
private key to be used in pair
with the certificate by
application.
MSCAPI provider keeps private keys
paired with certificates in internal
database. In Java, PKCS#11 provider does
not allow selection of the private key; it
must be configured using provider tools.

trusted-ca

PEM provider: path to a X.509
certificate file in PEM format.
Path can use both forward and
backward slash characters.
MSCAPI provider: thumbprint of a
certificate – string with hexadecimal
SHA-1 hash code of the certificate.
Whitespace characters are allowed
anywhere within the string. PKCS11
provider: this parameter is ignored.

Examples:

• "trusted-ca= C:\certs\
ca.pem"

• "trusted-ca=A4 7E A6 E4 7D

Specifies location of a X.509
certificate to be used by
application to validate remote
party certificates. The certificate
is designated as Trusted
Certification Authority certificate
and application will only trust
remote party certificates signed
with the CA certificate.
MSCAPI provider keeps CA certificates in
internal database and can identify them
by hash code; so called thumbprint. In
Java, PKCS#11 provider does not allow
selection of the CA certificate; it must be
configured using provider tools.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 103

Parameter Name Acceptable Values Purpose

45 6A A6 2F 15 BE 89 FD 46
F0 EE 82 1A 58 B9"

tls-mutual

Boolean value.
Possible values are "1"/"0", "yes"/"no",
"on"/"off", "true"/"false".

Example:

• "tls-mutual=1"

Has meaning only for server
application. Client applications
ignore this value. When turned
on, server will require connecting
clients to present their
certificates and validate the
certificates the same way as
client applications do.

tls-crl

All providers: path to a Certificate
Revocation List file in PEM
format. Path can use both
forward and backward slash
characters.
Example:

• "tls-crl= C:\certs\crl.pem"

Applications will use CRL during
certificate validation process to
check if the (seemingly valid)
certificate was revoked by CA.
This option is useful to stop
usage of leaked certificates by
unauthorized parties.

tls-target-name-check

"host" or none. Not case-
sensitive.
Example:

• "tls-target-name-check=host"

When set to "host", enables
matching of certificate’s
Alternative Subject Name or
Subject fields against expected
host name. PSDK supports DNS
names and IP addresses as
expected host names.

cipher-list

String consisting of space-
separated cipher suit names.
Information on cipher names can
be found online.
Example:

• "cipher-list=
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA"

Used to calculate enabled cipher
suites. Only ciphers present in
both the cipher suites supported
by security provider and the
cipher-list parameter will be
valid.

fips140-enabled

Boolean value.
Possible values are "1"/"0", "yes"/"no",
"on"/"off", "true"/"false".

Example:

• "fips140-enabled=1"

PSDK Java: when set to true,
effectively is the same as setting
"provider=PKCS11" since only
PKCS11 provider can support
FIPS-140. If set to true while
using other provider type, PSDK
will throw exception.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 104

Notes and Issues

• Key/value pairs in Transport Protocol Parameters fields should be separated only with a single semicolon
character. Adding space characters to improve readability can cause applications, including those
based on Platform SDK, unable to parse these parameters correctly.

• Transport Protocol Parameters fields in Configuration Manager are limited to 256 characters in length.
Be sure to keep your parameter list as short as possible. For example: certificate thumbprints for
MSCAPI provider take 40 characters without spaces and 49 characters with them, and long paths to
certificate files can easily eat up all available space.

• The Connection properties window behaves differently from the Port properties window, as described
below. Be sure to double-check TLS settings for Connection objects.
• It does not save content of the Transport Protocol Parameters field unless a certificate was selected

using UI controls on the Certificate tab.
• If certificate information is deleted from the Certificate tab, then all transport protocol parameters

are also erased (including those entered manually).
• In some cases it does not save additional TLS parameters that were entered manually.

• Configuration Server reads its own TLS parameters from Application or from Host object only during
startup. If you use an Application or Host object as a source of TLS parameters for Configuration Server,
be sure to restart the server after any changes to the parameters.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 105

Using and Configuring Security Providers

Introduction

This page deals with Security Providers — an umbrella term describing the full set of cryptographic
algorithms, data formats, protocols, interfaces, and related tools for configuration and management
when used together. The primary reasons for bundling together such diverse tools are: compatibility,
support for specific standards, and implementation restrictions.

The security providers listed here were tested with the Platform SDK 8.1.1 implementation of TLS,
and found to work reliably when used with the configuration described below.

Java Cryptography Architecture Notes
Java Cryptography Architecture (JCA) provides a general API, and a pluggable architecture for
cryptography providers that supply the API implementation.

Some JCA providers (Sun, SunJSSE, SunRSA) come bundled with the Java platform and contain actual
algorithm implementations, they are named PEM provider since they are used when working with
certificates in PEM files. Some other (SunPKCS11, SunMSCAPI) serve as a façade for external
providers. SunPKCS11 supports PKCS#11 standard for pluggable security providers, such as hardware
cryptographic processors, smartcards or software tokens. Mozilla NSS/JSS is an example of pluggable
software token implementation. SunMSCAPI provides access to Microsoft Cryptography API (MSCAPI),
in particular, to Windows Certificate Services (WSC).

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 106

PEM Provider: OpenSSL

Note: Working with certificates and keys is also covered in the Genesys 8.1 Security Deployment
Guide.

PEM stands for "Privacy Enhanced Mail", a 1993 IETF proposal for securing e-mail using public-key
cryptography. That proposal defined the PEM file format for certificates as one containing a
Base64-encoded X.509 certificate in specific binary representation with additional metadata headers.
Here, the term is used to refer to Java built-in security providers that are used in conjunction with
certificates and private keys loaded from X.509 PEM files.

One of the most popular free tools for creating and manipulating PEM files is OpenSSL. Instructions
for installing and configuring OpenSSL are provided below.

Installing OpenSSL

OpenSSL is available two ways:

• distributed as a source code tarball: http://www.openssl.org/source/
• as a binary distribution (specific links are subject to change): http://www.openssl.org/related/

binaries.html

The installation process is very easy when using a binary installer; simply follow the prompts. The
only additional step required is to add the <OpenSSL-home>\bin folder to your Path system variable
so that OpenSSL can run from command line directly with the openssl command.

Configuring OpenSSL

The OpenSSL configuration file contains settings for OpenSSL itself, and also many field values for
the certificates being generated including issuer and subject names, host names and URIs, and so on.
You will need to customize your OpenSSL file with your own values before using the tool. An example
of a customized configuration file is available here.

The OpenSSL database consists of a set of files and folders, similar to the sample database described
in the table below. To start using OpenSSL, this structure should be created manually except for files
marked as "Generated by OpenSSL". Other files can be left empty as long as they exist in the
expected location.

OpenSSL database file/folder structure
File or Folder Generated by OpenSSL? Description

openssl-ca\
openssl-ca\openssl.cfg OpenSSL configuration file

openssl-ca\.rnd Yes File filled with random data, used
in key generation process.

openssl-ca\ca-password.txt

Stores the password for the CA
private key.
Reduces typing required, but is very
insecure. Should only be used for testing
and development.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 107

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSOpenSSLConfigurationFile

File or Folder Generated by OpenSSL? Description

openssl-ca\export-password.txt

Stores the password used to
encrypt the private keys when
exporting PKCS#12 files.
Reduces typing required, but is very
insecure. Should only be used for testing
and development.

openssl-ca\ca\ CA root folder.

openssl-ca\ca\certs\
All generated certificates are
copied here.
Folder contents can be safely deleted.

openssl-ca\ca\crl\
Generated CRLs stored here.
Folder contents can be safely deleted.

openssl-ca\ca\newcerts\

Certificates being generated are
stored here.
Folder contents can be safely deleted
once generation process is finished.

openssl-ca\ca\private\ CA private files.

openssl-ca\ca\private\cakey.pem Yes
CA private key.
Must be kept secret.

openssl-ca\ca\crlnumber Serial number of last exported
CRL.

openssl-ca\ca\serial Serial number of last signed
certificate.

openssl-ca\ca\cacert.pem Yes CA certificate.

openssl-ca\ca\index.txt Textual database of all
certificates.

Short Command Line Reference

• This section assumes that the OpenSSL bin folder was added to the local PATH environment variable,
and that openssl-ca is the current folder for all issued commands.

• Placeholders for parameters are shown in the following form: "<param-placeholder>".
• The frequently used parameter "<request-name>" should be a unique name that identifies the

certificate files.

Task Description Command

Create a CA Certificate/Key

This is performed in three steps:

1. Create CA Private Key
2. Create CA Certificate

1. openssl genrsa -des3 -out
ca\private\cakey.pem 1024
-passin file:ca-
password.txt

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 108

Task Description Command

3. Export CA Certificate

2. openssl req -config
openssl.cfg -new -x509
-days <days-ca-cert-is-
valid> -key ca\private\
cakey.pem -out ca\
cacert.pem -passin
file:ca-password.txt

3. openssl x509 -in ca\
cacert.pem -outform PEM
-out ca.pem

Create a Leaf Certificate/Key Pair

This is performed in three steps:

1. Create certificate request.
Certificate fields and
extensions are defined during
this step, and the certificate's
public and private keys are
created in the process.

2. Sign the request.
3. Export the certificate.

1. openssl req -new -nodes
-out requests\<request
name>-req.pem -keyout
requests\<request name>-
key.pem -days 3650
-config openssl.cfg

2. openssl ca -out
requests\<request-name>-
signed.pem -days 3650
-config openssl.cfg
-passin file:ca-
password.txt -infiles
requests\<request-name>-
req.pem

3. openssl pkcs12 -export
-in requests\<request-
name>-signed.pem -inkey
requests\<request-name>-
key.pem -certfile ca\
cacert.pem -name "<entry-
name-in-p12-file>" -out
<request-name>.p12
-passout file:export-
password.txt
openssl x509 -in
requests\<request-name>-
signed.pem -outform PEM
-out <request-name>-
cert.pem
openssl pkcs8 -topk8
-nocrypt -in
requests\<request-name>-
key.pem -out <request-
name>-key.pem

Revoke a Certificate
openssl ca -revoke
<certificate-pem-file>
-config openssl.cfg -passin
file:ca-password.txt

Export the CRL openssl ca -gencrl -crldays

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 109

Task Description Command
<days-crl-is-valid> -out
crl.pem -config openssl.cfg
-passin file:ca-password.txt

MSCAPI Provider: Windows Certificate Services

Note: Working with Windows Certificate Services (WCS) is also covered in Genesys 8.1 Security
Deployment Guide.

MSCAPI stands for Microsoft CryptoAPI. This provider offers the following features:

• It is available only on Windows platform.
• It implies usage of WCS to store and retrieve certificates, private keys, and CA certificates.
• Every Windows account has its own WCS storage, including the System account.
• Depends heavily on OS configuration and system security policies.
• Has its own set of supported cipher suites, different from what is provided by Java.
• When used with Java, please use the latest available version of Java to run the application. The

minimum required version for correct MSCAPI support is Java 6 update 38, with additional compatibility
details outlined below:
• Java 5 and lower versions—MSCAPI is not supported.
• Java 6 32-bit version—MSCAPI provider is only supported since update 27: http://bugs.sun.com/

bugdatabase/view_bug.do?bug_id=6931562.
• Java 6 64-bit version—MSCAPI provider is only supported since update 38: http://bugs.sun.com/

bugdatabase/view_bug.do?bug_id=2215540.
• Java 7—MSCAPI is supported in all versions.

• Java does not support CRLs located in WCS. With Java MSCAPI, CRL should be specified as a file.
• Does not accept passwords from Java code programmatically via CallbackHandler. If private key is

password-protected or prompt-protected, OS popup dialog will be shown to user.
• Certificates in WCS are configured using the Certificates snap-in for Microsoft Management Console

(MMC).

Note: If the version of Java being used does not support MSCAPI, a "WINDOWS-MY KeyStore not
available" exception appears in the application log. If you receive such exceptions, please consider
switching to a newer version of Java.

Starting Certificates Snap-in
There are two methods for accessing the Certificates Snap-in:

• Enter "certmgr.msc" at the command line. (This only gives access to Certificates for the current user
account.)

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 110

• Launch the MMC console and add the Certificates Snap-in for a specific account using the following
steps:
1. Enter "mmc" at the command line.
2. Select File > Add/Remove Snap-in... from the main menu.
3. Select Certificates from the list of available snap-ins and click Add.
4. Select the account to manage certificates for (see Account Selection for important notes) and click

Finish.
5. Click OK.

Account Selection

It is important to place certificates under the correct Windows account. Some applications are run as
services under the Local Service or System account, while others are run under user accounts. The
account chosen in MMC must be the same as the account used by the application that certificates are
configured for, otherwise the application will not be able to access this WCS storage.

Note: Currently, most Genesys servers do not clearly report this error so WCS configuration must be
checked every time there is a problem with the MSCAPI provider.

Note: Configuration Manager is also a regular application in this aspect and can access WCS only for
the Local Computer (System) account on the local machine. It will not show certificates configured for
different accounts or on remote machines. Please consult your system and/or security administrator
for questions related to certificate configuration and usage.

Importing Certificates
There are many folders within WCS where certificates can be placed. Only two of them are used by
Platform SDK:

• Personal/Certificates – Contains application certificates used by applications to identify themselves.
• Trusted Root Certification Authorities/Certificates – Contains CA certificates used to validate remote

party certificates.

To import a certificate, right-click on the appropriate folder and choose All Tasks > Import... from the
context menu. Follow the steps presented by the Certificate Import Wizard, and once finished the
imported certificate will appear in the certificates list.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 111

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSSecurityProviders#Account_Selection

Although WCS can import X.509 PEM certificate files, these certificates cannot be used as application
certificates because they do not contain a private key. It is not possible to attach a private key from a
PKCS#7 PEM file to the imported certificate. To avoid this problem, import application certificates only
from PKCS#12 files (*.p12) which contain a certificate and private key pair.

CA certificates do not have private keys attached, so it is safe to import CA certificates from X.509
PEM files.

It is possible to copy and paste certificates between folders and/or user accounts in the Management
Console, but this approach is not recommended due to WCS errors which may result in the pasted
certificate having an inaccessible private key. This error is not visible in Console, but applications
would not be able to read the private key. A recommended and reliable workaround is to export the
certificate to a file and then import from that file.

If you encounter the following error in the application log: “The credentials supplied to the package
were not recognized”, the most likely cause is due to the private key being absent or inaccessible. In
this case try deleting the certificate from WCS and re-importing it.

Importing CRL Files
CRL files can be imported to the following folder in WCS:

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 112

• Trusted Root Certification Authorities/Certificate Revocation List

The import procedure is the same as for importing certificate. CRL file types are automatically
recognized by the import wizard.

Note: Although an MSCAPI provider may choose to use CRL while validating remote party
certificates, this functionality is not guaranteed and/or supported by Platform SDK. Platform SDK
implements its own CRL matching logic using CRL PEM files.

PKCS11 Provider: Mozilla NSS

PKCS11 stands for the PKCS#11 family of Public-Key Cryptography Standards (PKCS), published by
RSA Laboratories. These standards define platform-independent API-to-cryptographic tokens, such as
Hardware Security Modules (HSM) and smart cards, allowing you to connect to external certificate
storage devices and/or cryptographic engines.

In Java, the PKCS#11 interface is a simple pass-through and all processing is done externally. When
used together with a FIPS-certified security provider, such as Mozilla NSS, the whole provider chain is
FIPS-compliant.

Platform SDK uses PKCS11 because it is the only way to achieve FIPS-140 compliance with Java.

Installing Mozilla NSS
Currently Platform SDK only supports FIPS when used with the Mozilla NSS security provider. (Java has
FIPS certification only when working with a PKCS#11-compatible pluggable security provider, and the
only provider with FIPS certification and Java support is Mozilla NSS.)

Note: In theory, BSafe can be used since it supports JCA interfaces. However, Platform SDK was not
tested with RSA BSafe and such system would not be FIPS-certifiable as a while.

Generally, some security parameters and data must be configured on client host, requiring the
involvement of a system/security administrator. At minimum, the client host must have a copy of the
CA Certificate to be able to validate the Configuration Server certificate. The exact location of the CA
certificate depends on the security provider being used. It can be present as a PEM file, Java Keystore
file, a record in WCS, or as an entry in the Mozilla NSS database. Once the application is connected to
Configuration Server, the Application Template Application Block can be used to extract connection
parameters from Configuration Server and set up TLS.

Mozilla NSS is the most complex security provider to deploy and configure. In order to use NSS, the
following steps must be completed:

1. Deploy Mozilla NSS.
2. Create Mozilla NSS database (a "soft token" in terms of NSS), and set it to FIPS mode.
3. Adjust the Java security configuration, or implement dynamic loading for the Mozilla NSS provider.
4. Import the CA certificate to the Mozilla NSS database.
5. Use the Platform SDK interface to select PKCS11 as a provider (with no specific configuration options

required).

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 113

Configuring FIPS Mode in Mozilla NSS
To configure FIPS mode in Mozilla NSS, create a file named nss-client.cfg in Mozilla NSS deployment
folder with the following values configured:

• name - Name of a software token.
• nssLibraryDirectory - Library directory, located in the Mozilla NSS deployment folder.
• nssSecmodDirectory - Folder where the Mozilla NSS database for the listed software token is located.
• nssModule - Indicates that FIPS mode should be used.

An example is provided below:

name = NSSfips
nssLibraryDirectory = C:/nss-3.12.4/lib
nssSecmodDirectory = C:/nss-3.12.4/client
nssModule = fips

More information about configuring FIPS mode is available from external sources.

Configuring FIPS Mode in Java Runtime Environment (JRE)
To configure your Java runtime to use Mozilla NSS, the java.security file should be located in Java
deployment folder and edited as shown below:

(Changes are shown in bold red, insertions are shown in bold blue)

#
List of providers and their preference orders (see above):
#
security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=sun.security.ec.SunEC
#security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.4=com.sun.net.ssl.internal.ssl.Provider SunPKCS11-NSSfips
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider
security.provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.9=sun.security.smartcardio.SunPCSC
security.provider.10=sun.security.mscapi.SunMSCAPI
security.provider.11=sun.security.pkcs11.SunPKCS11 C:/nss-3.12.4/nss-client.cfg

After those updates are complete, the Java runtime instance works with FIPS mode, with only the
PKCS#11/Mozilla NSS security provider enabled.

Short Command Line Reference
Please refer to the following references for more information:

• https://www.mozilla.org/projects/security/pki/nss/tools/certutil.html
• https://www.mozilla.org/projects/security/pki/nss/tools/crlutil.html
• https://www.mozilla.org/projects/security/pki/nss/tools/pk12util.html

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 114

Task Command

Create CA Certificate
certutil -S -k rsa -n "<CA-cert-name>" -s
"CN=Test CA, OU=Miratech, O=Genesys,
L=Kyiv, C=UA" -x -t "CTu,u,u" -m 600 -v 24
-d ./client -f "<keystore-password-file>"

Import CA Certificate
certutil -A -a -n “<CA-cert-name>” -t
"CTu,u,u" -i <ca-cert-file> -d ./client -f
"<keystore-password-file>"

Create New Leaf Certificate

certutil -S -k rsa -n "<cert-name>" -s
"CN=Test CA, OU=Miratech, O=Genesys,
L=Kyiv, C=UA" -x -t "u,u,u" -m 666 -v 24 -d
./client -f "<keystore-password-file>" -z
"<noise-file>"

Import Leaf Certificate
pk12util -i <cert-file.p12> -n <cert-name>
-d ./client -v -h "NSS FIPS 140-2
Certificate DB" -K <keystore-password>

Create CRL
crlutil -d ./client -f "<keystore-password-
file>" -G -c "<crl-script-file>" -n "<CA-
cert-name>" -l SHA512

Modify CRL
crlutil -d ./client -f "<keystore-password-
file>" -M -c "<crl-script-file>" -n "<CA-
cert-name>" -l SHA512 -B

Show Certificate Information certutil -d ./client -f "<keystore-
password-file>" -L -n "<cert-name>"

Show CRL Information crlutil -d ./client -f "<keystore-password-
file>" -L -n "<CA-cert-name>"

List Certificates certutil -d ./client –L
List CRLs crlutil -L -d ./client

JKS Provider: Java Built-in

This provider is supported by the Platform SDK Commons library, but the Application Template
Application Block does not support this provider due to compatibility guidelines with Genesys
Framework Deployment.

This provider can only be used when TLS is configured programmatically by Platform SDK users.

Short Command Line Reference
Refer to the following reference for more information:

• http://docs.oracle.com/javase/1.5.0/docs/tooldocs/solaris/keytool.html

Task Command
Creating and Importing - These commands allow you to generate a new Java Keytool keystore file,
create a Certificate Signing Request (CSR), and import certificates. Any root or intermediate certificates

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 115

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUsingPSDKCommonsLibrary

Task Command
will need to be imported before importing the primary certificate for your domain.

Generate a Java keystore and key pair keytool -genkey -alias mydomain -keyalg RSA
-keystore keystore.jks -keysize 2048

Generate a certificate signing request (CSR) for an
existing Java keystore

keytool -certreq -alias mydomain -keystore
keystore.jks -file mydomain.csr

Import a root or intermediate CA certificate to an
existing Java keystore

keytool -import -trustcacerts -alias root
-file Thawte.crt -keystore keystore.jks

Import a signed primary certificate to an existing
Java keystore

keytool -import -trustcacerts -alias
mydomain -file mydomain.crt -keystore
keystore.jks

Generate a keystore and self-signed certificate
keytool -genkey -keyalg RSA -alias
selfsigned -keystore keystore.jks
-storepass password -validity 360 -keysize
2048

Java Keytool Commands for Checking - If you need to check the information within a certificate, or
Java keystore, use these commands.
Check a stand-alone certificate keytool -printcert -v -file mydomain.crt
Check which certificates are in a Java keystore keytool -list -v -keystore keystore.jks

Check a particular keystore entry using an alias keytool -list -v -keystore keystore.jks
-alias mydomain

Other Java Keytool Commands

Delete a certificate from a Java Keytool keystore keytool -delete -alias mydomain -keystore
keystore.jks

Change a Java keystore password keytool -storepasswd -new new_storepass
-keystore keystore.jks

Export a certificate from a keystore keytool -export -alias mydomain -file
mydomain.crt -keystore keystore.jks

List Trusted CA Certs keytool -list -v -keystore $JAVA_HOME/jre/
lib/security/cacerts

Import New CA into Trusted Certs
keytool -import -trustcacerts -file /path/
to/ca/ca.pem -alias CA_ALIAS -keystore
$JAVA_HOME/jre/lib/security/cacerts

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 116

OpenSSL Configuration File
This page provides an example of a customized OpenSSL configuration file that has been edited to
work with the Platform SDK implementation of TLS. For more details about OpenSSL and how it
relates to the Platform SDK implementation of TLS, refer to the Using and Configuring Security
Providers page.

Sample File

Customized file content is listed below.

• Changes are marked with bold red.
• Added lines are marked with bold blue.

#
OpenSSL example configuration file.
This is mostly being used for generation of certificate requests.
#

This definition stops the following lines choking if HOME isn't
defined.
HOME = .
RANDFILE = $ENV::HOME/.rnd

Extra OBJECT IDENTIFIER info:
#oid_file = $ENV::HOME/.oid
oid_section = new_oids

To use this configuration file with the "-extfile" option of the
"openssl x509" utility, name here the section containing the
X.509v3 extensions to use:
extensions =
(Alternatively, use a configuration file that has only
X.509v3 extensions in its main [= default] section.)

[new_oids]

We can add new OIDs in here for use by 'ca', 'req' and 'ts'.
Add a simple OID like this:
testoid1=1.2.3.4
Or use config file substitution like this:
testoid2=${testoid1}.5.6

Policies used by the TSA examples.
tsa_policy1 = 1.2.3.4.1
tsa_policy2 = 1.2.3.4.5.6
tsa_policy3 = 1.2.3.4.5.7

##
[ca]
default_ca = CA_default # The default ca section

##

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 117

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSSecurityProviders

[CA_default]

dir = ./ca # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
#unique_subject = no # Set to 'no' to allow creation of

several ctificates with same subject.
new_certs_dir = $dir/newcerts # default place for new certs.

certificate = $dir/cacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crlnumber = $dir/crlnumber # the current crl number

must be commented out to leave a V1 CRL
crl = $dir/crl.pem # The current CRL
private_key = $dir/private/cakey.pem # The private key
RANDFILE = $dir/private/.rand # private random number file

x509_extensions = usr_cert # The extentions to add to the cert

Comment out the following two lines for the "traditional"
(and highly broken) format.
name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

Extension copying option: use with caution.
copy_extensions = copy

Extensions to add to a CRL. Note: Netscape communicator chokes on V2 CRLs
so this is commented out by default to leave a V1 CRL.
crlnumber must also be commented out to leave a V1 CRL.
crl_extensions = crl_ext

default_days = 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md = default # use public key default MD
preserve = no # keep passed DN ordering

A few difference way of specifying how similar the request should look
For type CA, the listed attributes must be the same, and the optional
and supplied fields are just that :-)
policy = policy_anything

For the CA policy
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the 'anything' policy
At this point in time, you must list all acceptable 'object'
types.
[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 118

##
[req]
default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
x509_extensions = v3_ca # The extentions to add to the self signed cert

Passwords for private keys if not present they will be prompted for
input_password = secret
output_password = secret

This sets a mask for permitted string types. There are several options.
default: PrintableString, T61String, BMPString.
pkix : PrintableString, BMPString (PKIX recommendation before 2004)
utf8only: only UTF8Strings (PKIX recommendation after 2004).
nombstr : PrintableString, T61String (no BMPStrings or UTF8Strings).
MASK:XXXX a literal mask value.
WARNING: ancient versions of Netscape crash on BMPStrings or UTF8Strings.
string_mask = utf8only

req_extensions = v3_req # The extensions to add to a certificate request

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = UA
countryName_min = 2
countryName_max = 2

stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = None

localityName = Locality Name (eg, city)
localityName_default = Kyiv

0.organizationName = Organization Name (eg, company)
0.organizationName_default = Genesys

we can do this but it is not needed normally :-)
#1.organizationName = Second Organization Name (eg, company)
#1.organizationName_default = World Wide Web Pty Ltd

organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Engineering

commonName = Common Name (e.g. server FQDN or YOUR name)
commonName_default = xpigors
commonName_max = 64

emailAddress = Email Address
emailAddress_max = 64

SET-ex3 = SET extension number 3

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 0
challengePassword_max = 20

unstructuredName = An optional company name

[usr_cert]

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 119

These extensions are added when 'ca' signs a request.

This goes against PKIX guidelines but some CAs do it and some software
requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

Here are some examples of the usage of nsCertType. If it is omitted
the certificate can be used for anything *except* object signing.

This is OK for an SSL server.
nsCertType = server

For an object signing certificate this would be used.
nsCertType = objsign

For normal client use this is typical
nsCertType = client, email

and for everything including object signing:
nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer

This stuff is for subjectAltName and issuerAltname.
Import the email address.
#subjectAltName=issue:copy
subjectAltName = @alt_names
An alternative to produce certificates that aren't
deprecated according to PKIX.
subjectAltName=email:move

Copy subject details
issuerAltName=issuer:copy

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem
#nsBaseUrl
#nsRevocationUrl
#nsRenewalUrl
#nsCaPolicyUrl
#nsSslServerName

This is required for TSA certificates.
extendedKeyUsage = critical,timeStamping

[v3_req]

Extensions to add to a certificate request

basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 120

DNS.1 = hostname.emea.int.genesyslab.com
DNS.2 = hostname
IP.1 = 192.168.1.1
IP.2 = fe80::21d:7dff:fe0d:682c
IP.3 = fe80::ffff:ffff:fffd
IP.4 = fe80::5efe:192.168.1.1
URI.1 = http://hostname/
URI.2 = https://hostname/
email.1 = UserName1@genesyslab.com
email.2 = UserName2@genesyslab.com

[v3_ca]

Extensions for a typical CA

PKIX recommendation.

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid:always,issuer

This is what PKIX recommends but some broken software chokes on critical
extensions.
#basicConstraints = critical,CA:true
So we do this instead.
basicConstraints = CA:true

Key usage: this is typical for a CA certificate. However since it will
prevent it being used as an test self-signed certificate it is best
left out by default.
keyUsage = cRLSign, keyCertSign

Some might want this also
nsCertType = sslCA, emailCA

Include email address in subject alt name: another PKIX recommendation
subjectAltName=email:copy
Copy issuer details
issuerAltName=issuer:copy

DER hex encoding of an extension: beware experts only!
obj=DER:02:03
Where 'obj' is a standard or added object
You can even override a supported extension:
basicConstraints= critical, DER:30:03:01:01:FF

[crl_ext]

CRL extensions.
Only issuerAltName and authorityKeyIdentifier make any sense in a CRL.

issuerAltName=issuer:copy
authorityKeyIdentifier=keyid:always

[proxy_cert_ext]
These extensions should be added when creating a proxy certificate

This goes against PKIX guidelines but some CAs do it and some software
requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 121

Here are some examples of the usage of nsCertType. If it is omitted
the certificate can be used for anything *except* object signing.

This is OK for an SSL server.
nsCertType = server

For an object signing certificate this would be used.
nsCertType = objsign

For normal client use this is typical
nsCertType = client, email

and for everything including object signing:
nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer

This stuff is for subjectAltName and issuerAltname.
Import the email address.
subjectAltName=email:copy
An alternative to produce certificates that aren't
deprecated according to PKIX.
subjectAltName=email:move

Copy subject details
issuerAltName=issuer:copy

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem
#nsBaseUrl
#nsRevocationUrl
#nsRenewalUrl
#nsCaPolicyUrl
#nsSslServerName

This really needs to be in place for it to be a proxy certificate.
proxyCertInfo=critical,language:id-ppl-anyLanguage,pathlen:3,policy:foo

##
[tsa]

default_tsa = tsa_config1 # the default TSA section

[tsa_config1]

These are used by the TSA reply generation only.
dir = ./demoCA # TSA root directory
serial = $dir/tsaserial # The current serial number (mandatory)
crypto_device = builtin # OpenSSL engine to use for signing
signer_cert = $dir/tsacert.pem # The TSA signing certificate

(optional)
certs = $dir/cacert.pem # Certificate chain to include in reply

(optional)
signer_key = $dir/private/tsakey.pem # The TSA private key (optional)

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 122

default_policy = tsa_policy1 # Policy if request did not specify it
(optional)

other_policies = tsa_policy2, tsa_policy3 # acceptable policies (optional)
digests = md5, sha1 # Acceptable message digests (mandatory)
accuracy = secs:1, millisecs:500, microsecs:100 # (optional)
clock_precision_digits = 0 # number of digits after dot. (optional)
ordering = yes # Is ordering defined for timestamps?

(optional, default: no)
tsa_name = yes # Must the TSA name be included in the reply?

(optional, default: no)
ess_cert_id_chain = no # Must the ESS cert id chain be included?

(optional, default: no)

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 123

Use Cases

Introduction

This page examines TLS functionality as a series of common use cases. Use cases are broken into two
categories: server or application.

Examples and explanations are provided for some use cases, while others simply provide links to the
related TLS documentation needed to understand the functionality.

Genesys Server Use Cases

Opening a TLS Port
Code snippets explaining how to open a basic TLS port are provided both with, and without using the
Application Template Application Block:

• Opening a TLS port using the Platform SDK Commons Library
• Opening a TLS port using the Application Template Application Block

Opening a Mutual TLS Port (With Expiration, Revocation and CA Checks)
This use case is an advanced variation on opening a simple TLS port. As such, it already has a CA and
expiration check, but needs additional parameters to turn on mutual mode and to enable a CRL
check.

Mutual Mode

If TLS is configured programmatically, then the mutualTLS parameter should be set to true when
creating an SSLExtendedOptions object:

SSLExtendedOptions sslOptions = new SSLExtendedOptions(true, (String) null);

If TLS is configured in Configuration Manager, then the tls-mutual parameter for the server port,
application or host should be set to 1. Please refer to the list of TLS parameters for details.

Revocation Check

If TLS is configured programmatically, then a valid path to the CRL file should be provided in the
crlFilePath parameter when creating a trust manager:

X509TrustManager tm = TrustManagerHelper.createPEMTrustManager(
"c:/cert/ca-cert.pem","c:/cert/crl.pem", null);

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 124

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUsingPSDKCommonsLibrary#Configuring_TLS_for_Servers
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUsingApplicationTemplateAB#Configuring_TLS_for_Servers
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters

If TLS is configured in Configuration Manager, then the tls-crl parameter for the server port,
application or host should contain the path to the CRL file located on server. Please refer to the list of
TLS parameters for details.

Opening a FIPS-Compliant Port
FIPS mode is not a property of a port or application; it is defined mostly by the type of security
provider in use and the OS/environment settings. For Java, the PKCS#11 security provider should be
used to support FIPS; for .Net, FIPS is configured at the OS level (http://technet.microsoft.com/en-us/
library/cc750357.aspx).

If TLS is configured programmatically, then a PKCS11 key/trust managers should be used:

X509TrustManager tm = TrustManagerHelper.createPKCS11TrustManager(
new DummyPasswordCallbackHandler(), (String) null);

X509ExtendedKeyManager km = KeyManagerHelper.createPKCS11KeyManager(
new DummyPasswordCallbackHandler());

If TLS is configured in Configuration Manager, then the fips140-enabled parameter for the server
port, application or host should be set to "1". Please refer to the TLSTLSParametersinConfigManager
for details.

Note: This parameter is used to detect the security provider type to use. If this setting conflicts with
other TLS parameters or points to a FIPS security provider that is not installed on host, then Platform
SDK will generate an exception when attempting to accept or open a connection.

Genesys Application Use Cases

Opening a TLS Connection to a TLS Autodetect Server Port
TLS autodetect ports (also called upgrade mode ports) allow you to establish an unsecured
connection to the server before specifying TLS settings. For details, please refer to Connecting to
Upgrade Mode Ports in the quick start instructions.

Opening a TLS Connection to a Backend Server (With Expiration, Revocation and
CA Checks)
Code snippets explaining how to open a basic TLS connection to a backend server are provided both
with, and without using the Application Template Application Block:

• Configuring TLS for Client Connections using the Platform SDK Commons Library
• Configuring TLS for Client Connections using the Application Template Application Block

Opening a FIPS-Compliant Connection to a FIPS-Compliant Port
In this use case, the application does not need to provide any special behavior because the server
will only handshake for FIPS-compliant ciphers. Details about setting up a FIPS-compliant port are
described above.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 125

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSQuickStart#Connecting_to_Upgrade_Mode_Ports
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSQuickStart#Connecting_to_Upgrade_Mode_Ports
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLS_in_Platform_SDK:_Using_the_Platform_SDK_Commons_Library#Configuring_TLS_for_Client_Connections
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLS_in_Platform_SDK:_Using_the_Application_Template_Application_Block#Configuring_TLS_for_Client_Connections
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSUseCases#Opening_a_FIPS-Compliant_Port

Ensuring the Certificate is Checked with CA
If TLS is configured programmatically, then a valid CA certificate data should be provided when
creating the trust manager:

X509TrustManager tm = TrustManagerHelper.createPEMTrustManager(
"c:/cert/ca-cert.pem","c:/cert/crl.pem", null);

If TLS is configured in Configuration Manager, then the trusted-ca parameter for the port, connection,
application or host should contain valid CA certificate data. Please refer to the list of TLS parameters
for details.

Note: CA certificates are configured differently for each type of security provider. Please refer to the
page on using and configuring security providers for detailed information.

Ensuring the Certificate Expiration is Checked
Certificate expiration is checked by default during the certificate validation process.

Note: If a server certificate is placed in a trusted certificates store on the client host, it will be
automatically trusted without any validation. A trust certificates store should not include application
certificates; instead, it should contain only CA certificates.

Handling a Certificate Revocation List
If TLS is configured programmatically, then a valid path to a CRL file should be provided in the
crlFilePath parameter when creating trust manager:

X509TrustManager tm = TrustManagerHelper.createPEMTrustManager(
"c:/cert/ca-cert.pem","c:/cert/crl.pem", null);

If TLS is configured in Configuration Manager, then the tls-crl parameter for the application
connection, application or host should contain the path to the CRL file located on the application's
host. Please refer to the list of TLS parameters for details.

Handling a User-Specified Cipher List
If TLS is configured programmatically, then the enabledCipherSuites constructor parameter should
contain a list of allowed ciphers when the SSLExtendedOptions object is being created:

SSLExtendedOptions sslOptions = new SSLExtendedOptions(
true, "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA " +
"TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA");

If TLS is configured in Configuration Manager, then the cipher-list parameter for the port, connection,
application or host should be set to contain list of allowed ciphers. Please refer to the list of TLS
parameters for details.

Advanced Platform SDK Topics Secure connections using TLS

Platform SDK Developer's Guide 126

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLS_in_Platform_SDK:_Using_and_Configuring_Security_Providers
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters

Lazy Parsing of Message Attributes
This page provides:

• an overview and list of requirements for the lazy parsing feature
• design details explaining how this feature works
• code examples showing how to implement lazy parsing in your applications

Introduction to Lazy Parsing

Lazy parsing allows users to specify which attributes should always be parsed immediately, and
which attributes should be parsed only on demand.

Some complex attributes (such as the ConfObject attribute found in some Configuration Server
protocol messages) are large and very complex. Unpacking these attributes can be time-consuming
and, in cases when an application is not interested in that data, can affect program performance. This
issue is resolved by using the "lazy parsing" feature included with the Platform SDK 8.1 release,
which is described in this article.

When this feature is turned off, all message attributes are parsed immediately - which is normal
behavior for previous version of the Platform SDK. When lazy parsing is enabled, any attributes that
were tagged for lazy parsing are only parsed on demand. In this case, if the application does not
explicitly check the value of an attribute tagged for lazy parsing then that attribute is never parsed at
all.

Feature Overview

• Platform SDK includes configuration options to turn the lazy parsing functionality on or off for each
individual protocol that supports this feature.

• Potentially time-consuming attributes that are candidates for lazy parsing are selected and marked by
Platform SDK developers. Refer to your Platform SDK API Reference for details.

• To maintain backwards compatibility, there is no change in how user applications access attribute
values.

• By default, the lazy parsing feature is turned off.

Java

Advanced Platform SDK Topics Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 127

System Requirements

Platform SDK for Java:

• Configuration SDK protocol release 8.1 or later<ref name="ConfObjectJava">Note: Currently, lazy
parsing is only used with the EventObjectsRead.ConfObject property of the Configuration Platform
SDK.</ref>

• J2SE 5.0 or Java 6 SE runtime

<references/>

Design Details

This section describes the main classes and interfaces you will need to be familiar with to implement
lazy parsing in your own application.

Enabling and Disabling the Lazy Parsing Feature
At any time, a running application can enable or disable lazy parsing for a specific protocol in just a
few lines of code. This is done in three easy steps:

1. Create a new KeyValueCollection object.
2. Set the appropriate value for the Connection.LAZY_PARSING_ENABLED_KEY field. A value of True

enables the feature, while False disables lazy parsing.
3. Use a KeyValueConfiguration object to apply that setting to the desired protocol(s).

Tip
The default value of the Connection.LAZY_PARSING_ENABLED_KEY field is always
False, with the lazy parsing feature disabled.

Once lazy parsing mode is enabled for a protocol, the change is applied immediately. Every new
message that is received takes the lazy parsing setting into account: parsing entire messages if the
feature is disabled, or leaving some attributes unparsed until their values are requested if the feature
is enabled.

To enable lazy parsing for the Configuration Server protocol, an application would use the following
code:

[Java]

KeyValueCollection kv = new KeyValueCollection();
kv.addString(Connection.LAZY_PARSING_ENABLED_KEY, "true");
KeyValueConfiguration kvcfg = new KeyValueConfiguration(kv);
ConfServerProtocol cfgChannel = new ConfServerProtocol(endpoint);
cfgChannel.configure(kvcfg); //lazy parsing is immediately active after this line

Advanced Platform SDK Topics Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 128

To disable lazy parsing for the protocol only the second line of code is changed before re-applying the
configuration, as shown below:

[Java]

kv.addString(Connection.LAZY_PARSING_ENABLED_KEY, "false");

.NET

System Requirements

• Configuration SDK protocol release 8.1 or later<ref name="ConfObjectNet">Note: Currently, lazy
parsing is only used with the EventObjectsRead.ConfObject property of the Configuration Platform
SDK.</ref>

• .NET Framework 3.5
• Visual Studio 2008 (required for .NET project files)

<references/>

Design Details

This section describes the main classes and interfaces you will need to be familiar with to implement
lazy parsing in your own application.

Enabling and Disabling the Lazy Parsing Feature
At any time, a running application can enable or disable lazy parsing for a specific protocol in just a
few lines of code. This is done in three easy steps:

1. Create a new KeyValueCollection object.
2. Set the appropriate value for the CommonConnection.LazyParsingEnabledKey field. A value of True

enables the feature, while False disables lazy parsing.
3. Use a KeyValueConfiguration object to apply that setting to the desired protocol(s).

Tip
The default value of the CommonConnection.LazyParsingEnabledKey field is always
False, with the lazy parsing feature disabled.

Once lazy parsing mode is enabled for a protocol, the change is applied immediately. Every new

Advanced Platform SDK Topics Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 129

message that is received takes the lazy parsing setting into account: parsing entire messages if the
feature is disabled, or leaving some attributes unparsed until their values are requested if the feature
is enabled.

To enable lazy parsing for the Configuration Server protocol, an application would use the following
code:

[C#]

KeyValueCollection kvc = new KeyValueCollection();
kvc[CommonConnection.LazyParsingEnabledKey] = "true";
KeyValueConfiguration kvcfg = new KeyValueConfiguration(kvc);
ConfServerProtocol cfgChannel = new ConfServerProtocol(endpoint);
cfgChannel.Configure(kvcfg); //lazy parsing is immediately active after this line

To disable lazy parsing for the protocol only the second line of code is changed before re-applying the
configuration, as shown below:

[C#]

kvc[CommonConnection.LazyParsingEnabledKey] = "false";

Accessing Attribute Values
There is no difference in how applications access attribute values from returned messages. Whether
the lazy parsing feature is enabled or disabled, whether the attribute being access supports lazy
parsing or not, your code remains exactly the same.

However, you should consider differences in timing when accessing attribute values.

• When lazy parsing is disabled, the entire message is parsed immediately when it is received. Accessing
attribute values is very fast, as the requested information is already prepared.

• When lazy parsing is enabled, the delay to parse the message upon arrival is smaller but accessing any
attributes that support lazy parsing causes a slightly delay as that information must first be parsed.
Note that accessing the same attribute a second time will not result in the attribute information being
parsed a second time; Platform SDK saves parsed data.

Additional Notes

• XML Serialization — The XmlMessageSerializer class has been updated to support lazy parsing. If a
message that contains unparsed attributes is serialized, then XmlMessageSerializer will trigger
parsing before the serialization process begins.

• ToString method — Use of the ToString method does not trigger parsing of attributes that support
lazy parsing. In this case, each unparsed attribute has its name printed along with a value of: "<value
is not yet parsed>".

Advanced Platform SDK Topics Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 130

Server-Specific Overviews
• Using the Voice Platform SDK

• List of TLib Functions
• List of TLib Datatypes
• List of TLib Unstructured Data

• Using the Configuration Platform SDK
• Connecting Using the UTF-8 Enconding
• Change Password On Next Login
• Getting the Last Login Info
• Using the Configuration Object Model Application Block
• Introduction to Configuration Layer Objects
• List of Configuration Layer Objects
• List of Configuration Layer Enumerations

• Using the Statistics Platform SDK
• Using the Open Media Platform SDK
• Using the Contacts Platform SDK

• Creating an E-Mail

• Using the Web Media Platform SDK
• Using the Outbound Contact Platform SDK
• Using the Management Platform SDK

• LCA Hang-Up Detection Support
• Handle Application "Graceful Stop" with the LCA Protocol

• Using the Universal Routing Platform SDK

Server-Specific Overviews Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 131

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/T-Server
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLibFunctions
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TlibDatatypes
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLibUnstructuredData
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConfigurationServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectUsingUTF8Enconding
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ChangePasswordOnNextLogin
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/GettingLastLoginInfo
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheCOMAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IntrotoConfigLayerObjects
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConfigLayerObjectsList
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConfigLayerEnumList
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/StatServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/InteractionServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UniversalContactServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CreatinganE-Mail
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/WebMediaServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/OutboundContactServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ManagementServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/LCAHang-UpDetectionSupport
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/HandleGracefulStopWithLCA
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UniversalRoutingServer

Telephony (T-Server)

Java

You can use the Voice Platform SDK to write Java or .NET applications that monitor and handle voice
interactions from a traditional or IP-based telephony device. These applications can range from the
simple to the advanced. This document shows how to implement the basic functions you will need to
write a simple voice application. It is organized to show the kind of structure you will probably use to
write your own applications.

Setting Up a TServerProtocol Object

The first thing you need to do to use the Voice Platform SDK is instantiate a TServerProtocol object.
To do that, you must supply information about the T-Server you want to connect with. This example
provides the server's name, host, and port information:

[Java]

TServerProtocol tServerProtocol =
new TServerProtocol(

new Endpoint(
tServerName, host, port));

After instantiating the TServerProtocol object, you need to open the connection to the T-Server:

[Java]

tServerProtocol.open();

Registering an Address

Now you need to register a DN for your agent to use. To do this, you must send a
RequestRegisterAddress request to the server.

Here is how to create this request:

[Java]

RequestRegisterAddress requestRegisterAddress =
RequestRegisterAddress.create(

thisDn,
RegisterMode.ModeShare,
ControlMode.RegisterDefault,
AddressType.DN);

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 132

The thisDn argument refers to the DN you want to associate with your agent, while
RegisterMode.ModeShare tells the T-Server to share information about the DN with other
applications. The next argument asks to use the switch's default value for deciding whether to let the
switch know that you have registered this DN. And finally, you are specifying that the object you are
registering is a DN.

After you create the request, you will need to send it to the T-Server:

[Java]

Message response =
tServerProtocol.request(requestRegisterAddress);

Remember that the request() method is synchronous. If you use this method, your application will
block until you hear back from the server. When you get the response, you can execute code to
handle the response. In this case, you probably don't need to do anything if the request is successful:

[Java]

switch(response.messageId())
{

case EventRegistered.ID:
case EventUnregistered.ID:

break;
.
.
.

}

Logging in an Agent

Once you have registered a DN to your agent, you can log him or her in. To do this, you need to
create a RequestAgentLogin request:

[Java]

RequestAgentLogin requestAgentLogin =
RequestAgentLogin.create(

thisDn,
AgentWorkMode.AutoIn);

After you create the request, you will need to indicate the queue the agent will be using, and you
may need to supply the agent's user name and password. Once you have done this, you can send the
request to the server:

[Java]

requestAgentLogin.setThisQueue(thisQueue);
// Your switch may not need a user name and password:
requestAgentLogin.setAgentID(userName);
requestAgentLogin.setPassword(password);
Message response = tServerProtocol.request(requestAgentLogin);

If your request is successful, the server will respond with an EventAgentLogin event. At that point,
you may need to update the state of your user interface to indicate that the agent can no longer log
in, but that, for example, he or she can now log out.

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 133

Answering a Call

Now that your agent is logged in, he or she can handle calls. Let's start by answering a call.

When a call comes in, your application will receive an EventRinging message. When you get this
message, you will probably want to enable an answer button. Here is how to do that:

[Java]

switch(response.messageId())
{

.

.

.
case EventRinging.ID:

EventRinging eventRinging = (EventRinging) response;
connId = eventRinging.getConnID();
if (eventRinging.getThisDN() == thisDn)
{

AnswerButton.enabled = true;
}
break;

.

.

.
}

It is important to note that an EventRinging event will also be triggered when you are sending an
outbound call. So this particular snippet is only enabling the answer button if the call is ringing on
thisDN. As you can also see, when you receive an EventRinging you will want to store the ConnID of
the call associated with it.

After the agent clicks the answer button, you need to send a request to answer the call, using your
DN and the ConnID of the call:

[Java]

RequestAnswerCall requestAnswerCall =
RequestAnswerCall.create(
thisDn,
connId);

Message response = tServerProtocol.request(requestAnswerCall);

If the request is successful, you will receive an EventEstablished.

Releasing a Call

When your agent is finished with the call, he or she will need to release it:

[Java]

RequestReleaseCall requestReleaseCall =
RequestReleaseCall.create(

thisDn,
connId);

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 134

Message response = tServerProtocol.request(requestReleaseCall);

If the request is successful, you will receive an EventReleased.

Making a Call

Here is how to make a call:

[Java]

RequestMakeCall requestMakeCall =
RequestMakeCall.create(

thisDn,
thatDn,
MakeCallType.DirectAgent);

Message response = tServerProtocol.request(requestMakeCall);

If the request is successful, you will receive an EventDialing message, an EventRinging message,
and then, when your party responds, an EventEstablished message.

Setting up a Conference Call

After you make or answer a call, you can add another party to the call. Here is how to perform an
ordinary two-step conference call.

To start off, you need to initiate a conference call, supplying your own DN, the connection ID of the
existing call, and the DN of the party you want to add to the call:

[Java]

RequestInitiateConference requestInitiateConference =
RequestInitiateConference.create(

thisDn,
connId,
otherDn);

Message response = tServerProtocol.request(requestInitiateConference);

Tip
In a real telephony application, the events you would receive in response to the kinds
of conferencing requests shown here could also be generated by other requests. For
example, you might receive an EventDialing or an EventEstablished in response to
a RequestMakeCall or RequestInitiateTransfer. Because of this, a real-world
application will need to keep track of the requests that initiate these events in order to
interpret them correctly.

If the initiate request is successful, you will receive an EventDialing message and an EventHeld
message. When your party picks up the call, you will also receive an EventEstablished message.

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 135

Now you need to complete the conference call.

When you received the EventDialing message from the RequestInitiateConference, you were
given a new connection ID associated with the party you want to establish the conference call with.
You will need that connection ID, in addition to your own DN and the original connection ID, in order
to complete the conference call:

[Java]

RequestCompleteConference requestCompleteConference =
RequestCompleteConference.create(

thisDn,
connId,
secondConnId);

response = tServerProtocol.request(requestCompleteConference);

If the completion request is successful, you will receive EventReleased, EventRetrieved,
EventPartyAdded, and EventAttachedDataChanged messages.

Transferring a Call

After you make or answer a call, you may also want to transfer that call. Here is how to perform an
ordinary two-step transfer.

To start off, you need to initiate a transfer, supplying your own DN, the connection ID of the existing
call, and the DN of the party you want to transfer the call to.

[Java]

RequestInitiateTransfer requestInitiateTransfer =
RequestInitiateTransfer.create(

thisDn,
connId,
otherDn);

Message response = tServerProtocol.request(requestInitiateTransfer);

Tip
In a real telephony application, the events you would receive in response to the kinds
of transfer requests shown here could also be generated by other requests. For
example, you might receive an EventDialing or an EventEstablished in response to
a RequestMakeCall or RequestInitiateConference. Because of this, a real-world
application will need to keep track of the requests that initiate these events in order to
interpret them correctly.

If the initiate request is successful, you will receive an EventDialing message and an EventHeld
message. When the party you want to transfer to picks up the call, you will also receive an
EventEstablished message.

Now you need to complete the transfer.

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 136

When you received the EventDialing message from the RequestInitiateTransfer, you were given
a new connection ID associated with the party you want to transfer the call to. You will need that
connection ID, in addition to your own DN and the original connection ID, in order to complete the
transfer:

[Java]

RequestCompleteTransfer requestCompleteTransfer =
RequestCompleteTransfer.create(

thisDn,
connId,
secondConnId);

response = tServerProtocol.request(requestCompleteTransfer);

If the completion request is successful, you will receive two EventReleased messages and you will no
longer be a party to the call.

Closing the Connection

Finally, when you are finished communicating with the T-Server, you should close the connection to
minimize resource utilization:

[Java]

tServerProtocol.close();

.NET

You can use the Voice Platform SDK to write Java or .NET applications that monitor and handle voice
interactions from a traditional or IP-based telephony device. These applications can range from the
simple to the advanced. This document shows how to implement the basic functions you will need to
write a simple voice application. It is organized to show the kind of structure you will probably use to
write your own applications.

Setting Up a TServerProtocol Object

The first thing you need to do to use the Voice Platform SDK is instantiate a TServerProtocol object.
To do that, you must supply information about the T-Server you want to connect with. This example
uses the URI of the T-Server, but you can also use name, host, and port information:

[C#]

TServerProtocol tServerProtocol =
new TServerProtocol(

new Endpoint(
tServerUri));

After instantiating the TServerProtocol object, you need to open the connection to the T-Server:

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 137

[C#]

tServerProtocol.Open();

Registering an Address

Now you need to register a DN for your agent to use. To do this, you must send a
RequestRegisterAddress request to the server.

Here is how to create this request:

[C#]

RequestRegisterAddress requestRegisterAddress =
RequestRegisterAddress.Create(
thisDn,
RegisterMode.ModeShare,
ControlMode.RegisterDefault,
AddressType.DN);

The thisDn argument refers to the DN you want to associate with your agent, while
RegisterMode.ModeShare tells the T-Server to share information about the DN with other
applications. The next argument asks to use the switch's default value for deciding whether to let the
switch know that you have registered this DN. And finally, you are specifying that the object you are
registering is a DN.

After you create the request, you will need to send it to the T-Server:

[C#]

IMessage response = tServerProtocol.Request(requestRegisterAddress);

Remember that the Request() method is synchronous. If you use this method, your application will
block until you hear back from the server. When you get the response, you can execute code to
handle the response. In this case, you probably don't need to do anything if the request is successful:

[C#]

switch(response.Id)
{

case EventRegistered.MessageId:
case EventUnregistered.MessageId:

break;
.
.
.

}

Logging in an Agent

Once you have registered a DN to your agent, you can log him or her in. To do this, you need to
create a RequestAgentLogin request:

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 138

[C#]

RequestAgentLogin requestAgentLogin =
RequestAgentLogin.Create(
thisDn,
AgentWorkMode.AutoIn);

After you create the request, you will need to indicate the queue the agent will be using, and you
may need to supply the agent's user name and password. Once you have done this, you can send the
request to the server:

[C#]

requestAgentLogin.ThisQueue = thisQueue;
// Your switch may not need a user name and password:
requestAgentLogin.AgentID = userName;
requestAgentLogin.Password = password;
IMessage response = tServerProtocol.Request(requestAgentLogin);

If your request is successful, the server will respond with an EventAgentLogin event. At that point,
you may need to update the state of your user interface to indicate that the agent can no longer log
in, but that, for example, he or she can now log out.

Answering a Call

Now that your agent is logged in, he or she can handle calls. Let's start by answering a call.

When a call comes in, your application will receive an EventRinging message. When you get this
message, you will probably want to enable an answer button. Here is how to do that:

[C#]

switch(response.Id)
{

.

.

.
case EventRinging.MessageId:

EventRinging eventRinging = (EventRinging) response;
connId = eventRinging.ConnID;
if (eventRinging.ThisDN == thisDn)
{

AnswerButton.Enabled = true;
}
break;

.

.

.
}

It is important to note that an EventRinging event will also be triggered when you are sending an
outbound call. So this particular snippet is only enabling the answer button if the call is ringing on
thisDN. As you can also see, when you receive an EventRinging you will want to store the ConnID of
the call associated with it.

After the agent clicks the answer button, you need to send a request to answer the call, using your

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 139

DN and the ConnID of the call:

[C#]

RequestAnswerCall requestAnswerCall =
RequestAnswerCall.Create(
thisDn,
connId);

IMessage response = tServerProtocol.Request(requestAnswerCall);

If the request is successful, you will receive an EventEstablished.

Releasing a Call

When your agent is finished with the call, he or she will need to release it:

[C#]

RequestReleaseCall requestReleaseCall =
RequestReleaseCall.Create(
thisDn,
connId);

IMessage response = tServerProtocol.Request(requestReleaseCall);

If the request is successful, you will receive an EventReleased.

Making a Call

Here is how to make a call:

[C#]

RequestMakeCall requestMakeCall =
RequestMakeCall.Create(
thisDn,
thatDn,
MakeCallType.DirectAgent);

IMessage response = tServerProtocol.Request(requestMakeCall);

If the request is successful, you will receive an EventDialing message, an EventRinging message,
and then, when your party responds, an EventEstablished message.

Setting up a Conference Call

After you make or answer a call, you can add another party to the call. Here is how to perform an
ordinary two-step conference call.

To start off, you need to initiate a conference call, supplying your own DN, the connection ID of the
existing call, and the DN of the party you want to add to the call:

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 140

[C#]

RequestInitiateConference requestInitiateConference =
RequestInitiateConference.Create(
thisDn,
connId,
otherDn);

IMessage response = tServerProtocol.Request(requestInitiateConference);

Tip
In a real telephony application, the events you would receive in response to the kinds
of conferencing requests shown here could also be generated by other requests. For
example, you might receive an EventDialing or an EventEstablished in response to
a RequestMakeCall or RequestInitiateTransfer. Because of this, a real-world
application will need to keep track of the requests that initiate these events in order to
interpret them correctly.

If the initiate request is successful, you will receive an EventDialing message and an EventHeld
message. When your party picks up the call, you will also receive an EventEstablished message.

Now you need to complete the conference call.

When you received the EventDialing message from the RequestInitiateConference, you were
given a new connection ID associated with the party you want to establish the conference call with.
You will need that connection ID, in addition to your own DN and the original connection ID, in order
to complete the conference call:

[C#]

RequestCompleteConference requestCompleteConference =
RequestCompleteConference.Create(
thisDn,
connId,
secondConnId);

response = tServerProtocol.Request(requestCompleteConference);

If the completion request is successful, you will receive EventReleased, EventRetrieved,
EventPartyAdded, and EventAttachedDataChanged messages.

Transferring a Call

After you make or answer a call, you may also want to transfer that call. Here is how to perform an
ordinary two-step transfer.

To start off, you need to initiate a transfer, supplying your own DN, the connection ID of the existing
call, and the DN of the party you want to transfer the call to.

[C#]

RequestInitiateTransfer requestInitiateTransfer =

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 141

RequestInitiateTransfer.Create(
thisDn,
connId,
otherDn);

IMessage response = tServerProtocol.Request(requestInitiateTransfer);

Tip
In a real telephony application, the events you would receive in response to the kinds
of transfer requests shown here could also be generated by other requests. For
example, you might receive an EventDialing or an EventEstablished in response to
a RequestMakeCall or RequestInitiateConference. Because of this, a real-world
application will need to keep track of the requests that initiate these events in order to
interpret them correctly.

If the initiate request is successful, you will receive an EventDialing message and an EventHeld
message. When the party you want to transfer to picks up the call, you will also receive an
EventEstablished message.

Now you need to complete the transfer.

When you received the EventDialing message from the RequestInitiateTransfer, you were given
a new connection ID associated with the party you want to transfer the call to. You will need that
connection ID, in addition to your own DN and the original connection ID, in order to complete the
transfer:

[C#]

RequestCompleteTransfer requestCompleteTransfer =
RequestCompleteTransfer.Create(
thisDn,
connId,
secondConnId);

response = tServerProtocol.Request(requestCompleteTransfer);

If the completion request is successful, you will receive two EventReleased messages and you will no
longer be a party to the call.

Closing the Connection

Finally, when you are finished communicating with the T-Server, you should close the connection to
minimize resource utilization:

[C#]

tServerProtocol.Close();

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 142

List of TLib Functions
The following table provides a convenient list of TLib Functions that are available.

TAgentLogin

TAgentLogout

TAgentSetIdleReason

TAgentSetNotReady

TAgentSetReady

TAlternateCall

TAnswerCall

TApplyTreatment

TAttachUserData

TCallCancelForward

TCallSetForward

TCancelMonitoring

TCancelReqGetAccessNumber

TClearCall

TCloseServer

TCloseVoiceFile

TCollectDigits

TCompleteConference

TCompleteTransfer

TCopyEvent

TDeleteAllUserData

TDeleteFromConference

TDeleteUserData

TDispatch

TEventGetConnID

TEventGetIntAttr

TEventGetStringAttr

TFreeEvent

TGetAccessNumber

TGetMessageTypeName

TGetReferenceID

TGetRouteTypeNames

TGetTreatmentTypeNames

TGetXCaps

TGiveMusicTreatment

TGiveRingBackTreatment

TGiveSilenceTreatment

THoldCall

TInitiateConference

TInitiateTransfer

TLibSetCompatibMode

TListenDisconnect

TListenReconnect

TLoginMailBox

TLogoutMailBox

TMakeCall

TMakePredictiveCall

TMergeCalls

TMonitorNextCall

TMuteTransfer

TNetworkAlternate

TNetworkConsult

TNetworkMerge

TNetworkPrivateService

TNetworkReconnect

TNetworkSingleStepTransfer

TNetworkTransfer

TOpenServer

TOpenServerEx

TOpenServerX

TOpenVoiceFile

TPlayVoice

TPrivateService

TQueryAddress

TQueryCall

TQueryLocation

TQueryServer

TQuerySwitch

TReconnectCall

TRedirectCall

TRegisterAddress

TReleaseCall

TReserveAgent

TRetrieveCall

TRouteCall

TScanServer

TScanServerEx

TSendDTMF

TSendEvent

TSendEventEx

TSendUserEvent

TSetCallAttributes

TSetDNDOff

TSetDNDOn

TSetInputMask

TSetMessageWaitingOff

TSetMessageWaitingOn

TSetMuteOff

TSetMuteOn

TSetParamHA

TSetRefIDLimit

TSetReferenceID

TSetSocketChangeCallback

TSingleStepConference

TSingleStepTransfer

TSockInfoStructure

TSyncIsSet

TSyncSetSelectMask

TUnregisterAddress

TUpdateUserData

TXCapsSupported

connid_to_decimal

connid_to_str

decimal_to_connid

str_to_connid

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 143

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAgentLogin
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAgentLogout
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAgentSetIdleReason
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAgentSetNotReady
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAgentSetReady
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAlternateCall
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAnswerCall
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TApplyTreatment
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAttachUserData
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCallCancelForward
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCallSetForward
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCancelMonitoring
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCancelReqGetAccessNumber
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TClearCall
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCloseServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCloseVoiceFile
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCollectDigits
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCompleteConference
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCompleteTransfer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCopyEvent
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TDeleteAllUserData
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TDeleteFromConference
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TDeleteUserData
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TDispatch
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TEventGetConnID
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TEventGetIntAttr
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TEventGetStringAttr
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TFreeEvent
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TGetAccessNumber
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TGetMessageTypeName
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TGetReferenceID
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TGetRouteTypeNames
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TGetTreatmentTypeNames
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TGetXCaps
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TGiveMusicTreatment
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TGiveRingBackTreatment
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TGiveSilenceTreatment
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/THoldCall
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TInitiateConference
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TInitiateTransfer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLibSetCompatibMode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TListenDisconnect
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TListenReconnect
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLoginMailBox
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLogoutMailBox
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TMakeCall
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TMakePredictiveCall
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TMergeCalls
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TMonitorNextCall
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TMuteTransfer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TNetworkAlternate
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TNetworkConsult
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TNetworkMerge
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TNetworkPrivateService
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TNetworkReconnect
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TNetworkSingleStepTransfer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TNetworkTransfer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TOpenServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TOpenServerEx
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TOpenServerX
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TOpenVoiceFile
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TPlayVoice
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TPrivateService
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TQueryAddress
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TQueryCall
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TQueryLocation
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TQueryServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TQuerySwitch
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TReconnectCall
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TRedirectCall
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TRegisterAddress
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TReleaseCall
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TReserveAgent
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TRetrieveCall
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TRouteCall
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TScanServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TScanServerEx
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSendDTMF
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSendEvent
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSendEventEx
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSendUserEvent
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSetCallAttributes
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSetDNDOff
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSetDNDOn
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSetInputMask
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSetMessageWaitingOff
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSetMessageWaitingOn
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSetMuteOff
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSetMuteOn
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSetParamHA
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSetRefIDLimit
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSetReferenceID
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSetSocketChangeCallback
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSingleStepConference
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSingleStepTransfer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSockInfoStructure
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSyncIsSet
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSyncSetSelectMask
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TUnregisterAddress
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TUpdateUserData
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TXCapsSupported
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/connid_to_decimal
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/connid_to_str
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/decimal_to_connid
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/str_to_connid

List of TLib Datatypes
The following table provides a convenient list of TLib Datatypes that are available.

Important
The names of most of these datatypes start with a "T", but the Voice Platform SDK
uses names that do not contain an initial "T". For example, the TRegisterMode
datatype mentioned in this section is known to the Voice Platform SDK as
RegisterMode.

AddressStatusInfoType

AssociationInfoType

MsgWaitingInfoType

TAddressInfoStatus

TAddressInfoType

TAddressType

TAgentID

TAgentPassword

TAgentType

TAgentWorkMode

TAttribute

TCallHistoryInfo

TCallID

TCallInfoType

TCallState

TCallType

TClearFlag

TConnectionID

TControlMode

TDNRole

TDirectoryNumber

TEvent

TEventMask

TFile

TForwardMode

TInterruptFlag

TKVList

TKVPair

TKVResult

TKVType

TLocationInfoType

TMakeCallType

TMediaType

TMergeType

TMessageType

TMonitorNextCallType

TNetworkCallState

TNetworkDestState

TNetworkPartyRole

TOpenMode

TPartyState

TPrivateMsgType

TRegisterMode

TReliability

TRemoteParty

TRouteType

TScanServerMode

TServer

TServerRole

TSetOpType

TSwitchInfoType

TTime

TTimeStamp

TTreatmentType

TXCaps

TXRouteType

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 144

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TRegisterMode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/AddressStatusInfoType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/AssociationInfoType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/MsgWaitingInfoType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAddressInfoStatus
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAddressInfoType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAddressType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAgentID
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAgentPassword
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAgentType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAgentWorkMode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TAttribute
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCallHistoryInfo
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCallID
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCallInfoType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCallState
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TCallType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TClearFlag
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TConnectionID
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TControlMode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TDNRole
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TDirectoryNumber
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TEvent
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TEventMask
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TFile
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TForwardMode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TInterruptFlag
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVList
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVPair
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVResult
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TLocationInfoType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TMakeCallType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TMediaType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TMergeType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TMessageType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TMonitorNextCallType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TNetworkCallState
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TNetworkDestState
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TNetworkPartyRole
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TOpenMode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TPartyState
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TPrivateMsgType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TRegisterMode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TReliability
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TRemoteParty
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TRouteType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TScanServerMode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TServerRole
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSetOpType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TSwitchInfoType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TTime
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TTimeStamp
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TTreatmentType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TXCaps
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TXRouteType

List of TLib Unstructured Data
The following table provides a convenient list of TLib Unstructured Data functions that are available.

These functions deal exclusively with transaction-related user data on the client side and allow you to
work with all three categories of unstructured data: User Data, Extensions, and Reasons. None of
these functions generate any requests to T-Server. The result of the function execution is confirmed
by the value that the function returns.

TKVListAddBinary

TKVListAddInt

TKVListAddList

TKVListAddString

TKVListAddUnicode

TKVListBinaryLength

TKVListBinaryValue

TKVListCreate

TKVListDeleteAll

TKVListDeletePair

TKVListDup

TKVListFree

TKVListGetBinaryValue

TKVListGetIntValue

TKVListGetListValue

TKVListGetStringValue

TKVListGetUnicodeValue

TKVListInitScanLoop

TKVListIntValue

TKVListKey

TKVListListValue

TKVListNextPair

TKVListPrint

TKVListStringValue

TKVListType

TKVListUnicodeValue

TVKListGetPair

Server-Specific Overviews Telephony (T-Server)

Platform SDK Developer's Guide 145

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListAddBinary
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListAddInt
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListAddList
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListAddString
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListAddUnicode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListBinaryLength
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListBinaryValue
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListCreate
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListDeleteAll
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListDeletePair
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListDup
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListFree
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListGetBinaryValue
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListGetIntValue
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListGetListValue
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListGetStringValue
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListGetUnicodeValue
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListInitScanLoop
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListIntValue
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListKey
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListListValue
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListNextPair
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListPrint
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListStringValue
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TKVListUnicodeValue
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/TVKListGetPair

Configuration
You can use the Configuration Platform SDK to write Java or .NET applications that access and update
information from the Genesys Configuration Layer. These applications can range from the simple to
the advanced.

This article shows how to implement the basic functions you will need to write a simple Configuration
Layer application.

Once you have reviewed the information in this document, you should familiarize yourself with
Configuration Layer Objects. Since the Configuration Platform SDK uses these objects for nearly
everything it does, you will need to understand them before you start using this SDK.

Tip
The Platform SDK includes the Configuration Object Model Application Block, which is
a high-performance component you can use to query on, and to create, update, and
delete, Configuration Layer objects. Genesys recommends that you use this
application block for most of the work you do with Configuration Layer objects.

When you are ready to write more complicated applications, take a look at the classes and methods
described in the Platform SDK API Reference.

Java

Setting Up a ConfServerProtocol Object

The first thing you need to do to use the Configuration Platform SDK is instantiate a
ConfServerProtocol object. To do that, you must supply information about the Configuration Server
you want to connect with. This example uses the URI of the Configuration Server, but you can also
use the server's name, host, and port information:

[Java]

ConfServerProtocol confServerProtocol =
new ConfServerProtocol(

new Endpoint(
confServerUri));

Configuration Server needs some additional information in order to create a successful connection.
This information includes the type of client you wish to create, your client's name, and your user
name and password:

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 146

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IntrotoConfigLayerObjects
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheCOMAB
https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome

[Java]

confServerProtocol.setClientApplicationType(CfgAppType.CFGSCE.asInteger());
confServerProtocol.setClientName("default");
confServerProtocol.setUserName(userName);
confServerProtocol.setUserPassword(password);

After instantiating the ConfServerProtocol object, you need to open the connection to the
Configuration Server:

[Java]

confServerProtocol.open();

Creating a Query

Now that you have opened a connection, you can create a query and send it to Configuration Server.
Let's say that you want to get information about a particular agent. To do this, you will need to supply
the agent's user name using a filter key.

The filter key tells Configuration Server to narrow your query to a specific agent, rather than
retrieving information about all of the persons in your contact center:

[Java]

KeyValueCollection filterKey = new KeyValueCollection();
filterKey.addObject("user_name", userName);

You can find the names of the filter keys for Person objects by looking in the Filter Keys section of the
CfgPerson entry.

Tip
A similar reference page is available for each Configuration Layer object.

Now you are ready to create the request.

As you may know, Configuration Server considers agents to be objects of type CfgPerson. So you will
need to create a request for information about a Person who has the user name you specified in the
filter key:

[Java]

CfgObjectType objectType = CfgObjectType.CFGPerson;
int intPerson = objectType.asInteger();
RequestReadObjects requestReadObjects =

RequestReadObjects.create(
intPerson,
filterKey);

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 147

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPerson
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IntrotoConfigLayerObjects
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPerson

Important
While the Configuration Layer supports the full character set in defining object names,
using certain characters can cause problems in the behavior of some Genesys
applications. Avoid using spaces, dashes, periods, or special characters in object
names. Consider using underscores where you might normally use spaces or dashes.

After you have created your request, you can send it to Configuration Server, as shown here:

[Java]

confServerProtocol.send(requestReadObjects);

If the request is successful, you will receive an EventObjectsRead message.

Tip
When you send a RequestReadObjects message, Configuration Server may send more
than one EventObjectsRead messages in response, depending on whether there is
too much data to be handled by a single EventObjectsRead. Once you have received
all of the EventObjectsRead messages, Configuration Server will also send an
EventObjectsSent, which confirms that it has completed your request. For more
information, refer to the article on event handling.

Interpreting the Response

The information you asked for is returned by invoking the getConfObject method of the
EventObjectsRead message. This method returns an org.w3c.dom.Document representation of the
object.

Here is a sample of how you might print the XML document:

[Java]

EventObjectsRead objectsRead =
(EventObjectsRead) theMessage;

System.out.println(theMessage.messageName());
System.out.println("There are "

+ objectsRead.getObjectTotalCount() + " objects of this type.");
Document resultDocument =

(Document) objectsRead.getConfObject();

... Add code to parse and print...

And this is what the XML document might look like:

<ConfData>
<CfgPerson>

<DBID value="105"/>

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 148

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling

<tenantDBID value="101"/>
<lastName value="agent1"/>
<firstName value="Agent"/>
<employeeID value="agent1"/>
<userName value="agent1"/>
<password value="204904E461002B28511D5880E1C36A0F"/>
<isAgent value="2"/>
<CfgAgentInfo>

<placeDBID value="102"/>
<skillLevels>

<CfgSkillLevel>
<skillDBID value="101"/>
<level value="9"/>

</CfgSkillLevel>
</skillLevels>
<agentLogins>

<CfgAgentLoginInfo>
<agentLoginDBID value="103"/>
<wrapupTime value="0"/>

</CfgAgentLoginInfo>
</agentLogins>
<capacityRuleDBID value="127"/>

</CfgAgentInfo>
<isAdmin value="1"/>
<state value="1"/>
<userProperties>

<list_pair key="desktop-redial">
<str_pair key="phone-number0" value="5551212"/>
<str_pair key="phone-number1" value=""/>
<str_pair key="phone-number2" value=""/>
<str_pair key="phone-number3" value=""/>
<str_pair key="phone-number4" value=""/>
<str_pair key="phone-number5" value=""/>
<str_pair key="phone-number6" value=""/>
<str_pair key="phone-number7" value=""/>
<str_pair key="phone-number8" value=""/>
<str_pair key="phone-number9" value=""/>

</list_pair>
<list_pair key="multimedia">

<str_pair key="last-media-logged"
value="voice,email"/>

</list_pair>
</userProperties>
<emailAddress value="agent1@techpubs3"/>

</CfgPerson>
</ConfData>

This XML document contains information about a Person. To interpret the information contained in
the document, look at the Parameters section for CfgPerson.

If you compare the elements in this XML document to the CfgPerson entry, you can see that some of
them contain information that is explained in detail in another entry. For example, the CfgAgentInfo
element contains information that is described in the CfgAgentInfo entry. Similarly, the
CfgAgentLoginInfo element contains information described in the CfgAgentLoginInfo entry.

Updating an Object

You can update a Configuration Layer object by passing in an XML Document containing the

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 149

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPerson
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPerson
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAgentInfo
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAgentLoginInfo

appropriate information about that object:

[Java]

CfgObjectType objectType = CfgObjectType.CFGPerson;
int intPerson = objectType.asInteger();
RequestUpdateObject requestUpdateObject =

RequestUpdateObject.create(
intPerson,
xmlDocument);

Creating a New Object

You can also create a new Configuration Layer object by sending an XML Document to Configuration
Server, as shown here:

[Java]

CfgObjectType objectType = CfgObjectType.CFGPerson;
int intPerson = objectType.asInteger();
RequestCreateObject requestCreateObject =

RequestCreateObject.create(
intPerson,
xmlDocument);

Closing the Connection

Finally, when you are finished communicating with the Configuration Server, you should close the
connection, in order to minimize resource utilization:

[Java]

confServerProtocol.close();

Working with Delta Objects

When using the Configuration Platform SDK to change attribute values of a configuration object, it is
important to understand how "delta structures" work.

A delta structure contains values for each attribute in the configuration object. When a change is
requested, a delta object is created that contains values for each attribute. Delta values are
initialized to either zero (for integer values) or a null string - defaults that indicate no change should
be made for that attribute. To change attributes of a configuration object, you first set the delta value
for that attribute and then send the request to Configuration Server to be processed. Only attribute
values that are changing should be specified in the delta structure for that object.

Any attributes with a delta value set to zero are left unchanged, so there are two special cases to
remember when updating integer values in a configuration object:

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 150

• leaving the integer as 0 (zero) means that attribute does not change;
• setting a delta value to the current value of the configuration object attribute will change that attribute

value to zero.

For example, if an Agent skill level is currently set to 5, then the following table illustrates the effect
of various delta structure values:

Initial Attribute Value Delta Structure Value Updated Attribute
Value Comment

5 3 3

Setting the delta
structure value to a
non-zero integer will
change the attribute to
that value.

5 0 5
Leaving the delta
structure value as zero
will leave the attribute
unchanged.

5 5 0

Setting the delta
structure value to the
current attribute value
will change the attribute
to zero.

Requests sent by SOAP clients and formed in an XML format do not use delta structures, because
these types of request do not require all attributes to be present. The COM application block (which is
shipped with the Platform SDKs) also does not use delta objects, as shown in the following code
snippet:

[Java]

//retrieve an agent that has a single skill, with skill level set to 5
CfgPersonQuery query = new CfgPersonQuery();
query.setUserName("userName");
CfgPerson person = confService.retrieveObject(CfgPerson.class, query);

//Setting the skill level to 5 again will NOT result in a change in skill level (ie: it will
remain 5).
((List<CfgSkillLevel>)person.getAgentInfo().getSkillLevels()).get(0).setLevel(5);
person.save();

//Setting the skill level to 0 will actually change the current skill level value.
((List<CfgSkillLevel>)person.getAgentInfo().getSkillLevels()).get(0).setLevel(0);
person.save();

.NET

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 151

Setting Up a ConfServerProtocol Object

The first thing you need to do to use the Configuration Platform SDK is instantiate a
ConfServerProtocol object. To do that, you must supply information about the Configuration Server
you want to connect with. This example uses the URI of the Configuration Server, but you can also
use the server's name, host, and port information:

[C#]

ConfServerProtocol confServerProtocol =
new ConfServerProtocol(

new Endpoint(
confServerUri));

Configuration Server needs some additional information in order to create a successful connection.
This information includes the type of client you wish to create, your client's name, and your user
name and password:

[C#]

confServerProtocol.ClientApplicationType = (int) CfgAppType.CFGSCE;
confServerProtocol.ClientName = clientName;
confServerProtocol.UserName = userName;
confServerProtocol.UserPassword = password;

After instantiating the ConfServerProtocol object, you need to open the connection to the
Configuration Server:

[C#]

confServerProtocol.Open();

Creating a Query

Now that you have opened a connection, you can create a query and send it to Configuration Server.
Let's say that you want to get information about a particular agent. To do this, you will need to supply
the agent's user name using a filter key.

The filter key tells Configuration Server to narrow your query to a specific agent, rather than
retrieving information about all of the persons in your contact center:

[C#]

KeyValueCollection filterKey = new KeyValueCollection();
filterKey.Add("user_name", userName);

You can find the names of the filter keys for Person objects by looking in the Filter Keys section of the
CfgPerson entry in the Configuration Objects section of this API reference. This section has a similar
reference page for each Configuration Layer object.

Now you are ready to create the request.

As you may know, Configuration Server considers agents to be objects of type CfgPerson. So you will

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 152

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPerson
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPerson

need to create a request for information about a Person who has the user name you specified in the
filter key:

[C#]

RequestReadObjects requestReadObjects =
RequestReadObjects.Create(

(int) CfgObjectType.CFGPerson,
filterKey);

Important
While the Configuration Layer supports the full character set in defining object names,
using certain characters can cause problems in the behavior of other Genesys
applications. Avoid spaces, dashes, periods, or special characters in object names.
Consider using underscores where you might normally use spaces or dashes.

After you have created your request, you can send it to Configuration Server, as shown here:

[C#]

confServerProtocol.Send(requestReadObjects);

If the request is successful, you will receive an EventObjectsRead message.

Tip
When you send a RequestReadObjects message, Configuration Server may send
more than one EventObjectsRead messages in response, depending on whether
there is too much data to be handled by a single EventObjectsRead. Once you have
received all of the EventObjectsRead messages, Configuration Server will also send
an EventObjectsSent, which confirms that it has completed your request. For more
information, refer to the article on event handling at the beginning of this API
Reference.

Interpreting the Response

The information you asked for is returned in the ConfObject property of the EventObjectsRead
message.

Here is a sample of how you might print the XML document:

[C#]

EventObjectsRead objectsRead = theMessage;

StringBuilder xmlAsText = new StringBuilder();
XmlWriterSettings xmlSettings = new XmlWriterSettings();

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 153

xmlSettings.Indent = true;

using (XmlWriter xmlWriter =
XmlWriter.Create(xmlAsText, xmlSettings))

{
XDocument resultDocument = objectsRead.ConfObject;
resultDocument.WriteTo(xmlWriter);

}

Console.WriteLine("This is the response:\n"
+ xmlAsText.ToString() + "\n\n");

And this is what the XML document might look like:

<ConfData>
<CfgPerson>

<DBID value="105"/>
<tenantDBID value="101"/>
<lastName value="agent1"/>
<firstName value="Agent"/>
<employeeID value="agent1"/>
<userName value="agent1"/>
<password value="204904E461002B28511D5880E1C36A0F"/>
<isAgent value="2"/>
<CfgAgentInfo>

<placeDBID value="102"/>
<skillLevels>

<CfgSkillLevel>
<skillDBID value="101"/>
<level value="9"/>

</CfgSkillLevel>
</skillLevels>
<agentLogins>

<CfgAgentLoginInfo>
<agentLoginDBID value="103"/>
<wrapupTime value="0"/>

</CfgAgentLoginInfo>
</agentLogins>
<capacityRuleDBID value="127"/>

</CfgAgentInfo>
<isAdmin value="1"/>
<state value="1"/>
<userProperties>

<list_pair key="desktop-redial">
<str_pair key="phone-number0" value="5551212"/>
<str_pair key="phone-number1" value=""/>
<str_pair key="phone-number2" value=""/>
<str_pair key="phone-number3" value=""/>
<str_pair key="phone-number4" value=""/>
<str_pair key="phone-number5" value=""/>
<str_pair key="phone-number6" value=""/>
<str_pair key="phone-number7" value=""/>
<str_pair key="phone-number8" value=""/>
<str_pair key="phone-number9" value=""/>

</list_pair>
<list_pair key="multimedia">

<str_pair key="last-media-logged"
value="voice,email"/>

</list_pair>
</userProperties>
<emailAddress value="agent1@techpubs3"/>

</CfgPerson>
</ConfData>

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 154

This XML document contains information about a Person. To interpret the information contained in the
document, look at the Parameters section of the CfgPerson entry in the list of Configuration Objects.

If you compare the elements in this XML document to the CfgPerson entry, you can see that some of
them contain information that is explained in detail in another entry. For example, the CfgAgentInfo
element contains information that is described in the CfgAgentInfo entry. Similarly, the
CfgAgentLoginInfo element contains information described in the CfgAgentLoginInfo entry.

Updating an Object

You can update a Configuration Layer object by passing in an XML document (of type XDocument)
containing the appropriate information about that object:

[C#]

RequestUpdateObject requestUpdateObject =
RequestUpdateObject.Create(

(int) CfgObjectType.CFGPerson,
xDocument);

Creating a New Object

You can also create a new Configuration Layer object by sending an XML Document (of type
XDocument) to Configuration Server, as shown here:

[C#]

RequestCreateObject requestCreateObject =
RequestCreateObject.Create(

(int) CfgObjectType.CFGPerson,
xDocument);

Closing the Connection

Finally, when you are finished communicating with the Configuration Server, you should close the
connection, in order to minimize resource utilization:

[C#]

confServerProtocol.Close();

Working with Delta Objects

When using the Configuration Platform SDK to change attribute values of a configuration object, it is
important to understand how "delta structures" work.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 155

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPerson
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPerson
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAgentInfo
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAgentLoginInfo

A delta structure contains values for each attribute in the configuration object. When a change is
requested, a delta object is created that contains values for each attribute. Delta values are
initialized to either zero (for integer values) or a null string - defaults that indicate no change should
be made for that attribute. To change attributes of a configuration object, you first set the delta value
for that attribute and then send the request to Configuration Server to be processed. Only attribute
values that are changing should be specified in the delta structure for that object.

Any attributes with a delta value set to zero are left unchanged, so there are two special cases to
remember when updating integer values in a configuration object:

• leaving the integer as 0 (zero) means that attribute does not change;
• setting a delta value to the current value of the configuration object attribute will change that attribute

value to zero.

For example, if an Agent skill level is currently set to 5, then the following table illustrates the effect
of various delta structure values:

Initial Attribute Value Delta Structure Value Updated Attribute
Value Comment

5 3 3

Setting the delta
structure value to a
non-zero integer will
change the attribute to
that value.

5 0 5
Leaving the delta
structure value as zero
will leave the attribute
unchanged.

5 5 0

Setting the delta
structure value to the
current attribute value
will change the attribute
to zero.

Note that requests sent by SOAP clients and formed in an XML format do not use delta structures,
because these types of request do not require all attributes to be present. The COM application block
(which is shipped with the Platform SDKs) also does not use delta objects, as shown in the following
code snippet:

[C#]

//retrieve a particular agent whose last name is "Jones"
CfgPersonQuery query = new CfgPersonQuery();
query.UserName = "userName";
query.LastName = "Jones";
CfgPerson person = myConfService.RetrieveObject<CfgPerson>(query);

//Setting the last name to the same value will NOT result in a change
person.LastName = "Jones";
person.Save();

//Setting the last name to a different value will change the actual value
person.LastName = "Smith";
person.Save();

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 156

Connecting Using UTF-8 Character
Encoding
Genesys Configuration Server 8.1.2 added the ability to be configured to support multiple languages
at a same time using UTF-8 encoding. Once Configuration Server is installed, configured and started
in multilingual (UTF-8) mode it cannot be switched to regular mode. If Configuration Server is
installed and started in normal mode, then it cannot be switched to multilingual (UTF-8) mode later.

One known issue is that the UTF-enabled protocol breaks backward compatibility, so users must add
their own code for connection reconfiguration. The following samples describe connection scenarios
with Platform SDK:

Scenario 1:

Configuration Server is release 8.1.2 or later and is NOT configured as multilingual (without UTF-8
transport), or is an earlier version without support for the UTF-8 feature.

In this scenario, Platform SDK connections can be created in the usual way.

Scenario 2:

Configuration Server is release 8.1.2 or later and configured as multilingual (with UTF-8 transport),
with:

A) Platform SDK release 8.1.3 in use.

Reconfiguration for encoding is automatically handled by Platform SDK as described in the section
below – no user action is required.

B) Platform SDK release 8.1.1 or 8.1.2 in use.

Platform SDK provides information that Configuration Server is UTF-8, so, the connection can be
reopened using new connection configuration with following user code.

PropertyConfiguration config = new PropertyConfiguration();
config.setUseAddp(true);
config.setAddpClientTimeout(11);
config.setAddpServerTimeout(21);

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint(name, host, port, config));
protocol.setClientName(clientName);
protocol.setClientApplicationType(clientType.ordinal());
protocol.setUserName(username);
protocol.setUserPassword(password);

protocol.open();

Integer cfgServerEncoding = protocol.getServerContext().getServerEncoding();
if (cfgServerEncoding != null && cfgServerEncoding.intValue() == 1) {

protocol.close();
config.setStringsEncoding("UTF-8");
protocol.setEndpoint(new Endpoint(name, host, port, config));

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 157

protocol.open();
}

It may be more comfortable to move the flag value evaluation to a separated method where a
temporary ConfServerProtocol instance may be created - especially in the case of
ChannelListeners usage, messages handlers, etc.

Important
This is not the best solution for wide usage. The ServerEncoding value evaluation
method may fail if non-ASCII symbols are found inside the username or password,
which may lead to a handshake procedure error such as "invalid username/password".
This issue may be resolved with an additional test connection retry with UTF-8
enabled, but this workaround is not a best practice solution.

C) Platform SDK release 8.0.1 through 8.1.1 in use:

Platform SDK does NOT indicate whether Configuration Server is using UTF-8 mode or not, so user
application should take care to evaluate this information (or have it defined by the design or
configuration of the application).

In this case we have no protocol.getServerContext().getServerEncoding(), but we are able to
configure the connection for Unicode usage.

It may be recommended to add one more property to the application configuration/parameters (along
with the existing Configuration Server host and port) such as a boolean "isCSUTF8" value.

PropertyConfiguration config = new PropertyConfiguration();
if (isCSUTF8) {

config.setOption(Connection.STR_ATTR_ENCODING_NAME_KEY, "UTF-8");
}

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint(name, host, port, config));
protocol.setClientName(clientName);
protocol.setClientApplicationType(clientType.ordinal());
protocol.setUserName(username);
protocol.setUserPassword(password);

protocol.open();

D) Platform SDK release of 8.0.0 or earlier in use.

No support if provided for string encoding of connection configuration options. The only way is to use
this feature is to upgrade your release of Platform SDK.

Automatic UTF-8 Character Encoding Set Up on Handshake

Starting in Platform SDK Release 8.1.3 (which incorporates Configuration Protocol Release 3.79),
support for UTF-8 encoding can be automatically detected.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 158

The process for this features is described here:

1. The first handshake message, EventProtocolVersion, now includes the extra ServerEncoding
attribute. If this attribute is 1 then Platform SDK updates string encoding for that connection to the
server as UTF-8.

2. The next message from the client requests authentication from the server. These messages
(RequestRegisterClient or RequestRegisterClient2) have been expanded with the
ClientEncoding attribute, which must have the same value as the ServerEncoding attribute received
previously.

3. After the handshake is complete, string encoding for this channel may be different from the string
encoding specified in the original configuration parameters. You can access the current value through
Endpoint.GetConfiguration() of the ConfServerProtocol instance.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 159

Change Password On Next Login
An example of the usual Configuration Server connection open scenario is provided below:

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint("cfgsrv", csHost, csPort));
protocol.setClientName(clientAppName);
protocol.setClientApplicationType(clientAppType.ordinal());
protocol.setUserName(userName);
protocol.setUserPassword(userPasswd);
protocol.open();

When the user has enabled the Change Password on Next Login feature, protocol.open() throws
ChangePasswordException.

So the resulting code may look like:

ConfServerProtocol protocol = new ConfServerProtocol(new Endpoint("cfgsrv", csHost, csPort));
protocol.setClientName(clientAppName);
protocol.setClientApplicationType(clientAppType.ordinal());
protocol.setUserName(userName);
protocol.setUserPassword(userPasswd);
try {

protocol.open();
} catch (ChangePasswordException e) {

String newPasswd = ...; // obtain new user password
protocol.useChangePasswordRegistration(newPasswd);
protocol.open();

}

After a successful open procedure, the new password value will be accepted, so
protocol.getUserPassword() will be equal to newPasswd value specified.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 160

Getting the Last Login Info

Tip
The appropriate Configuration Server version is required to use this feature, and so is
the correct security configuration. For details, refer to Chapter 11 (Last Logged In
Display) in Genesys 8.0 Security Deployment Guide.

Configuration Server provides last login information during the user authentication (handshake)
procedure, and the Platform SDK Configuration Protocol provides it "as-is" in the form of a
KeyValueCollection:

ConfServerProtocol.getServerContext().getLastLoginInfo();

An example of the resulting KeyValueCollection could look like:

KVList:
'LAST_LOGIN_PERSON' [int] = 100
'LAST_LOGIN_TIME' [int] = 1259161588

Tip
This information is only available while the connection is opened.

Note that "last login" is configured on Configuration Server through the confserv.cfg file:

[confserv]
...
last-login = true
last-login-synchronization = true

Platform SDK obtains the information using the EventClientRegister message:

2012-08-21 10:05:49,306 [New I/O client worker #4-4] DEBUG ns.protocol.DuplexChannel null -
Handling message: 'EventClientRegistered' (19) attributes:

IATRCFG_SESSIONNUMBER [int] = 22
IATRCFG_CFGSERVERDBID [int] = 99
SATRCFG_PROTOCOL [str] = "CfgProtocol 5.1.3.54"
IATRCFG_EXTERNALAUTH [int] = 0
SATRCFG_PARAMETERS [KvListString] = KVList:

'LAST_LOGIN_PERSON' [int] = 1227
'LAST_LOGIN_TIME' [int] = 1345532749
'LAST_LOGIN_APPLICATION' [str] = "PSDK_CFGSCI"

IATRCFG_BACKUPCFGSERVERDBID [int] = 0
IATRCFG_UNSOLEVENTNUM [int] = 73770
IATRCFG_CRYPTPASSW [int] = 1
SATRCFG_SCHEMAVERSION [str] = "8.1.100.05"
IATRCFG_REQUESTID [int] = 6
SATRCFG_PROTOCOLEX [str] = "CfgProtocol 5.1.3.77"

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 161

There are two methods available in Platform SDK for retrieving last login details:

• protocol.getServerContext().getLastLoginInfo()

• protocol.getServerContext().getCfgLastLogin() (deprecated, not recommended for use)

If these methods return null, then you need to check whether Configuration Server gave the required
info by looking in the debug logs for either Platform SDK or Configuration Server.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 162

Using the Configuration Object Model
Application Block
The Configuration Object Model Application Block is a reusable production-quality component that
provides developers with a consistent and intuitive object model for working with Configuration
Server objects. It has been designed using industry best practices and provided with source code so
it can be used “as is,” extended, or tailored if you need to. Please see the License Agreement for
details.

For information on the other application blocks that ship with the Genesys SDKs, consult Introducing
the Platform SDK.

Java

Architecture and Design

The Configuration Platform SDK allows you to work with objects in the Genesys Configuration Layer
by using the interface provided by Configuration Server. Unfortunately, this interface can be difficult
to work with. For example, in order to update or create Configuration Layer objects, you have to use
special “delta” objects that are distinct from the objects used to retrieve information about
Configuration Layer objects.

The Configuration Object Model Application Block provides a consistent and intuitive object model
that hides many of the complexities involved in working with Configuration Layer objects. This object
model is implemented by way of an event subscription/delivery model, which hides key-value details
of the current protocol, and is integrated with the rest of the object model.

The architecture of the Configuration Object Model Application Block consists of three functional
components:

• Configuration Objects
• Configuration Service
• Query Objects
• Cache Objects

These components are shown below.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 163

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IntroducingthePlatformSDK
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IntroducingthePlatformSDK

Configuration Objects
Classes and Structures

The Configuration Object Model Application Block supports two types of configuration objects:

• Classes, which can be retrieved directly from Configuration Server using queries.
• Structures, which only exist as properties of classes, and cannot be retrieved directly from Configuration

Server.

Classes and structures are different in many ways, but in order to determine whether a given object
is a class or a structure, all you need to do is check to see whether the object has a “DBID” property.
Classes have this property, while structures do not.

Classes and structures are also different in the following ways:

• Each structure is a property of another class or structure, and therefore must have a “parent” class.
• Classes can be changed and saved to the Configuration Server and structures can only be saved

through their “parent” classes.
• Clients can subscribe to events on changes in a class, but not in a structure. To retrieve events on

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 164

changes in a structure, clients have to subscribe to changes in its parent class.

Property Types

Both classes and structures have properties. Each property has its own getter and setter methods,
and each property is an instance of one of the following types:

• Simple — A property that is represented by a value type. Configuration Server supports two types of
simple properties - string and integer. For example, the CfgPerson object has FirstName and
LastName properties, both of the string type.

• KV-list — Tree-like properties that are represented by the KeyValueCollection class in the
Configuration Object Model. Examples of this property include userProperties and CfgPerson.

• Structure — A complex property that includes one or more properties. In the Configuration Object
Model, structures are represented by instances of classes that are similar to configuration objects, but
cannot be created directly. For example, in the CfgPerson class, its AgentInfo property contains
simple, kv-list and other property types.

• List of structures — A property that represents more than one structure. In Configuration Object Model,
lists of structures are represented by a generic type IList<structure_type>, so that the collection is
typed, and clients can easily iterate through the collection.

• Links to a single object — In Configuration Server, these properties are stored as DBIDs of external
objects. The Configuration Object Model automatically resolves these DBIDs into the real objects, which
can be manipulated in the same way as the objects directly retrieved from Configuration Server. Links
are initialized at the time of the initial request to one of its properties.

Tip
For each link, there are two ways to set the new value of a link. There is a setter
method of the property, which uses an object reference to set a new value of a link.
There is also a Set...DBID method, which uses an integer DBID value.

• Links to multiple objects — A property that contains more than one link. In the Configuration Object
Model, lists of structures are represented by a generic type IList<class_type>, so that the collection
is typed, and clients can easily iterate through the collection.

Creating Instances

One way to create an instance of an object in the Configuration Object Model is to invoke a
Retrieve... method of a ConfService class. This set of methods returns instances of objects that
already exist in Configuration Server.

To create a new object in Configuration Server, a client must create a new instance of a COM or
"detached" object. The detached object does not correspond to any objects in Configuration Server
until it is saved. The detached object is created using the regular Object-Oriented language object
instantiation. For example, a new detached CfgPerson object is created using the following
construction:

[Java]

CfgPerson person = new CfgPerson(confService);

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 165

An object instance can also be created by using links to external objects. The Component Object
Model creates a new object instance whenever the link is called, or any of the properties of a linked
object are called. For example, you can write:

[Java]

// person has already been retrieved from Configuration Server.
CfgTenant tenant = person.getTenant(); // this is a link to an external object. It is
initialized internally right now
CfgAddress address = tenant.getAddress();

Common Methods

Each configuration class contains the following methods:

• Generic GetProperty(string propertyName) — Retrieves the property value by its name.
• Generic SetProperty(string propertyName) — Sets the new value of the property by its name.
• Save() — Commits all changes previously made to the object to Configuration Server. If the object was

created detached from Configuration Server and has never been saved, a new object is created in
Configuration Server using the RequestCreateObject method. If the object has been saved or has
been retrieved from Configuration Server, a delta-object, which contains all changes to the object, is
formed and sent to Configuration Server by means of the RequestUpdateObject method.

• Delete() — Deletes the object from the Configuration Server Database.
• Refresh() — Retrieves the latest version of the object and refreshes the value of all its properties.

Tip
In this release, all configuration objects are “static,” which means that if the object
changes in the Configuration Server, the instance of a class is not automatically
changed in the Configuration Object Model. Clients must subscribe to the
corresponding event and manually refresh the COM object in order for these changes
to take effect.

Configuration Service

Tip
The IConfService interface was added to COM in release 8.0. All applications should
now use this interface to work with the configuration service instead of the old
ConfService class. This change is an example of how all COM types in the interface
are now referred to by interface; for instance, if a method previously returned
CfgObject it now returns ICfgObject. This is not compatible with existing code, but
upgrading should not be difficult as the new interfaces support the same methods as
the implementing types.

The Configuration Service (IConfService) interface provides services such as retrieval of objects and

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 166

subscription to events from Configuration Server. Each connection to a Configuration Server
(represented by a ConfServerProtocol class of Platform SDK) requires its own instance of the
IConfService interface.

The protocol class should be created and initialized in the client code prior to IConfService
initialization.

The ConfServiceFactory class is used to create the IConfService. This class uses the following
syntax:

[Java]

IConfService service = ConfServiceFactory.CreateConfService(protocol);

Retrieving Objects

Objects can be retrieved from Configuration Service by using one of the following methods:

• RetrieveObject — Accepts a query that returns one object. If multiple objects are returned, an
exception is thrown.

• RetrieveMultipleObjects — Accepts a query that returns one or more objects. A collection of objects
is returned.

Each of the Retrieve... methods can be either specific (by using generic criteria entries, an object
of a specified type is returned) or general (a general object is returned).

Handling Events

The following methods must be called before receiving events from Configuration Server:

1. Register - The application must register its callback by calling the Register method from the
Configuration Service. This method supplies the client’s filter, which enables the client to receive only
requested events.

2. Subscribe - The application must subscribe to events from Configuration Server by calling the
Subscribe method from the Configuration Service. This method provides a notification query object as
a parameter.

The NotificationQuery object determines whether the object (or set of objects) to which the
client wants to subscribe has changed. The NotificationQuery object contains such parameters
as object type, object DBID and tenant DBID.

After calling the Subscribe method, Configuration Server starts sending events to the client. These
events are objects, which contain information such as:

• which object (ID and type) is affected
• the type of event sent to the client
• any additional information

There are three types of events that the client might receive:

• ObjectCreated — A new object has been added to Configuration Server.
• ObjectChanged — Some of the object properties have been modified in Configuration Server.
• ObjectDeleted — The object has been removed from Configuration Server.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 167

Releasing a Configuration Service

Whenever a ConfService instance is no longer needed, the ReleaseConfService method can be
used to remove it from the internal list.

[Java]

ConfServiceFactory.ReleaseConfService(service);

Query Objects
A query object is an instance of a class that contains information required for a successful query to a
Configuration Server. This information includes an object type and its attributes (such as name and
tenant), which are used in the search process.

The inheritance structure of configuration server queries is designed to allow for future expansion.
The CfgQuery object is the base class for all query objects. Other classes extend CfgQuery to provide
more specific functionality for different types of queries - for example, all filter-based queries use the
CfgFilterBasedQuery class. This allows room for future query types (such as XPath) to implemented
in this Application Block.

A list of currently available query types is provided below:

• CfgFilterBasedQuery — Contains mapped attribute name-value pairs, as well as the object type.

A special query class is supplied for each configuration object type, in order to facilitate the process
of making queries to Configuration Server. For each searchable attribute, the query class has a
property that can be set. All of these classes inherit attributes from the CfgQuery object, and can be
supplied as parameters to the Retrieve… methods which are used to perform searches in
Configuration Server.

Cache Objects
The cache functionality is intended to enhance the Configuration Object Model by allowing
configuration objects to be stored locally, thereby minimizing requests to configuration server, as well
as enhancing ease of use by providing automatic synchronization between locally stored objects and
their server-side counterparts.

The cache functionality was designed with the following principles in mind:

• The cache functionality is designed to be extendable with custom implementations of provided
interfaces and not via inheritance.

• The cache component is not designed to replicate the Configuration Server query engine or other
Configuration Server functionality on the client side.

• Caching must be an optional feature. Work with Configuration Server should not be affected if caching is
not used.

Use Cases

Analysis of use cases provides insight into the requirements for applications likely to require
configuration cache functionality. The use cases described in the following table were selected for

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 168

analysis in order to highlight different functional requirements. There are several possible actors
which are referenced in the use cases. The actors are as follows:

• Application - Any application which uses the Configuration Object Model application block
• User - Human (or software) user who may perform actions upon objects in the configuration which are

separate from the Application

Use Case Description Actor Steps

PLACE OBJECT INTO
CACHE

Place a configuration
object into the
configuration cache
(note the object must
have been saved — ie
must have a DBID in
order to exist in the
cache).

Application 1. Application adds
object to the cache

PLACE OBJECT INTO
CACHE ON SAVE

Place a newly created
configuration object into
the configuration cache
when it is saved.

Application

1. Application creates
object

2. Application saves
object

3. Configuration Object
Model Application
Block adds object to
the cache

PLACE OBJECT INTO
CACHE ON RETRIEVE

Allow for automatic
insertion of
configuration objects
into the cache upon
retrieval from
configuration server.

Application

1. Application retrieves
configuration object

2. Configuration Object
Model Application
Block retrieves the
configuration object
from the server

3. Configuration Object
Model Application
Block places the
configuration object
into the cache

4. Configuration Object
Model Application
Block returns the
object to the
application

OBJECT REMOVED IN
CONFIGURATION
SERVER

When configuration
objects are deleted in
the configuration server,
the cache can delete
the local representation
of the object as well.

User
1. User deletes object

in the Configuration
Server

2. Cache removes

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 169

Use Case Description Actor Steps

corresponding local
object upon
receiving delete
notification

3. Cache sends
notification of object
deletion to
Application

SYNCHRONIZE OBJECT
PROPERTIES WITH
CONFIGURATION
SERVER

When an object stored
in the cache is updated
in the Configuration
Server the object must
be updated locally as
well.

User

1. User updates a
configuration object

2. Cache receives
notification about
object update

3. Cache updates the
object based on the
received delta

4. Cache fires event
informing any
subscribers of object
change

FIND OBJECT IN CACHE

The cache must support
the ability to find a
specific configuration
object in the cache
using object DBID and
type as the criteria for
the search.

Application

1. Application retrieves
object from cache.

2. If object is in the
cache, the cache
returns the object.
Otherwise the
application is
notified that the
requested object is
not in the cache.

ACCESS CACHED
OBJECTS

The cache must provide
its full object collection
to the application.

Application

1. Application requests
a complete list of
objects from the
cache.

2. The cache returns a
collection of all
cached objects.

RETRIEVE LINKED
OBJECT FROM CACHE

If caching is turned on,
object links which the
Configuration Object
Model currently resolves
through lazy

Application
1. Application accesses

a property which
requires link
resolution

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 170

Use Case Description Actor Steps

initialization (i.e. if a
property linking to
another object is
accessed, we retrieve
the referred-to object
from configuration
server) must be
resolvable through
cache access.

2. Configuration Object
Model Application
Block retrieves the
linked object from
configuration server
and stores it in the
cache before
returning to the
application

3. Application again
accesses the
property and this
time the
Configuration Object
Model Application
Block retrieves the
object from the
cache

PROVIDE CACHE
TRANSPARENCY ON
RETRIEVE

A cache search should
be performed on
attempt to retrieve an
object from
Configuration Server. If
the requested object is
found in the cache then
the Configuration Object
Model should return the
cached object rather
than accessing
Configuration Server.

1. Application creates
query to retrieve
configuration object

2. Application executes
query using the
Configuration Object
Model

3. Configuration Object
Model Application
Block searches the
cache
• If object present,

return the object
• If object not

present, query
configuration
server for the
object

CACHE SERIALIZATION The cache should
support serialization. Application

1. Application provides
a stream to the
cache

2. The cache serializes
itself into the stream
in an XML format

3. Application restarts
4. Application provides

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 171

Use Case Description Actor Steps

the cache a stream
of cache data in the
same XML format as
in step 2

5. Cache restores itself
6. Cache subscribes for

updates on the
restored objects

Implementation Overview

Two new interfaces for cache management have been added to the Configuration Object Model: the
IConfCache interface and a default cache implementation (DefaultConfCache). Note that the
ConfCache also implements the Subscriber interface from MessageBroker so that the user can
subscribe to notifications from Configuration Server, as discussed in Notification And Delta Handling.

The IConfCache interface provides methods for basic functionality such as adding, updating,
retrieving, and removing objects in the cache. It also includes a Policy property that defines cache
behavior and affects method implementation. (For more details about policies, see Cache Policy).

The DefaultConfCache component provides a default implementation of the IConfCache interface. It
serializes and deserializes cache objects using the XML format described in the XML Format section,
below.

To enable and configure caching functionality, and to specify ConfService policy, there are three
CreateConfService methods available from ConfServiceFactory. The original CreateConfService
method (not shown here) creates a ConfService instance that uses the default policy and does not
use caching.

[Java]

public static IConfService createConfService(Protocol protocol, boolean enableCaching)

This method creates an instance of a Configuration Service based on the specified protocol. If caching
is enabled, the default caching policy will be used. If enableCaching is set to true, caching
functionality will be turned on. If caching is disabled, all policy flags related to caching will be false.

[Java]

public static IConfService createConfService(Protocol protocol,
IConfServicePolicy confServicePolicy, IConfCache cache)

This method creates a configuration service with the specified policy information. The created service
will have caching enabled if a cache object (implementing the IConfCache interface) is passed as a
parameter.

[Java]

public static IConfService createConfService(Protocol protocol,
IConfServicePolicy confServicePolicy, IConfCachePolicy confCachePolicy)

This method creates a configuration service with the specified policy information. The created service

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 172

will have caching enabled by default with the cache using the specified cache policy.

XML Format

The "Cache" node will be the root of the configuration cache XML, while "ConfData" is a child of the
"Cache" node. The ConfData node contains a collection of XML representations for each configuration
object in the cache. The XML format of each object is identical to that which is returned by the ToXml
method supported by each the Configuration Object Model configuration object.

The "CacheConfiguration" element is a child of the "Cache" node. There can only be one instance of
this node and it contains all cache configuration parameters, as follows:

• CONFIGURATIONSERVER NODE — There can be 1..n instances of this element. Each one will represent a
configuration server for which the cache is applicable (a cache can be applicable to multiple
configuration servers if they are working with the same database as in the case of a primary and
backup configuration server pair). Each ConfigurationServer element will have a URI attribute
specifying the unique URI identifying the Configuration Server, as well as a Name attribute specifying
the name associated with the endpoint.

The example provided below shows a cache that is applicable for the configuration server at
"server:2020" with some policy details specified. There are two objects in the cache for this example:
a CfgDN and a CfgService object.

[XML]

<Cache>
<CacheConfiguration>

<ConfigurationServer name="serverName" uri="tcp://server:2020"/>
</CacheConfiguration>
<ConfData>

<CfgDN>
<DBID value="267" />
<switchDBID value="111" />
<tenantDBID value="1" />
<type value="3" />
<number value="1111" />
<loginFlag value="1" />
<registerAll value="2" />
<groupDBID value="0" />
<trunks value="0" />
<routeType value="1" />
<state value="1" />
<name value="DNAlias" />
<useOverride value="2" />
<switchSpecificType value="1" />
<siteDBID value="0" />
<contractDBID value="0" />
<accessNumbers />
<userProperties />

</CfgDN>

<CfgService>
<DBID value="102" />
<name value="Solution1" />
<type value="2" />
<state value="1" />
<solutionType value="1" />
<components>

<CfgSolutionComponent>

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 173

<startupPriority value="3" />
<isOptional value="2" />
<appDBID value="153" />

</CfgSolutionComponent>
</components>
<SCSDBID value="102" />
<assignedTenantDBID value="101" />
<version value="7.6.000.00" />
<startupType value="2" />
<userProperties />
<componentDefinitions />
<resources />

</CfgService>
</ConfData>

</Cache>

Cache Policy

The configuration cache can be assigned a policy represented by a Policy interface. A default
implementation of the interface will be provided in the DefaultConfCachePolicy class.

The IConfCache interface interprets the policy as follows:

1. CacheOnCreate — When an object is created in the configuration server, the policy will be checked with
the created object as the parameter. If the method returns true, the object will be added to the cache, if
it is false, the object will not be added. Default implementation will always return false.

2. RemoveOnDelete — When an object is deleted in the configuration server, the policy will be checked
with the deleted object as the parameter. If the method returns true, the object will be deleted in the
cache, if it is false, the notification will be ignored. Default implementation will always return true.

3. TrackUpdates — When an object is updated in the configuration server, the policy will be checked with
the current version of the object as the parameter. If the method returns true, the object will be
updated with the received delta, if it is false, the notification will be ignored. Default implementation
will always return true.

4. ReturnCopies — Determines whether the cache should return copies of objects when they are retrieved
from the cache, or the original, cached versions. False by default.

IConfServicePolicy Interface

The IConfServicePolicy interface can be used to define the policy settings for the ConfService.
Two default implementations are available:

1. DefaultConfServicePolicy contains the settings for a non-caching configuration service. That is, all of
the cache-related policy flags will always return false.

2. CachingConfServicePolicy defines the default behavior for a configuration service with caching
enabled. (Note that when referring to the "default" value below, we will be referring to this
implementation.)

The policy interface settings are interpreted as follows:

• AttemptLinkResolutionThroughCache — Whenever a link resolution attempt is made, this policy will be
checked for the type of object the link refers to. If this method returns true, the link resolution attempt
will first be made through the cache. If the method returns false, or if the object has not been found in
the cache, the server will queried. Default value is always true.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 174

• CacheOnRetrieve — This method will be called for each object retrieved from the configuration. If the
return value is "true" the object will be added to the cache. Default value is always true.

• CacheOnSave — This method will be called for each object that is being saved. If the return value is true,
the object will be added to the cache. If the object is already in the cache, it will not be overwritten.
Default value is always true.

• ValidateBeforeSave — This is a property from the ConfService which will be moved to the policy
interface and is not related to caching. It is used to indicate whether property values are checked for
valid values against the schema before a save attempt is made. Default value is true.

• QueryCacheOnRetrieve — This method will be called every time a retrieve operation is performed using
a query. The ConfService will first check the cache for the existence of the requested configuration
object. If the object exists, it will be returned and no configuration server request will be made. If there
are no values returned, the ConfService will query the configuration server (see Query Engine).
Default value is always false.

• QueryCacheOnRetrieveMultiple — This method will be called every time a retrieve multiple operation
is performed. The ConfService will first execute the query against cache. If the returned object count
is greater than 0 the found object collection will be returned and no configuration server request will be
made. If there are no values returned, the ConfService will query the configuration server (see Query
Engine). Default value is always false.

Note that the RetrieveMultiple operation is NOT implemented in the default query engine, so
providing a policy where this method returns true will require a new query engine implementation.

Cache Extendability

Consistent with the design principles outlined above, the configuration cache is extendable via
custom implementations of provided interfaces. The two areas of the cache which can be extended
are the cache storage and the cache query engine.

Cache Storage

The storage interface defines the method by which objects are stored in the cache. When an instance
of an implementing object is provided to the cache, the cache will store all cached objects in the
storage component.

The default storage implementation stores cached objects using the object type and DBID as keys.
Note that this means that objects in the cache are assumed to be from one configuration database.
The default implementation is also thread safe using a reader/writer lock which allows for multiple
concurrent readers and one writer. The storage methods are as follows:

• Add — Adds a new object to the storage. If object already exists in the storage, the default
implementation thrown an exception.

• Update — Overwrites an existing object in the storage. If the object is not found in the storage, the
default implementation creates a new version of the object.

• Remove — Removes an object from the storage.
• Retrieve — Retrieves an enumerable list of all objects in the storage (filtered by type), and possibly

influenced by an optional helper parameter. Note that the helper parameter is not meant to provide
querying logic — that should be done in the query engine. Because the query engine is to some degree
dependent on the storage implementation, the helper parameter allows for some flexibility in the way
stored objects are enumerated for the query engine. The default implementation can take a

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 175

CfgObjectType as a helper parameter.
• Clear — Removes all objects in the storage.

Query Engine

The query engine provides the ability to define the method by which objects are located in the cache.

Depending on the IConfService policy, Retrieve requests as well as link resolution can first be
attempted through the cache. If the requested object is found in the cache, then that cached object is
returned instead of sending a request to Configuration Server. If the object is not present in the
cache, a request to Configuration Server is made.

A user-definable query engine module exists inside the cache to achieve this functionality. A query
engine must implement the IConfCacheQueryEngine interface, which provides methods to retrieve
objects (either individually, or as a list) and to test a query and determine if it can be executed.

If enabled by the policy, IConfService will attempt a query to its cache using the cache's query
engine interface. If a result is returned, the IConfService will not query the Configuration Server. By
following this contract, the Configuration Object Model user is then able to create a custom
implementation of the IConfCacheQueryEngine with any extended search capabilities which may be
missing from the simple default implementation.

Two implementations of the IConfCacheQueryEngine interface are provided in the Configuration
Object Model, as described below:

• DEFAULTCONFCACHEQUERYENGINE CLASS - The DefaultConfCacheQueryEngine class is a default
implementation of the IConfCacheQueryEngine interface.

• COMPOSITECONFCACHEQUERYENGINE CLASS - This class is a more advanced implementation of the
query engine which allows child query engine modules to be registered in order to interpret different
types of queries. It does not have a default query engine implementation, only the mechanism for
working with multiple child query engines.

Notification and Delta Handling

The default configuration cache will implement the Subscriber<ConfEvent> interface which will
allow the cache to be subscribed to receive configuration events. When a cache instance is
associated with a Configuration Service, it will automatically be subscribed for configuration events
from that service (note that if a custom cache implementation also implements this interface it will
be subscribed for events as well). The way the cache is updated based on these notifications is
determined by the cache policy.

In addition, a new filter class will be added in order to allow the subscriber to filter the cache events.
The ConfCacheFilter will implement the MessageBroker's Predicate interface, allowing for the filter
to be passed during registration for events via SubscriptionService. The ConfCacheFilter's
properties will specify the parameters by which the events will be filtered. Initially, the supported
parameters will be object type, object DBID, and update type, allowing the user to filter events by
one or a combination of these parameters assuming an AND relationship between the parameters
specified.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 176

Using the Application Block

Installing the Configuration Object Model Application Block
Before you install the Configuration Object Model Application Block, it is important to review the
software requirements for using it.

Software Requirements

To work with the Configuration Object Model Application Block, you must ensure that your system
meets the software requirements established in the Genesys Supported Operating Environment
Reference Manual, as well as meeting the following minimum software requirements:

• JDK 1.6 or higher
• Genesys Configuration Platform SDK 8.0 or higher

Building the Configuration Object Model Application Block

To build the Configuration Object Model Application Block:

1. Open the <Platform SDK Folder>\applicationblocks\com folder.
2. Run either build.bat or build.sh, depending on your platform.

This will create the comappblock.jar file, located within the <Platform SDK
Folder>\applicationblocks\com\dist\lib directory.

Using the QuickStart Application
The easiest way to start using the Configuration Object Model Application Block is to use the bundled
QuickStart application. This application ships in the same folder as the application block.

Configuring the QuickStart Application

In order to use the QuickStart application, you will need to change some lines of code in the
quickstart.properties file, located in the <Platform SDK Folder>\applicationblocks\com\
quickstart directory. Change the following lines to point to your Configuration Server, and then save
the updated file:

ConfServerUri = tcp://:

ConfServerUser =
ConfServerPassword =

ConfServerClientName = default
ConfServerClientType = CFGSCE

Building the QuickStart Application

1. Open the <Platform SDK Folder>\applicationblocks\com\quickstart folder.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 177

2. Run either build.bat or build.sh, depending on your platform.

Running the QuickStart Application

1. Open a Command Prompt or Terminal window.
2. Navigate to the <Platform SDK Folder>\applicationblocks\com\quickstart directory.
3. Run either quickstart.bat or quickstart.sh, depending on your platform.

How to Properly Initialize the ConfService Instance

To work with Configuration Server, the ConfService instance needs ConfServerProtocol.

Platform SDK protocol connections allow users to manage connections, setup custom asynchronus
MessageHandler objects, substitute message receivers, and subscribe for protocol messages and
channel events. So, to maintain Platform SDK flexibility, the Configuration Object Model Application
Block does not manage a ConfServerProtocol connection inside of the ConfService - this must be
done by the user. Instead users may create a simple instance and initialize it with
WarmStandbyService.

It is important to note that asycnhronous protocol events may be configured for delivery to a single
destination, with only one MessageHandler or MessageReceiver for one protocol instance. Starting
from Platform SDK release 8.1.1, ConfService may be initialized without use of legacy Message
Broker Application Block. Starting from version 8.5, this is the only way to create ConfService.

If your application needs to receive asynchronous protocol messages from Configuration Server on
the protocol instance where ConfService is initialized, that can be done using
ConfService.setUserMessageHandler(messageHandler).

Protocol Initialization
A ConfServerProtocol instance is required for the creation of ConfService. It should be initialized
with an Endpoint and handshake properties, but without setting either
confServerProtocol.setMessageHandler() or confServerProtocol.setReceiver().

// Initialize ConfService:
PropertyConfiguration config;
ConfServerProtocol confServerProtocol;
IConfService confService;

config = new PropertyConfiguration();
config.setUseAddp(true);
config.setAddpClientTimeout(15);

confServerProtocol = new ConfServerProtocol(new Endpoint("ConfigServer", csHost, csPort,
config));
confServerProtocol.setUserName(userName);
confServerProtocol.setUserPassword(password);
confServerProtocol.setClientName(clientName);
confServerProtocol.setClientApplicationType(clientType.ordinal());

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 178

Important
Do not open the protocol before ConfService is created. ConfService sets its own
internal MessageHandler, and this operation can only be done on a closed channel.

ConfService Initialization
confService = ConfServiceFactory.createConfService(confServerProtocol);
confServerProtocol.open();

ConfService Shutdown
confServerProtocol.close();
ConfServiceFactory.releaseConfService(confService);
confService = null;

Application Components Usage Notes
Older releases of ProtocolManagementService do not support using ConfService without the
Message Broker service - an exception raised when users try to create the ConfService object on a
protocol instance initialized by the Protocol Manager Application Block. To migrate away from Protocol
Manager Application Block usage, we recommend creating and configuring ConfServerProtocol
without Protocol Manager Application Block usage, as shown above.

MessageHandler is not compatible with the deprecated MessageReceiver; it is only possible to use
one of these components on a protocol instance. Specific to Platform SDK for Java is the limitation
that one protocol instance may have only one instance of MessageHandler. So, if an application uses
a custom MessageHandler on a protocol used for ConfService, then only one handler will be able to
receive asynchronous protocol events.

If application overwrites the ConfService object after creation, then that service will be unable to
receive Configuration Server notifications or to perform multiple objects reading operations - a
timeout exception will occur. If there is a need to get those protocol messages separately from
ConfService logic, it is possible to initialize custom MessageHandler with
confService.setUserMessageHandler(messageHandler).

Notes for Previous Releases of Platform SDK
'''[+] Platform SDK 8.1.0 Specific Notes'''
Platform SDK 8.1.0 included some improvements to the Message Broker Application Block.

There was a new EventReceivingBrokerService class that implements the receiver interface, which
can be used as an external receiver for Platform SDK protocols. When this class is in use, protocol
messages will be handled a little bit faster (compared to the older Message Broker service) with no
redundant intermediate queue, and there is no additional thread sleeping/waiting.

EventReceivingBrokerService broker = new EventReceivingBrokerService();
broker.setInvoker(new SingleThreadInvoker("COMBrokerService-" + cfgsrvEndpointName));

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 179

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheCOMAB#protoinit

ConfServerProtocol protocol = new ConfServerProtocol(endpoint);
protocol.setReceiver(broker);
protocol.setUserName(...);
protocol.set...();
protocol.open();

IConfService confService = ConfServiceFactory.createConfService(protocol, broker);

To shutdown the Configuration Object Model Application Block, you can use the following code:

protocol.close();
ConfServiceFactory.releaseConfService(confService);

'''[+] Platform SDK 8.0, 7.6 Specific Notes'''
In earlier releases of Platform SDK, the initialization logic could look like this:

ConfServerProtocol protocol = new ConfServerProtocol(endpoint);
protocol.setUserName(...);
protocol.set...();
protocol.open();

EventBrokerService broker = BrokerServiceFactory.CreateEventBroker(protocol);
IConfService confService = ConfServiceFactory.createConfService(protocol, broker);

If the protocol has an external receiver initialized (for example, with Protocol Manager usage), then
the EventBrokerService should be initialized on that receiver instead of the protocol itself:

EventBrokerService broker =
BrokerServiceFactory.CreateEventBroker(protocolManager.getReceiver());

To shutdown the Configuration Object Model Application Block, you can use the following code:

protocol.close();
broker.dispose();
ConfServiceFactory.releaseConfService(confService);

Important
Legacy EventBrokerService objects need to be disposed on shutdown because they
include an internal reading thread which should be stopped.

.NET

Architecture and Design

The Configuration Object Model Application Block provides a consistent and intuitive object model for

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 180

working with Configuration Server objects, as well as a straightforward object model for queries with
different filters. This Application Block hides the complexities of object creation and changing by
means of "delta" objects. It also creates an event subscription/delivery model, which hides key-value
details of the current protocol, and is integrated with the rest of the object model.

The architecture of the Configuration Object Model Application Block consists of three functional
components:

• Configuration Objects
• Configuration Service
• Query Objects
• Cache Objects

These components are shown in the figure below.

Configuration Objects
Classes and Structures

There are two types of configuration objects are supported by the Configuration Object Model

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 181

Application Block:

• Classes, which can be retrieved directly from Configuration Server using queries.
• Structures, which only exist as properties of classes, and cannot be retrieved directly from Configuration

Server.

The main differences between classes and structures are as follows:

1. Each structure is a property of another class or structure, and therefore must have a "parent" class.
2. Classes can be changed and saved to the Configuration Server and structures can only be saved

through their "parent" classes.
3. Clients can subscribe to events on changes in a class, but not in a structure. To retrieve events on

changes in a structure, clients have to subscribe to changes in a parent class.

Property Types

Both classes and structures have properties. For each property, the object has getter and setter
methods which retrieve the value of the property and set a new value correspondingly. However,
some properties are read-only and therefore will only have a getter method. For each object, its
properties can be one of the following types:

• Simple — A property that is represented by a value type. Configuration Server supports two types of
simple properties - string and integer. For example, the CfgPerson object has FirstName and
LastName properties, both of the string type.

• KV-list — Tree-like properties that are represented by the KeyValueCollection class in the
Configuration Object Model. Examples of this property include userProperties of CfgPerson.

• Structure — A complex property that includes one or more properties. In the Configuration Object
Model, structures are represented by instances of classes that are similar to configuration objects, but
cannot be created directly. For example, in the CfgPerson class, its AgentInfo property contains
simple, kv-list and other property types.

• List of structures — A property that represents more than one structure. In Configuration Object Model,
lists of structures are represented by a generic type IList<structure_type>, so that the collection is
typed, and clients can easily iterate through the collection.

• Links to a single object — In Configuration Server, these properties are stored as DBIDs of external
objects. The Configuration Object Model automatically resolves these DBIDs into the real objects, which
can be manipulated in the same way as the objects directly retrieved from Configuration Server. Links
are initialized at the time of the initial request to one of its properties.

Tip
For each link, there are two ways to set the new value of a link. There is a setter
method of the property, which uses an object reference to set a new value of a link.
There is also a Set DBID method, which uses an integer DBID value.

• Links to multiple objects — A property that contains more than one link. In the Configuration Object
Model, lists of structures are represented by a generic type IList<class_type>, so that the collection
is typed, and clients can easily iterate through the collection.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 182

Creating Instances

One way to create an instance of an object in the Configuration Object Model is to invoke one of the
Retrieve methods of the ConfService class. This set of methods returns instances of objects that
already exist in Configuration Server.

To create a new object in Configuration Server, a client must create a new instance of a COM or
"detached" object. The detached object does not correspond to any objects in Configuration Server
until it is saved. The detached object is created using the regular object-oriented language object
instantiation. For example, a new detached CfgPerson object is created using the following
construction:

[C#]

CfgPerson person = new CfgPerson(confService);

An object instance can also be created by using links to external objects. The Component Object
Model creates a new object instance whenever the link is called, or any of the properties of a linked
object are called. For example, you can write:

[C#]

// Person has already been retrieved from Configuration Server.
CfgTenant tenant = person.Tenant;
// This is a link to an external object. It is initialized internally right now...
CfgAddress address = tenant.Address;

Common Methods

Each configuration class contains the following methods:

• Generic GetProperty(string propertyName) — Retrieves the property value by its name.
• Generic SetProperty(string propertyName) — Sets the new value of the property by its name.
• Save() — Commits all changes previously made to the object to Configuration Server. If the object was

created detached from Configuration Server and has never been saved, a new object is created in
Configuration Server using the RequestCreateObject method. If the object has been saved or has
been retrieved from Configuration Server, a delta-object, which contains all changes to the object, is
formed and sent to Configuration Server by means of the RequestUpdateObject method.

• Delete() — Deletes the object from the Configuration Server Database.
• Refresh() — Retrieves the latest version of the object and refreshes the value of all its properties.

Tip
In this release, all configuration objects are "static," which means that if the object
changes in the Configuration Server, the instance of a class is not automatically
changed in the Configuration Object Model. Clients must subscribe to the
corresponding event and manually refresh the COM object in order for these changes
to take effect.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 183

Configuration Service

Important
The IConfService interface was added to COM in release 8.0. All applications should
now use this interface to work with the configuration service instead of the old
ConfService class. This change is an example of how all COM types in the interface
are now referred to by interface; for instance, if a method previously returned
CfgObject it now returns ICfgObject. This is not compatible with existing code, but
upgrading should not be difficult as the new interfaces support the same methods as
the implementing types.

The Configuration Service (IConfService) interface provides services such as retrieval of objects and
subscription to events from Configuration Server. Each connection to a Configuration Server
(represented by a ConfServerProtocol class of Platform SDK) requires its own instance of the
IConfService interface.

The protocol class should be created and initialized in the client code prior to IConfService
initialization.

The ConfServiceFactory class is used to create the IConfService. This class uses the following
syntax:

[C#]

IConfService service = ConfServiceFactory.CreateConfService(protocol);

Retrieving Objects

Objects can be retrieved from Configuration Service by using one of the following methods:

• RetrieveObject — Accepts a query that returns one object. If multiple objects are returned, an
exception is thrown.

• RetrieveMultipleObjects — Accepts a query that returns one or more objects. A collection of objects
is returned.

Each of the Retrieve methods can be can be strongly typed (with use of generics, an object of a
specified type is returned) or general (a general object is returned).

Handling Events

The following methods must be called before receiving events from Configuration Server:

1. Register

The application must register its callback by calling the Register method from the Configuration
Service. This method supplies the client's filter, which enables the client to receive only requested
events.

2. Subscribe

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 184

The application must subscribe to events from Configuration Server by calling the Subscribe method
from the Configuration Service. This method provides a notification query object as a parameter.

The NotificationQuery object determines whether the object (or set of objects) to which the client
wants to subscribe has changed. The NotificationQuery object contains such parameters as object
type, object DBID and tenant DBID.

After calling the Subscribe method, Configuration Server starts sending events to the client. These
events are objects, which contain information such as:

• which object (ID and type) is affected
• the type of event sent to the client
• any additional information

There are three types of events that the client might receive:

• ObjectCreated — A new object has been added to Configuration Server.
• ObjectChanged — Some of the object properties have been modified in Configuration Server.
• ObjectDeleted — The object has been removed from Configuration Server.

Logging Messages

Configuration Object Model Application Block supports logging through the standard Platform SDK
logging interfaces. The IConfService interface inherits the EnableLogging method that provides the
ability to log messages through the provided ILogger interface.

Releasing a Configuration Service

Whenever a ConfService instance is no longer needed, the ReleaseConfService method can be
used to remove it from the internal list.

[C#]

ConfServiceFactory.ReleaseConfService(service);

Query Objects
A query object is an instance of a class that contains information required for a successful query to a
Configuration Server. This information includes an object type and its attributes (such as name and
tenant), which are used in the search process.

The inheritance structure of configuration server queries is designed to allow for future expansion.
The CfgQuery object is the base class for all query objects. Other classes extend CfgQuery to provide
more specific functionality for different types of queries - for example, all filter-based queries use the
CfgFilterBasedQuery class. This allows room for future query types (such as XPath) to be
implemented in this Application Block.

A list of currently available query types is provided below:

• CfgFilterBasedQuery — Contains mapped attribute name-value pairs, as well as the object type.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 185

A special query class is supplied for each configuration object type, in order to facilitate the process
of making queries to Configuration Server. For each searchable attribute, the query class has a
property that can be set. All of these classes inherit attributes from the CfgQuery object, and can be
supplied as parameters to the Retrieve methods which are used to perform searches in
Configuration Server.

Cache Objects
The cache functionality is intended to enhance the Configuration Object Model by allowing
configuration objects to be stored locally, thereby minimizing requests to configuration server, as well
as enhancing ease of use by providing automatic synchronization between locally stored objects and
their server-side counterparts.

The cache functionality was designed with the following principles in mind:

• The cache functionality is designed to be extendable with custom implementations of provided
interfaces and not via inheritance.

• The cache component is not designed to replicate the Configuration Server query engine or other
Configuration Server functionality on the client side.

• Caching must be an optional feature. Work with Configuration Server should not be affected if caching is
not used.

Use Cases

Analysis of use cases provides insight into the requirements for applications likely to require
configuration cache functionality. The use cases described in the following table were selected for
analysis in order to highlight different functional requirements. There are several possible actors
which are referenced in the use cases. The actors are as follows:

• Application - Any application which uses the Configuration Object Model application block
• User - Human (or software) user who may perform actions upon objects in the configuration which are

separate from the Application

Use Case Description Actor Steps

PLACE OBJECT INTO
CACHE

Place a configuration
object into the
configuration cache
(note the object must
have been saved — ie
must have a DBID in
order to exist in the
cache).

Application 1. Application adds
object to the cache

PLACE OBJECT INTO
CACHE ON SAVE

Place a newly created
configuration object into
the configuration cache
when it is saved.

Application

1. Application creates
object

2. Application saves
object

3. Configuration Object
Model Application

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 186

Use Case Description Actor Steps

Block adds object to
the cache

PLACE OBJECT INTO
CACHE ON RETRIEVE

Allow for automatic
insertion of
configuration objects
into the cache upon
retrieval from
configuration server.

Application

1. Application retrieves
configuration object

2. Configuration Object
Model Application
Block retrieves the
configuration object
from the server

3. Configuration Object
Model Application
Block places the
configuration object
into the cache

4. Configuration Object
Model Application
Block returns the
object to the
application

OBJECT REMOVED IN
CONFIGURATION
SERVER

When configuration
objects are deleted in
the configuration server,
the cache can delete
the local representation
of the object as well.

User

1. User deletes object
in the Configuration
Server

2. Cache removes
corresponding local
object upon
receiving delete
notification

3. Cache sends
notification of object
deletion to
Application

SYNCHRONIZE OBJECT
PROPERTIES WITH
CONFIGURATION
SERVER

When an object stored
in the cache is updated
in the Configuration
Server the object must
be updated locally as
well.

User

1. User updates a
configuration object

2. Cache receives
notification about
object update

3. Cache updates the
object based on the
received delta

4. Cache fires event
informing any
subscribers of object

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 187

Use Case Description Actor Steps

change

FIND OBJECT IN CACHE

The cache must support
the ability to find a
specific configuration
object in the cache
using object DBID and
type as the criteria for
the search.

Application

1. Application retrieves
object from cache.

2. If object is in the
cache, the cache
returns the object.
Otherwise the
application is
notified that the
requested object is
not in the cache.

ACCESS CACHED
OBJECTS

The cache must provide
its full object collection
to the application.

Application

1. Application requests
a complete list of
objects from the
cache.

2. The cache returns a
collection of all
cached objects.

RETRIEVE LINKED
OBJECT FROM CACHE

If caching is turned on,
object links which the
Configuration Object
Model currently resolves
through lazy
initialization (i.e. if a
property linking to
another object is
accessed, we retrieve
the referred-to object
from configuration
server) must be
resolvable through
cache access.

Application

1. Application accesses
a property which
requires link
resolution

2. Configuration Object
Model Application
Block retrieves the
linked object from
configuration server
and stores it in the
cache before
returning to the
application

3. Application again
accesses the
property and this
time the
Configuration Object
Model Application
Block retrieves the
object from the
cache

PROVIDE CACHE
TRANSPARENCY ON
RETRIEVE

A cache search should
be performed on
attempt to retrieve an
object from

1. Application creates
query to retrieve

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 188

Use Case Description Actor Steps

Configuration Server. If
the requested object is
found in the cache then
the Configuration Object
Model should return the
cached object rather
than accessing
Configuration Server.

configuration object
2. Application executes

query using the
Configuration Object
Model

3. Configuration Object
Model Application
Block searches the
cache
• If object present,

return the object
• If object not

present, query
configuration
server for the
object

CACHE SERIALIZATION The cache should
support serialization. Application

1. Application provides
a stream to the
cache

2. The cache serializes
itself into the stream
in an XML format

3. Application restarts
4. Application provides

the cache a stream
of cache data in the
same XML format as
in step 2

5. Cache restores itself
6. Cache subscribes for

updates on the
restored objects

Implementation Overview

Two new interfaces for cache management have been added to the Configuration Object Model: the
IConfCache interface and a default cache implementation (DefaultConfCache). Note that the
ConfCache also implements the ISubscriber interface from MessageBroker. The cache implements
ISubscriber in order to allow the user to subscribe to notifications from Configuration Server, as
discussed in Notification And Delta Handling.

The IConfCache interface provides methods for basic functionality such as adding, updating,
retrieving, and removing objects in the cache. It also includes a Policy property that defines cache
behavior and affects method implementation. (For more details about policies, see Cache Policy).

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 189

The DefaultConfCache component provides a default implementation of the IConfCache interface. It
serializes and deserializes cache objects using the XML format described in the XML Format section,
below.

To enable and configure caching functionality, and to specify ConfService policy, there are three
CreateConfService methods available from ConfServiceFactory. The original CreateConfService
method (not shown here) creates a ConfService instance that uses the default policy and does not
use caching.

[C#]

public static IConfService CreateConfService(IProtocol protocol, bool enableCaching)

This method creates an instance of a Configuration Service based on the specified protocol. If caching
is enabled, the default caching policy will be used. If enableCaching is set to true, caching
functionality will be turned on. If caching is disabled, all policy flags related to caching will be false.

[C#]

public static IConfService CreateConfService(IProtocol protocol,
IConfServicePolicy confServicePolicy, IConfCache cache)

This method creates a configuration service with the specified policy information. The created service
will have caching enabled if a cache object (implementing the IConfCache interface) is passed as a
parameter.

[C#]

public static IConfService CreateConfService(IProtocol protocol,
IConfServicePolicy confServicePolicy, IConfCachePolicy confCachePolicy)

This method creates a configuration service with the specified policy information. The created service
will have caching enabled by default with the cache using the specified cache policy.

XML Format

The "Cache" node will be the root of the configuration cache XML, while "ConfData" is a child of the
"Cache" node. The ConfData node contains a collection of XML representations for each configuration
object in the cache. The XML format of each object is identical to that which is returned by the ToXml
method supported by each the Configuration Object Model configuration object.

The "CacheConfiguration" element is a child of the "Cache" node. There can only be one instance of
this node and it contains all cache configuration parameters, as follows:

• CONFIGURATIONSERVER NODE – There can be 1..n instances of this element. Each one will represent a
configuration server for which the cache is applicable (a cache can be applicable to multiple
configuration servers if they are working with the same database as in the case of a primary and
backup configuration server pair). Each ConfigurationServer element will have a URI attribute
specifying the unique URI identifying the Configuration Server, as well as a Name attribute specifying
the name associated with the endpoint.

The example provided below shows a cache that is applicable for the configuration server at
"server:2020" with some policy details specified. There are two objects in the cache for this example:
a CfgDN and a CfgService object.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 190

[XML]

<Cache>
<CacheConfiguration>

<ConfigurationServer name="serverName" uri="tcp://server:2020"/>
</CacheConfiguration>

<ConfData>
<CfgDN>

<DBID value="267" />
<switchDBID value="111" />
<tenantDBID value="1" />
<type value="3" />
<number value="1111" />
<loginFlag value="1" />
<registerAll value="2" />
<groupDBID value="0" />
<trunks value="0" />
<routeType value="1" />
<state value="1" />
<name value="DNAlias" />
<useOverride value="2" />
<switchSpecificType value="1" />
<siteDBID value="0" />
<contractDBID value="0" />
<accessNumbers />
<userProperties />

</CfgDN>

<CfgService>
<DBID value="102" />
<name value="Solution1" />
<type value="2" />
<state value="1" />
<solutionType value="1" />
<components>

<CfgSolutionComponent>
<startupPriority value="3" />
<isOptional value="2" />
<appDBID value="153" />

</CfgSolutionComponent>
</components>
<SCSDBID value="102" />
<assignedTenantDBID value="101" />
<version value="7.6.000.00" />
<startupType value="2" />
<userProperties />
<componentDefinitions />
<resources />

</CfgService>
</ConfData>

</Cache>

Cache Policy

The configuration cache can be assigned a policy represented by a Policy interface. A default
implementation of the interface will be provided in the DefaultConfCachePolicy class.

The IConfCache interface will interpret the policy as follows:

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 191

1. CacheOnCreate – When an object is created in the configuration server, the policy will be checked with
the created object as the parameter. If the method returns true, the object will be added to the cache, if
it is false, the object will not be added. Default implementation will always return false.

2. RemoveOnDelete – When an object is deleted in the configuration server, the policy will be checked with
the deleted object as the parameter. If the method returns true, the object will be deleted in the cache,
if it is false, the notification will be ignored. Default implementation will always return true.

3. TrackUpdates – When an object is updated in the configuration server, the policy will be checked with
the current version of the object as the parameter. If the method returns true, the object will be
updated with the received delta, if it is false, the notification will be ignored. Default implementation
will always return true.

4. ReturnCopies – Determines whether the cache should return copies of objects when they are retrieved
from the cache, or the original, cached versions. False by default.

IConfServicePolicy Interface

The IConfServicePolicy interface can be used to define the policy settings for the ConfService.
Two default implementations are available:

1. DefaultConfServicePolicy contains the settings for a non-caching configuration service. That is, all of
the cache-related policy flags will always return false.

2. CachingConfServicePolicy defines the default behavior for a configuration service with caching
enabled. (Note that when referring to the "default" value below, we will be referring to this
implementation.)

The policy interface settings are interpreted as follows:

• AttemptLinkResolutionThroughCache – Whenever a link resolution attempt is made, this policy will be
checked for the type of object the link refers to. If this method returns true, the link resolution attempt
will first be made through the cache. If the method returns false, or if the object has not been found in
the cache, the server will queried. Default value is always true.

• CacheOnRetrieve – This method will be called for each object retrieved from the configuration. If the
return value is "true" the object will be added to the cache. Default value is always true.

• CacheOnSave – This method will be called for each object that is being saved. If the return value is true,
the object will be added to the cache. If the object is already in the cache, it will not be overwritten.
Default value is always true.

• ValidateBeforeSave – This is a property from the ConfService which will be moved to the policy
interface and is not related to caching. It is used to indicate whether property values are checked for
valid values against the schema before a save attempt is made. Default value is true.

• QueryCacheOnRetrieve – This method will be called every time a retrieve operation is performed using
a query. The ConfService will first check the cache for the existence of the requested configuration
object. If the object exists, it will be returned and no configuration server request will be made. If there
are no values returned, the ConfService will query the configuration server (see Query Engine).
Default value is always false.

• QueryCacheOnRetrieveMultiple – This method will be called every time a retrieve multiple operation
is performed. The ConfService will first execute the query against cache. If the returned object count is
greater than 0 the found object collection will be returned and no configuration server request will be
made. If there are no values returned, the ConfService will query the configuration server (see Query
Engine). Default value is always false.

Note that the RetrieveMultiple operation is NOT implemented in the default query engine, so

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 192

providing a policy where this method returns true will require a new query engine implementation.

Cache Extendability

Consistent with the design principles outlined above, the configuration cache is extendable via
custom implementations of provided interfaces. The two areas of the cache which can be extended
are the cache storage and the cache query engine.

Cache Storage

The storage interface defines the method by which objects are stored in the cache. When an instance
of an implementing object is provided to the cache, the cache will store all cached objects in the
storage component.

The default storage implementation stores cached objects using the object type and DBID as keys.
Note that this means that objects in the cache are assumed to be from one configuration database.
The default implementation is also thread safe using a reader/writer lock which allows for multiple
concurrent readers and one writer. The storage methods are as follows:

• Add – Adds a new object to the storage. If object already exists in the storage, the default
implementation thrown an exception.

• Update – Overwrites an existing object in the storage. If the object is not found in the storage, the
default implementation creates a new version of the object.

• Remove – Removes an object from the storage.
• Retrieve – Retrieves an enumerable list of all objects in the storage (filtered by type), and possibly

influenced by an optional helper parameter. Note that the helper parameter is not meant to provide
querying logic – that should be done in the query engine. Because the query engine is to some degree
dependent on the storage implementation, the helper parameter allows for some flexibility in the way
stored objects are enumerated for the query engine. The default implementation can take a
CfgObjectType as a helper parameter.

• Clear–Removes all objects in the storage.

Query Engine

The query engine provides the ability to define the method by which objects are located in the cache.

Depending on the IConfService policy, Retrieve requests as well as link resolution can first be
attempted through the cache. If the requested object is found in the cache, then that cached object is
returned instead of sending a request to Configuration Server. If the object is not present in the
cache, a request to Configuration Server is made.

A user-definable query engine module exists inside the cache to achieve this functionality. A query
engine must implement the IConfCacheQueryEngine interface, which provides methods to retrieve
objects (either individually, or as a list) and to test a query and determine if it can be executed.

If enabled by the policy, IConfService will attempt a query to its cache using the cache's query
engine interface. If a result is returned, the IConfService will not query the Configuration Server. By
following this contract, the Configuration Object Model user is then able to create a custom
implementation of the IConfCacheQueryEngine with any extended search capabilities which may be
missing from the simple default implementation.

Two implementations of the IConfCacheQueryEngine interface are provided in the Configuration

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 193

Object Model, as described below:

• DEFAULTCONFCACHEQUERYENGINE CLASS - The DefaultConfCacheQueryEngine class is a default
implementation of the IConfCacheQueryEngine interface.

• COMPOSITECONFCACHEQUERYENGINE CLASS - This class is a more advanced implementation of the
query engine which allows child query engine modules to be registered in order to interpret different
types of queries. It does not have a default query engine implementation, only the mechanism for
working with multiple child query engines.

Notification and Delta Handling

The default configuration cache will implement the ISubscriber<ConfEvent> interface which will
allow the cache to be subscribed to receive configuration events. When a cache instance is
associated with a Configuration Service, it will automatically be subscribed for configuration events
from that service (note that if a custom cache implementation also implements this interface it will
be subscribed for events as well). The way the cache is updated based on these notifications is
determined by the cache policy.

In addition, a new filter class will be added in order to allow the subscriber to filter the cache events.
The ConfCacheFilter will implement the MessageBroker's IPredicate interface, allowing for the
filter to be passed during registration for events via ISubscriptionService. The ConfCacheFilter's
properties will specify the parameters by which the events will be filtered. Initially, the supported
parameters will be object type, object DBID, and update type, allowing the user to filter events by
one or a combination of these parameters assuming an AND relationship between the parameters
specified.

The Configuration Object Model Application Block Interface

The following figures show the relationships among many of the classes that make up this application
block.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 194

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 195

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 196

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 197

Using the Application Block

Installing the Configuration Object Model Application Block
Before you install the Configuration Object Model Application Block, it is important to review the
software requirements and the structure of the software distribution.

Software Requirements

To work with the Configuration Object Model Application Block, you must ensure that your system
meets the software requirements established in the Genesys Supported Operating Environment
Reference Manual, as well as meeting the following minimum software requirements:

• Genesys Configuration Platform SDK 8.0 or higher

Configuring the Configuration Object Model Application Block

In order to use the QuickStart application, you will need to set up the XML configuration file that
comes with the application block. This file is located at Quickstart\app.config. This is what the
contents look like:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<appSettings>
<add key="Uri" value="tcp://yourhost:yourport"/>

<add key="ClientName" value="StarterApp"/>

<add key="ClientType" value="CFGAgentDesktop"/>

<add key="UserName" value="default"/>

<add key="Password" value="password"/>

</appSettings>
</configuration>

Follow the instructions in the comments and save the file.

Building the Configuration Object Model Application Block

The Platform SDK distribution includes a
Genesyslab.Platform.ApplicationBlocks.ConfigurationObjectModel.dll file that you can use
as is. This file is located in the bin directory at the root level of the Platform SDK directory. To build
your own copy of this application block, follow the instructions below:

To build the Configuration Object Model Application Block:

1. Open the <Platform SDK Folder>\ApplicationBlocks\Com folder.
2. Double-click Com.sln.
3. Build the solution.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 198

Using the QuickStart Application
The easiest way to start using the Configuration Object Model Application Block is to use the bundled
QuickStart application. This application ships in the same folder as the application block.

To run the QuickStart application:

1. Open the <Platform SDK Folder>\ApplicationBlocks\Com folder.
2. Double-click ComQuickStart.sln.
3. Build the solution.
4. Find the executable for the QuickStart application, which will be at <Platform SDK

Folder>\ApplicationBlocks\Com\QuickStart\bin\Debug\ComQuickStart.exe.
5. Double-click ComQuickStart.exe.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 199

Introduction to the Configuration Layer
Objects
The Genesys Configuration Layer is a database containing information about the objects in your
contact center environment. You may need to get information about these objects. You may also want
to add, update, or delete them. The Configuration Platform SDK gives you the means to do that.

This article contains information that is common to all of these Configuration Layer objects.

Once you have reviewed the information in this section, you can look at the detailed descriptions of
these objects.

General Parameters

The following parameters are common to objects of all types. They will not be described again in the
listings for individual objects.

• DBID — An identifier of this object in the Configuration Database. Generated by Configuration Server, it
is unique within an object type. Identifiers of deleted objects are not used again. Read-only.

• state — Current object state. Mandatory. Refer to CfgObjectState in section Variable Types.

Tip
Change in the state of a parent object will cause the states of all its child objects to
change accordingly. Configuration Server will provide a notification for each
elementary change. Changing the state of a parent object will not be allowed unless
the client application has privileges to change all of the child objects of this parent
object.

• userProperties — In objects, a pointer to the list of user-defined properties. In delta objects, a pointer
to a list of user-defined properties added to the existing list. Parameter userProperties has the
following structure: Each key-value pair of the primary list (TKVList *userProperties) uses the key
for the name of a user-defined section, and the value for a secondary list, that also has the TKVList
structure and specifies the properties defined within that section. Each key-value pair of the secondary
list uses the key for the name of a user-defined property, and the value for its current setting. User
properties can be defined as variables of integer, character, or binary type. Names of sections must be
unique within the primary list. Names of properties must be unique within the secondary list.

Tip
Configuration Server is not concerned with logical meanings of user-defined sections,

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 200

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConfigLayerObjectsList

properties, or their values.

• deletedUserProperties — A pointer to the list of deleted user-defined properties. Has the same
structure as parameter userProperties above. A user-defined property is deleted by specifying the
name of the section that this property belongs to, and the name of the property itself with any value. A
whole section is deleted by specifying the name of that section and an empty secondary list.

• changedUserProperties — A pointer to the list of user-defined properties whose values have been
changed. Has the same structure as parameter userProperties above. A value of a user-defined
property is changed by specifying the name of the section that this property belongs to, the name of
the property itself, and a new value of that property.

• flexibleProperties — In objects, a pointer to the list of additional properties. In delta objects, a
pointer to a list of user-defined properties added to the existing list. This parameter has the following
structure: Each key-value pair of the primary list (TKVList * flexibleProperties) uses the key for
the name of the section, and the value for a secondary list, that also has the TKVList structure and
specifies either properties defined within that section or another section name. Each key-value pair of
the secondary list uses the key for the name of a property, and the value for its current setting.
Properties can be defined as variables of integer, character, or binary type or as the name of another
list of properties. Names of sections must be unique within the primary list. Names of properties must
be unique within the list. The data structure within the flexibleProperties property is object-type
specific and hard-coded within Configuration Server. Each key-value in the TKVList *
flexibleProperties is controlled and processed by Configuration Server only in the same manner as
any other property in contrast with user-properties the contents of which are not Configuration Server
concerned. If the structure of the property's Extension is not specified, the value is NULL. For more
information, see the detailed object descriptions in this document.

Configuration Object Association

Configuration Objects can be associated with each other in a number of different ways that can be
generally classified as follows:

• Parent-child relationship, where a child object cannot be created without a parent and will be deleted
automatically if its parent object is deleted. Most of the object types will have an explicit reference to
their parents which is marked with an asterisk in the specification below. For the object types that do
not have such a reference, it is implied that their parent is the Service Provider (that is, the imaginary
tenant with DBID = 1).

• Exclusive association, where an object cannot be associated in the same manner with more than one
other object.

• Non-exclusive association, where an object can be associated in the same manner with more than one
other object. Unless expressly noted otherwise, a reference to the DBID of another object without an
asterisk indicates a non-exclusive assignment.

The parameters of all object-related structures are optional unless otherwise noted. However, all
variables of character type must be initialized at the time an object is created. The variables of
character type that are not mandatory may be initialized with an empty string (the recommended
default value unless otherwise noted). The variables of character type that are mandatory may not
be initialized with an empty string. Variables of character type may accept values of up to 255

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 201

symbols in length unless otherwise noted. The recommended default value for optional parameters of
other types is zero or NULL, unless otherwise noted.

Filters

Filters are used to specify more precisely the kind of information that the client application is
interested in. Filters reduce both volumes of data communicated by Configuration Server and data-
processing efforts on the client side. Filters are structured as key-value pairs where the value of each
key defines a certain condition of data selection. Filter keys are defined as variables of integer type
unless otherwise noted.

Here is a list of common filter types:

• folder_dbid — A unique identifier of a folder. If specified, Configuration Server will return information
only about objects of specific type located under specified folder. See also the description of the
ConfGetObjectInfo function.

• delegate_dbid — A unique identifier of an account on behalf of which current query is to be executed.
Produced result set will be calculated using a superposition of the registered account permissions and
that passed in delegate_dbid filter. Must be used in conjunction with delegate_type filter in order to
specify account type (CFGPerson or CFGAccessGroup).

• delegate_type — Object type of the account (CFGPerson or CFGAccessGroup) on behalf of which the
current query is to be executed. Must be used in conjunction with delegate_dbid.

• object_path — A flag that causes Configuration Server to return a full path of the object in the folder
hierarchy for every object in the result set. The path string will be returned in the cfgDescription field
of the CFGObjectInfo event.

• cmp_insensitive — A flag that causes Configuration Server to perform case-insensitive comparison of
string values in the filter. Supported from Configuration Server 7.2.000.00.

• read_folder_dbid — A flag that causes Configuration Server to return a Folder DBID for every object in
the result set. The folder will be returned in the cfgExtraInfo3 field of the CFGObjectInfo event.
Supported from Configuration Server 7.2.000.00.

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 202

List of Configuration Layer Objects
The following table provides a convenient list of Configuration Layer Objects that are available. For
more information, refer to Introduction to the Configuration Layer Objects.

CfgAccessGroup

CfgActionCode

CfgAgentGroup

CfgAgentInfo

CfgAgentLogin

CfgAgentLoginInfo

CfgAlarmCondition

CfgAlarmEvent

CfgAppPrototype

CfgAppRank

CfgAppServicePermission

CfgApplication

CfgCallingList

CfgCallingListInfo

CfgCampaign

CfgCampaignGroup

CfgConnInfo

CfgDN

CfgDNAccessNumber

CfgDNGroup

CfgDNInfo

CfgDeltaAccessGroup

CfgDeltaActionCode

CfgDeltaAgentGroup

CfgDeltaAgentInfo

CfgDeltaAgentLogin

CfgDeltaAlarmCondition

CfgDeltaAppPrototype

CfgDeltaApplication

CfgDeltaCallingList

CfgDeltaCampaign

CfgDeltaCampaignGroup

CfgDeltaDN

CfgDeltaDNGroup

CfgDeltaEnumerator

CfgDeltaEnumeratorValue

CfgDeltaField

CfgDeltaFilter

CfgDeltaFolder

CfgDeltaFormat

CfgDeltaGVPCustomer

CfgDeltaGVPIVRProfile

CfgDeltaGVPReseller

CfgDeltaGroup

CfgDeltaHost

CfgDeltaIVR

CfgDeltaIVRPort

CfgDeltaObjectiveTable

CfgDeltaPerson

CfgDeltaPhysicalSwitch

CfgDeltaPlace

CfgDeltaPlaceGroup

CfgDeltaRole

CfgDeltaScheduledTask

CfgDeltaScript

CfgDeltaService

CfgDeltaSkill

CfgDeltaStatDay

CfgDeltaStatTable

CfgDeltaSwitch

CfgDeltaTableAccess

CfgDeltaTenant

CfgDeltaTimeZone

CfgDeltaTransaction

CfgDeltaTreatment

CfgDeltaVoicePrompt

CfgEnumerator

CfgEnumeratorValue

CfgField

CfgFilter

CfgFolder

CfgFormat

CfgGVPCustomer

CfgGVPIVRProfile

CfgGVPReseller

CfgGroup

CfgHost

CfgID

CfgIVR

CfgIVRPort

CfgOS

CfgObjectResource

CfgObjectiveTable

CfgObjectiveTableRecord

CfgPerson

CfgPhones

CfgPhysicalSwitch

CfgPlace

CfgPlaceGroup

CfgPortInfo

CfgRole

CfgRoleMember

CfgScheduledTask

CfgScript

CfgServer

CfgService

CfgServiceInfo

CfgSkill

CfgSkillLevel

CfgSolutionComponent

CfgSolutionComponentDefinition

CfgStatDay

CfgStatInterval

CfgStatTable

CfgSubcode

CfgSwitch

CfgSwitchAccessCode

CfgTableAccess

CfgTenant

CfgTimeZone

CfgTransaction

CfgTreatment

CfgVoicePrompt

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 203

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IntrotoConfigLayerObjects
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAccessGroup
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgActionCode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAgentGroup
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAgentInfo
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAgentLogin
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAgentLoginInfo
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAlarmCondition
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAlarmEvent
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAppPrototype
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAppRank
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAppServicePermission
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgApplication
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgCallingList
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgCallingListInfo
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgCampaign
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgCampaignGroup
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgConnInfo
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDN
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDNAccessNumber
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDNGroup
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDNInfo
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaAccessGroup
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaActionCode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaAgentGroup
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaAgentInfo
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaAgentLogin
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaAlarmCondition
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaAppPrototype
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaApplication
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaCallingList
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaCampaign
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaCampaignGroup
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaDN
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaDNGroup
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaEnumerator
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaEnumeratorValue
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaField
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaFilter
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaFolder
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaFormat
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaGVPCustomer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaGVPIVRProfile
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaGVPReseller
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaGroup
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaHost
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaIVR
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaIVRPort
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaObjectiveTable
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaPerson
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaPhysicalSwitch
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaPlace
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaPlaceGroup
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaRole
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaScheduledTask
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaScript
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaService
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaSkill
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaStatDay
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaStatTable
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaSwitch
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaTableAccess
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaTenant
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaTimeZone
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaTransaction
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaTreatment
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDeltaVoicePrompt
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgEnumerator
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgEnumeratorValue
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgField
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgFilter
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgFolder
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgFormat
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgGVPCustomer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgGVPIVRProfile
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgGVPReseller
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgGroup
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgHost
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgID
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgIVR
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgIVRPort
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgOS
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgObjectResource
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgObjectiveTable
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgObjectiveTableRecord
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPerson
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPhones
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPhysicalSwitch
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPlace
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPlaceGroup
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPortInfo
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgRole
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgRoleMember
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgScheduledTask
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgScript
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgService
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgServiceInfo
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgSkill
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgSkillLevel
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgSolutionComponent
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgSolutionComponentDefinition
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgStatDay
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgStatInterval
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgStatTable
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgSubcode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgSwitch
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgSwitchAccessCode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgTableAccess
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgTenant
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgTimeZone
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgTransaction
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgTreatment
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgVoicePrompt

List of Configuration Layer Enumerations
The following table provides a convenient list of Configuration Layer Enumerations that are available.
For more information, refer to Introduction to the Configuration Layer Objects.

CfgAccessGroupType

CfgActionCodeType

CfgAlarmCategory

CfgAppComponentType

CfgAppType

CfgCallActionCode

CfgChargeType

CfgCTILinkType

CfgDIDGroupType

CfgDNGroupType

CfgDNRegisterFlag

CfgDNType

CfgDataType

CfgDialMode

CfgEnumeratorObjectType

CfgEnumeratorType

CfgErrorType

CfgEventType

CfgFieldType

CfgFilterType

CfgFlag

CfgFolderClass

CfgGroupType

CfgHAType

CfgHostType

CfgIVRProfileType

CfgIVRType

CfgLanguage

CfgLinkType

CfgMediaType

CfgOSType

CfgObjectState

CfgObjectType

CfgObjectiveTableType

CfgOperationMode

CfgOperationalMode

CfgOptimizationMethod

CfgPermissions

CfgPersonType

CfgRank

CfgRecActionCode

CfgResourceType

CfgRouteType

CfgScriptType

CfgSelectionMode

CfgSolutionType

CfgStartupType

CfgStatDayType

CfgStatTableType

CfgSwitchType

CfgTableType

CfgTargetType

CfgTaskType

CfgTraceMode

CfgTransactionType

GctiCallState

GctiContactType

GctiRecordStatus

GctiRecordType

Server-Specific Overviews Configuration

Platform SDK Developer's Guide 204

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IntrotoConfigLayerObjects
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAccessGroupType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgActionCodeType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAlarmCategory
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAppComponentType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgAppType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgCallActionCode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgChargeType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgCTILinkType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDIDGroupType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDNGroupType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDNRegisterFlag
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDNType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDataType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgDialMode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgEnumeratorObjectType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgEnumeratorType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgErrorType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgEventType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgFieldType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgFilterType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgFlag
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgFolderClass
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgGroupType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgHAType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgHostType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgIVRProfileType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgIVRType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgLanguage
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgLinkType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgMediaType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgOSType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgObjectState
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgObjectType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgObjectiveTableType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgOperationMode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgOperationalMode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgOptimizationMethod
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPermissions
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgPersonType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgRank
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgRecActionCode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgResourceType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgRouteType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgScriptType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgSelectionMode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgSolutionType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgStartupType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgStatDayType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgStatTableType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgSwitchType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgTableType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgTargetType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgTaskType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgTraceMode
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CfgTransactionType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/GctiCallState
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/GctiContactType
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/GctiRecordStatus
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/GctiRecordType

Stat Server
Stat Server tracks information about customer interaction networks (contact center, enterprise-wide,
or multi-enterprise telephony and computer networks). It also converts the data accumulated for
directory numbers (DNs), agents, agent groups, and non-telephony-specific object types, such as e-
mail and chat sessions, into statistically useful information, and passes these calculations to other
software applications that request data. For example, Stat Server sends data to Universal Routing
Server (URS), because Stat Server reports on agent availability. You can also use Stat Server's
numerical statistical values as routing criteria.

Stat Server provides contact center managers with a wide range of information, allowing
organizations to maximize the efficiency and flexibility of customer interaction networks. For more
information about Stat Server, consult the Reporting Technical Reference 8.0 Overview and the
Framework 8.1 Stat Server User's Guide.

You can use the Platform SDK to write Java or .NET applications that gather statistical information
from Stat Server. These applications may be fairly simple or quite advanced. This article shows how
to implement the basic functions you will need to write a simple Statistics application.

A Typical Statistics Application

There are many ways in which you might need to use data from Stat Server, but in most cases, you
will use three types of requests:

• RequestOpenStatistic and RequestOpenStatisticEx are used to ask Stat Server to start sending
statistical information to your application. RequestOpenStatistic allows you to request information
about a statistic that has already been defined in the Genesys Configuration Layer, while you can use
RequestOpenStatisticEx to define your own statistics dynamically.

• You can use RequestPeekStatistic to get the value of a statistic that has already been opened using
either RequestOpenStatistic or RequestOpenStatisticEx. Since it can take a while for certain types
of statistical information to be sent to your application, this can be useful if you are writing an
application—such as a wallboard application, for instance—for which you would like statistical values to
be displayed immediately.

• Use RequestCloseStatistic to tell Stat Server that you no longer need information about a particular
statistic.

Tip
When you use RequestOpenStatistic and RequestOpenStatisticEx, you have to
specify a ReferenceId, which is a unique integer that allows Stat Server and your
application to distinguish between different sets of statistical information. You must
also enter this integer in the StatisticId field for any request that refers to the
statistics generated on the basis of your Open request. For example, if you sent a
request for "TotalNumberInboundCalls" for agent 001, you might give the
RequestOpenStatistic a ReferenceId of 333001. A similar request for agent 002

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 205

might have a ReferenceId of 333002. When you want to peek at the value of
"TotalNumberInboundCalls" for agent 001, or close the statistic (or suspend or resume
reporting on the statistic), you need to specify a StatisticId of 333001 for each of
these requests.

Java

Connecting to Stat Server

As mentioned in the article on the architecture, the Platform SDKs uses a message-based
architecture to connect to Genesys servers. This section describes how to connect to Stat Server,
based on the material in the article on Connecting to a Server.

After you have set up your import statements, the first thing you need to do is create a
StatServerProtocol object:

[Java]

StatServerProtocol statServerProtocol =
new StatServerProtocol(

new Endpoint(
statServerEPName,
host,
port));

statServerProtocol.setClientName(clientName);

You can also configure your ADDP and warm standby settings at this point, following the example
shown in the Connecting to a Server article.

Once your configuration is complete, open the connection to Stat Server:

[Java]

try {
statServerProtocol.open();

} catch (InterruptedException e) {
e.printStackTrace();

} catch (ProtocolException e) {
e.printStackTrace();

}

Working with Statistics

The Stat Server application object in the Genesys Configuration Layer comes with many predefined
statistics. You can also define your own statistics using the options tab of this application object. The
Platform SDK allows you to get information about any of these statistics by using

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 206

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer

RequestOpenStatistic. There may be times, however, when you want your application to be able to
create new types of statistics dynamically. The Platform SDK also supports this, with the use of
RequestOpenStatisticEx.

This section will show you how to use RequestOpenStatistic to get information on a predefined
statistic. After that, we will give an example of how to use RequestOpenStatisticEx.

The first thing you need to do to use RequestOpenStatistic is to create the request:

[Java]

RequestOpenStatistic requestOpenStatistic
= RequestOpenStatistic.create();

Now you need to describe the statistics object, that is, the object you are monitoring. This description
consists of the object's Configuration Layer ID and object type, and the tenant ID and password:

[Java]

StatisticObject object = StatisticObject.create();
object.setObjectId("Analyst001");
object.setObjectType(StatisticObjectType.Agent);
object.setTenantName("Resources");
object.setTenantPassword("");

Next, you will specify the StatisticType property, which must correspond to the name of the
statistic definition that appears in the options tab. In this case, we are asking for the total login time
for an agent identified as "Analyst001":

[Java]

StatisticMetric metric = StatisticMetric.create();
metric.setStatisticType("TotalLoginTime");

Now you can specify the desired Notification settings. The Statistics Platform SDK supports four
ways of gathering statistics:

1. NoNotification allows you to retrieve statistics when you want them.
2. Periodical means Stat Server reports on statistics based on the time period you request.
3. Immediate means Stat Server reports on statistics whenever a statistical value changes. For time-

related statistics, Immediate means that Stat Server will report the current value whenever a statistical
value changes, but it will also report that value periodically, using the specified notification frequency.

4. Reset means Stat Server reports the current value of a statistic right before setting the statistical value
to zero (0).

In this case, we are interested in receiving statistics on a regular basis, so we have asked for a
notification mode of Periodical, with updates every 5 seconds, using a GrowingWindow statistic
interval. For more information on notification modes, see the section on Notification Modes in the
Framework 8.1 Stat Server User's Guide. For more information on statistic intervals, see the section
on TimeProfiles in the same guide.

[Java]

Notification notification = Notification.create();
notification.setMode(NotificationMode.Periodical);
notification.setFrequency(5);

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 207

At this point, you can add the information about the statistic object and your notification settings to
the request:

[Java]

requestOpenStatistic.setStatisticObject(object);
requestOpenStatistic.setStatisticMetric(metric);
requestOpenStatistic.setNotification(notification);

Before sending this request, you have to assign it an integer that uniquely identifies it, so that Stat
Server and your application can easily distinguish it from other sets of statistical information. Note
that you will also need to enter this integer in the StatisticId field for any subsequent requests
that refer to the statistics generated on the basis of the Open request.

[Java]

requestOpenStatistic.setReferenceId(2);

Now you can send the request:

[Java]

System.out.println("Sending:\n" + requestOpenStatistic);
statServerProtocol.send(requestOpenStatistic);

After Stat Server sends the EventStatisticOpened in response to this request, it will start sending
EventInfo messages every 5 seconds. You need to set up an event handler to receive these
messages, as discussed in the the Event Handling article.

This is what one such message might look like:

'EventInfo' ('2')
message attributes:
REQ_ID [int] = 4
USER_REQ_ID [int] = -1
TM_SERVER [int] = 1244412448
TM_LENGTH [int] = 0
LONG_VALUE [int] = 0
VOID_VALUE [object] = AgentStatus {

AgentId = Analyst001
AgentStatus = 23
Time = 1240840034
PlaceStatus = PlaceStatus = 23
Time = 1240840034
LoginId = LoggedOut

}

Creating Dynamic Statistics

As mentioned above, there may be times when you want to get statistical information that has not
already been defined in the Configuration Layer. In cases like that, you can use
RequestOpenStatisticEx. Before you do, however, you should make sure you understand several
topics covered in the Reporting Technical Reference 8.0 Overview and the Framework 8.1 Stat Server
User's Guide, including the use of masks.

The first things you need to do in order to use RequestOpenStatisticEx are similar to what we did in

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 208

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling

the previous section. You will start by creating the request and specifying the statistic object and
notification mode, which you will add to the request:

[Java]

RequestOpenStatisticEx request =
RequestOpenStatisticEx.create();

StatisticObject object = StatisticObject.create();
object.setObjectId("Analyst001");
object.setObjectType(StatisticObjectType.Agent);
object.setTenantName("Resources");
object.setTenantPassword("");

Notification notification = Notification.create();
notification.setMode(NotificationMode.Immediate);

request.setNotification(notification);
request.setStatisticObject(object);

Now, instead of requesting a pre-defined statistic type, you need to set up your own masks, as
described in the section on "Metrics: Their Composition and Definition" in the Reporting Technical
Reference 8.0 Overview. The following mask and statistic metric settings give the Current State for
the agent mentioned above:

[Java]

DnActionMask mainMask = ActionsMask.createDNActionsMask();
mainMask.setBit(DnActions.WaitForNextCall);
mainMask.setBit(DnActions.CallDialing);
mainMask.setBit(DnActions.CallRinging);
mainMask.setBit(DnActions.NotReadyForNextCall);
mainMask.setBit(DnActions.CallOnHold);
mainMask.setBit(DnActions.CallUnknown);
mainMask.setBit(DnActions.CallConsult);
mainMask.setBit(DnActions.CallInternal);
mainMask.setBit(DnActions.CallOutbound);
mainMask.setBit(DnActions.CallInbound);
mainMask.setBit(DnActions.LoggedOut);

DnActionMask relMask = ActionsMask.createDNActionsMask();

StatisticMetricEx metric = StatisticMetricEx.create();
metric.setCategory(StatisticCategory.CurrentState);
metric.setMainMask(mainMask);
metric.setRelativeMask(relMask);
metric.setSubject(StatisticSubject.DNStatus);

request.setStatisticMetricEx(metric);

Once you have set up the masks and the statistic metric, you can create a ReferenceId and send the
request:

[Java]

request.setReferenceId(anIntThatYouSpecify);

System.out.println("Sending:\n" + request);
Message response = statServerProtocol.request(request);
System.out.println("Received:\n" + response);

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 209

Current Target State Events

You can use RequestGetStatisticEx and RequestOpenStatisticEx to set up the same type of
current target state definitions that Universal Routing Server (URS) uses. (You can also set these up
using Configuration Manager.) When this type of request has been sent, Stat Server sends some
additional event types:

• EventCurrentTargetStateSnapshot
• EventCurrentTargetStateTargetUpdated
• EventCurrentTargetStateTargetAdded
• EventCurrentTargetStateTargetRemoved

The Snapshot event is returned in response to the open, while the Updated event is sent as state
changes occur. In a situation where you open a CurrentTargetState-based statistic against an agent
group, the Added and Removed messages occur when an agent is added to or removed from an agent
group — it would behave in a similar fashion for place groups.

Here is the output from a typical request:

'EventCurrentTargetStateSnapshot' (17) attributes:
TM_LENGTH [int] = 0
USER_REQ_ID [int] = -1
LONG_VALUE [int] = 0
CURRENT_TARGET_STATE_INFO [CurrentTargetState] = CurrentTargetStateSnapshot (size=1) [

[0] CurrentTargetStateInfo {
AgentId = Analyst001
AgentDbId = 101
LoginId = null
PlaceId = null
PlaceDbId = 0
Extensions = KVList:

'VOICE_MEDIA_STATUS' [int] = 0
'AGENT_VOICE_MEDIA_STATUS' [int] = 0

}
]

REQ_ID [int] = 5
TM_SERVER [int] = 1245182089

Peeking at a Statistic

There may be times when you need to get immediate information on a statistic you have opened. For
example, you may want to initialize a wallboard display. In that case, you can use
RequestPeekStatistic. Note that Stat Server does not send a handshake event when you use this
request, so you should use the send method rather than the request method when you use it. Note
also that you need to use the StatisticId property to provide the ReferenceId of the
RequestOpenStatistic or RequestOpenStatisticEx associated with the statistic you want
information on:

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 210

Tip
If you use the request method on a RequestPeekStatistic, your request will time out
and receive null, rather than retrieving the desired information from Stat Server.

[Java]

RequestPeekStatistic req = RequestPeekStatistic.create();
req.setStatisticId(2);

System.out.println("Sending:\n" + req);
statServerProtocol.send(req);

Suspending Notification

Because there are times when you do not need to collect information on a statistic for a while, the
Platform SDK has requests that allow you to suspend and resume notification. These requests are like
the peek request in that Stat Server does not send a handshake event when you use them, so you
should use the send method rather than the request method when you use these requests. Note also
that you need to use the StatisticId property of these requests to provide the ReferenceId of the
RequestOpenStatistic or RequestOpenStatisticEx associated with the statistic you want
information on. Here is how to suspend notification:

[Java]

RequestSuspendNotification req = RequestSuspendNotification.create();
req.setStatisticId(2);

System.out.println("Sending:\n" + req);
statServerProtocol.send(req);

Use code like this to resume notification:

[Java]

RequestResumeNotification req = RequestResumeNotification.create();
req.setStatisticId(2);

System.out.println("Sending:\n" + req);
statServerProtocol.send(req);

Closing the Statistic and the Connection

When you are finished communicating with Stat Server, you should close the statistics that you have
opened and close the connection, in order to minimize resource utilization:

[Java]

RequestCloseStatistic req = RequestCloseStatistic.create();
req.setStatisticId(2);

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 211

System.out.println("Sending:\n" + req);
statServerProtocol.send(req);

...

statServerProtocol.beginClose();

.NET

Connecting to Stat Server

As mentioned in the article on the architecture, the Platform SDKs uses a message-based
architecture to connect to Genesys servers. This section describes how to connect to Stat Server,
based on the material in the article on Connecting to a Server.

After you have set up using statements, the first thing you need to do is create a
StatServerProtocol object:

[C#]

StatServerProtocol statServerProtocol =
new StatServerProtocol(new Endpoint(statServerUri));

statServerProtocol.ClientId = clientID;
statServerProtocol.ClientName = clientName;

You can also configure your ADDP and warm standby settings at this point, as described in the
Connecting to a Server article.

Once you have finished configuring your protocol object, open the connection to Stat Server:

[C#]

statServerProtocol.Open();

Working with Statistics

The Stat Server application object in the Genesys Configuration Layer comes with many predefined
statistics. You can also define your own statistics using the options tab of this application object. The
Platform SDK allows you to get information about any of these statistics by using
RequestOpenStatistic. There may be times, however, when you want your application to be able to
create new types of statistics dynamically. The Platform SDK also supports this, with the use of
RequestOpenStatisticEx.

This section will show you how to use RequestOpenStatistic to get information on a predefined
statistic. After that, we will give an example of how to use RequestOpenStatisticEx.

The first thing you need to do to use RequestOpenStatistic is to create the request:

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 212

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer

[C#]

var requestOpenStatistic = RequestOpenStatistic.Create();

Now you need to describe the statistics object, that is, the object you are monitoring. This description
consists of the object's Configuration Layer ID and object type, and the tenant ID and password:

[C#]

requestOpenStatistic.StatisticObject = StatisticObject.Create();
requestOpenStatistic.StatisticObject.ObjectId = "Analyst001";
requestOpenStatistic.StatisticObject.ObjectType = StatisticObjectType.Agent;
requestOpenStatistic.StatisticObject.TenantName = "Environment";
requestOpenStatistic.StatisticObject.TenantPassword = "";

Next, you will specify the StatisticMetric property for this statistic. A StatisticMetric contains
information including the StatisticType (which must correspond to the name of the statistic
definition that appears in the options tab), along with the required TimeRangeLeft and
TimeRangeRight parameters.

In this case, we are asking for the total login time for an agent identified as "Analyst001":

[C#]

requestOpenStatistic.StatisticMetric = StatisticMetric.Create();
requestOpenStatistic.StatisticMetric.StatisticType = "TotalLoginTime";
requestOpenStatistic.StatisticMetric.TimeProfile = "Default";
// Note: if no time profile is provided, then the default is used automatically

Finally, specify the desired Notification settings. The Statistics Platform SDK supports four ways of
gathering statistics:

• NoNotification allows you to retrieve statistics when you want them.
• Periodical means Stat Server reports on statistics based on the time period you request.
• Immediate means Stat Server reports on statistics whenever a statistical value changes. For time-

related statistics, Immediate means that Stat Server will report the current value whenever a statistical
value changes, but it will also report that value periodically, using the specified notification frequency.

• Reset means Stat Server reports the current value of a statistic right before setting the statistical value
to zero (0).

In this case, we are interested in receiving statistics on a regular basis, so we have asked for a
notification mode of Periodical, with updates every 5 seconds. For more information on notification
modes, see the section on Notification Modes in Framework 8.1 Stat Server User's Guide.

[C#]

requestOpenStatistic.Notification = Notification.Create();
requestOpenStatistic.Notification.Mode = NotificationMode.Periodical;

requestOpenStatistic.Notification.Frequency = 5; // seconds

Before sending this request, you have to assign it an integer that uniquely identifies it, so that Stat
Server and your application can easily distinguish it from other sets of statistical information. Note
that you will also need to enter this integer in the StatisticId field for any subsequent requests
that refer to the statistics generated on the basis of the Open request.

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 213

[C#]

requestOpenStatistic.ReferenceId = 3; // Must be unique and is included as StatisticId in
// Peek/Close for the stat

Now you can send the request:

[C#]

Console.WriteLine("Sending:\n{0}", requestOpenStatistic);
var response =

statServerProtocol.Request(requestOpenStatistic);
Console.WriteLine("Received:\n{0}", response);

if (response == null || response.Id != EventStatisticOpened.MessageId)
{

// Open failed, proper error handling goes here
throw new Exception("RequestOpenStatistic failed.");

}

var @event = response as EventStatisticOpened;

After Stat Server sends the EventStatisticOpened in response to this request, it will start sending
EventInfo messages every 5 seconds. You need to set up an event handler to receive these
messages, as discussed in the the Event Handling article.

This is what one such message might look like:

[C#]

'EventInfo' ('2')
message attributes:
REQ_ID [int] = 4
USER_REQ_ID [int] = -1
TM_SERVER [int] = 1244412448
TM_LENGTH [int] = 0
LONG_VALUE [int] = 0
VOID_VALUE [object] = AgentStatus {

AgentId = Analyst001
AgentStatus = 23
Time = 1240840034
PlaceStatus = PlaceStatus = 23
Time = 1240840034
LoginId = LoggedOut

}

Creating Dynamic Statistics

As mentioned above, there may be times when you want to get statistical information that has not
already been defined in the Configuration Layer. In cases like that, you can use
RequestOpenStatisticEx. Before you do, however, you should make sure you understand several
topics covered in the Reporting Technical Reference 8.0 Overview and the Framework 8.1 Stat Server
User's Guide, including the use of masks.

The first things you need to do in order to use RequestOpenStatisticEx are similar to what we did in
the previous section. You will start by creating the request and specifying the statistic object and
notification mode:

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 214

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling

[C#]

var req = RequestOpenStatisticEx.Create();

req.StatisticObject = StatisticObject.Create();
req.StatisticObject.ObjectId = "Analyst001";
req.StatisticObject.ObjectType = StatisticObjectType.Agent;
req.StatisticObject.TenantName = "Resources";
req.StatisticObject.TenantPassword = "";

req.Notification = Notification.Create();
req.Notification.Mode = NotificationMode.Immediate;
req.Notification.Frequency = 15;

Now, instead of requesting a statistic type, you need to set up your own masks, as described in the
section on "Metrics: Their Composition and Definition" in the Reporting Technical Reference 8.0
Overview. The following mask and statistic metric settings give the Current State for the agent
mentioned above:

[C#]

var mainMask = ActionsMask.CreateDnActionMask();
mainMask.SetBit(DnActions.WaitForNextCall);
mainMask.SetBit(DnActions.CallDialing);
mainMask.SetBit(DnActions.CallRinging);
mainMask.SetBit(DnActions.NotReadyForNextCall);
mainMask.SetBit(DnActions.CallOnHold);
mainMask.SetBit(DnActions.CallUnknown);
mainMask.SetBit(DnActions.CallConsult);
mainMask.SetBit(DnActions.CallInternal);
mainMask.SetBit(DnActions.CallOutbound);
mainMask.SetBit(DnActions.CallInbound);
mainMask.SetBit(DnActions.LoggedOut);

var relMask = ActionsMask.CreateDnActionMask();

req.StatisticMetricEx = StatisticMetricEx.Create();
req.StatisticMetricEx.Category = StatisticCategory.CurrentState;
req.StatisticMetricEx.IntervalLength = 0;
req.StatisticMetricEx.MainMask = mainMask;
req.StatisticMetricEx.RelativeMask = relMask;
req.StatisticMetricEx.Subject = StatisticSubject.DNStatus;

Once you have set up the masks and the statistic metric, you can create a ReferenceId and send the
request:

[C#]

req.ReferenceId = referenceIdFromRequestOpenStatistic;

Console.WriteLine("Sending:\n{0}", req);
var response =

statServerProtocol.Request(req);
Console.WriteLine("Received:\n{0}", response);

Current Target State Events

You can use RequestGetStatisticEx and RequestOpenStatisticEx to set up the same type of

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 215

current target state definitions that Universal Routing Server (URS) uses. (You can also set these up
using Configuration Manager.) When this type of request has been sent, Stat Server sends some
additional event types:

• EventCurrentTargetStateSnapshot

• EventCurrentTargetStateTargetUpdated

• EventCurrentTargetStateTargetAdded

• EventCurrentTargetStateTargetRemoved

The Snapshot event is returned in response to the open, while the Updated event is sent as state
changes occur. In a situation where you open a CurrentTargetState-based statistic against an agent
group, the Added and Removed messages occur when an agent is added to or removed from an agent
group — it would behave in a similar fashion for place groups.

Here is the output from a typical request:

'EventCurrentTargetStateSnapshot' (17) attributes:
TM_LENGTH [int] = 0
USER_REQ_ID [int] = -1
LONG_VALUE [int] = 0
CURRENT_TARGET_STATE_INFO [CurrentTargetState] = CurrentTargetStateSnapshot (size=1) [

[0] CurrentTargetStateInfo {
AgentId = Analyst001
AgentDbId = 101
LoginId = null
PlaceId = null
PlaceDbId = 0
Extensions = KVList:

'VOICE_MEDIA_STATUS' [int] = 0
'AGENT_VOICE_MEDIA_STATUS' [int] = 0

}
]

REQ_ID [int] = 5
TM_SERVER [int] = 1245182089

Peeking at a Statistic

There may be times when you need to get immediate information on a statistic you have opened. For
example, you may want to initialize a wallboard display. In that case, you can use
RequestPeekStatistic. Note that Stat Server does not send a handshake event when you use this
request, so you should use the Send method rather than the Request method when you use it. Note
also that you need to use the StatisticId property to provide the ReferenceId of the
RequestOpenStatistic or RequestOpenStatisticEx associated with the statistic you want
information on:

Tip
If you use the Request method on a RequestPeekStatistic, your request will time
out and receive null, rather than retrieving the desired information from Stat Server.

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 216

[C#]

var requestPeekStatistic = RequestPeekStatistic.Create();
requestPeekStatistic.StatisticId = 3;

Console.WriteLine("Sending:\n{0}", requestPeekStatistic);
statServerProtocol.Send(requestPeekStatistic);

Suspending Notification

Because there are times when you do not need to collect information on a statistic for a while, the
Platform SDK has requests that allow you to suspend and resume notification. These requests are like
the peek request in that Stat Server does not send a handshake event when you use them, so you
should use the send method rather than the request method when you use these requests. Note also
that you need to use the StatisticId property of these requests to provide the ReferenceId of the
RequestOpenStatistic or RequestOpenStatisticEx associated with the statistic you want
information on. Here is how to suspend notification:

[C#]

var requestSuspendNotification = RequestSuspendNotification.Create();
requestSuspendNotification.StatisticId = 3;

Console.WriteLine("Sending:\n{0}", requestSuspendNotification);
statServerProtocol.Send(requestSuspendNotification);

Use code like this to resume notification:

[C#]

var requestResumeNotification = RequestResumeNotification.Create();
requestResumeNotification.StatisticId = 3;

Console.WriteLine("Sending:\n{0}", requestResumeNotification);
statServerProtocol.Send(requestResumeNotification);

Closing the Statistic and the Connection

When you are finished communicating with Stat Server, you should close the statistics that you have
opened and close the connection, in order to minimize resource utilization:

[C#]

var requestCloseStatistic = RequestCloseStatistic.Create();
requestCloseStatistic.StatisticId = 3;

Console.WriteLine("Sending:\n{0}", requestCloseStatistic);
statServerProtocol.Send(requestCloseStatistic);

...

statServerProtocol.BeginClose();

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 217

Server-Specific Overviews Stat Server

Platform SDK Developer's Guide 218

Interaction Server
You can use the Open Media Platform SDK to write Java or .NET applications that handle third-party
work items in conjunction with the Genesys Interaction Server. You can also use it to work with
servers that implement the Genesys External Service Protocol.

This document shows how to implement the basic functions you will need to write simple Interaction
Server–based email applications. The first application is a simple media server that submits a new
third-party work item. The second application enables an agent to receive a third-party work item,
accept it for processing, and mark it done.

Java

Setting Up Interaction Server Protocol Objects

The first thing you need to do to use the Open Media Platform SDK is instantiate a Protocol object. To
do that, you must supply information about the server you want to connect with. This example uses
an InteractionServerProtocol object, supplying its URI, but you can also use name, host, and port
information:

[Java]

InteractionServerProtocol interactionServerProtocol =
new InteractionServerProtocol(

new Endpoint(
InteractionServerUri));

After instantiating the InteractionServerProtocol object, you need to open a connection to
Interaction Server:

[Java]

interactionServerProtocol.open();

Creating a Simple Media Server

The Open Media Platform SDK makes it easy to write a simple server that can submit third-party work
items to Interaction Server. To write one, start by entering configuration information:

[Java]

// Enter configuration information here:
private String interactionServerName = "<server name>";
private String interactionServerHost = "<host>";
private int interactionServerport = <port>;

Server-Specific Overviews Interaction Server

Platform SDK Developer's Guide 219

private int tenantId = 101;
private String inboundQueue = "<queue>";
private String mediaType = "<media type>";
// End of configuration information.

Now you will need to set up a protocol object:

[Java]

interactionServerUri = new Uri("tcp://"
+ interactionServerHost + ":"
+ interactionServerport);

InteractionServerProtocol interactionServerProtocol =
new InteractionServerProtocol(
new Endpoint(interactionServerName, interactionServerUri));

Once you have set up the protocol object, you can tell it the name of your application and let it know
that it is a media server:

[Java]

interactionServerProtocol.setClientName("EntityListener");
interactionServerProtocol.setClientType(

InteractionClient.MediaServer);

At this point, you can add user data associated with the new interaction:

[Java]

KeyValueCollection userData =
new KeyValueCollection();

userData.add("Subject",
"New Interaction Created by a Custom Media Server");

Now you can open the protocol object, and prepare the interaction to be submitted:

[Java]

try
{

interactionServerProtocol.open();

RequestSubmit requestSubmit = RequestSubmit.create(
inboundQueue,
mediaType,
"Inbound");

requestSubmit.setTenantId(tenantId);
requestSubmit.setInteractionSubtype("InboundNew");
requestSubmit.setUserData(userData);

If you use the Request method, you will receive a synchronous response containing a message from
Interaction Server:

[Java]

Message response =
interactionServerProtocol.request(requestSubmit);

System.out.println("Response: " + response.messageName() + ".\n\n");

Server-Specific Overviews Interaction Server

Platform SDK Developer's Guide 220

Closing the Connection

Finally, when you are finished communicating with Interaction Server, you should close the
connection to minimize resource utilization:

[Java]

interactionServerProtocol.close();

.NET

Setting Up Interaction Server Protocol Objects

The first thing you need to do to use the Open Media Platform SDK is instantiate a Protocol object. To
do that, you must supply information about the server you want to connect with. This example uses
an InteractionServerProtocol object, supplying its URI, but you can also use name, host, and port
information:

[C#]

InteractionServerProtocol interactionServerProtocol =
new InteractionServerProtocol(

new Endpoint(
InteractionServerUri));

After instantiating the InteractionServerProtocol object, you need to open a connection to
Interaction Server:

[C#]

interactionServerProtocol.Open();

Creating a Simple Media Server

The Open Media Platform SDK makes it easy to write a simple server that can submit third-party work
items to Interaction Server. To write one, start by entering configuration information:

[C#]

// Enter configuration information here:
private string interactionServerName = "<server name>";
private string interactionServerHost = "<host>";
private int interactionServerport = <port>;
private int tenantId = 101;
private string inboundQueue = "<queue>";
private string mediaType = "<media type>";
// End of configuration information.

Server-Specific Overviews Interaction Server

Platform SDK Developer's Guide 221

Now you will need to set up a protocol object:

[C#]

interactionServerUri = new Uri("tcp://"
+ interactionServerHost + ":"
+ interactionServerport);

InteractionServerProtocol interactionServerProtocol =
new InteractionServerProtocol(
new Endpoint(interactionServerName, interactionServerUri));

Once you have set up the protocol object, you can tell it the name of your application and let it know
that it is a media server:

[C#]

interactionServerProtocol.ClientName = "EntityListener";
interactionServerProtocol.ClientType =

InteractionClient.MediaServer;

At this point, you can add user data associated with the new interaction:

[C#]

KeyValueCollection userData =
new KeyValueCollection();

userData.Add("Subject",
"New Interaction Created by a Custom Media Server");

Now you can open the protocol object, and prepare the interaction to be submitted:

[C#]

try
{

interactionServerProtocol.Open();

RequestSubmit requestSubmit = RequestSubmit.Create(
inboundQueue,
mediaType,
"Inbound");

requestSubmit.TenantId = tenantId;
requestSubmit.InteractionSubtype = "InboundNew";
requestSubmit.UserData = userData;

If you use the Request method, you will receive a synchronous response containing a message from
Interaction Server:

[C#]

IMessage response =
interactionServerProtocol.Request(requestSubmit);

LogAreaRichTextBox.Text = LogAreaRichTextBox.Text
+ "Response: " + response.Name + ".\n\n";

Server-Specific Overviews Interaction Server

Platform SDK Developer's Guide 222

Closing the Connection

Finally, when you are finished communicating with Interaction Server, you should close the
connection to minimize resource utilization:

[C#]

interactionServerProtocol.Close();

Additional Topics

As support for the Platform SDKs continues to grow, new topics and examples that illustrate best-
practice approaches to common tasks are being added to the documentation. For more information
about using the Open Media Platform SDK, including functional code snippets, please read the
following topics:

• Creating an E-Mail - This article discusses how to use the Open Media and Contacts Platform SDKs in
conjuction to create outgoing e-mail messages. You can also apply the concepts illustrated here to
other types of Interactions.

Server-Specific Overviews Interaction Server

Platform SDK Developer's Guide 223

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CreatinganE-Mail

Universal Contact Server
You can use the Contacts Platform SDK to write Java or .NET applications that interact with the
Genesys Universal Contact Server (UCS). This allows you to create applications that work with
contacts, interactions, and standard responses in a variety of ways - either to create a full-featured
agent desktop, or a simple application that forwards e-mail messages.

This document shows how to implement the basic functions you will need to write simple UCS-based
applications.

When you are ready to write more complicated applications, take a look at the classes and methods
described in the Platform SDK API Reference.

Java

Using the Contacts Protocols

Before using the Contacts Platform SDK, you should include import statements that allow access to
the Platform SDK Commons and Contacts classes:

[Java]

import com.genesyslab.platform.commons.protocol.*;

import com.genesyslab.platform.contacts.protocol.*;
import com.genesyslab.platform.contacts.protocol.contactserver.*;
import com.genesyslab.platform.contacts.protocol.contactserver.events.*;
import com.genesyslab.platform.contacts.protocol.contactserver.requests.*;

Setting Up Universal Contact Server Protocol Objects

The first thing you need to do to use the Contacts Platform SDK is instantiate a
UniversalContactServerProtocol object. To do that, you must supply information about the
Universal Contact Server you want to connect with. This example uses the server's name, host, and
port information, but you can also use just the URI of your Universal Contact Server:

[Java]

UniversalContactServerProtocol ucsConnection =

new UniversalContactServerProtocol(new Endpoint(universalContactServerURI));

It is a good practice to always set the application name at the same time that you instantiate a new
protocol object. This application name will be used to identify where UCS requests came from.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 224

https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome

This is also a good time to add event handlers to the protocol object. See the Event Handling section
in this introductory material for code samples and details.

[Java]

// Set the ApplicationName property
ucsConnection.setApplicationName("IntroducingContactsPSDK");

After setting up your protocol object, the code to open a connection to the server is simple:

[Java]

ucsConnection.open();

Tip
Be sure to use proper error handling techniques in your code, especially when working
with the protocol connection. To save space, these error handling steps are not shown
in this example.

Inserting an Interaction

Now that the protocol connection is open, you are ready to start handling interactions. In this
example, we will start by creating a new, outbound e-mail interaction using the
RequestInsertInteraction request.

Creating a new e-mail interaction object takes a bit of planning. Before you can create and submit the
request object, you need to create and configure the following objects:

• InteractionAttributes - Sets common attributes for this interaction, specifying details such as the
media type and status. All interactions need these attributes to be configured.

• EmailOutEntityAttributes - Sets attributes that are specific to an outbound e-mail interaction. For
outbound e-mail interactions, this includes the sending and receiving addresses. (The type of
interaction you are creating will dictate which object to use here; for example, phone interactions
require a PhoneCallEntityAttributes object instead of EmailOutEntityAttributes.)

• InteractionContent - Specifies the actual interaction content. This can be Text, MIME, StructuredText,
or StructuredText with MIME content.

The following code snippet shows how each of these objects is configured for our simple outbound e-
mail example:

[Java]

// Set common interaction attributes
InteractionAttributes attributes = new InteractionAttributes();
attributes.setTenantId(101);
attributes.setMediaTypeId("email");
attributes.setTypeId("Outbound");
attributes.setSubtypeId("OutboundRedirect");
attributes.setStatus(Statuses.Pending);

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 225

attributes.setSubject(subjectLine);
attributes.setQueueName(queueName);
attributes.setEntityTypeId(EntityTypes.EmailOut);

// Set entity-specific attributes
EmailOutEntityAttributes outEntityAttributes = new EmailOutEntityAttributes();
outEntityAttributes.setFromAddress(fromAddress);
outEntityAttributes.setToAddresses(forwardAddress);

// Set interaction content
InteractionContent content = new InteractionContent();
content.setText("E-mail message text...");

Tip
The InteractionAttributes class stores the StartDate property in UTC format. If no
value is provided, UCS uses the current date.

Once you have configured the attributes and content for the interaction, it is easy to create and
submit the new request:

[Java]

// Create the new interaction request
RequestInsertInteraction request = new RequestInsertInteraction();
request.setInteractionAttributes(attributes);
request.setEntityAttributes(outEntityAttributes);
request.setInteractionContent(content);

// Submit the request
EventInsertInteraction eventInsertIxn = ucsConnection.request(request);

Adding an Attachment

Now that you know how to create new e-mail interactions, it is the perfect time to learn how to add
attachments to existing interactions. The process for this is much easier than creating a new
interaction; you just need to create the request and specify the attachment properties as shown in
the code snippet below. Once the request is ready, submit it to your UCS protocol object.

[Java]

RequestAddDocument request = new RequestAddDocument();
request.setInteractionId(eventInsertIxn.getInteractionId());
request.setDocumentId(strDocumentId);
request.setDescription(strDescription);
request.setMimeType(strMimeType);
request.setTheName(strName);
request.setTheSize(intSize);

EventAddDocument eventAddDocument = ucsConnection.request(request);

Note that before adding an attachment, you need to have the Interaction ID available. In our
example, the Interaction ID was returned as part of the EventInsertInteraction from the previous

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 226

section. Otherwise we would need to submit a RequestGetInteractionContent request and then
take the Interaction ID from the resulting event.

Getting an Interaction from UCS

Now that we have created a new Interaction and submitted it to UCS, what happens next? The final
task we will cover in this introduction is how to return the Interaction and any of its attachments for
processing.

The structure of RequestGetInteractionContent is very basic: set the Interaction ID you are looking
for, and then use the IncludeAttachments and IncludeBinaryContent properties to specify what
type of content you want to be returned. In this example, we will return the attachment created
previously and store it in an Attachment object for later use.

[Java]

RequestGetInteractionContent request = new RequestGetInteractionContent();
request.setInteractionId(eventInsertIxn.getInteractionId());
request.setIncludeAttachments(true);

EventGetInteractionContent eventGetIxnContent = ucsConnection.Request(request);

String subject = eventGetIxnContent.getInteractionAttributes().getSubject();
String key = eventGetIxnContent.getInteractionAttributes().getId();
if (eventGetIxnContent.getAttachments() != null)
{

Attachment attachedFile = eventGetIxnContent.getAttachments().get(0);
}

Closing the Connection

Finally, when you are finished communicating with the server, you should close the connection and
dispose of the object to minimize resource utilization:

[Java]

if (ucsConnection.getState() != ChannelState.Closed && ucsConnection.getState() !=
ChannelState.Closing)

{
ucsConnection.close();

}

.NET

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 227

Using the Contacts Protocols

Before using the Contacts Platform SDK, you should include using statements that allow access to the
Platform SDK Commons and Contacts namespaces:

[C#]

using Genesyslab.Platform.Commons.Protocols;
using Genesyslab.Platform.Contacts.Protocols;
using Genesyslab.Platform.Contacts.Protocols.ContactServer;
using Genesyslab.Platform.Contacts.Protocols.ContactServer.Requests;
using Genesyslab.Platform.Contacts.Protocols.ContactServer.Events;

Setting Up Universal Contact Server Protocol Objects

The first thing you need to do to use the Contacts Platform SDK is instantiate a
UniversalContactServerProtocol object. To do that, you must supply information about the
Universal Contact Server you want to connect with. This example uses the server's name, host, and
port information, but you can also use just the URI of your Universal Contact Server:

[C#]

UniversalContactServerProtocol ucsConnection;
ucsConnection = new UniversalContactServerProtocol(new Endpoint("UCS", ucsHost, ucsPort));

It is a good practice to always set the application name at the same time that you instantiate a new
protocol object. This application name will be used to identify where UCS requests came from.

This is also a good time to add event handlers to the protocol object. See the Event Handling article
for details.

[C#]

// Set the ApplicationName property
ucsConnection.ApplicationName = "IntroducingContactsPSDK";

// Add event handlers
ucsConnection.Opened += new EventHandler(ucsConnection_Opened);
ucsConnection.Error += new EventHandler(ucsConnection_Error);
ucsConnection.Closed += new EventHandler(ucsConnection_Closed);

After setting up your protocol object, the code to open a connection to the server is simple:

[C#]

ucsConnection.Open();

Tip
Be sure to use proper error handling techniques in your code, especially when working
with the protocol connection. To save space, these error handling steps are not shown

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 228

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling

in this example.

Inserting an Interaction

Now that the protocol connection is open, you are ready to start handling interactions. In this
example, we will start by creating a new, outbound e-mail interaction using the
RequestInsertInteraction request.

Creating a new e-mail interaction object takes a bit of planning. Before you can create and submit the
request object, you need to create and configure the following objects:

• InteractionAttributes - Sets common attributes for this interaction, specifying details such as the
media type and status. All interactions need these attributes to be configured.

• EmailOutEntityAttributes - Sets attributes that are specific to an outbound e-mail interaction. For
outbound e-mail interactions, this includes the sending and receiving addresses. (The type of
interaction you are creating will dictate which object to use here; for example, phone interactions
require a PhoneCallEntityAttributes object instead of EmailOutEntityAttributes.)

• InteractionContent - Specifies the actual interaction content. This can be Text, MIME, StructuredText,
or StructuredText with MIME content.

The following code snippet shows how each of these objects is configured for our simple outbound e-
mail example:

[C#]

// Set common interaction attributes
InteractionAttributes attributes = new InteractionAttributes();
attributes.TenantId = 101;
attributes.MediaTypeId = "email";
attributes.TypeId = "Outbound";
attributes.SubtypeId = "OutboundRedirect";
attributes.Status = new NullableStatuses(Statuses.Pending);
attributes.Subject = subjectLine;
attributes.QueueName = queueName;
attributes.EntityTypeId = new NullableEntityTypes(EntityTypes.EmailOut);

// Set entity-specific attributes
EmailOutEntityAttributes outEntityAttributes = new EmailOutEntityAttributes();
outEntityAttributes.FromAddress = fromAddress;
outEntityAttributes.ToAddresses = forwardAddress;

// Set interaction content
InteractionContent content = new InteractionContent();
content.Text = "E-mail message text...";

Tip
The InteractionAttributes class stores the StartDate property in UTC format. If no

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 229

value is provided, UCS uses the current date.

Once you have configured the attributes and content for the interaction, it is easy to create and
submit the new request:

[C#]

// Create the new interaction request
RequestInsertInteraction request = new RequestInsertInteraction();
request.InteractionAttributes = attributes;
request.EntityAttributes = outEntityAttributes;
request.InteractionContent = content;

// Submit the request
EventInsertInteraction eventInsertIxn = ucsConnection.Request(request);

Adding an Attachment

Now that you know how to create new e-mail interactions, it is the perfect time to learn how to add
attachments to existing interactions. The process for this is much easier than creating a new
interaction; you just need to create the request and specify the attachment properties as shown in
the code snippet below. Once the request is ready, submit it to your UCS protocol object.

[C#]

RequestAddDocument request = new RequestAddDocument();
request.InteractionId = eventInsertIxn.InteractionId;
request.DocumentId = strDocumentId;
request.Description = strDescription;
request.MimeType = strMimeType;
request.TheName = strName;
request.TheSize = intSize;

EventAddDocument eventAddDocument = ucsConnection.Request(request);

Note that before adding an attachment, you need to have the Interaction ID available. In our
example, the Interaction ID was returned as part of the EventInsertInteraction from the previous
section. Otherwise we would need to submit a RequestGetInteractionContent request and then
take the Interaction ID from the resulting event.

Getting an Interaction from UCS

Now that we have created a new Interaction and submitted it to UCS, what happens next? The final
task we will cover in this introduction is how to return the Interaction and any of its attachments for
processing.

The structure of RequestGetInteractionContent is very basic: set the Interaction ID you are looking
for, and then use the IncludeAttachments and IncludeBinaryContent properties to specify what
type of content you want to be returned. In this example, we will return the attachment created

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 230

previously and store it in an Attachment object for later use.

[C#]

RequestGetInteractionContent request = new RequestGetInteractionContent();
request.InteractionId = eventInsertIxn.InteractionId;
request.IncludeAttachments = true;

EventGetInteractionContent eventGetIxnContent = ucsConnection.Request(request);

String subject = eventGetIxnContent.InteractionAttributes.Subject;
String key = eventGetIxnContent.InteractionAttributes.Id;
if (eventGetIxnContent.Attachments != null)
{

Attachment attachedFile = eventGetIxnContent.Attachments.Get(0);
}

Closing the Connection

Finally, when you are finished communicating with the server, you should close the connection and
dispose of the object to minimize resource utilization:

[C#]

if (ucsConnection.State != ChannelState.Closed && ucsConnection.State != ChannelState.Closing)
{

ucsConnection.Close();
ucsConnection.Dispose();

}

Additional Topics

As support for the Platform SDKs continues to grow, new topics and examples that illustrate best-
practice approaches to common tasks are being added to the documentation. For more information
about using the Contacts Platform SDK, including functional code snippets, please read the following
topics:

• Creating an E-Mail - This article discusses how to use the Open Media and Contacts Platform SDKs in
conjuction to create outgoing e-mail messages.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 231

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CreatinganE-Mail

Creating an E-Mail

Java

This article discusses the general process used to create e-mail messages, and provides suggestions
about how you should work with those protocols.

Overview of Creating a New E-Mail Message

To create a new e-mail message, there are four basic steps you should follow:

1. Connect to Genesys Servers - Use the Protocol Manager Application Block to access the appropriate
Genesys Servers.

2. Create a new Interaction - Request a new Interaction that will be used to manage the e-mail message
within Interaction Server.

3. Store e-mail details in UCS - Once the Interaction is available, you can use the unique InteractionId
that is returned to create a new UCS entry that contains details and contents for the e-mail message.

4. Place the Interaction in the appropriate queue - When both parts of the e-mail message have been
stored, move the Interaction into the correct queue for processing.

A quick overview of these steps, and an outline of the key requests sent to Genesys servers, is shown
below.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 232

Tip
The order of the second and third steps can be reversed, if desired, as long as the
final UCS entry contains the correct InteractionId value. In this case you would need to
update the UCS entry after creating the new Interaction.

The following sections include code snippets that show one possible approach for handling each of
these steps. The snippets have been simplified to focus only on code related to Genesys-specific
functions.

Connecting to Genesys Servers
When creating and handling e-mail interactions, it is important to remember how e-mail messages
are stored within the Genesys environment, and which Genesys servers you are interacting with.

Each e-mail message is stored as two separate pieces: an Interaction, and an entry in the Universal
Contact Server (UCS) database. The e-mail is represented as an Interaction so that it can be sorted
and processed using queues that have defined behavior. Even though e-mails are managed through
Interaction Server, the actual contents and subject matter of each message must be stored in the
UCS database. Any attempt to create or handle e-mail messages will require access to both Genesys
Servers: Interaction Server (using the Open Media protocol) and UCS (using the Contacts Platform
SDK protocol).

Before writing your e-mail application, some fairly standard code must be added to allow access to
these Genesys servers. First, all necessary references and import statements must be added to your
project. This includes the two specific protocols mentioned above, together with some common
Genesys libraries and the Protocol Manager Application Block.

With those statements in place, we configure the Protocol Manager Application Block to handle
communication with Genesys servers using the ProtocolManagementServiceImpl object, which is
defined and configured as shown below.

[Java]

private InteractionServerProtocol interactionServerProtocol;
private UniversalContactServerProtocol contactServerProtocol;

public void connectToProtocols() throws URISyntaxException, ProtocolException
{

Endpoint interactionServerEndpoint = new Endpoint(new URI("tcp://ixnServer:7005"));
interactionServerProtocol = new InteractionServerProtocol(interactionServerEndpoint);
interactionServerProtocol.setClientName("EmailSample");
interactionServerProtocol.setClientType(InteractionClient.AgentApplication);

Endpoint contactServerEndpoint = new Endpoint(new URI("tcp://ucsServer:7006"));
contactServerProtocol = new UniversalContactServerProtocol(contactServerEndpoint);
contactServerProtocol.setClientName("EmailSample");

interactionServerProtocol.beginOpen();
contactServerProtocol.beginOpen();

}

For more information about the Protocol Manager Application Block, see the Connecting to a Server
article found in this guide.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 233

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer

Creating an Interaction
With connections to the Genesys servers established, we are ready to request a new Interaction that
will represent our e-mail message in Interaction Server. You accomplish this by creating a new
RequestSubmit, setting a few parameters to indicate that this Interaction represents an e-mail
message, and then sending the request to Interaction Server with your ProtocolManagementService
object.

[Java]

public void createInteraction(String ixnType, String ixnSubtype, String queue) throws
Exception
{

RequestSubmit req = RequestSubmit.create();
req.setInteractionType(ixnType);
req.setInteractionSubtype(ixnSubtype);
req.setQueue(queue);
req.setMediaType("email");

Message response = interactionServerProtocol.request(req);
if(response == null || response.messageId() != EventAck.ID) {

// For this sample, no error handling is implemented
return;

}

EventAck event = (EventAck)response;
mInteractionId = event.getExtension().getString("InteractionId");

}

A full list of properties that need to be set is included in the table below. Note that the
InteractionType and InteractionSubtype properties must match existing business attributes, as
specified in Configuration Server.

Property Name Description

InteractionType
Interaction type for this e-mail message. Must
match an Interaction Type Business Attribute, as
specified in Configuration Server.

InteractionSubtype
Interaction subtype for this e-mail message. Must
match an Interaction Subtype Business Attribute,
as specified in Configuration Server.

Queue

Queue that this Interaction will be placed in
initially. Must be defined in Configuration Server.
When creating a new e-mail Interaction, the initial
queue should not process the message (because
additional information needs to be stored in UCS
first).

MediaType
Primary media type of the interaction that is being
submitted to Interaction Server. Intended for Media
Server.

Once a response is received from Interaction Server, you can confirm that an EventAck response was
returned and that the request was processed successfully. If an EventError response is returned
instead, then you will need to implement some error handling code.

It is also important to save and track the InteractionId value of the newly created Interaction. This

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 234

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CreatinganE-Mail#Other_Considerations

ID needs to be specified in UCS entries that hold details related to the e-mail message, and is also
required for moving the Interaction to an appropriate queue when you are ready to process the e-
mail. In this example we are storing the InteractionId value in a simple variable named
mInteractionId, which is assumed to be defined for your project. In larger samples (or full projects),
a more robust way of tracking and handling Interactions may be required.

Storing E-Mail Details in UCS
With the ID of your newly created Interaction available, it is time to store details about the e-mail you
are sending in the UCS database.

There are three types of information that must be stored in the UCS database:

• Interaction Attributes - Define details about the related Interaction for this information.
• Entity Attributes - Define where the e-mail message is coming from and going to. You will use

EmailOutEntityAttributes for storing outbound e-mail messages, and EmailInEntityAttributes for
storing inbound e-mail messages.

• Interaction Content - Define the actual contents of the email message, including the main text and any
MIME attachments.

Creating and configuring a RequestInsertInteraction object with this information can be easily
accomplished, as shown below.

[Java]

public void storeDetails(String ixnType, String ixnSubtype) throws Exception
{

// Set Interaction Attributes
InteractionAttributes ixnAttributes = new InteractionAttributes();
ixnAttributes.setId(mInteractionId);
ixnAttributes.setMediaTypeId("email");
ixnAttributes.setTypeId(ixnType);
ixnAttributes.setSubtypeId(ixnSubtype);
ixnAttributes.setTenantId(101);
ixnAttributes.setStatus(Statuses.Pending);
ixnAttributes.setSubject("Sample e-mail subject");
ixnAttributes.setEntityTypeId(EntityTypes.EmailOut);

// Set Entity Attributes
EmailOutEntityAttributes entityAttributes = new EmailOutEntityAttributes();
entityAttributes.setFromAddress("sending@email.com");
entityAttributes.setToAddresses("receiving@email.com");
entityAttributes.setCcAddresses("copying@email.com");
...

// Set Interaction Content
InteractionContent content = new InteractionContent();
content.setText("This is the e-mail body.");
...

// Send the request
RequestInsertInteraction req = new RequestInsertInteraction();
req.setInteractionAttributes(ixnAttributes);
req.setEntityAttributes(entityAttributes);
req.setInteractionContent(content);

contactServerProtocol.send(req);

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 235

}

A list of InteractionAttributes properties that need to be set for an email message is provided in
the following table. The properties shown for EmailOutEntityAttributes and InteractionContent
represent some of those most commonly used with email. Please check the documentation provided
for each class to see a full list of available properties.

Interaction Attribute Name Description

EntityTypeId Indicates whether this is an outgoing or incoming
e-mail.

Id Interaction ID of the related Interaction record,
created earlier.

MediaTypeId
Primary media type of the Interaction you are
submitting to Interaction Server. Intended for
Media Server.

Subject Subject line for this e-mail message.

SubtypeId
Interaction subtype for this e-mail message. Must
match an Interaction Subtype Business Attribute,
as specified in Configuration Server.

Status Current status of the e-mail message.
TenantId ID of the Tenant where this e-mail belongs.

TypeId
Interaction type for this e-mail message. Must
match an Interaction Type Business Attribute, as
specified in Configuration Server.

Placing the Interaction in the Appropriate Queue
When an Interaction has been created to handle the e-mail, and all content has been stored in the
UCS database, you are free to begin processing the message as you would process any normal
Interaction. This is accomplished by moving the Interaction that you created into the appropriate
queue for e-mail processing, as defined in Interaction Routing Designer.

[Java]

public void placeInQueue(String queue) throws Exception
{

RequestPlaceInQueue req = RequestPlaceInQueue.create();
req.setInteractionId(mInteractionId);
req.setQueue(queue);

interactionServerProtocol.send(req);
}

Replying to an E-Mail Message

Replying to an existing e-mail message follows the same basic process outlined above, but requires a
few additional parameters to be set in your requests. These changes are described in the following
subsections.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 236

Changes to Creating an Interaction
When creating the Interaction, you need to specify one additional parameter before submitting your
RequestSubmit. Take the InteractionId of the Interaction that represents the original e-mail
message, and use that value as the ParentInteractionId parameter in your request, as shown
below:

[Java]

RequestSubmit req = RequestSubmit.create();

...

req.setParentInteractionId = parentInteractionId;

The following table describes these additional attributes.

Attribute Name Description

ParentInteractionId
InteractionId of a parent e-mail Interaction. Only
set this value when replying to an existing e-mail
message.

Changes to Storing E-Mail Details in UCS
When storing e-mail details in UCS, you need to specify values for three additional interaction
attributes before sending your RequestInsertInteraction. These attributes (shown in the code
snippet below) provide a link between the parent entry in UCS and any related children, as well as
specifying a common thread ID.

[Java]

InteractionAttributes ixnAttributes = new InteractionAttributes();

...

ixnAttributes.setParentId(parentInteractionId);
ixnAttributes.setCanBeParent(False);
ixnAttributes.setThreadId(parentThreadId);

The table below describes these additional attributes.

Attribute Name Description

CanBeParent Boolean value that indicates whether this message
can be a parent.

ParentId Interaction ID for the parent e-mail Interaction.

ThreadId Unique value that is shared between all UCS
entries in an e-mail conversation.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 237

Other Considerations

Although this introduction to creating and handling e-mail messages is not intended to be a
comprehensive guide, it is useful to quickly introduce some other considerations and basic concepts
regarding how requests are submitted and how errors should be handled.

• The first consideration to take into account is how you submit requests using the Protocol Management
Application Block. In the code provided here, a simple send method is used to submit most requests
without waiting for a response from the server. However, in more complicated samples or
implementations you may need to process responses, or store and use values returned (such as the
InteractionId in this example) once a request is processed.

Please read the article on Event Handling provided in this document for a better understanding of
how to handle incoming responses in both a synchronous and asynchronous fashion. This allows
better error handling to be implemented if a request fails.

• A second consideration to be aware of is how records in Interaction Server and UCS are related when
implementing error handling. If you have already created a new Interaction when your
RequestInsertInteraction fails, then you will need to either resubmit the UCS record or delete the
related Interaction by submitting a RequestStopProcessing. (If you reversed the steps shown here and
created a UCS record first, then the same concept applies for removing that record when a new
Interaction request fails.)

.NET

Overview of Creating a New E-Mail Message

To create a new e-mail message, there are four basic steps you should follow:

1. Connect to Genesys Servers - Use the Protocol Manager Application Block to access the appropriate
Genesys Servers.

2. Create a new Interaction - Request a new Interaction that will be used to manage the e-mail message
within Interaction Server.

3. Store e-mail details in UCS - Once the Interaction is available, you can use the unique InteractionId that
is returned to create a new UCS entry that contains details and contents for the e-mail message.

4. Place the Interaction in the appropriate queue - When both parts of the e-mail message have been
stored, move the Interaction into the correct queue for processing.

A quick overview of these steps, and an outline of the key requests sent to Genesys servers, is shown
below.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 238

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling

Tip
The order of the second and third steps can be reversed, if desired, as long as the
final UCS entry contains the correct InteractionId value. In this case you would
need to update the UCS entry after creating the new Interaction.

The following sections include code snippets that show one possible approach for handling each of
these steps. The snippets have been simplified to focus only on code related to Genesys-specific
functions.

Connecting to Genesys Servers
When creating and handling e-mail interactions, it is important to remember how e-mail messages
are stored within the Genesys environment, and which Genesys servers you are interacting with.

Each e-mail message is stored as two separate pieces: an Interaction, and an entry in the Universal
Contact Server (UCS) database. The e-mail is represented as an Interaction so that it can be sorted
and processed using queues that have defined behavior. Even though e-mails are managed through
Interaction Server, the actual contents and subject matter of each message must be stored in the
UCS database. Any attempt to create or handle e-mail messages will require access to both Genesys
Servers: Interaction Server (using the Open Media protocol) and UCS (using the Contacts Platform
SDK protocol).

Before writing your e-mail application, some fairly standard code must be added to allow access to
these Genesys servers. First, all necessary references and using statements must be added to your
project.

[C#]

private InteractionServerProtocol interactionServerProtocol;
private UniversalContactServerProtocol contactServerProtocol;

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 239

public void ConnectToProtocols()
{

var interactionServerEndpoint = new Endpoint(new Uri("tcp://ixnServer:7005"));
interactionServerProtocol = new InteractionServerProtocol(interactionServerEndpoint);
interactionServerProtocol.ClientName = "EmailSample";
interactionServerProtocol.ClientType = InteractionClient.AgentApplication;

var contactServerEndpoint = new Endpoint(new Uri("tcp://ucsServer:7006"));
contactServerProtocol = new UniversalContactServerProtocol(contactServerEndpoint);
contactServerProtocol.ClientName = "EmailSample";

interactionServerProtocol.BeginOpen();
contactServerProtocol.BeginOpen();

}

Creating an Interaction

With connections to the Genesys servers established, we are ready to request a new Interaction that
will represent our e-mail message in Interaction Server. All you need to do to accomplish this is to
create a new RequestSubmit, set a few parameters to indicate that this Interaction represents an e-
mail message, and then use your InteractionServerProtocol object to send that request to
Interaction Server.

Unlike other requests shown in this article, RequestSubmit is sent using the BeginRequest method
so that we can receive and process the response from Interaction Server.

[C#]

public void CreateInteraction(string ixnType, string ixnSubtype, string queue)
{
var req = RequestSubmit.Create();
req.InteractionType = ixnType;
req.InteractionSubtype = ixnSubtype;
req.MediaType = "email";
req.Queue = queue;

interactionServerProtocol.BeginRequest(req, new AsyncCallback(OnCreateInteractionComplete),
null);
}

A full list of properties that need to be set is included in the following table. Note that the
InteractionType and InteractionSubtype properties must match existing business attributes, as
specified in Configuration Server.

Property Name Description

InteractionSubtype
Interaction subtype for this e-mail message. Must
match an Interaction Subtype Business Attribute,
as specified in Configuration Server.

InteractionType
Interaction type for this e-mail message. Must
match an Interaction Type Business Attribute, as
specified in Configuration Server.

MediaType Primary media type of the interaction that is being
submitted to Interaction Server. Intended for Media

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 240

Property Name Description
Server.

Queue

Queue that this Interaction will be placed in
initially. Must be defined in Configuration Server.
When creating a new e-mail Interaction, the initial
queue should not process the message (because
additional information needs to be stored in UCS
first).

Once a response is received from Interaction Server, you can confirm that an EventAck response was
returned and that the request was processed successfully. If an EventError response is returned
instead, then you will need to implement some error handling code.

You should also save and track the InteractionId value of the newly created Interaction. This ID
needs to be specified in UCS entries that hold details related to the e-mail message, and is also
required for moving the Interaction to an appropriate queue when you are ready to process the e-
mail.

[C#]

private void OnCreateInteractionComplete(IAsyncResult result)
{

var response = interactionServerProtocol.EndRequest(result);
if (response == null || response.Id != EventAck.MessageId)

// for this sample, no error handling is implemented
return;

var @event = response as EventAck;
mInteractionId = (string)@event.Extension["InteractionId"];

}

In this example we are storing the InteractionId value in a simple variable named
mInteractionId, which is assumed to be defined for your project. In larger samples (or full projects),
a more robust way of tracking and handling Interactions may be required.

Storing E-Mail Details in UCS
With the ID of your newly created Interaction available, it is time to store details about the e-mail you
are sending in the UCS database.

There are three types of information that must be stored in the UCS database:

• Interaction Attributes - Define details about the related Interaction for this information.
• Entity Attributes - Define where the e-mail message is coming from and going to. You will use

EmailOutEntityAttributes for storing outbound e-mail messages, and EmailInEntityAttributes for storing
inbound e-mail messages.

• Interaction Content - Define the actual contents of the email message, including the main text and any
MIME attachments.

Creating and configuring a RequestInsertInteraction object with this information can be easily
accomplished, as shown below.

[C#]

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 241

public void StoreDetails(string ixnType, string ixnSubtype)
{

var req = new RequestInsertInteraction();
req.InteractionAttributes = new InteractionAttributes()
{

Id = mInteractionId,
MediaTypeId = "email",
TypeId = ixnType,
SubtypeId = ixnSubtype,
TenantId = 101,
Status = new NullableStatuses(Statuses.Pending),
Subject = "Sample e-mail subject",
EntityTypeId = new NullableEntityTypes(EntityTypes.EmailOut),

};
req.EntityAttributes = new EmailOutEntityAttributes()
{

FromAddress = "sending@email.com",
ToAddresses = "receiving@email.com",
CcAddresses = "copied@email.com",
...

};
req.InteractionContent = new InteractionContent()
{

Text = "This is the e-mail body.",
...

};
contactServerProtocol.Send(req);

}

A list of InteractionAttributes properties that need to be set for an email message is provided in
the following table. The properties shown for EmailOutEntityAttributes and InteractionContent
represent some of those most commonly used with email. Please check the documentation provided
for each class to see a full list of available properties.

Interaction Attribute Name Description

EntityTypeId Indicates whether this is an outgoing or incoming
e-mail.

Id Interaction ID of the related Interaction record,
created earlier.

MediaTypeId
Primary media type of the Interaction you are
submitting to Interaction Server. Intended for
Media Server.

Subject Subject line for this e-mail message.

SubtypeId
Interaction subtype for this e-mail message. Must
match an Interaction Subtype Business Attribute,
as specified in Configuration Server.

Status Current status of the e-mail message.
TenantId ID of the Tenant where this e-mail belongs.

TypeId
Interaction type for this e-mail message. Must
match an Interaction Type Business Attribute, as
specified in Configuration Server.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 242

Placing the Interaction in the Appropriate Queue
When an Interaction has been created to handle the e-mail, and all content has been stored in the
UCS database, you are free to begin processing the message as you would process any normal
Interaction. This is accomplished by moving the Interaction that you created into the appropriate
queue for e-mail processing, as defined in Interaction Routing Designer.

[C#]

public void PlaceInQueue(string queue)
{

var req = RequestPlaceInQueue.Create();
req.InteractionId = mInteractionId;
req.Queue = queue;

interactionServerProtocol.Send(req);
}

Replying to an E-Mail Message

Replying to an existing e-mail message follows the same basic process outlined above, but requires a
few additional parameters to be set in your requests. These changes are described in the following
subsections.

Changes to Creating an Interaction
When creating the Interaction, you need to specify one additional parameter before submitting your
RequestSubmit. Take the InteractionId of the Interaction that represents the original e-mail
message, and use that value as the ParentInteractionId parameter in your request, as shown
below:

[C#]

var req = RequestSubmit.Create();
...
req.ParentInteractionId = parentInteractionId;

The following table describes these additional attributes.

Attribute Name Description

ParentInteractionId
InteractionId of a parent e-mail Interaction. Only
set this value when replying to an existing e-mail
message.

Changes to Storing E-Mail Details in UCS
When storing e-mail details in UCS, you need to specify values for three additional interaction
attributes before sending your RequestInsertInteraction. These attributes (shown in the code
snippet below) provide a link between the parent entry in UCS and any related children, as well as
specifying a common thread ID.

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 243

[C#]

var req = new RequestInsertInteraction();
...
req.InteractionAttributes.ParentId = parentInteractionId;
req.InteractionAttributes.CanBeParent = False;
req.InteractionAttributes.ThreadId = parentThreadId;

The following table describes these additional attributes.

Attribute Name Description

CanBeParent Boolean value that indicates whether this message
can be a parent.

ParentId Interaction ID for the parent e-mail Interaction.

ThreadId Unique value that is shared between all UCS
entries in an e-mail conversation.

Other Considerations

Although this introduction to creating and handling e-mail messages is not intended to be a
comprehensive guide, it is useful to quickly introduce some other considerations and basic concepts
regarding how requests are submitted and how errors should be handled.

The first consideration to take into account is how you submit requests. In the code provided here, a
simple Send method is used to submit most requests without waiting for a response from the server.
However, for more complicated samples or implementations you should consider using the
BeginRequest method with a callback handler instead.

Using BeginRequest allows requests to be submitted without waiting for a response, but provides the
ability to confirm the result and response of each request. This allows better error handling to be
implemented if a request fails. Creating an Interaction uses the BeginRequest method and a callback
handler to capture the InteractionID that is returned.

A second consideration to be aware of is how records in Interaction Server and UCS are related when
implementing error handling. If you have already created a new Interaction and then the
RequestInsertInteraction fails, you need to either resubmit the UCS record or delete the related
Interaction by submitting a RequestStopProcessing. (If you reversed those steps and created a UCS
record first, then the same idea must be applied if the request to create a new Interaction fails.)

Server-Specific Overviews Universal Contact Server

Platform SDK Developer's Guide 244

Chat
You can use the Web Media Platform SDK to write Java or .NET applications that use the Genesys Web
Media Server's chat, e-mail and voice callback protocols. These applications can range from the
simple to the advanced.

This article shows how to implement the basic functions you will need to write a simple Web Media
Server application. It provides code snippets to illustrate how the FlexChat protocol can be used to
support a simple chat application.

Java

Importing the Web Media Protocols

Before using the Web Media Platform SDK, you will need to import the appropriate packages. Since
we will be using the FlexChat protocol, we will use the following import statements:

[Java]
import com.genesyslab.platform.webmedia.protocol.*;
import com.genesyslab.platform.webmedia.protocol.flexchat.*;
import com.genesyslab.platform.webmedia.protocol.flexchat.events.*;
import com.genesyslab.platform.webmedia.protocol.flexchat.requests.*;

Setting Up Web Media Protocol Objects

When interacting with existing chat sessions, you will need to store session-specific details including
a secure key and user ID. Additional objects that will be needed include a FlexChatProtocol object
(for sending and receive messages) and a FlexTranscript object (used to store and interact with
the chat transcript).

[Java]
private String mSecureKey = null;
private String mUserId = null;
private FlexTranscript mTranscript = null;
private FlexChatProtocol mFlexChatProtocol = null;

To use the Web Media Platform SDK, you first need to instantiate a protocol object by supplying
information about the Web Media Server you want to connect with. This example specifies values for
the name, host, and port values:

[Java]
mFlexChatProtocol = new FlexChatProtocol(new Endpoint("FlexChat", "<hostname>", <port>));
Thread mListenerThread = new ListenForEventsThread(mFlexChatProtocol);

Note that you have to provide a string when you create the FlexChatProtocol object. This string

Server-Specific Overviews Chat

Platform SDK Developer's Guide 245

should be unique for each protocol used in your application. It might be a good idea to use the name
of the server's application object from the configuration layer, which guarantees uniqueness as well
as clearly identifying which server you are communicating with.

After instantiating the FlexChatProtocol object, you need to open the connection to the Web Media
Server:

[Java]
mFlexChatProtocol.open();

Note that you should always use proper error handling techniques in your code, especially when
working with the protocol connection. To save space, these error handling steps are not shown in this
example.

Logging in to Chat Server
[Java]
// filter the request based on our configured application name
KeyValueCollection kvUserData = new KeyValueCollection();
kvUserData.addObject("FirstName", "John");
kvUserData.addObject("LastName", "Smith");
kvUserData.addObject("EmailAddress", "john.smith@email.com");
RequestLogin reqLogin = RequestLogin.create(strNickName, 0, kvUserData);
Message msg = mFlexChatProtocol.request(reqLogin);

After successfully logging in to Chat Server, a message is returned that includes some important
information: the Secure Key and User ID values. You will use these values when sending messages to
the Chat Server, so remember to keep track of them for later.

[Java]
if (msg != null && msg.messageId() == EventStatus.ID)
{

EventStatus status = (EventStatus)msg;
if (status.getRequestResult() == RequestResult.Success)
{

mSecureKey = status.getSecureKey();
mUserId = status.getUserId();

}
}

Updating a Chat Session

By creating a RequestRefresh object, you can either check for updates or send new text to an
existing chat session. The following sample shows how to create a RequestRefresh object, send it to
the Chat Server, and process the result.

[Java]
RequestRefresh reqRefresh = RequestRefresh.create(mUserId, mSecureKey,

mTranscript.getLastPosition() + 1, MessageText.create("text", message));
Message msg = mFlexChatProtocol.request(reqRefresh);
if (msg != null && msg.messageId() == EventStatus.ID)
{

EventStatus status = (EventStatus)msg;

Server-Specific Overviews Chat

Platform SDK Developer's Guide 246

if (status.getRequestResult() == RequestResult.Success)
{

processTranscript(status.getFlexTranscript());
}

}

Working with Restricted Characters

Due to server-side requirements, the XML-based Webmedia Platform SDK protocols (BasicChat,
FlexChat, Callback and Email) do not support illegal characters in string values. See
http://www.w3.org/TR/2000/REC-xml-20001006#NT-Char for the allowable character range.

The Platform SDK protocols do not change user data by default, but the following options are
available if you want to replace illegal characters:

(1) Include code in your application to configure the protocol connection. For example:

[Java]
EmailProtocol protocol = new EmailProtocol(new Endpoint("emailServer", HOST, PORT));
PropertyConfiguration conf = new PropertyConfiguration();
conf.setBoolean(WebmediaChannel.OPTION_NAME_REPLACE_ILLEGAL_UNICODE_CHARS, true);
// "replacement" value is optional: if it is not specified - illegal characters will be
removed
conf.setOption(WebmediaChannel.OPTION_NAME_ILLEGAL_UNICODE_CHARS_REPLACEMENT, "?");
protocol.configure(conf);
protocol.open();

(2) Set specific JVM properties for the client application using webmediaprotocol.jar. For example:

[Java]
"-Dcom.genesyslab.platform.WebMedia.Email.replace-illegal-unicode-chars=true"

or

[Java]
"-Dcom.genesyslab.platform.WebMedia.Email.replace-illegal-unicode-chars=true
-Dcom.genesyslab.platform.WebMedia.Email.illegal-unicode-chars-replacement=?"

Using JVM system properties will affect all protocol connections for the specified Webmedia protocol.
Using specific connection configuration values will only affect the specified protocol instance(s), and
will take priority over JVM settings.

If no replacement character or string is specified, then illegal characters will be removed (that is,
replaced with an empty string).

Values are extracted independently for the two methods listed above. If you enable character
replacement using the PropertyConfiguration class without specifying a replacement value, but a
replacement value is already specified through the JVM system properties, then characters will be
replaced without verifying the enabling option in the JVM properties. It is recommended to use both
options while writing connection configuration code.

Server-Specific Overviews Chat

Platform SDK Developer's Guide 247

Logging out of a Chat Session

When a client is ready to log out from the existing chat session, build a RequestLogout object and
send it to the Chat Server.

[Java]
RequestLogout reqLogout = RequestLogout.create(mUserId, mSecureKey,

mTranscript.getLastPosition());
Message msg = mFlexChatProtocol.request(reqLogout);
if (msg != null && msg.messageId() == EventStatus.ID)
{

EventStatus status = (EventStatus)msg;
if (status.getRequestResult() == RequestResult.Success)
{

processTranscript(status.getFlexTranscript());
}

}

Disconnecting from a Chat Server

Finally, when you are finished communicating with the Chat Server, you should close the connection
to minimize resource utilization.

[Java]
mFlexChatProtocol.close();

.NET

Using the Web Media Protocols

Before using the Web Media Platform SDK, you should include using statements that allow access to
types from the Platform SDK Commons and Web Media namespaces. For the FlexChat protocol, we
use the following statements:

[C#]
using Genesyslab.Platform.Commons.Collections;
using Genesyslab.Platform.Commons.Connection;
using Genesyslab.Platform.Commons.Protocols;

using Genesyslab.Platform.WebMedia.Protocols;
using Genesyslab.Platform.WebMedia.Protocols.FlexChat;
using Genesyslab.Platform.WebMedia.Protocols.FlexChat.Events;
using Genesyslab.Platform.WebMedia.Protocols.FlexChat.Requests;

Server-Specific Overviews Chat

Platform SDK Developer's Guide 248

Setting Up Web Media Protocol Objects

When interacting with existing chat sessions, you will need to store session-specific details including
a secure key and user ID. Additional objects that will be needed include a FlexChatProtocol object
(for sending and receive messages) and a FlexTranscript object (used to store and interact with
the chat transcript).

[C#]
private string secureKey;
private string userId;
private FlexTranscript flexTranscript;
private FlexChatProtocol flexChatProtocol;

To use the Web Media Platform SDK, you first need to instantiate a Protocol object by supplying
information about the Web Media Server you want to connect with. This example specifies values for
the name, host, and port values:

[C#]
flexChatProtocol = new FlexChatProtocol(new Endpoint("Flex_Chat_Server", "<hostname>",
<port>));

Note that you have to provide a string when you create the FlexChatProtocol object. This string
should be unique for each protocol used in your application. It might be a good idea to use the name
of the server's application object from the configuration layer, which guarantees uniqueness as well
as clearly identifying which server you are communicating with.

After instantiating the FlexChatProtocol object, you need to open the connection to the Web Media
Server:

[C#]
flexChatProtocol.Open();

You should always use proper error handling techniques in your code, especially when working with
the protocol connection. To save space, these error handling steps are not shown in this example.

Logging in to Chat Server
[C#]
// filter the request based on our configured application name
KeyValueCollection kvUserData = new KeyValueCollection();
kvUserData.Add("FirstName", "John");
kvUserData.Add("LastName", "Smith");
kvUserData.Add("EmailAddress", "john.smith@email.com");
RequestLogin reqLogin = RequestLogin.Create("reqLogin", 0, kvUserData);
EventStatus msg = this.flexChatProtocol.Request(reqLogin) as EventStatus;

After successfully logging in to Chat Server, a message is returned that includes some important
information: the Secure Key and User ID values. You will use these values when sending messages to
the Chat Server, so remember to keep track of them for later.

[C#]
if (msg != null && msg.Id == EventStatus.MessageId)
{

if (msg.RequestResult == RequestResult.Success)

Server-Specific Overviews Chat

Platform SDK Developer's Guide 249

{
secureKey = msg.SecureKey;
userId = msg.UserId;

}
}

Updating a Chat Session

By creating a RequestRefresh object, you can either check for updates or send new text to an
existing chat session. The following sample shows how to create a RequestRefresh object, send it to
the Flex Chat protocol, and process the result.

[C#]
RequestRefresh reqRefresh = RequestRefresh.Create(

userId, secureKey, flexTranscript.LastPosition + 1, MessageText.Create(""));
EventStatus msg = this.flexChatProtocol.Request(reqJoin) as EventStatus;
if (msg != null && msg.Id == EventStatus.MessageId)
{

if (msg.RequestResult == RequestResult.Success)
{

ProcessTranscript(msg.FlexTranscript);
}

}

Working with Restricted Characters

Due to server-side requirements, the XML-based Web Media Platform SDK protocols (BasicChat,
FlexChat, Callback and Email) do not support illegal characters in string values. See
http://www.w3.org/TR/2000/REC-xml-20001006#NT-Char for the allowable character range.

The Platform SDK protocols do not change user data by default, but if you want to replace illegal
characters then you can include code in your application to configure the protocol connection. For
example:

[C#]
EmailProtocol protocol = new EmailProtocol(new Endpoint("emailServer", HOST, PORT));
// Note: to use the PropertyConfiguration class, ensure that your using
// statements include Genesyslab.Platform.Commons.Connection
PropertyConfiguration conf = new PropertyConfiguration();
conf.SetBoolean(WebmediaChannel.OptionNameReplaceIllegalUnicodeChars, true);
// "replacement" value is optional: if it is not specified - illegal characters will be
removed
conf.SetOption(WebmediaChannel.OptionNameIllegalUnicodeCharsReplacement, "?");
protocol.Configure(conf);
protocol.Open();

Using specific connection configuration values in this manner will only affect the specified protocol
instance(s).

If no replacement character or string is specified, then illegal characters will be removed (that is,
replaced with an empty string).

Server-Specific Overviews Chat

Platform SDK Developer's Guide 250

Logging out of a Chat Session

When a client is ready to log out from the existing chat session, build a RequestLogout object and
send it to your Flex Chat protocol.

[C#]
RequestLogout reqLogout = RequestLogout.Create(userId, secureKey,
flexTranscript.LastPosition);
IMessage msg = flexChatProtocol.Request(reqLogout);
if (msg != null && msg.Id == EventStatus.MessageId)
{

if ((msg as EventStatus).RequestResult == RequestResult.Success)
{

ProcessTranscript((msg as EventStatus).FlexTranscript);
}

}

Disconnecting from a Chat Server

Finally, when you are finished communicating with the Chat Server, you should close the connection
to minimize resource utilization.

[C#]
flexChatProtocol.Close();

Server-Specific Overviews Chat

Platform SDK Developer's Guide 251

Outbound

Java

You can use the Outbound Contact Platform SDK to write Java or .NET applications that work with the
Genesys Outbound Contact Server. These applications can range from the simple to the advanced.
This document shows how to implement the basic functions you will need to write a simple Outbound
Contact application. It is organized to show the kind of structure you will probably use to write your
own applications.

Setting Up an OutboundServerProtocol Object

The first thing you need to do to use the Outbound Contact Platform SDK is instantiate a
OutboundServerProtocol object. To do that, you must supply information about the Outbound
Contact Server you want to connect with. This example uses the URI of the server, but you can also
use name, host, and port information:

[Java]

OutboundServerProtocol outboundServerProtocol =
new OutboundServerProtocol(

new Endpoint(
outboundServerUri));

After instantiating the protocol object, you need to open the connection to the server:

[Java]

outboundServerProtocol.open();

Closing the Connection

Finally, when you are finished communicating with the Outbound Contact Server, you should close
the connection to minimize resource utilization:

[Java]

outboundServerProtocol.close();

.NET

You can use the Outbound Contact Platform SDK to write Java or .NET applications that work with the

Server-Specific Overviews Outbound

Platform SDK Developer's Guide 252

Genesys Outbound Contact Server. These applications can range from the simple to the advanced.
This document shows how to implement the basic functions you will need to write a simple Outbound
Contact application. It is organized to show the kind of structure you will probably use to write your
own applications.

Setting Up an OutboundServerProtocol Object

The first thing you need to do to use the Outbound Contact Platform SDK is instantiate a
OutboundServerProtocol object. To do that, you must supply information about the Outbound
Contact Server you want to connect with. This example uses the URI of the server, but you can also
use name, host, and port information:

[C#]

OutboundServerProtocol outboundServerProtocol =
new OutboundServerProtocol(

new Endpoint(
outboundServerUri));

After instantiating the OutboundServerProtocol object, you need to open the connection to the
Outbound Contact Server:

[C#]

outboundServerProtocol.Open();

Closing the Connection

Finally, when you are finished communicating with the Outbound Contact Server, you should close
the connection to minimize resource utilization:

[C#]

outboundServerProtocol.Close();

Server-Specific Overviews Outbound

Platform SDK Developer's Guide 253

Management Layer
You can use the Management Platform SDK to write Java or .NET applications that interact with the
Genesys Message Server, Solution Control Server and Local Control Agents (LCAs). Most people will
want to use this SDK to make their applications visible to the Genesys Management Layer so they
can monitor them with Solution Control Server.

This document shows how to implement the basic functions you will need to write a simple voice
application. It is organized to show the kind of structure you will probably use to write your own
applications.

Important
This article was originally written before improvements to the protocol layer and
message handling cause the Message Broker and Protocol Manager Application Blocks
to be deprecated. Although still included with this release for backwards compatibility,
Genesys no longer recommends using those Application Blocks in your applications.
The concepts discussed in this article still apply, but please refer to the updated
Connecting to a Server and Event Handling articles for an understanding of how
messages and protocols should be managed.

Java

Making Your Application Visible to the Genesys Management
Layer

A Genesys Local Control Agent (LCA) runs on each host in the Genesys environment, enabling the
Management Layer to monitor and control the applications running on that host. This section shows
how to use the LCA running on your own host to make your application visible to the Genesys
Management Layer.

Connecting to the Local Control Agent
As mentioned previously, the Platform SDK uses a message-based architecture to connect to Genesys
servers. Genesys recommends that you use the Protocol Manager Application Block to handle these
connections. We also recommend that you use the Message Broker Application Block for your
message handling. Here is how to use Protocol Manager to connect to the LCA. (This discussion is
based on the material in the article on Connecting to a Server Using the Protocol Manager Application
Block.)

Here are the import statements you need for Protocol Manager:

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 254

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB

[Java]

import com.genesyslab.platform.applicationblocks.commons.protocols.LcaConfiguration;
import
com.genesyslab.platform.applicationblocks.commons.protocols.ProtocolManagementServiceImpl;

After you have set up your import statements, the first thing you need to do is create a Protocol
Management Service object:

[Java]

protocolManagementServiceImpl = new ProtocolManagementServiceImpl();

Then you need to create an LCA Configuration object:

[Java]

lcaConfiguration = new LcaConfiguration("Lca_App");

Note that the name you supply with the Configuration object ("Lca_App" in this example) is arbitrary.

Now you can configure the connection. This sample uses the default LCA port of 4999. It also sets the
execution mode to Backup:

[Java]

try {
lcaConfiguration.setUri(new URI("tcp://localhost:4999"));

} catch (URISyntaxException e) {
e.printStackTrace();

}
lcaConfiguration.setClientName("Generic_Server_Backup");
lcaConfiguration.setExecutionMode(ApplicationExecutionMode.Backup);

Once you have configured your connection, you can register your LcaConfiguration object with the
Protocol Management Service, and open your connection to the LCA:

[Java]

protocolManagementServiceImpl.register(lcaConfiguration);
try {

protocolManagementServiceImpl.getProtocol("Lca_App").open();
} catch (InterruptedException e) {

e.printStackTrace();
} catch (ProtocolException e) {

e.printStackTrace();
}

Updating the Application Status
When you need to update the status of your application, send a RequestUpdateStatus. Here is how
to indicate that the application is running:

[Java]

RequestUpdateStatus requestUpdateStatus = RequestUpdateStatus.create();
requestUpdateStatus

.setApplicationName(lcaConfiguration.getClientName());
requestUpdateStatus.setControlStatus(ApplicationStatus.Running.asInteger());

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 255

try {
protocolManagementServiceImpl.getProtocol("Lca_App").send(

requestUpdateStatus);
} catch (ProtocolException e) {

e.printStackTrace();
}

The LCA will not return an event when you change the application status. So for this particular task,
you will not need any more code.

Execution Mode and Event Handling
As mentioned, the LCA will not return an event when you change the application status. But when
you change the execution mode — for example, from Primary to Backup — you will receive an
EventChangeExecutionMode. Unlike most events you receive in the Platform SDK, this event requires
a response from your application. If the Management Layer does not know that your application is
expecting to work in Primary mode, for example, it cannot rely on the stability of the Genesys
environment.

Important
If you do not respond within the configured timeout period, your application will be
terminated by the Management Layer.

After receiving the EventChangeExecutionMode, your application must send a
ResponseExecutionModeChanged to indicate to the Management Layer that you are now ready to run
in the new execution mode.

In order to handle these events, you need to set up the Message Broker Application Block, as outlined
here. (Note that this information is based on the Event Handling Using the Message Broker
Application Block article, which discusses this process in more detail.)

First, here are the import statements:

[Java]

import com.genesyslab.platform.applicationblocks.commons.Action;
import com.genesyslab.platform.applicationblocks.commons.broker.BrokerServiceFactory;
import com.genesyslab.platform.applicationblocks.commons.broker.EventBrokerService;
import com.genesyslab.platform.applicationblocks.commons.broker.MessageIdFilter;

Now you can create an Event Broker Service object and register your event handler:

[Java]

eventBrokerService = BrokerServiceFactory
.CreateEventBroker(protocolManagementServiceImpl.getReceiver());

eventBrokerService.register(new ChangeExecutionModeHandler(),
new MessageIdFilter(EventChangeExecutionMode.ID));

Here is a sample of the handler you might set up for the EventChangeExecutionMode. This handler
includes your ResponseExecutionModeChanged:

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 256

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB

[Java]

class ChangeExecutionModeHandler implements Action {

public void handle(Message obj) {
EventChangeExecutionMode eventChangeExecutionMode =

(EventChangeExecutionMode) obj;
if (eventChangeExecutionMode != null) {

System.out.println("eventChangeExecutionMode:\n"
+ eventChangeExecutionMode + "\n\n");

ApplicationExecutionMode mode = eventChangeExecutionMode
.getExecutionMode();

lcaConfiguration.setExecutionMode(mode);
ResponseExecutionModeChanged response = ResponseExecutionModeChanged

.create(mode);
System.out.println("Sending response: " + response);
try {

protocolManagementServiceImpl.getProtocol("Lca_App").send(
response);

} catch (ProtocolException e) {
e.printStackTrace();

}
}

}
}

This is how you might send a request to change your application's execution mode from Backup to
Primary:

[Java]

RequestUpdateStatus requestUpdateStatus = RequestUpdateStatus.create();
requestUpdateStatus

.setApplicationName(lcaConfiguration.getClientName());
requestUpdateStatus.setExecutionMode(ApplicationExecutionMode.Primary);
try {

protocolManagementServiceImpl.getProtocol("Lca_App").send(
requestUpdateStatus);

} catch (ProtocolException e) {
e.printStackTrace();

}

Once you have sent this request, the LCA will return an EventChangeExecutionMode, to which your
application will respond with the ResponseExecutionModeChanged shown above.

Closing the Connection
When you are finished, close the connection to the LCA:

[Java]

try {
protocolManagementServiceImpl.getProtocol("Lca_App").close();

} catch (ProtocolException e) {
e.printStackTrace();

}

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 257

Monitoring Your Application with Solution Control Server

Solution Control Server can be used to monitor applications running in the Genesys environment.
Here is how to obtain information about hosts and applications.

Connecting to Solution Control Server
As with the LCA example above, you need to set up a Protocol Management Service:

[Java]

protocolManagementServiceImpl = new ProtocolManagementServiceImpl();

Now you can create an ScsConfiguration object and supply the necessary parameters. The
ClientName is the name of a Solution Control application that has been set up in the Configuration
Layer, while the ClientId is the DBID of that application:

[Java]

scsConfiguration = new ScsConfiguration("Scs_App");
try {

scsConfiguration.setUri(new URI(uriString));
} catch (URISyntaxException e) {

e.printStackTrace();
}
scsConfiguration.setClientName(applicationName);
scsConfiguration.setClientId(applicationDbid);
scsConfiguration.setUserName(userName);

At this point, register your Configuration object with the Protocol Management Service and open the
connection to Solution Control Server:

[Java]

protocolManagementServiceImpl.register(scsConfiguration);
try {

protocolManagementServiceImpl.getProtocol("Scs_App").open();
} catch (InterruptedException e) {

e.printStackTrace();
} catch (ProtocolException e) {

e.printStackTrace();
}

Setting Up Event Handling

You will need to set up some event handling code, since Solution Control Server will return EventInfo
or EventError messages in response to your requests for information. The code for this is similar to
the LCA-related code shown above:

[Java]

eventBrokerService = BrokerServiceFactory
.CreateEventBroker(protocolManagementServiceImpl.getReceiver());

.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 258

.

.
eventBrokerService.register(new ScsEvent(),

new MessageIdFilter(EventInfo.ID));
.
.
.
class ScsEvent implements Action {

public void handle(Message obj) {
EventInfo eventInfo =

(EventInfo) obj;
if (eventInfo != null) {

// Handle this event
}

}
}

Requesting Application Information
Here is how to request the status of an application, using its DBID:

[Java]

RequestGetApplicationInfo requestGetApplicationInfo =
RequestGetApplicationInfo.create(applicationDbid);

try {
protocolManagementServiceImpl.getProtocol("Scs_App").send(requestGetApplicationInfo);

} catch (ProtocolException e) {
e.printStackTrace();

}

When you send this request, you will receive an EventInfo that includes the status of the
application:

'EventInfo' (1) attributes:
attr_cfg_obj_type [int] = 9 [Application]
attr_obj_live_status [int] = 1 [Stopped]
attr_client [int] = 1384
attr_message [str] = "APP_STATUS_STOPPED"
attr_cfg_obj_id [int] = 174
attr_live_status_second [int] = [output suppressed]
attr_ref_id [int] = 2
attr_app_work_mode [int] = 2 [Exiting]

If you want to be notified when the status of an application changes, send a RequestSubscribe.

[Java]

RequestSubscribe requestSubscribeApp = RequestSubscribe.create();
requestSubscribeApp.setControlObjectType(ControlObjectType.Application);
requestSubscribeApp.setControlObjectId(applicationDbid);
try {

protocolManagementServiceImpl.getProtocol("Scs_App").send(requestSubscribeApp);
} catch (ProtocolException e) {

e.printStackTrace();
}

Whenever the application's status changes, you will receive an EventInfo that informs you of the
new status.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 259

Requesting Host Information
You can also request information about the status of a host. But in this case, you must issue a
RequestSubscribe before you will receive any information about the host. Here is how:

[Java]

RequestSubscribe requestSubscribe = RequestSubscribe.create();
requestSubscribe.setControlObjectType(ControlObjectType.Host);
requestSubscribe.setControlObjectId(hostDbid);
try {

protocolManagementServiceImpl.getProtocol("Scs_App").send(requestSubscribe);
} catch (ProtocolException e) {

e.printStackTrace();
}

RequestGetHostInfo requestGetHostInfo =
RequestGetHostInfo.create(hostDbid);

try {
protocolManagementServiceImpl.getProtocol("Scs_App").send(requestGetHostInfo);

} catch (ProtocolException e) {
e.printStackTrace();

}

If you just send the RequestSubscribe, you will be notified any time the host status changes. If you
also send the RequestGetHostInfo, you will also receive an immediate notification of the host's
status, whether it has changed or not. Here is a sample of the information you will receive.

'EventInfo' (1) attributes:
attr_cfg_obj_type [int] = 10 [Host]
attr_obj_live_status [int] = 2 [StopTransition]
attr_client [int] = 1920
attr_message [str] = "HOST_STATUS_RUNNING"
attr_cfg_obj_id [int] = 114
attr_ref_id [int] = 3

Once you have subscribed to a host, you can send a RequestGetHostInfo at any time to receive
information about its status.

Closing the Connection
When you are finished, close the connection to Solution Control Server:

[Java]

try {
protocolManagementServiceImpl.getProtocol("Scs_App").close();

} catch (ProtocolException e) {
e.printStackTrace();

} catch (IllegalStateException e) {
e.printStackTrace();

} catch (InterruptedException e) {
e.printStackTrace();

}

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 260

Sending a Log Message to Message Server

You can easily send log messages to Message Server using the Management Platform SDK. The
following discussion will use a MessageServerProtocol object, rather than using the Protocol
Manager Application Block.

First you need to create the Protocol object:

[Java]

MessageServerProtocol messageServerProtocol =
new MessageServerProtocol(

new Endpoint(new URI(serverUri)));

Now you can configure the Protocol object and open the connection to Message Server:

[Java]

messageServerProtocol.setClientType
(ConfServerClientType.ThirdPartyApp.ordinal());

messageServerProtocol.setClientName("Third_Party_App");
messageServerProtocol.setClientHost("hostname");

messageServerProtocol.open();

At this point, you are ready to create a RequestLogMessage:

[Java]

RequestLogMessage request = RequestLogMessage.create();
request.setEntryId(9600);
request.setEntryCategory(LogCategory.Alarm);
request.setEntryText("Message Text...");
request.setLevel(LogLevel.Alarm);
request.setTime(new Date());

Once you have created the request, you can send the request to Message Server. When you are
finished, you should close the connection:

[Java]

messageServerProtocol.send(request);
.
.
.
messageServerProtocol.close();

.NET

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 261

Making Your Application Visible to the Genesys Management
Layer

A Genesys Local Control Agent (LCA) runs on each host in the Genesys environment, enabling the
Management Layer to monitor and control the applications running on that host. This section shows
how to use the LCA running on your own host to make your application visible to the Genesys
Management Layer.

Connecting to the Local Control Agent
As mentioned previously, the Platform SDK uses a message-based architecture to connect to Genesys
servers. Genesys recommends that you use the Protocol Manager Application Block to handle these
connections. We also recommend that you use the Message Broker Application Block for your
message handling. Here is how to use Protocol Manager to connect to the LCA. (This discussion is
based on the material in the article on Connecting to a Server Using the Protocol Manager Application
Block.)

Here is the using statement you need for Protocol Manager:

[C#]

using Genesyslab.Platform.ApplicationBlocks.Commons.Protocols;

After you have set up your using statement, the first thing you need to do is create a Protocol
Management Service object:

[C#]

protocolManagementService = new ProtocolManagementService();

Then you need to create an LCA Configuration object:

[C#]

LcaConfiguration lcaConfiguration = new LcaConfiguration("Lca_App");

Note that the name you supply with the Configuration object ("Lca_App" in this example) is arbitrary.

Now you can configure the connection. This sample uses the default LCA port of 4999. It also sets the
application status to Initializing and the execution mode to Backup:

[C#]

lcaConfiguration.Uri = new Uri("tcp://localhost:4999");
lcaConfiguration.ClientName = applicationName;
lcaConfiguration.ControlStatus = (int) ApplicationStatus.Initializing;
lcaConfiguration.ExecutionMode = ApplicationExecutionMode.Backup;

Once you have configured your connection, you can register your LcaConfiguration object with the
Protocol Management Service, and open your connection to the LCA:

[C#]

protocolManagementService.Register(lcaConfiguration);

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 262

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB

protocolManagementService["Lca_App"].Open();

Updating the Application Status
When you need to update the status of your application, send a RequestUpdateStatus. Here is how
to indicate that the application is running:

[C#]

RequestUpdateStatus requestUpdateStatus = RequestUpdateStatus.Create();
requestUpdateStatus.ApplicationName = lcaConfiguration.ClientName;
requestUpdateStatus.ControlStatus = (int) ApplicationStatus.Running;
protocolManagementService["Lca_App"].Send(requestUpdateStatus);

The LCA will not return an event when you change the application status. So for this particular task,
you will not need any more code.

Execution Mode and Event Handling
As mentioned, the LCA will not return an event when you change the application status. But when
you change the execution mode — for example, from Primary to Backup — you will receive an
EventChangeExecutionMode. Unlike most events you receive in the Platform SDK, this event requires
a response from your application. If the Management Layer does not know that your application is
expecting to work in Primary mode, for example, it cannot rely on the stability of the Genesys
environment.

Important
If you do not respond within the configured timeout period, your application will be
terminated by the Management Layer.

After receiving the EventChangeExecutionMode, your application must send a
ResponseExecutionModeChanged to indicate to the Management Layer that you are now ready to run
in the new execution mode.

In order to handle these events, you need to set up the Message Broker Application Block, as outlined
here. (Note that this information is based on the Event Handling Using the Message Broker
Application Block article, which discusses this process in more detail.)

First, here is the using statement:

[C#]

using Genesyslab.Platform.ApplicationBlocks.Commons.Broker;

Now you can create an Event Broker Service object and register your event handler:

[C#]

eventBrokerService =
BrokerServiceFactory.CreateEventBroker(protocolManagementService.Receiver);

eventBrokerService.Register(this.OnEventChangeExecutionMode,

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 263

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB

new MessageIdFilter(EventChangeExecutionMode.MessageId));

Here is a sample of the handler you might set up for the EventChangeExecutionMode. This handler
includes your ResponseExecutionModeChanged:

[C#]

private void OnEventChangeExecutionMode(IMessage theMessage)
{

EventChangeExecutionMode eventChangeExecutionMode = theMessage as
EventChangeExecutionMode;

if (eventChangeExecutionMode != null)
{

ApplicationExecutionMode mode =
eventChangeExecutionMode.ExecutionMode;

lcaConfiguration.ExecutionMode = mode;
ResponseExecutionModeChanged response =

ResponseExecutionModeChanged.Create(mode);
Console.WriteLine("Sending response: " + response);
protocolManagementService["Lca_App"].Send(response);

}
}

This is how you might send a request to change your application's execution mode from Backup to
Primary:

[C#]

RequestUpdateStatus requestUpdateStatus =
RequestUpdateStatus.Create();

requestUpdateStatus.ApplicationName = lcaConfiguration.ClientName;
requestUpdateStatus.ExecutionMode =

ApplicationExecutionMode.Primary;
protocolManagementService["Lca_App"].Send(requestUpdateStatus);

Once you have sent this request, the LCA will return an EventChangeExecutionMode, to which your
application will respond with the ResponseExecutionModeChanged shown above.

Closing the Connection
When you are finished, close the connection to the LCA:

[C#]

protocolManagementService["Lca_App"].Close();

Monitoring Your Application with Solution Control Server

Solution Control Server can be used to monitor applications running in the Genesys environment.
Here is how to obtain information about hosts and applications.

Connecting to Solution Control Server
As with the LCA example above, you need to set up a Protocol Management Service:

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 264

[C#]

protocolManagementService = new ProtocolManagementService();

Now you can create an ScsConfiguration object and supply the necessary parameters. The
ClientName is the name of a Solution Control application that has been set up in the Configuration
Layer, while the ClientId is the DBID of that application:

[C#]

scsConfiguration = new ScsConfiguration("Scs_App");
scsConfiguration.Uri = new Uri(uriString);
scsConfiguration.ClientId = applicationDbid;
scsConfiguration.ClientName = applicationName;
scsConfiguration.UserName = userName;

At this point, register your Configuration object with the Protocol Management Service and open the
connection to Solution Control Server:

[C#]

protocolManagementService.Register(scsConfiguration);
protocolManagementService["Scs_App"].Open();

Setting Up Event Handling
You will need to set up some event handling code, since Solution Control Server will return EventInfo
or EventError messages in response to your requests for information. The code for this is similar to
the LCA-related code shown above:

[C#]

eventBrokerService =
BrokerServiceFactory.CreateEventBroker(protocolManagementService.Receiver);

.

.

.
eventBrokerService.Register(OnEventInfo);
.
.
.
private void OnEventInfo(IMessage theMessage)
{

EventInfo eventInfo = theMessage as EventInfo;
if (eventInfo != null)
{

// Handle this event
}

}

Requesting Application Information
Here is how to request the status of an application, using its DBID:

[C#]

RequestGetApplicationInfo requestGetApplicationInfo =
RequestGetApplicationInfo.Create(applicationDbid);

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 265

protocolManagementService["Scs_App"].Send(requestGetApplicationInfo);

When you send this request, you will receive an EventInfo that includes the status of the
application:

'EventInfo' ('1')
message attributes:
attr_app_work_mode [int] = 0 [Primary]
attr_client [int] = 660
attr_ref_id [int] = 4
attr_message [str] = "APP_STATUS_RUNNING"
attr_obj_live_status [int] = 6 [Running]
attr_cfg_obj_id [int] = 109
attr_cfg_obj_type [int] = 9 [Application]

If you want to be notified when the status of an application changes, send a RequestSubscribe.

[C#]

RequestSubscribe requestSubscribeApp = RequestSubscribe.Create();
requestSubscribeApp.ControlObjectType = ControlObjectType.Application;
requestSubscribeApp.ControlObjectId = applicationDbid;

protocolManagementService["Scs_App"].Send(requestSubscribeApp);

Whenever the application's status changes, you will receive an EventInfo that informs you of the
new status.

Requesting Host Information
You can also request information about the status of a host. But in this case, you must issue a
RequestSubscribe before you will receive any information about the host. Here is how:

[C#]

RequestSubscribe requestSubscribeHost = RequestSubscribe.Create();
requestSubscribe.ControlObjectType = ControlObjectType.Host;
requestSubscribe.ControlObjectId = hostDbid;

protocolManagementService["Scs_App"].Send(requestSubscribeHost);

RequestGetHostInfo requestGetHostInfo = RequestGetHostInfo.Create();
requestGetHostInfo.ControlObjectId = hostDbid;

protocolManagementService["Scs_App"].Send(requestGetHostInfo);

If you just send the RequestSubscribe, you will be notified any time the host status changes. If you
also send the RequestGetHostInfo, you will also receive an immediate notification of the host's
status, whether it has changed or not. Here is a sample of the information you will receive.

'EventInfo' ('1')
message attributes:
attr_client [int] = 660
attr_ref_id [int] = 3
attr_message [str] = "HOST_STATUS_RUNNING"
attr_obj_live_status [int] = 2 [StopTransition]
attr_cfg_obj_id [int] = 111
attr_cfg_obj_type [int] = 10 [Host]

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 266

Once you have subscribed to a host, you can send a RequestGetHostInfo at any time to receive
information about its status.

Closing the Connection
When you are finished, close the connection to Solution Control Server:

[C#]

protocolManagementService["Scs_App"].Close();

Sending a Log Message to Message Server

You can easily send log messages to Message Server using the Management Platform SDK. The
following discussion will use a MessageServerProtocol object, rather than using the Protocol
Manager Application Block.

First you need to create the Protocol object:

[C#]

MessageServerProtocol messageServerProtocol = new MessageServerProtocol(
new Endpoint(new Uri("tcp://host:4321")));

Now you can configure the Protocol object and open the connection to Message Server:

[C#]

messageServerProtocol.ClientType = (int) ConfServerClientType.ThirdPartyApp;
messageServerProtocol.ClientName = "Third_Party_App";
messageServerProtocol.ClientHost = "hostname";

messageServerProtocol.Open();

At this point, you are ready to create a RequestLogMessage:

[C#]

RequestLogMessage requestLogMessage = RequestLogMessage.Create();
requestLogMessage.EntryId = 9600;
requestLogMessage.EntryCategory = LogCategory.Alarm;
requestLogMessage.EntryText = "Message Text...";
requestLogMessage.Level = LogLevel.Alarm;
requestLogMessage.Time = new DateTime();

Once you have created the request, you can send the request to Message Server. When you are
finished, you should close the connection:

[C#]

messageServerProtocol.Send(requestLogMessage);
.
.
.
messageServerProtocol.Close();

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 267

LCA Hang-Up Detection Support
This page provides:

• an overview and list of requirements for the LCA Hang-Up Detection Support feature
• design details explaining how this feature works
• code examples showing how to implement LCA Hang-Up Detection Support in your applications

Introduction to LCA Hang-up Detection Support

Beginning with release 8.1, the Platform SDKs now allow user-developed application to include hang-
up detection functionality.

The Genesys Management Layer relies on Local Control Agent (LCA) to monitor and control
applications. An open connection between LCA and Genesys applications is typically used to
determine which applications are running or stopped. However, if an application that has stopped
responding still has a connection to LCA then it could appear to be running correctly - preventing
Management Layer from switching over to a backup application or taking other actions to restore
functionality.

Hang-up detection allows Local Control Agent (LCA) to detect unresponsive Genesys applications by
checking for regular heartbeat messages. When an unresponsive application is found, pre-configured
actions can be taken - including triggering alarms or restarting the application.

Note: Hang-up detection functionality has been available in the Genesys Management Layer
since release 8.0.1. For more information, refer to the Framework 8.0 Management Layer User's
Guide. For details about related configuration options, refer to the Framework 8.0 Configuration
Options Reference Manual.

Two levels of hang-up detection are available: implicit and explicit.

Implicit Hang-up Detection
The easiest form of hang-up detection to implement is implicit hang-up detection.

In this scenario, application status is monitored through the connection between your application and
LCA. This functionality can be extended by adding a requirement that your application periodically
interacts with LCA (either responding to ping request or sending its own heart-beat messages) as a
necessary condition of application liveliness.

This simple form of hang-up detection can be implemented internally by using the
LocalControlAgentProtocol to connect to LCA. In this case, existing applications only need to be
rebuilt with a version of LocalControlAgentProtocol that supports hang-up detection functionality -
no coding changes are required - and given the appropriate configuration options in Genesys
Management Layer.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 268

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/LCAHang-UpDetectionSupport#Implicit_Hang-up_Detection
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/LCAHang-UpDetectionSupport#Explicit_Hang-up_Detection

Explicit Hang-up Detection
Explicit hang-up detection offers more robust protection from applications that may become
unresponsive, but is also more complex.

The periodic interaction that is monitored by implicit hang-up detection only confirms that your
application can interact with LCA. In most cases this means that the application is able to
communicate with other apps and that the thread responsible for communicating with LCA is still
active. However, multi-threaded applications may contain other threads that are blocked or have
stopped responding without interrupting communication with LCA. Explicit hang-up detection allows
you to determine when only part of your application hangs-up by monitoring individual threads in the
application.

In addition to allowing your application to register (or unregister) individual threads to be monitored,
explicit hang-up detection also allows your application to stop or delay the monitoring process.
Threads that execute synchronous functions (which can block thread execution for some extended
periods) or other features that prevent accurate monitoring should take advantage of this feature.

Feature Overview

• To maintain backwards compatibility, hang-up detection must be explicitly enabled in the application
configuration.

• Implicit hang-up detection can be used for applications that do not require complex monitoring
functionality. No code changes are required, just rebuild your application using the new version of
LocalControlAgentProtocol.

• Explicit hang-up detection requires minimal application participation - enabling monitoring, registering
and unregistering execution threads, and providing heartbeats. Most hang-up detection functionality is
implemented within the Management Layer component, while all timing information (such as maximum
allowed period between heartbeats) is configured through Genesys Management Layer.

System Requirements

Genesys Management Layer:

• Release 8.0.1 or later

Platform SDK for .NET:

• Management SDK protocol release 8.1 or later
• .NET Framework 3.5
• Visual Studio 2008 (required for .NET project files)

Platform SDK for Java:

• Management SDK protocol release 8.1 or later

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 269

• J2SE 5.0 or Java 6 SE runtime

Design Details

This section provides an overview of the main classes and interfaces used to add thread monitoring
functionality for Explicit hang-up detection. Before using the classes and methods described here, be
sure that you have implemented basic LCA Integration in your application using
LocalControlAgentProtocol.

Although the details of thread monitoring implementation are slightly differently for Java and .NET,
the basic idea is the same: to create and update a thread monitoring table that LCA can use to
confirm the status of your application.

Note that for implicit hang-up detection you are only required to rebuild your application and make
adjustments to the configuration options in Genesys Management Layer; the details described below
are not required for simple application monitoring.

Thread Monitoring Table
The new thread monitoring functions described below allow LocalControlAgentProtocol to create
and maintain a thread monitoring table within the application. This table tracks basic thread status.

Sample Thread Monitoring Table

OS Thread ID Logical Thread
ID Thread Class Heartbeat

Counter Flags

0 «main» 1 444345 active
1 «pool_1» 2 354354 suspend
2 «pool_2» 2 432432 deleted
3 «pool_3» 2 434323 active
4 «DB_store» 3 31212 active
....

Each row corresponds to a monitored thread. Columns of the table are:

• OS Thread ID—The OS-specific thread ID, used for thread identification during monitoring. OS thread ID
is not passed by application but is received directly from system.

• Logical Thread ID – Application logical thread ID (or logical name, in Java). Used for logging and thread
identification.

• Thread Class—Thread class integer. This value is only meaningful within the scope of the application;
threads with the same thread class value in a different application can have different roles. Examples of
thread classes might be the main loop thread, pool threads, or special threads (such as external
authentication threads in ConfigServer).

• Heartbeat Counter—Cumulative counter of Heartbeat() calls made by the corresponding thread.
Incrementing this value is the main way to indicate that the thread is still alive.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 270

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/LCAHang-UpDetectionSupport#Explicit_Hang-up_Detection
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/LCAHang-UpDetectionSupport#Java_Implementation
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/LCAHang-UpDetectionSupport#.NET_Implementation
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/LCAHang-UpDetectionSupport#Thread_Monitoring_Table
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/LCAHang-UpDetectionSupport#Implicit_Hang-up_Detection

NOTE: This value is initialized with a random value when the thread is registered for
monitoring. This prevents incorrect hang-up detection if threads are created and terminated with
high frequency, leading to repeating OS thread IDs.

• Flag—Special flags.
• Suspended/Resumed—Corresponds to the state of thread monitoring.
• Deleted—Used internally to notify LCA that a thread was unregistered from monitoring.

.NET Implementation
ThreadMonitoring Class

The ThreadMonitoring class is defined in the Genesyslab.Diagnostics namespace of
Genesyslab.Core.dll. This class contains the following public static methods:

• Register(int threadClass, string threadLogicId)—enables monitoring for this thread
• Unregister()—removes this thread from monitoring
• Heartbeat()—increases heartbeat counter for this thread (indicating that thread is still alive)
• SuspendMonitoring()—suspend monitoring for this thread
• ResumeMonitoring()—resumes monitoring for this thread

Note: Each method should be called from within the thread that is being monitored.

When a thread is registered for monitoring, the following parameters are included:

• threadClass—Any positive integer that represents the type of thread, allowing you to specify different
monitoring settings for groups of threads within an application.

• threadLogicId—A logical, descriptive thread ID that is independent from thread ID provided by OS.
This value is used for thread identification within LCA and for logging purposes. This ID should be
unique within the application.

PerformanceCounter Constants

The following String constants (names) are defined in the ThreadMonitoring class:

public const string CategoryName = "Genesyslab PSDK .NET";
public const string HeartbeatCounterName = "Thread Heartbeat";
public const string StateCounterName = "Thread State";
public const string ProcessIdCounterName = "ProcessId";
public const string OsThreadIdCounterName = "OsThreadId";

The Platform SDK thread monitoring functionality uses these constants to manage
PerformanceCounter values. In addition to these custom performance counters, you can also use
standard ones, such as those defined in Thread category: "% Processor Time", "% User Time", etc.

See MSDN<ref>MSDN PerformanceCounter Class (http://msdn.microsoft.com/en-us/library/
system.diagnostics.performancecounter.aspx)</ref> for details about performance counters.

Note: Use of PerformanceCounters is optional, and is not required for LCA hang-up detection
functionality.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 271

Java Implementation
ThreadHeartbeatCounter class

The ThreadHeartbeatCounter class is defined in the
com.genesyslab.platform.commons.threading package, located within commons.jar. This class is
designed as a JMX<ref>JMX: Java Management Extensions (http://java.sun.com/javase/technologies/
core/mntr-mgmt/javamanagement/)</ref> MBean and implements the public
ThreadHeartbeatCounterMBean interface which is accessible through Java management framework.

There is no public constructor for the ThreadHeartbeatCounter class; each thread that you want to
monitor should create its own instance with following static method:

public static ThreadHeartbeatCounter createThreadHeartbeatCounter(
String threadLogicalName,
int threadClass);

When a thread is registered for monitoring, the following parameters are included:

• threadLogicalName—A logical, descriptive thread name that is used to identify the thread within LCA
and for logging purposes. This name should be unique within the application.

• threadClass—Any positive integer that represents the type of thread, allowing you to specify different
monitoring settings for groups of threads within an application.

One key difference from thread monitoring using .NET is the need to create a monitoring object
instance. The lifecycle of this object, including MBeanServer registration, is supported by the parent
class PSDKMBeanBase and is shown in the five steps below:

1. Start monitoring a thread:

ThreadHeartbeatCounter monitor =
ThreadHeartbeatCounter.createThreadHeartbeatCounter(

threadId, threadClass);
monitor.initialize();

2. Notify LCA that thread is still alive (increase heartbeat counter):

monitor.alive();

3. Suspend monitoring of this thread:

monitor.setActive(false);

4. Resume monitoring of this thread:

monitor.setActive(true);

5. Finish monitoring and unregister this thread:

monitor.unregister();

Note: Each of these methods must be called from within the thread that is being monitored.

Once a ThreadHeartbeatCounter object is unregistered, that instance cannot be reused. To begin

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 272

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/LCAHang-UpDetectionSupport#ThreadHeartbeatCounterMBean_interface

monitoring that thread again (or any other) you first need to create a new instance of the thread
monitoring object.

ThreadHeartbeatCounterMBean interface

The ThreadHeartbeatCounterMBean interface is intended to present an open API to the JMX MBean.
This interface contains the following publicly accessible methods:

public long getThreadSystemId();
public String getLogicalName();
public int getThreadClass();
public void setThreadClass(int newThreadClass);
public int getHeartbeatCounter();
public void setActive(boolean isActive);
public boolean isActive();

These methods are "MBean client-side" methods and are used by LCA protocol to get actual
information about the thread for the monitoring table. They also allow users to change the thread
class and suspend or resume thread monitoring (using setActive(false/true)) of a particular
thread at application runtime.

References

<references />

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 273

Handle Application "Graceful Stop" with
the LCA Protocol
Graceful stop is operation that allow application to complete current request handling before actual
stop in case when such handling can require significant (time greater than application stop timeout)
time.

Two new states are related to this command:

• SUSPENDING – This state means that an application has understood the command from LCA, so that the
application does NOT accept new requests (unless specified by Management Layer) and will complete
current requests. This status should be reported by an application as the result of Suspend command
from LCA. If the application does no support graceful stop then it can just ignore the Suspend
command; no state changes should be reported in this case.

• SUSPENDED – This state means that an application has completed handling current requests and can be
stopped without any impact to its client.

For applications which DO support graceful stop, the scenario is as follows:

1. SCI issues command "Stop application graceful"
2. SCS receives command, sets up a suspended state timer and sends the Suspend application command

to LCA
3. LCA receives Suspend command and resends it to application (application receives

EventSuspendApplication)
4. Since the application supports this feature, it reports SUSPENDING state with RequestUpdateStatus

and start behave accordingly
5. SCS receives a status update through LCA and cancels the timer set at point (2).
6. From this point, the application has unlimited time to complete handling requests (of course, it can also

be stopped by usual stop command)
7. When the application completes handling requests, it reports the status SUSPENDED (with

RequestUpdateStatus)
8. SCS receive the status update through LCA and stops the application with the usual stop command

(EventChangeExecutionMode)

For applications which do NOT support graceful stop, the scenario is as follows:

1. SCI issues the command: "Stop application graceful"
2. SCS receives the command, sets up a suspended state timer and sends the Suspend application

command to LCA
3. LCA receives Suspend command and resends it to application
4. Since the application does not support this feature, the Suspend command is ignored
5. Suspended state timer set at point (2) expires in SCS. SCS determines that the application does not

support Graceful stop.

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 274

6. SCS issues an ordinary stop command to application (EventChangeExecutionMode).

Please also note that message between SCI-SCS and SCS-LCA are not same.

If your application should support graceful stop please check:

• If application receives Suspend command from LCA.
• If application correctly report SUSPENDING/SUSPENDED states.
• If application can be stopped by usual stop command.

If your application should NOT support graceful stop please check:

• If application can be stopped by usual stop command (in this case Graceful stop is equal to usual Stop
command with some delay)

Tip
This feature is new for 8.0 Genesys Management Framework, so, all the involved
components (SCI, SCS, LCA) should be 8.0+ versions (checked with 8.0.3x).

Server-Specific Overviews Management Layer

Platform SDK Developer's Guide 275

Routing Server
Many types of interactions enter a modern contact center, and each of them can have many possible
destinations. Universal Routing Server (URS) helps them get to the right place at the right time by
enabling you to create customized routing strategies — sets of instructions that tell URS how to
handle interactions. These routing strategies can be as simple or complex as you need them to be.
URS uses routing strategies to send interactions from one target to another, as needed, until the
interactions have been successfully processed.

The Routing Platform SDK allows you to write .NET applications that combine logic from your custom
application with the router-based logic of URS, in order to solve many common interaction-related
tasks.

This document tells you where you can go to get more information about URS. It also contains a brief
overview of the features of the Routing Platform SDK, followed by code snippets that show how to
implement the basic functions you will need to write applications that work with URS.

Universal Routing Server Overview

The best way to start learning about Universal Routing Server (URS) is by getting a copy of the
Universal Routing 8.1 Reference Manual. This book tells you how to work with routing strategies,
objects, functions, options, and statistics. It also includes a detailed list of Related Documentation
Resources, which discusses other sources of information that can be useful when you are working
with Genesys Universal Routing.

After becoming familiar with the information in the Universal Routing Reference Manual and related
documentation, you can start using the routing API that is exposed by the Platform SDK. As you learn
about Genesys routing, it is important to keep in mind that the main purpose of the Platform SDK
routing API is to work as a complement to the complex capabilities already available from URS, not to
act as a replacement. This API makes it easier to resolve difficult interaction-related tasks by
combining the capabilities of URS with logic from your custom application.

To create routing strategies, you use either Genesys Composer, which lets you create SCXML-based
strategies, or Interaction Routing Designer (IRD), which creates strategies in the Genesys IRL routing
language. Once the URS environment is established, you then use the Platform SDK routing API to
give your application control over which routing strategies are selected under a given set of
circumstances or what criteria URS uses to choose a particular routing target. For example, your
application can select statistics for URS to use in determining which agent group would be the best
one to route a particular interaction to.

Two Types of Router API Usage
Platform SDK lets you use two different methodologies in working with URS. The first method involves
a standalone router. When you use the standalone router method, all of the interaction processing
logic, including media control, is handled by the router. This method can be used by calling
RequestLoadStrategy.

The second method is called the router-behind API. This method can be used when you want your

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 276

application to handle media control, such as attached data or treatments, rather than leaving that up
to the router. With this method, the router is normally used only to select resources.

The code snippets in this article include some requests that work with standalone routers and some
that work with the router-behind API.

Java

Connecting to Universal Routing Server

The Platform SDK uses a message-based architecture to connect to Genesys servers. In general,
Genesys recommends that you use the Protocol Manager Application Block to handle these
connections. We also recommend that you use the Message Broker Application Block for your
message handling. However, the current version of the Protocol Manager Application Block does not
support Universal Routing Server (URS). Because of this, the following code samples show how to
connect to URS by using the native protocol object that is part of the Routing Platform SDK.

You can modify the Protocol Manager Application Block to support URS by following the instructions in
the section on Supporting New Protocols in the article on Using the Protocol Manager Application
Block. After doing that, you can use the material in the article on Connecting to a Server to modify
your code to use the Protocol Manager Application Block. In the meantime, here is how to connect to
URS using a native protocol object.

First set up import statements for the routing namespaces:

[Java]

import com.genesyslab.platform.routing.protocol.routingserver.*;
import com.genesyslab.platform.routing.protocol.routingserver.requests.*;

After you have set up your import statements, you need to create a RoutingServerProtocol object:

[Java]

RoutingServerProtocol protocol =
new RoutingServerProtocol(

new Endpoint(
name, host, port));

protocol.setClientName(clientName);
protocol.setClientType(clientType);

Then you can open your connection to URS:

[Java]

protocol.open();

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 277

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheProtocolManagerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheProtocolManagerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer

Message Handling

Once you have set up your server connection, you can set up Message Broker, the application block
that handles the events returned by URS. This section gives you an idea of how to do that, based on
the information in the Event Handling article. First, here are the import statements:

[Java]

import com.genesyslab.platform.applicationblocks.commons.Action;
import com.genesyslab.platform.applicationblocks.commons.broker.BrokerServiceFactory;
import com.genesyslab.platform.applicationblocks.commons.broker.EventBrokerService;
import com.genesyslab.platform.applicationblocks.commons.broker.MessageIdFilter;

Now you can create an Event Broker Service object:

[Java]

eventBrokerService = BrokerServiceFactory
.CreateEventBroker(protocolManagementServiceImpl.getReceiver());

For each message you want to receive, you must set up a handler class. Here is a sample:

[Java]

class EventInfoHandler implements Action {

public void handle(Message obj) {
EventInfo eventInfo = (EventInfo) obj;
if (eventInfo != null) {

System.out.println("EventInfo:\n"
+ eventInfo.toString());

}
...

}
}

This handler processes any EventInfo messages you receive. The handler classes for other
messages will have a similar structure. In order to work properly, each handler must be registered
with the Event Broker Service. Here is how to register your EventInfo handler:

[Java]

eventBrokerService.register(new EventInfoHandler(),
new MessageIdFilter(EventInfo.ID));

Working with URS

As mentioned above, there are two basic methods for using the Platform SDK to work with URS. This
section contains examples of both the standalone router and router-behind APIs.

Standalone Router
The Routing Platform SDK allows you to control which routing strategy is executed on a given routing
point, while leaving everything else to the routing server. To use this methodology, which is known as

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 278

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling

"standalone router," issue a RequestLoadStrategy that specifies the routing point and the
associated T-Server, and also the location of the routing strategy. Once the routing strategy has been
loaded, all interactions arriving on the specified routing point will be processed with that strategy.

The following snippet shows how to do this:

[Java]

RequestLoadStrategy requestLoadStrategy = RequestLoadStrategy.create();
requestLoadStrategy.setTServer("TheT-Server");
requestLoadStrategy.setRoutingPoint("TheRoutingPoint");
requestLoadStrategy.setPath("<Path to the strategy>");

Message response = protocol.request(requestLoadStrategy);

URS will respond to your request with an EventInfo, an example of which is shown here:

'EventInfo' (2) attributes:
R_Message [str] = "ATTENTION: Strategy has been loaded from ooo-file."
R_cdn_status [int] = 1 [Loaded]
R_cdn [str] = "RP_sip1"
R_ErrorCode [int] = 0 [NoError]
R_tserver [str] = "TServerSip1"
R_refID [int] = 1
R_time [str] = "06/30/2011 10:00:29"
R_path [str] = "<Path>"

You can use RequestNotify to check which routing points have been loaded:

[Java]

RequestNotify requestNotify =
RequestNotify.create();

protocol.send(requestNotify);

This request will also return an EventInfo similar to the one shown above.

When you want to stop using the routing strategy you have loaded, for example, if you want to start
using a different one, you can issue a RequestReleaseStrategy:

[Java]

RequestReleaseStrategy requestReleaseStrategy =
RequestReleaseStrategy.create();

requestReleaseStrategy.setTServer("TheT-Server");
requestReleaseStrategy.setRoutingPoint("TheRoutingPoint");

Message response = protocol.request(requestReleaseStrategy);

Router-Behind API
The router-behind method allows your application code to handle media control. The following
example shows how to execute a strategy using RequestExecuteStrategy. This request is different
from RequestLoadStrategy in that it only executes a strategy one time, instead of associating a
particular strategy with a routing point. To use RequestExecuteStrategy, specify the routing
strategy you want to execute and the tenant (contact center) in whose environment the strategy is to
be executed, as shown here:

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 279

[Java]

RequestExecuteStrategy requestExecuteStrategy =
RequestExecuteStrategy.create();

requestExecuteStrategy.setStrategy("TheRoutingStrategyName");
requestExecuteStrategy.setTenant("TheTenant");

Message response = protocol.request(requestExecuteStrategy);

It is important to remember that it can often take a considerable amount of time to process a routing
strategy. If your request is correctly formatted and can be executed by URS, then you will
immediately receive an EventExecutionInProgress. This is a very simple event that only returns the
reference ID of your request, as you can see here:

'EventExecutionInProgress' ('199')
message attributes:
R_refID [int] = 2

Once your request has successfully executed, you will receive an EventExecutionAck. Here is an
example of the kind of output you might receive from an EventExecutionAck:

'EventExecutionAck' ('200')
message attributes:
R_result [bstr] = KVList:

'DN' [str] = "701"
'CUSTOMER_ID' [str] = "TenantForTest"
'TARGET' [str] = "701_sip@StatServer1.A"
'SWITCH' [str] = "SipSwitch"
'NVQ' [int] = 1
'PLACE' [str] = "701"
'AGENT' [str] = "701_sip"
'ACCESS' [str] = "701"
'VQ' [str] = "1234"

Context = ComplexClass(OperationContext):

UserData [bstr] = KVList:
'ServiceObjective' [str] = ""
'ServiceType' [str] = "default"
'CBR-Interaction_cost' [str] = ""
'RTargetTypeSelected' [str] = "0"
'CBR-IT-path_DBIDs' [str] = ""
'RVQDBID' [str] = ""
'RTargetPlaceSelected' [str] = "701"
'RTargetAgentSelected' [str] = "701_sip"
'CBR-actual_volume' [str] = ""
'RStrategyName' [str] = "##GetTarget"
'RRequestedSkillCombination' [str] = ""
'RTargetRuleSelected' [str] = ""
'RStrategyDBID' [str] = ""
'RRequestedSkills' [bstr] = KVList:

'CustomerSegment' [str] = "default"
'RTargetObjSelDBID' [str] = "984"
'RTargetObjectSelected' [str] = "701_sip"
'RTenant' [str] = "TenantForTest"
'RVQID' [str] = ""
'CBR-contract_DBIDs' [str] = ""

R_refID [int] = 0

If you have any syntax errors, your request will not execute and you will receive an EventError. Here

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 280

is an example of an EventError:

'EventError' (1) attributes:
R_cdn_status [int] = 0 [Released]
R_cdn [str] = ""
R_ErrorCode [int] = 4 [NotAvailable]
R_tserver [str] = ""
R_refID [int] = 1
R_time [str] = ""
R_path [str] = "<Path>"

If, on the other hand, URS has a problem executing your request, you will receive an
EventExecutionError, an example of which is shown here:

'EventExecutionError' ('201')
message attributes:
R_result [bstr] = KVList:

'Reason' [str] = "Rejected"
Context = ComplexClass(OperationContext):

UserData [bstr] = KVList:
'PegRejected' [int] = 1

R_refID [int] = 2

There may be times when you want URS to pick a routing target for you. You can use
RequestFindTarget for that purpose. As shown in the sample below, you can use a statistic to aid in
this selection:

[Java]

RequestFindTarget requestFindTarget =
RequestFindTarget.create();

requestFindTarget.setTenant("TheTenant");
requestFindTarget.setTargets("TheTargetList");
requestFindTarget.setTimeout(5);
requestFindTarget.setStatistic("TheStatistic");
requestFindTarget.setStatisticUsage(StatisticUsage.Max);
requestFindTarget.setVirtualQueue("TheQueue");
requestFindTarget.setPriority(1);
requestFindTarget.setMediaType("TheMediaType");

Message response = protocol.request(requestFindTarget);

You can also have URS fetch statistical information for you directly, in case you want to know more
about the current conditions in your contact center, perhaps in preparation for a RequestFindTarget.
The following example shows how to do this, using RequestGetStatistic:

[Java]

RequestGetStatistic requestGetStatistic =
RequestGetStatistic.create();

requestGetStatistic.setTenant("TheTenant");
requestGetStatistic.setTargets("TheTargetList");
requestGetStatistic.setStatistic("StatAgentsBusy");

Message response = protocol.request(requestGetStatistic);

Both RequestFindTarget and RequestGetStatistic return the same messages as
RequestExecuteStrategy.

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 281

Closing the Connection

When you are finished communicating with URS, you should close the connection, in order to
minimize resource utilization:

[Java]

protocol.close();

.NET

Connecting to Universal Routing Server

The Platform SDK uses a message-based architecture to connect to Genesys servers. In general,
Genesys recommends that you use the Protocol Manager Application Block to handle these
connections. We also recommend that you use the Message Broker Application Block for your
message handling. However, the current version of the Protocol Manager Application Block does not
support Universal Routing Server (URS). Because of this, the following code samples show how to
connect to URS by using the native protocol object that is part of the Routing Platform SDK.

You can modify the Protocol Manager Application Block to support URS by following the instructions in
the section on Supporting New Protocols in the article on Using the Protocol Manager Application
Block. After doing that, you can use the material in the article on Connecting to a Server to modify
your code to use the Protocol Manager Application Block. In the meantime, here is how to connect to
URS using a native protocol object.

First set up using statements for the routing namespaces:

[C#]

using Genesyslab.Platform.Routing.Protocols;
using Genesyslab.Platform.Routing.Protocols.RoutingServer;
using Genesyslab.Platform.Routing.Protocols.RoutingServer.Events;
using Genesyslab.Platform.Routing.Protocols.RoutingServer.Requests;

After you have set up your using statements, you need to create a RoutingServerProtocol object:

[C#]

RoutingServerProtocol protocol =
new RoutingServerProtocol(

new Endpoint(
name, host, port));

protocol.ClientName = clientName;
protocol.ClientType = clientType;

Then you can open your connection to URS:

[C#]

protocol.Open();

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 282

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ArchitectureofthePlatformSDKs
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheProtocolManagerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheProtocolManagerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer

Message Handling

Once you have set up your server connection, you can set up Message Broker, the application block
that handles the events returned by URS. This section gives you an idea of how to do that, based on
the information in the Event Handling article.

First, here is the using statement:

[C#]

using Genesyslab.Platform.ApplicationBlocks.Commons.Broker;

Now you can create an Event Broker Service object:

[C#]

eventBrokerService =
BrokerServiceFactory.CreateEventBroker(protocol);

For each message you want to receive, you must set up a handler. Here is a sample:

[C#]

private void OnEventExecutionAck(IMessage theMessage)
{

EventExecutionAck eventExecutionAck =
theMessage as EventExecutionAck;

if (eventExecutionAck != null)
{

writeToLogArea("EventExecutionAck:\n"
+ eventExecutionAck + "\n");

...
}

}

This handler processes any EventExecutionAck messages you receive. The handler classes for other
messages will have a similar structure. In order to work properly, each handler must be registered
with the Event Broker Service. Here is how to register handlers for three of the URS events:

[C#]

eventBrokerService.Register(this.OnEventExecutionAck, new
MessageIdFilter(EventExecutionAck.MessageId));
eventBrokerService.Register(this.OnEventInfo, new MessageIdFilter(EventInfo.MessageId));
eventBrokerService.Register(this.OnEventError, new MessageIdFilter(EventError.MessageId));

Working with URS

As mentioned above, there are two basic methods for using the Platform SDK to work with URS. This
section contains examples of both the standalone router and router-behind APIs.

Standalone Router
The Routing Platform SDK allows you to control which routing strategy is executed on a given routing

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 283

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling

point, while leaving everything else to the routing server. To use this "standalone router"
methodology, issue a RequestLoadStrategy that specifies the routing point and the associated T-
Server, and also the location of the routing strategy. Once the routing strategy has been loaded, all
interactions arriving on the specified routing point will be processed with that strategy.

The following snippet shows how to do this:

[C#]

RequestLoadStrategy requestLoadStrategy =
RequestLoadStrategy.Create();

requestLoadStrategy.TServer = "TheT-Server";
requestLoadStrategy.RoutingPoint = "TheRoutingPoint";
requestLoadStrategy.Path = "<Path to the strategy>";

IMessage response = protocol.Request(requestLoadStrategy);

URS will respond to your request with an EventInfo, an example of which is shown here:

'EventInfo' (2) attributes:
R_Message [str] = "ATTENTION: Strategy has been loaded from ooo-file."
R_cdn_status [int] = 1 [Loaded]
R_cdn [str] = "RP_sip1"
R_ErrorCode [int] = 0 [NoError]
R_tserver [str] = "TServerSip1"
R_refID [int] = 1
R_time [str] = "06/30/2011 10:00:29"
R_path [str] = "<Path>"

You can use RequestNotify to check which strategies have been loaded to routing points:

[C#]

RequestNotify requestNotify =
RequestNotify.Create();

protocol.Send(requestNotify);

This request will also return an EventInfo similar to the one shown above.

When you want to stop using the routing strategy you have loaded, for example, if you want to start
using a different one, you can issue a RequestReleaseStrategy:

[C#]

RequestReleaseStrategy requestReleaseStrategy =
RequestReleaseStrategy.Create();

requestReleaseStrategy.TServer = "TheT-Server";
requestReleaseStrategy.RoutingPoint = "TheRoutingPoint";

IMessage response = protocol.Request(requestReleaseStrategy);

Router-Behind API
The router-behind method allows your application code to handle media control. The following
example shows how to execute a strategy using RequestExecuteStrategy. This request is different
from RequestLoadStrategy in that it only executes a strategy one time, instead of associating a
particular strategy with a routing point. To use RequestExecuteStrategy, specify the routing

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 284

strategy you want to execute and the tenant (contact center) in whose environment the strategy is to
be executed, as shown here:

[C#]

RequestExecuteStrategy requestExecuteStrategy =
RequestExecuteStrategy.Create();

requestExecuteStrategy.Strategy = "TheRoutingStrategyName";
requestExecuteStrategy.Tenant = "TheTenant";

IMessage response = protocol.Request(requestExecuteStrategy);

It is important to remember that it can often take a considerable amount of time to process a routing
strategy. If your request is correctly formatted and can be executed by URS, then you will
immediately receive an EventExecutionInProgress. This is a very simple event that only returns the
reference ID of your request, as you can see here:

'EventExecutionInProgress' ('199')
message attributes:
R_refID [int] = 2

Once your request has successfully executed, you will receive an EventExecutionAck. Here is an
example of the kind of output you might receive from an EventExecutionAck:

'EventExecutionAck' ('200')
message attributes:
R_result [bstr] = KVList:

'DN' [str] = "701"
'CUSTOMER_ID' [str] = "TenantForTest"
'TARGET' [str] = "701_sip@StatServer1.A"
'SWITCH' [str] = "SipSwitch"
'NVQ' [int] = 1
'PLACE' [str] = "701"
'AGENT' [str] = "701_sip"
'ACCESS' [str] = "701"
'VQ' [str] = "1234"

Context = ComplexClass(OperationContext):
UserData [bstr] = KVList:

'ServiceObjective' [str] = ""
'ServiceType' [str] = "default"
'CBR-Interaction_cost' [str] = ""
'RTargetTypeSelected' [str] = "0"
'CBR-IT-path_DBIDs' [str] = ""
'RVQDBID' [str] = ""
'RTargetPlaceSelected' [str] = "701"
'RTargetAgentSelected' [str] = "701_sip"
'CBR-actual_volume' [str] = ""
'RStrategyName' [str] = "##GetTarget"
'RRequestedSkillCombination' [str] = ""
'RTargetRuleSelected' [str] = ""
'RStrategyDBID' [str] = ""
'RRequestedSkills' [bstr] = KVList:

'CustomerSegment' [str] = "default"
'RTargetObjSelDBID' [str] = "984"
'RTargetObjectSelected' [str] = "701_sip"
'RTenant' [str] = "TenantForTest"
'RVQID' [str] = ""
'CBR-contract_DBIDs' [str] = ""

R_refID [int] = 0

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 285

If you have any syntax errors, your request will not execute and you will receive an EventError. Here
is an example of an EventError:

'EventError' (1) attributes:
R_cdn_status [int] = 0 [Released]
R_cdn [str] = ""
R_ErrorCode [int] = 4 [NotAvailable]
R_tserver [str] = ""
R_refID [int] = 1
R_time [str] = ""
R_path [str] = "<Path>"

If, on the other hand, URS has a problem executing your request, you will receive an
EventExecutionError, an example of which is shown here:

'EventExecutionError' ('201')
message attributes:
R_result [bstr] = KVList:

'Reason' [str] = "Rejected"
Context = ComplexClass(OperationContext):

UserData [bstr] = KVList:
'PegRejected' [int] = 1

R_refID [int] = 2

There may be times when you want URS to pick a routing target for you. You can use
RequestFindTarget for that purpose. As shown in the sample below, you can use a statistic to aid in
this selection:

[C#]

RequestFindTarget requestFindTarget =
RequestFindTarget.Create();

requestFindTarget.Tenant = "TheTenant";
requestFindTarget.Targets = "TheTargetList";
requestFindTarget.Timeout = 5;
requestFindTarget.Statistic = "TheStatistic";
requestFindTarget.StatisticUsage = StatisticUsage.Max;
requestFindTarget.VirtualQueue = "TheQueue";
requestFindTarget.Priority = 1;
requestFindTarget.MediaType = "TheMediaType";

IMessage response = protocol.Request(requestFindTarget);

You can also have URS fetch statistical information for you directly, in case you want to know more
about the current conditions in your contact center, perhaps in preparation for a RequestFindTarget.
The following example shows how to do this, using RequestGetStatistic:

[C#]

RequestGetStatistic requestGetStatistic =
RequestGetStatistic.Create();

requestGetStatistic.Tenant = "TheTenant";
requestGetStatistic.Targets = "TheTargetList";
requestGetStatistic.Statistic = "StatAgentsBusy";

IMessage response = protocol.Request(requestGetStatistic);

Both RequestFindTarget and RequestGetStatistic return the same messages as
RequestExecuteStrategy.

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 286

Closing the Connection

When you are finished communicating with URS, you should close the connection, in order to
minimize resource utilization:

[C#]

protocol.Close();

Server-Specific Overviews Routing Server

Platform SDK Developer's Guide 287

Component Overviews
Component Overviews

• Using the Log Library
• Using the Switch Policy Library

Component Overviews Routing Server

Platform SDK Developer's Guide 288

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheLogLibrary
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheSwitchPolicyLibrary

Using the Log Library

Java

The purpose of the Platform SDK Log Library is to present an easy-to-use API for logging messages in
custom-built applications. Depending on how you configure your logger, you can quickly and easily
have log messages of different verbose levels written to any of the following targets:

• Genesys Message Server
• Console
• Specified log files

This document provides some key considerations about how to configure and use
this component, as well as code examples that will help you work with the
Platform SDK Log Library in your own projects.

Introduction to Loggers

When working with custom Genesys loggers, the first step is to understand the basic process of
creating and maintaining your logger. How do you create a logger instance? What configuration
options should you use, and how and when can those options be changed? What is required to clean
up once the logger is no longer useful?

Luckily, the main functions and lifecycle of a logger are easy to understand. The following list outlines
the basic process required to create and maintain your customized logger. For more detailed
information, check the Lifecycle of a Logger section, or the specific code examples related to
Creating a Logger, Customizing your Logger, Using your Logger, or Cleaning Up Your Code.

1. Use the LoggerFactory to create a RootLogger instance.
2. Reconfigure the default RootLogger settings, if desired.

• Create a LogConfiguration instance to enable and configure log targets. Depending on the setting
you assign, log messages can be sent to the Console, to a Genesys Message Server, or to one or
more user-defined log files.

• LoggerPolicy property gives you control over how log messages are created and formatted, or
allows you to overwrite MessageServerProtocol properties.

3. Use your logger for logging messages.
4. Dispose of the RootLogger instance when it is no longer needed. (You can also close the logger if it will

be reused in the future.)

Component Overviews Using the Log Library

Platform SDK Developer's Guide 289

Lifecycle of a Logger

There are two possible states for a logger, as shown in the lifecycle diagram below.

Your logger begins in the active state once it is created. If you did not specify any configuration
options during creation, then all messages with a verbose level at least equal to
VerboseLevel.Trace are logged to the Console by default.

You can use the applyConfiguration method to change logger configuration settings from either an
active or inactive state:

• If the logger is active when you call this method, then all messages being processed will be handled
before the logger is stopped and reconfigured. Note that any file targets (from both the old and new
configurations) are not closed automatically when the logger is reconfigured, although file targets can
be closed and a new log file segment started if the new Segmentation settings require this.

• If the logger is inactive when you call this method, then it is activated after the new configuration
settings are applied.

You can use the close method to make the logger inactive without disposing of it. All messages being
processed when this method is called are processed before the logger is stopped. Once the logger is
inactive, no further messages are processed until after the applyConfiguration method is called.

Important
If your logger is connected to Message Server, the logger does not manage the
lifecycle of the MessageServerProtocol instance. You must manage and close that
connection manually.

Creating a Default Logger

This section provides simple code examples that show how to quickly create a logger with the default
configuration and use it as part of your application.

Creating a Logger
As always, the starting point is ensuring that you have the necessary Platform SDK libraries
referenced and declared in your project. For logging functionality described in this article, that

Component Overviews Using the Log Library

Platform SDK Developer's Guide 290

includes the following packages:

• import com.genesyslab.platform.commons.log.*;
• import com.genesyslab.platform.commons.collections.KeyValueCollection;
• import com.genesyslab.platform.management.protocol.messageserver.LogLevel;
• import com.genesyslab.platform.logging.*;
• import com.genesyslab.platform.logging.configuration.*;
• import com.genesyslab.platform.logging.utilities.*;
• import com.genesyslab.platform.logging.runtime.LoggerException;

Once your project is properly configured and coding about to begin, the first task is to create an
instance of the RootLogger class. This is easy to accomplish with help from the LoggerFactory - the
only information you need to provide is a logger name that can be used later to configure targets for
filtering logging output.

[Java]

try{
// Create a logger instance:
RootLogger logger = new LoggerFactory("myLoggerName").getRootLogger();

}
catch(LoggerException e){

// Handle exceptions...
}

The default behavior for this logger is to send all messages of Trace verbose and higher to the
Console. You can change this behavior by using a LogConfiguration instance to change
configuration settings and then applying those values to the RootLogger instance, as shown below,
but for now we will accept the default values.

Using your Logger
With a logger created and ready for use, the next step is to generate some custom log messages and
ensure that your logger is working correctly.

One way to generate log messages is with the write method. Depending on the parameters used
with this method, message formatting can either be provided by templates extracted from LMS files,
or through the settings that you configure in a LogEntry instance. For the example below, the only
formatting come from the LogEntry parameter.

[Java]

LogEntry logEntry;
logEntry = new LogEntry("Sample Internal message.");
logEntry.setId(CommonMessage.GCTI_INTERNAL.getId());
logger.write(logEntry);

logEntry.setMessage("Sample Debug message.");
logEntry.setId(CommonMessage.GCTI_DEBUG.getId());
logger.write(logEntry);

You can also generate log messages by using one of the methods listed in the following table.

Component Overviews Using the Log Library

Platform SDK Developer's Guide 291

Message Level Available Methods

Debug
• debug(Object arg0)
• debug(Object arg0, Throwable arg1)
• debugFormat(String arg0, object arg1)

Info
• info(Object arg0)
• info(Object arg0, Throwable arg1)
• infoFormat(String arg0, object arg1)

Interaction
• warn(Object arg0)
• warn(Object arg0, Throwable arg1)
• warnFormat(String arg0, object arg1)

Error
• error(Object arg0)
• error(Object arg0, Throwable arg1)
• errorFormat(String arg0, object arg1)

Alarm
• fatalError(Object arg0)
• fatalError(Object arg0, Throwable arg1)
• fatalErrorFormat(String arg0, object arg1)

These methods do not use any external templates or formatting, relying entirely on the information
passed into them. In the examples below, the messages are logged at Info and Debug verbose
levels, without any changes or formatting.

[Java]

logger.info("Sample Info message.");
logger.debug("Sample Debug message.");

Cleaning Up Your Code
Once you have finished logging messages with your logger, there are two options available: you can
close the logger if you want it to be available for reuse later, or dispose of the logger if your
application doesn't need it any longer. (Note that you do not have to close a logger before disposing
of it.)

Once closed, a logger remains in an inactive state until either the ApplyConfiguration method is
called or you dispose of the object, as shown in the Lifecycle of a Logger diagram above.

[Java]

Component Overviews Using the Log Library

Platform SDK Developer's Guide 292

// closing the logger
logger.close();
// disposing of the logger
logger = null;

Customizing your Logger

Now that you know how to create and use a generic logger, it is time to look at some of the
configuration options available to alter the behavior of your logger.

The LogConfiguration class allows you change application details, specify targets (including
Genesys Message Server) for your log messages, and adjust the verbose level you want to report on.
You can apply these changes to either a new logger that is created with the LogFactory, or to an
existing logger by using the ApplyConfiguration method.

Tip
MessageHeaderFormat property in the LogConfiguration class has no effect on
records in the Message Server Database due to message server work specificity.

Creating a LogConfiguration to Specify Targets and Verbose Levels
The first step to configuring the settings for your logger is creating an instance of the
LogConfigurationImpl class and setting some basic parameters that describe your application.

[Java]

LogConfigurationImpl logConfigImpl = new LogConfigurationImpl();
logConfigImpl.setApplicationHost("myHostname");
logConfigImpl.setApplicationName("myApplication");
logConfigImpl.setApplicationId(10);
logConfigImpl.setApplicationType(20);
logConfigImpl.setVerbose(VerboseLevel.ALL);

Additional LogConfiguration properties that can be configured to specify the name of an
application-specific LMS file (MessageFile) and whether timestamps should use local or UTC format
(TimeUsage). These steps aren't shown here for brevity; refer to the API Reference for details.

Tip
If logging to the network, timestamps for log entries always use UTC format to avoid
confusion. In this case the TimeUsage setting specified by your LogConfiguration is
ignored.

The next step is to assign this implementation to an actual LogConfiguration instance. Once you do
that, you can specify the target locations where log messages will be sent and the verbose levels
accepted by each individual target. (Only messages with a level greater than or equal to the verbose

Component Overviews Using the Log Library

Platform SDK Developer's Guide 293

setting will be logged.)

[Java]

LogConfiguration config = logConfigImpl;

// configure logging to console
config.getTargets().getConsole().setEnabled(true);
config.getTargets().getConsole().setVerbose(VerboseLevel.TRACE);

// configure logging to system events log
config.getTargets().getNetwork().setEnabled(true);
config.getTargets().getNetwork().setVerbose(VerboseLevel.STANDARD);

Adding files to your logger requires one extra step: creating and configuring a FileConfiguration
instance that provides details about each log file to be used. For example:

[Java]

// add logging to Log file "Log\fulllog" - for all messages
FileConfiguration file = new FileConfigurationImpl(true, VerboseLevel.ALL, "Log/fulllogfile");
file.setMessageHeaderFormat(MessageHeaderFormat.FULL);
config.getTargets().getFiles().add(file);

// add logging to Log file "Log\infolog" - for Info (and higher) messages
file = new FileConfigurationImpl(true, VerboseLevel.TRACE, "Log/infologfile");
file.setMessageHeaderFormat(MessageHeaderFormat.SHORT);
config.getTargets().getFiles().add(file);

Warning
Each file added as a target must have a unique name. If two or more items are added
to the file collection with the same name, only one file target will be created with the
lowest specified verbose level. Other settings will be taken from one of the items
using the same filename, but there is no way to predict which item will be used.

In the example above, the first line of code ensures that your logger will process messages for all
verbose levels - but each target location has its own setting afterwards that specifies what level of
messages can be logged by that target. You also can enable or disable individual logging targets by
changing and then reapplying the settings in the LogConfiguration instance.

Once you have created and configured the LogConfiguration instance, all that remains is to apply
those settings to your logger. The following code shows how you can apply these settings to either a
new Logger instance, or an already existing logger.

[Java]

// applying new configuration to an existing logger
logger.applyConfiguration(config);

For more information about using ApplyConfiguration, see the Lifecycle of a Logger section above
and the API Reference entry for that method.

Component Overviews Using the Log Library

Platform SDK Developer's Guide 294

Alternative Ways to Create a LogConfiguration
Another way to create a LogConfiguration instance is by parsing a KeyValueCollection that
contains the appropriate settings. A brief code example of how to accomplish this is provided below.

[Java]

KeyValueCollection kvConfig = new KeyValueCollection();
// verbose level of logger will be VerboseLevel.All
kvConfig.addString("verbose","all");

// enable output of info (and higher) messages to console
kvConfig.addString("trace","stdout");

// add file target for debug debug output
kvConfig.addString("debug","Log/dbglogfile");

// Parse the created keyValueCollection. Messages generated during parsing are logged to
Console.
LogConfiguration config = LogConfigurationFactory.parse(kvConfig, (ILogger)new
Log4JLoggerFactoryImpl ());

Finally, you can also create a LogConfiguration by parsing an org.w3c.dom.Element that contains
the appropriate settings. This Element can be created manually, or obtained from a CfgApplication
object.

Dealing with Sensitive Log Data

There are two optional filters included as part of the common Platform SDK functionality that can be
used to handle senstive log data. These are not part of the Log Library but are discussed here to help
ensure sensitive data is properly considered and handled in any custom applications involving
logging.

• Hiding Data in Logs - The first option to protect sensitive data is to prevent it from being printed to log
files at all.

• Adding Predefined Prefix/Postfix Strings - The second option does not hide the sensitive information
directly, but adds user-defined strings around values for selected key-value pairs. This makes it easy for
you to locate and removed sensitive data in case log files need to be shared or distributed for any
reason.

For more information about these filters, refer to the KeyValueOutputFilter documentation in this
API Reference.

Hiding Data in Logs
In the code except below, the KeyValuePrinter class is used to hide any value of a key-value pair
where the key is "Password":

[Java]

KeyValueCollection kvOptions = new KeyValueCollection();
KeyValueCollection kvData = new KeyValueCollection();
kvData.addString("Password", KeyValuePrinter.HIDE_FILTER_NAME);

Component Overviews Using the Log Library

Platform SDK Developer's Guide 295

KeyValuePrinter hidePrinter = new KeyValuePrinter(kvOptions, kvData);
KeyValuePrinter.setDefaultPrinter(hidePrinter);

KeyValueCollection col = new KeyValueCollection();
col.addString("Password", "secretPassword");

As result, the KeyValueCollection log output will have the "secretPassword" value printed as "*****".
Values for other keys will display as usual.

Adding Predefined Prefix/Postfix Strings
The PrefixPostfixFilter class is designed to give you the ability to wrap parts of the log with
predefined prefix/postfix strings. This makes it possible to easily filter out sensitive information from
an already-printed log file when such a necessity arises.

In the code except below, the KeyValuePrinter is set to wrap "Password" key-value pairs in the
"<###" (prefix), "###>" (postfix) strings:

[Java]

KeyValueCollection kvData = new KeyValueCollection();
KeyValueCollection kvPPfilter = new KeyValueCollection();
KeyValueCollection kvPPOptions = new KeyValueCollection();
kvPPfilter.addString(KeyValuePrinter.CUSTOM_FILTER_TYPE, "PrefixPostfixFilter");
kvPPOptions.addString(PrefixPostfixFilter.KEY_PREFIX_STRING, "<###");
kvPPOptions.addString(PrefixPostfixFilter.VALUE_POSTFIX_STRING, "###>");
kvPPOptions.addString(PrefixPostfixFilter.KEY_POSTFIX_STRING, ">");
kvPPOptions.addString(PrefixPostfixFilter.VALUE_PREFIX_STRING, "<");
kvPPfilter.addList(KeyValuePrinter.CUSTOM_FILTER_OPTIONS, kvPPOptions);
kvData.addList("Password", kvPPfilter);
KeyValuePrinter.setDefaultPrinter(

new KeyValuePrinter(new KeyValueCollection(), kvData));

KeyValueCollection col = new KeyValueCollection();
col.addString("test", "secretPassword");

As result, the KeyValueCollection log output will have the "Password-secretPassword" key-value
printed as "<###Password-secretPassword###>", leaving all other key-values printed as normal.

.NET

The purpose of the Platform SDK Log Library is to present an easy-to-use API for logging messages in
custom-built applications. Depending on how you configure your logger, you can quickly and easily
have log messages of different verbose levels written to any of the following targets:

• Genesys Message Server
• Console
• .NET Trace
• Windows System Log (Application Log only)
• Specified log files

Component Overviews Using the Log Library

Platform SDK Developer's Guide 296

This document provides some key considerations about how to configure and use
this component, as well as code examples that will help you work with the
Platform SDK Log Library for .NET in your own projects.

Introduction to Loggers

When working with custom Genesys loggers, the first step is to understand the basic process of
creating and maintaining your logger. How do you create a logger instance? What configuration
options should you use, and how and when can those options be changed? What is required to clean
up once the logger is no longer useful?

Luckily, the main functions and lifecycle of a logger are easy to understand. The following list outlines
the basic process required to create and maintain your customized logger. For more detailed
information, check the Lifecycle of a Logger section, or the specific code examples related to
Creating a Logger, Customizing your Logger, Using your Logger, or Cleaning Up Your Code.

1. Use the LoggerFactory to create an ILogger instance.
2. Reconfigure the default ILogger settings, if desired.

• NetworkProtocol property allows you to specify a MessageSeverProtocol instance. This will let your
ILogger instance send messages to Genesys Message Server.

• LoggerPolicy property gives you control over how log messages are created and formatted, or allows
you to overwrite MessageServerProtocol properties.

• LogConfiguration class allows you to configure other aspects of your ILogger instance, which are
applied with the ApplyConfiguration method.

3. Use the logger for logging messages.
4. Dispose of the ILogger instance when it is no longer needed. (You can also close the logger if it will be

reused in the future.)

Lifecycle of a Logger

There are two possible states for a logger, as shown in the lifecycle diagram below.

Your logger begins in the active state once it is created. If you did not specify any configuration
options during creation, then all messages with a verbose level at least equal to
VerboseLevel.Trace are logged to the Console by default.

Component Overviews Using the Log Library

Platform SDK Developer's Guide 297

You can use the ApplyConfiguration method to change logger configuration settings from either an
active or inactive state:

• If the logger is active when you call this method, then all messages being processed will be handled
before the logger is stopped and reconfigured. Note that any file targets (from both the old and new
configurations) are not closed automatically when the logger is reconfigured, although file targets can
be closed and a new log file segment started if the new Segmentation settings require this.

• If the logger is inactive when you call this method, then it is activated after the new configuration
settings are applied.

You can use the Close method to make the logger inactive without disposing of it. All messages being
processed when this method is called are processed before the logger is stopped. Once the logger is
inactive, no further messages are processed until after the ApplyConfiguration method is called.

Important
If your logger is connected to Message Server, the logger does not manage the
lifecycle of the MessageServerProtocol instance. You must manage and close that
connection manually.

Creating a Default Logger

This section provides simple code examples that show how to quickly create a logger with the default
configuration and use it as part of your application.

Creating a Logger
As always, the starting point is ensuring that you have the necessary Platform SDK libraries
referenced and declared in your project. For logging functionality, that includes the following
namespaces:

• Genesyslab.Platform.Commons.Logging

• Genesyslab.Platform.Logging

• Genesyslab.Platform.Logging.Configuration

• Genesyslab.Platform.Logging.Utilities

Once your project is properly configured and coding about to begin, the first task is to create an
instance of the ILogger class. This is easy to accomplish with help from the LoggerFactory - the
only information you need to provide is a logger name that can be used later to configure targets for
filtering logging output.

[C#]

IRootLogger logger = LoggerFactory.CreateRootLogger("myLoggerName");

The default behavior for this logger is to send all messages of Trace verbose and higher to the

Component Overviews Using the Log Library

Platform SDK Developer's Guide 298

Console. You can change this behavior by using the ILogConfiguration interface to pass
configuration settings into the LoggerFactory, as shown below, but for this example we will accept
the default values.

Using your Logger
Now that your logger is created and ready for use, the next step is to generate some custom log
messages and ensure that the logger is working correctly.

One way to generate log messages is with the Write method. Message formatting is provided either
by templates extracted from LMS files or directly from a LogEntry parameter, depending on what
information you pass into the method. For the example below, LMS file templates provide formatting.

[C#]

//log the message with standard id: "9999|STANDARD|GCTI_INTERNAL|Internal error '%s' occurred"
//formatting template is extracted from LMS file
logger.Write((int)CommonMessage.GCTI_INTERNAL, "Sample Internal message.");

//log the message with standard id: "9900|DEBUG|GCTI_DEBUG|%s"
//formatting template is extracted from LMS file
logger.Write((int)CommonMessage.GCTI_DEBUG, "Sample Debug message.");

You can also generate log messages by using one of the methods listed in the following table.

Message Level Available Methods

Debug

• Debug(object message)
• Debug(object message, Exception exception)
• DebugFormat(string format, params object []

args)

Info
• Info(object message)
• Info(object message, Exception exception)
• InfoFormat(string format, params object [] args)

Interaction

• Warn(object message)
• Warn(object message, Exception exception)
• WarnFormat(string format, params object []

args)

Error

• Error(object message)
• Error(object message, Exception exception)
• ErrorFormat(string format, params object []

args)

Component Overviews Using the Log Library

Platform SDK Developer's Guide 299

Message Level Available Methods

Alarm

• FatalError(object message)
• FatalError(object message, Exception exception)
• FatalErrorFormat(string format, params object []

args)

These methods do not use any external templates or formatting, relying entirely on the information
passed into them. In the examples below, the messages are logged at Info and Debug verbose
levels, without any changes or formatting.

[C#]

logger.Info("Sample Info message.");
logger.Debug("Sample Debug message.");

Cleaning Up Your Code
Once you have finished logging messages with your logger, there are two options available: you can
close the logger if you want it to be available for reuse later, or dispose of the logger if your
application doesn't need it any longer. (Note that you do not have to close a logger before disposing
of it.)

Once closed, a logger remains in an inactive state until either the ApplyConfiguration or Dispose
method is called, as shown in the lifecycle diagram above.

[C#]

//closing the logger
logger.Close();
...
//disposing of the logger
logger.Dispose();

Customizing your Logger

Now that you know how to create and use a generic logger, it is time to look at some of the
configuration options available to alter the behavior of your logger.

The LogConfiguration class allows you change application details, specify targets (including
Genesys Message Server) for your log messages, and adjust the verbose level you want to report on.
You can apply these changes to either a new logger that is created with the LogFactory, or to an
existing logger by using the ApplyConfiguration method.

Tip
The setMessageHeaderFormat method has no effect on records in the Message Server

Component Overviews Using the Log Library

Platform SDK Developer's Guide 300

Database due to message server work specificity.

Creating a LogConfiguration to Specify Targets and Verbose Levels
The first step to configuring the settings for your logger is creating an instance of the
LogConfiguration class and setting some basic parameters that describe your application.

[C#]

LogConfiguration config = new LogConfiguration
{

ApplicationHost = "myHostname",
ApplicationName = "myApplication",
ApplicationId = 10,
ApplicationType = 20

};

Additional LogConfiguration properties that can be configured to specify the name of an
application-specific LMS file (MessageFile) and whether timestamps should use local or UTC format
(TimeUsage). These steps aren't shown here for brevity; refer to the API Reference for details.

Tip
If logging to the network, as described in Logging Messages to Genesys Message
Server, timestamps for log entries always use UTC format to avoid confusion. In this
case the TimeUsage setting specified by your LogConfiguration is ignored.

The next step is to specify the target locations where log messages are recorded, and to configure
the verbose levels for the logger and for individual targets. (Only messages with a level greater than
or equal to the verbose setting will be logged.)

[C#]

config.Verbose = VerboseLevel.All;

//configure logging to console
config.Targets.Console.IsEnabled = true;
config.Targets.Console.Verbose = VerboseLevel.Trace;

//configure logging to system events log
config.Targets.System.IsEnabled = true;
config.Targets.System.Verbose = VerboseLevel.Standard;

//add logging to Log file "Log\fulllog" - for all messages
config.Targets.Files.Add(new FileConfiguration(true, VerboseLevel.All, "Log/fulllogfile"));
//add logging to Log file "Log\infolog" - for Info (and higher) messages
config.Targets.Files.Add(new FileConfiguration(true, VerboseLevel.Trace, "Log/infologfile"));

In the example above, the first line of code ensures that your logger will process messages for all
verbose levels - but each target location has its own setting afterwards that specifies what level of
messages can be logged by that target. You also can enable or disable individual logging targets by

Component Overviews Using the Log Library

Platform SDK Developer's Guide 301

changing and then reapplying the settings in the LogConfiguration.

Warning
Each file added as a target must have a unique name. If two or more items are added
to the file collection with the same name, only one file target will be created with the
lowest specified verbose level. Other settings will be taken from one of the items
using the same filename, but there is no way to predict which item will be used.

Once you have created and configured the LogConfiguration instance, all that remains is to apply
those settings to your logger. The following code shows how you can apply these settings to either a
new Logger instance, or an already existing logger.

[C#]

//applying new configuration to an existing logger
logger.ApplyConfiguration(config);
...
//apply new configuration to a new logger when it is created
IRootLogger newlogger = LoggerFactory.CreateRootLogger("NewLoggerName", config);

For more information about using ApplyConfiguration, see the logger lifecycle section above and
the API Reference entry for that method.

Alternative Ways to Create a LogConfiguration
Another way to create a LogConfiguration is by parsing a KeyValueCollection that contains the
appropriate settings. A brief code example of how to accomplish this is provided below.

[C#]

KeyValueCollection kvConfig = new KeyValueCollection();
//verbose level of logger will be VerboseLevel.All
kvConfig.Add("verbose","all");
//enable output of info (and higher) messages to console
kvConfig.Add("trace","stdout");
//add file target for debug debug output
kvConfig.Add("debug","Log/dbglogfile");
//Parse the created keyValueCollection. Messages generated during parsing are logged to
Console.
LogConfiguration config = LogConfigurationFactory.Parse(kvConfig, new ConsoleLogger());

Finally, you can also create a LogConfiguration by parsing an XElement that contains the
appropriate settings, as shown below.

[C#]

XElement xElementConfig =
new XElement("CfgApplication",

new XElement("options",
new XElement("list_pair",

new XAttribute("key","log"),
XElement.Parse("<str_pair key=\"verbose\" value =

\"all\"/>"),
XElement.Parse("<str_pair key=\"trace\" value =

Component Overviews Using the Log Library

Platform SDK Developer's Guide 302

\"stdout\"/>"),
XElement.Parse("<str_pair key=\"debug\" value = \"Log/

dbglogfile\"/>"),
)

)
);

LogConfiguration config = LogConfigurationFactory.Parse(xElementConfig, new ConsoleLogger());

Although the XElement can be created manually (as shown above), it is much more likely that it will
be obtained from a CfgApplication object. The following code example illustrates how this can be
done.

[C#]

ConfService confservice=null;
//...
//initializing the ConfService
//...
CfgApplication cfgApp = confservice.RetrieveObject<CfgApplication>(

new CfgApplicationQuery{Name = "Sample Application"});
XElement xElementConfig = cfgApp.ToXml();
LogConfiguration config = LogConfigurationFactory.Parse(xElementConfig, new ConsoleLogger());

Logging Messages to Genesys Message Server
Creating a connection with Genesys Message Server is similar to setting other targets for your logger,
but contains a couple of additional steps. Several new settings are required to determine how your
logger handles buffering and spooling when sending log messages over the network. Once that is
complete, you also have to create (and manage) a protocol object that connects to Message Server.

The following example shows how this can be accomplished. For details and additional information
about the properties being configured, refer to the appropriate API Reference entries.

[C#]

LogConfiguration config = new LogConfiguration {Verbose = VerboseLevel.All};
config.Targets.Network.IsEnabled = true;
config.Targets.Network.Verbose = VerboseLevel.All;
config.Targets.Network.Buffering = Buffering.On|Buffering.KeepOnProtocolChange;
config.Targets.Network.SpoolFile = "temp/spool";

//create and open connection to message server
MessageServerProtocol protocol = new MessageServerProtocol(

new Endpoint(myApplication, myHostname, myPort));
protocol.Open();

IRootLogger logger = LoggerFactory.CreateRootLogger("mySample");
logger.NetworkProtocol = protocol;
logger.ApplyConfiguration(config);

It is important to remember that any connection created to Message Server is not managed
automatically by the Logger lifecycle. You are responsible to manage and dispose of the connection
manually.

Component Overviews Using the Log Library

Platform SDK Developer's Guide 303

Dealing with Sensitive Log Data

There are two optional filters included as part of the common Platform SDK functionality that can be
used to handle sensitive log data. These are not part of the Log Library for .NET, but are discussed
here to help ensure sensitive data is properly considered and handled in any custom applications
involving logging.

• Hiding Data in Logs - The first option to protect sensitive data is to prevent it from being printed to log
files at all.

• Adding Predefined Prefix/Postfix Strings - The second option does not hide the sensitive information
directly, but adds user-defined strings around values for selected key-value pairs. This makes it easy for
you to locate and removed sensitive data in case log files need to be shared or distributed for any
reason.

Hiding Data in Logs
In the code except below, the KeyValuePrinter class is used to hide any value of a key-value pair
where the key is "Password":

[C#]

KeyValueCollection kvOptions = new KeyValueCollection();
KeyValueCollection kvData = new KeyValueCollection();
kvData["Password"] = KeyValuePrinter.HideFilterName;
KeyValuePrinter hidePrinter = new KeyValuePrinter(kvOptions, kvData);
KeyValuePrinter.DefaultPrinter = hidePrinter;

KeyValueCollection col = new KeyValueCollection();
col["Password"] = "secretPassword";

As result, the KeyValueCollection log output will have the "secretPassword" value printed as
"*****". Values for other keys will display as usual.

Adding Predefined Prefix/Postfix Strings
The PrefixPostfixFilter class is designed to give you the ability to wrap parts of the log with
predefined prefix/postfix strings. This makes it possible to easily filter out sensitive information from
an already-printed log file when such a necessity arises.

In the code except below, the KeyValuePrinter is set to wrap "Password" key-value pairs in the
"<###" (prefix), "###>" (postfix) strings:

[C#]

KeyValueCollection kvData = new KeyValueCollection();
KeyValueCollection kvPPfilter = new KeyValueCollection();
KeyValueCollection kvPPOptions = new KeyValueCollection();
kvPPfilter[KeyValuePrinter.CustomFilterType] = typeof(PrefixPostfixFilter).FullName;
kvPPOptions[PrefixPostfixFilter.KeyPrefixString] = "<###";
kvPPOptions[PrefixPostfixFilter.ValuePrefixString] = "<";
kvPPOptions[PrefixPostfixFilter.ValuePostfixString] = "###>";
kvPPOptions[PrefixPostfixFilter.KeyPostfixString] = ">";
kvPPfilter[KeyValuePrinter.CustomFilterOptions] = kvPPOptions;
kvData["Password "] = kvPPfilter;

Component Overviews Using the Log Library

Platform SDK Developer's Guide 304

KeyValuePrinter.DefaultPrinter = new KeyValuePrinter(new KeyValueCollection(), kvData);
KeyValueCollection col = new KeyValueCollection();
col["Password"] = "myPassword";

As result, the KeyValueCollection log output will have the "Password-secretPassword" key-value
printed as "<###Password-secretPassword###>", leaving all other key-values printed as normal.

Component Overviews Using the Log Library

Platform SDK Developer's Guide 305

Using the Switch Policy Library
This document shows how to add simple T-Server functionality to your applications by using the
Switch Policy Library.

The Platform SDK Switch Policy Library (SPL) can be used in applications that need to perform agent-
related switch activity with a variety of T-Servers, without knowing beforehand what kinds of T-
Servers will be used. It simplifies these applications by indicating which switch functions are available
at any given time and also by showing how you can use certain switch features in your applications.
However, if your application works with only one kind of T-Server, you may want to have your
application communicate directly with the T-Server, rather than using SPL.

Switch Policy Library Overview

Some telephony applications need to work with more than one type of switch. Unfortunately,
however, one switch may not perform a particular telephony function in the same way as another
switch. This means that it can be useful to have an abstraction layer of some kind when working with
multiple switches, so that you do not need custom code for each switch that is used by the
application. The Switch Policy Library is designed with just this kind of abstraction in mind.

Java

Setting Up Switch Policy Library

SPL should be used by your agent desktop applications as a library, which means that it would be
located within the agent desktop application shown above. The application can call SPL for guidance
on how to send requests to or process events from your T-Server, as shown in the Code Samples
section.

SPL is driven by an XML-based configuration file that supports many commonly-used switches in
performing agent-related functions. Your application can query SPL to determine whether a particular
feature is supported for the switch you want to work with. If a feature you need is not supported for
the switches you need to work with, you can make a copy of the default configuration file and modify
it as needed.

Important
Genesys does not support modifications to the SPL configuration file. Any
modifications you make are performed at your own risk.

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 306

A copy of the default configuration file is included inside the Switch Policy Library JAR file. You can
extract the XML configuration file from switchpolicy.jar, modify it, and pass it as an argument to
the corresponding method of the SwitchPolicyServiceFactory factory class.

Code Samples

This section contains examples of how to perform useful functions with SPL.

These samples each require a valid instance of the ISwitchPolicyService, which can be created as
shown here:

[Java]

ISwitchPolicyService service =
SwitchPolicyServiceFactory.createSwitchPolicyService();

Tip
The DN classes specified below implement the IDNContext interface, while the Party
classes implement the IPartyContext interface, and the Call classes implement the
ICallContext interface.

Customizing the XML Configuration File
The following code samples create a service using the default configuration. As noted above,
Genesys does not support modifications to the default SPL configuration file. Should you decide to
assume the risk of creating a custom XML configuration file, your application can access this file as
shown here:

[Java]

public void serviceCreationWithParent(ApplicationContext parent) {
final String file_path =

"<Path to XML Configuration File>";
FileSystemResource resource =

new FileSystemResource(file_path);
ISwitchPolicyService service =

SwitchPolicyServiceFactory.createSwitchPolicyService(parent, resource);
}

Get A Phone Set Configuration
On some switches, phone sets are presented as more than one Directory Number (DN). These DNs
may also have different types, such as Position and Extension. Because these configurations vary by
switch type, an application needs to know how the phone set configuration for a particular switch is
structured. For example, it needs to know how many DNs are used to represent a phone set, and
what their types are. To retrieve this phone set configuration information, perform the following steps:

1. Create an instance of PhoneSetConfigurationContext, specifying the switch type.

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 307

2. Call ISwitchPolicyService.getPolicy, using this PhoneSetConfigurationContext.
3. Analyze the returned PhoneSetConfigurationPolicy. The

PhoneSetConfigurationPolicy.getConfigurations method will return all possible phone set
configurations for the specified switch.

The following code snippet shows how to do this:

[Java]

ISwitchPolicyService service =
SwitchPolicyServiceFactory.createSwitchPolicyService();

PhoneSetConfigurationContext context =
new PhoneSetConfigurationContext("SwitchName");

PhoneSetConfigurationPolicy policy =
service.getPolicy(PhoneSetConfigurationPolicy.class, context);

System.out.println(policy);

Get Phone Set Availability Information
When working with a phone set, additional information about the included DNs may be required. This
could include information about which of the DNs should be available to the end user (for example,
which ones should be visible in the user interface), which of them is callable, and which number (the
Callable Number) the application should use to reach the agent who is logged into the phone set. To
retrieve this phone set availability information, perform the following steps:

1. Create an instance of DNAvailabilityContext and populate it with the following required information:
1. Specify the switch type.
2. Specify the Agent ID.
3. Fill the DN collection with valid implementations of IDNContext.

2. Call ISwitchPolicyService.getPolicy, using this DNAvailabilityContext.
3. Analyze the returned DNAvailabilityPolicy. The DNAvailabilityPolicy.getDNStatuses method will

return availability information for each DN in the request.

The following code snippet shows how to do this:

[Java]

String extDN = "1001";
String posDN = "2001";
String agentID = "9999";
// logout, in service
DNAvailabilityContext context = new DNAvailabilityContext(switchname);
context.setAgentId(agentID);
DNContextStub ext = new DNContextStub(); // implements IDNContext interface
ext.setIdentifier(extDN);
ext.setAgentStatus(AgentStatus.LOGOUT);
ext.setServiceStatus(ServiceStatus.IN_SERVICE);
ext.setType(AddressType.DN);

DNContextStub pos = new DNContextStub(); // implements IDNContext interface
pos.setIdentifier(posDN);
pos.setAgentStatus(AgentStatus.LOGOUT);
pos.setServiceStatus(ServiceStatus.IN_SERVICE);
pos.setType(AddressType.Position);

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 308

ArrayList<IDNContext> dns = new ArrayList<IDNContext>();
dns.add(ext);
dns.add(pos);
context.setDNs(dns);

// here service is correctly initialized instance of ISwitchPolicyService
DNAvailabilityPolicy policy = service.getPolicy(DNAvailabilityPolicy.class, context);
System.out.println(policy);

Get Function Availability Information for the Current Context
Some switches differ in when they allow certain functions to be performed. Also, some functions can
always be performed on certain switches, while others may be impossible to perform. For example,
RequestMergeCalls can never be performed on some switches. For other functions, whether or not
the function can be performed varies depending on context. For example, on some switches
RequestReleaseCall can only be used when a call is in a Held, Dialing, or Established state, while on
other switches it is also possible to release a call when it is in a Ringing state. In addition to this, on
some switches the phone set is presented as more than one Directory Number (DN) and each DN can
have a different type, such as Position and Extension. Some functions are allowed for both types,
while some other functions may be restricted to a certain DN type. To retrieve this kind of function
availability information for the current context, perform the following steps:

1. Create an instance of FunctionHandlingContext and populate it with the following required
information:
1. Specify the switch type.
2. Specify the request by calling the setMessage method.
3. Describe the context as fully as possible.

2. Call ISwitchPolicyService.getPolicy, using this FunctionHandlingContext.
3. Analyze the returned FunctionAvailabilityPolicy. If the specified request is possible in the given

context, the getIsFunctionAvailable method will return true. However, if the request is not
supported, SPL will return null.

The following code snippet shows how to do this:

[Java]

DNContextStub dn = new DNContextStub();// implements IDNContext
dn.setIdentifier("1001");
dn.setType(AddressType.DN);
dn.setAgentStatus(AgentStatus.READY);
dn.setServiceStatus(ServiceStatus.IN_SERVICE);

DNContextStub otherdn = new DNContextStub();
otherdn.setIdentifier("2001");
otherdn.setType(AddressType.DN);
otherdn.setAgentStatus(AgentStatus.READY);
otherdn.setServiceStatus(ServiceStatus.IN_SERVICE);

PartyContextStub mainparty = new PartyContextStub();// implements IPartyContext
mainparty.setIdentifier("9841");
mainparty.setStatus(PartyStatus.ESTABLISHED);
mainparty.setIsConferencing(true);
mainparty.setIsTransferring(true);

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 309

mainparty.setDN(dn);

PartyContextStub otherParty = new PartyContextStub();
otherParty.setIdentifier(mainparty.getIdentifier());
otherParty.setStatus(PartyStatus.ESTABLISHED);
otherParty.setIsConferencing(true);
otherParty.setIsTransferring(true);
otherParty.setDN(otherdn);

CallContextStub call = new CallContextStub();// Implements ICallContext
call.setStatus(CallStatus.ESTABLISHED);
call.setDestination(mainparty);
call.setOrigination(otherParty);
call.setIdentifier(mainparty.getIdentifier());
call.setConferencing(true);
call.setTransferring(true);
call.setParties(Arrays.<IPartyContext> asList(mainparty, otherParty));

for (String swtype : new String[] { swtypeA4400Classic, swtypeA4400Emul, swtypeA4400Subs }) {
for (CallType callType : GEnum.valuesBy(CallType.class)) {

FunctionHandlingContext context = new FunctionHandlingContext(swtype);
context.setMessage(RequestHoldCall.create());
context.setDN(dn);
mainparty.setCallType(callType);
otherParty.setCallType(callType);
call.setCallType(callType);
context.setParty(mainparty);
context.setCall(call);
FunctionAvailabilityPolicy policy =

service.getPolicy(FunctionAvailabilityPolicy.class, context);
System.out.println(policy);

}
}

Get Instructions On How To Implement a Feature
Some switches differ in how certain features can be accessed. The majority of their features may
map directly to individual switch functions, but this is not always so. For example, for some switches
it is not possible to log the agent out while the agent is in the ready state. So, the feature which
implements agent logout for these switches would require two steps:

1. Make sure the agent is in a NotReady state
2. Log the agent out

SPL implements a feature handler for each feature that it supports. To create and run a feature
handler, perform the following steps:

1. Create a new instance of FunctionHandlingContext and populate it with the following required
information:
1. Specify the switch type.
2. Specify the request by calling the setMessage method. This step can be omitted if a feature handler

is going to be created by using the featureName parameter in the
ISwitchPolicyService.createFeatureHandler(String featureName,
FunctionHandlingContext context) method.

3. Provide a valid Protocol instance by calling the setProtocol method.

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 310

4. Describe the context as fully as possible.

2. Call ISwitchPolicyService.createFeatureHandler and pass this FunctionHandlingContext, either
alone or with the name of the feature.

3. Call the beginExecute method of IFeatureHandler on the returned handler, passing the same instance
of FunctionHandlingContext.

4. The remainder of the processing depends on the implementation, but the general approach is to
perform the following actions while the status of the handler is Executing:
1. Receive event from T-Server.
2. Update FunctionHandlingContext based on the received event.
3. Assign the received event by calling the setMessage method of your FunctionHandlingContext

instance.
4. Call the handle method of IFeatureHandler passing with it the updated

FunctionHandlingContext.

The following code snippet shows how to do this:

[Java]

public void LogoutReadyAgent(Protocol protocol,
ISwitchPolicyService service, String thisDN, String switchType)
throws IllegalStateException, InterruptedException,
SwitchPolicyException {

FunctionHandlingContext context =
new FunctionHandlingContext(switchType);

context.setMessage(RequestAgentLogout.create(thisDN));
DNContextStub dn = new DNContextStub(); // implements IDNContext interface
dn.setAgentStatus(AgentStatus.READY);
dn.setAgentWorkMode(AgentWorkMode.Unknown);
dn.setIdentifier(thisDN);
dn.setType(AddressType.DN);
dn.setServiceStatus(ServiceStatus.IN_SERVICE);
context.setDN(dn);
context.setProtocol(protocol);

IFeatureHandler handler = service.createFeatureHandler(context);
if (handler != null) {

handler.beginExecute(context);
while (handler.getStatus() == FeatureStatus.EXECUTING) {

Message message = (Message) protocol.receive();
// update context due to received message
//
context.setMessage(message);
handler.handle(context);

}
}

}

Get Instructions On How To Accomplish Complex Functionality
Your application may sometimes need access to functionality that depends on the switch type. For
example, when an application receives events from the T-Server, the way a given event's fields are
used can depend on both the call scenario and the switch type. To retrieve this information, perform
the following steps:

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 311

1. Create a MessageHandlingContext and populate it with the following required information:
1. Name of switch.
2. Name of handler.

2. Call ISwitchPolicyService.createMessageHandler, pass this context into it, and receive the resulting
IMessageHandler.

3. Call the IMessageHandler.handle method on the received handler.

The following code snippet shows how to do this:

[Java]

EventRinging msgRinging =
EventRinging.create(TimeStamp.create(1249566176, 312000));

KeyValueCollection p = new KeyValueCollection();
p.addInt("BusinessCall", 0);
p.addInt("GCTI_BUSINESS_CALL", 0);
p.addString("GCTI_SUB_THIS_DN", "18101");
p.addString("GCTI_SUB_OTHER_DN", "18100");
p.addString("GCTI_OTHER_DEVICE_NAME", "18100");
p.addString("GCTI_PARTY_NAME", "18100");
msgRinging.setExtensions(p);
msgRinging.setEventSequenceNumber(0x0000000000000399);
msgRinging.setOtherDN("11100");
msgRinging.setOtherDNRole(DNRole.RoleOrigination);//
msgRinging.setOtherTrunk(521);
msgRinging.setThisDNRole(DNRole.RoleOrigination);//
msgRinging.setThisDN("11101");
msgRinging.setDNIS("18101");
msgRinging.setThisTrunk(522);
msgRinging.setCallUuid("BTMT3AJVT17QPE364J2DV9V5I000005P");
msgRinging.setConnID(new ConnectionId("022701b746b29021"));
msgRinging.setCallID(3648);
msgRinging.setCallType(CallType.Internal);
msgRinging.setNetworkCallID(0x1ee07a4a400e0100l);
msgRinging.setCallState(0);
msgRinging.setAgentID("18101");
msgRinging.setPropagatedCallType(CallType.Internal);

MessageHandlingContext context = new MessageHandlingContext(Switchname);
context.setHandlerName("OtherDN");
IMessageHandler othDNH = service.createMessageHandler(context);
String otherDN = (String) othDNH.handle(msgRinging); System.out.println(otherDN);

Add Logging Support
You can add support for logging by providing an application context with a registered ILogger bean.
This logger will be used by the Switch Policy Library. Here is a code sample:

[Java]

AnnotationConfigApplicationContext context =
new AnnotationConfigApplicationContext();

context.register(ConsoleLogger.class);

// ConsoleLogger implements ILogger interface
context.refresh();

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 312

ISwitchPolicyService service =
SwitchPolicyServiceFactory.createSwitchPolicyService(context);

.NET

Setting Up Switch Policy Library

SPL should be used by your agent desktop applications as a library, which means that it would be
located within the agent desktop application shown above. The application can call SPL for guidance
on how to send requests to or process events from your T-Server, as shown in the Code Samples
section.

SPL is driven by an XML-based configuration file that supports many commonly-used switches in
performing agent-related functions. Your application can query SPL to determine whether a particular
feature is supported for the switch you want to work with. If a feature you need is not supported for
the switches you need to work with, you can make a copy of the default configuration file and modify
it as needed.

Important
Genesys does not support modifications to the SPL configuration file. Any
modifications you make are performed at your own risk.

A copy of the default configuration file is included inside the Switch Policy Library DLL. There is also a
copy in the Bin directory of the Platform SDK installation package. If you need to modify the
configuration file, you can use the app.config file for SPL to point to your copy.

Code Samples

This section contains examples of how to perform useful functions with SPL.

These samples each require a valid instance of the ISwitchPolicyService, which can be created as
shown here:

[C#]

ISwitchPolicyService policyService =
SwitchPolicyFactory.CreateSwitchPolicyService();

Tip

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 313

The DN classes specified below implement the IDNContext interface, while the Party
classes implement the IPartyContext interface, and the Call classes implement the
ICallContext interface.

Get A Phone Set Configuration
On some switches, phone sets are presented as more than one Directory Number (DN). These DNs
may also have different types, such as Position and Extension. Because these configurations vary by
switch type, an application needs to know how the phone set configuration for a particular switch is
structured. For example, it needs to know how many DNs are used to represent a phone set, and
what their types are. To retrieve this phone set configuration information, perform the following steps:

1. Create an instance of PhoneSetConfigurationContext, specifying the switch type.
2. Call ISwitchPolicyService.GetPolicy, using this PhoneSetConfigurationContext.
3. Analyze the returned PhoneSetConfigurationPolicy. The

PhoneSetConfigurationPolicy.Configurations property will contain all possible phone set
configurations for the specified switch.

The following code snippet shows how to do this:

[C#]

PhoneSetConfigurationContext context =
new PhoneSetConfigurationContext("SomeSwitch");

PhoneSetConfigurationPolicy policy =
switchPolicyService.GetPolicy<PhoneSetConfigurationPolicy>(context);
foreach (PhoneSetConfiguration configuration in policy.Configurations)
{

Console.WriteLine(configuration);
}

Get Phone Set Availability Information
When working with a phone set, additional information about the included DNs may be required. This
could include information about which of the DNs should be available to the end user (for example,
which ones should be visible in the user interface), which of them is callable, and which number (the
Callable Number) the application should use to reach the agent who is logged into the phone set. To
retrieve this phone set availability information, perform the following steps:

1. Create an instance of DNAvailabilityContext and populate it with the following required information:
• Specify the switch type.
• Specify the Agent ID.
• Fill the DN collection with valid implementations of IDNContext.

2. Call ISwitchPolicyService.GetPolicy, using this DNAvailabilityContext.
3. Analyze the returned DNAvailabilityPolicy. The DNAvailabilityPolicy.DNStatuses property will

contain availability information for each DN in the request.

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 314

The following code snippet shows how to do this:

[C#]

private static void DemonstrateDNAvailability(ISwitchPolicyService service)
{

DNAvailabilityContext dnacontext =
new DNAvailabilityContext("SomeSwitch");

dnacontext.AgentId = "AgentLogin1000";
dnacontext.DNs.Add(new Dn
{

AgentStatus = AgentStatus.Ready,
Identifier = "1000",
ServiceStatus = ServiceStatus.InService,
Type = AddressType.DN

});
dnacontext.DNs.Add(new Dn
{

AgentStatus = AgentStatus.Ready,
Identifier = "2000",
ServiceStatus = ServiceStatus.InService,
Type = AddressType.Position

});

DNAvailabilityPolicy dnpolicy =
service.GetPolicy<DNAvailabilityPolicy>(dnacontext);

DisplayInColor(dnpolicy, ConsoleColor.Red);
}

Get Function Availability Information for the Current Context
Some switches differ in when they allow certain functions to be performed. Also, some functions can
always be performed on certain switches, while others may be impossible to perform. For example,
RequestMergeCalls can never be performed on some switches. For other functions, whether or not
the function can be performed varies depending on context. For example, on some switches
RequestReleaseCall can only be used when a call is in a Held, Dialing, or Established state, while on
other switches it is also possible to release a call when it is in a Ringing state. In addition to this, on
some switches the phone set is presented as more than one Directory Number (DN) and each DN can
have a different type, such as Position and Extension. Some functions are allowed for both types,
while some other functions may be restricted to a certain DN type. To retrieve this kind of function
availability information for the current context, perform the following steps:

1. Create an instance of FunctionHandlingContext and populate it with the following required
information:
• Specify the switch type.
• Specify the request by setting the Message property.
• Describe the context as fully as possible.

2. Call ISwitchPolicyService.GetPolicy, using this FunctionHandlingContext.
3. Analyze the returned FunctionAvailabilityPolicy. If the specified request is possible in the given

context, the IsFunctionAvailable property will be true. However, if the request is not supported, SPL
will return null.

The following code snippet shows how to do this:

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 315

[C#]

foreach (string switchType in new[] { swTypeA4400Classic, swTypeA4400emul, swTypeA4400Subs })
{

DNContext dn = new DNContext //implements IDNContext
{

Identifier = "1001",
Type = AddressType.DN,
AgentStatus = AgentStatus.Ready,
ServiceStatus = ServiceStatus.InService,
DndStatus = FunctionStatus.Off,
ForwardStatus = FunctionStatus.Off

};

DNContext otherDN = new DNContext
{

Identifier = "2001",
Type = AddressType.DN,
AgentStatus = AgentStatus.Ready,
ServiceStatus = ServiceStatus.InService,
DndStatus = FunctionStatus.Off,
ForwardStatus = FunctionStatus.Off

};

foreach (CallType callType in Enum.GetValues(typeof(CallType)))
{

PartyContext mainParty = new PartyContext //implements IPartyContext
{

Identifier = "1002",
Status = PartyStatus.Established,
CallType = callType,
IsConferencing = true,
IsTransferring = true,
DN = dn

};

PartyContext otherParty = new PartyContext
{

Identifier = "1002",
CallType = callType,
DN = otherDN,
IsConferencing = true,
IsTransferring = true,
Status = PartyStatus.Established

};
CallContextStub ccontext = new CallContextStub //implements ICallContext
{

CallType = callType,
Destination = mainParty,
Origination = otherParty,
Identifier = "1002",
IsConferencing = true,
IsTransferring = true,
Parties = new List<IPartyContext>{mainParty,otherParty},
Parent = null//no parentCall - our call is solitary call.

};

FunctionHandlingContext context = new FunctionHandlingContext(switchType)
{

Message = RequestHoldCall.Create(),
DN = dn,
Party = mainParty,
Call = ccontext

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 316

};
FunctionAvailabilityPolicy policy =

service.GetPolicy<FunctionAvailabilityPolicy>(context);

Console.WriteLine(policy);
}

}

Get Instructions On How To Implement a Feature
Some switches differ in how certain features can be accessed. The majority of their features may
map directly to individual switch functions, but this is not always so. For example, for some switches
it is not possible to log the agent out while the agent is in the ready state. So, the feature which
implements agent logout for these switches would require two steps:

1. Make sure the agent is in a NotReady state
2. Log the agent out

SPL implements a feature handler for each feature that it supports. To create and run a feature
handler, perform the following steps:

1. Create a new instance of FunctionHandlingContext and populate it with the following required
information:
• Specify the switch type.
• Specify the request by setting the Message property. This step can be omitted if the feature handler

is created by using the featureName parameter in the
ISwitchPolicyService.CreateFeatureHandler(String featureName,
FunctionHandlingContext context) method.

• Provide a valid IProtocol instance as the value of the Protocol property.
• Describe the context as fully as possible.

2. Call the ISwitchPolicyService.CreateFeatureHandler and pass this FunctionHandlingContext,
either alone or with the name of the feature.

3. Call the BeginExecute method on the returned handler, passing the same instance of
FunctionHandlingContext.

4. The remainder of the processing depends on the implementation, but the general approach is to
perform the following actions while the status of the handler is Executing:
1. Receive event from TServer.
2. Update FunctionHandlingContext based on the received event.
3. Assign the received event to the Message property of your FunctionHandlingContext instance.
4. Call the Handle method of IFeatureHandler passing with it the updated

FunctionHandlingContext.

The following code snippet shows how to do this:

[C#]

private static void LoginReadyAgent(IProtocol protocol,
ISwitchPolicyService service, string thisdn, string agentID)

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 317

{
FunctionHandlingContext context = new FunctionHandlingContext("SomeSwitch");
RequestAgentLogin requestAgentLogin = RequestAgentLogin.Create();
requestAgentLogin.ThisDN = thisdn;
requestAgentLogin.AgentID = agentID;
requestAgentLogin.AgentWorkMode = AgentWorkMode.AutoIn;
context.Message = requestAgentLogin;
context.Protocol = protocol;

IFeatureHandler loginHandler = service.CreateFeatureHandler(context);

if(loginHandler == null)
{

protocol.Send(requestAgentLogin);
// Process the incoming events for the scenario
return;

}

// Processing feature handler
loginHandler.BeginExecute(context);
while (loginHandler.Status == FeatureStatus.Executing)
{

context.Message = context.Protocol.Receive();
// Update the context based on the received T-Server event
loginHandler.Handle(context);

}
}

Get Instructions On How To Accomplish Complex Functionality
Your application may sometimes need access to functionality that depends on the switch type. For
example, when an application receives events from the T-Server, the way a given event's fields are
used can depend on both the call scenario and the switch type. To retrieve this information, perform
the following steps:

1. Create a MessageHandlingContext and populate it with the following required information:
• Name of switch.
• Name of handler.

2. Call ISwitchPolicyService.CreateMessageHandler, pass this context into it, and receive the resulting
IMessageHandler.

3. Call the IMessageHandler.Handle method on the received handler.

The following code snippet shows how to do this:

[C#]

private static void DemonstrateMessageHandler(ISwitchPolicyService service)
{

EventRinging message = EventRinging.Create();
message.ThirdPartyDN = "12345";
message.DNIS = "18009870987";
message.CallType = CallType.Internal;
message.OtherDN = "9875";
MessageHandlingContext context35 =

new MessageHandlingContext("AlcatelA4400DHS3::Classic")
{ HandlerName = "OtherDN" };

IMessageHandler handler = service.CreateMessageHandler(context35);

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 318

string res = (string)handler.Handle(message);
DisplayInColor(res, ConsoleColor.Yellow);

}

Add Logging Support
To add logging support, carry out the following steps:

1. Create an instance of IUnityContainer and register an anonymous instance or type mapping for the
ILogger interface.

2. Pass the IUnityContainer created during the previous step to the factory method, which creates an
instance of ISwitchPolicyService.

The following code snippet shows how to do this:

[C#]

IUnityContainer root = new UnityContainer();
root.RegisterInstance(new ConsoleLogger());
ISwitchPolicyService service =

SwitchPolicyFactory.CreateSwitchPolicyService(root);

SPL also provides the following options:

• Your application can log the topmost messages into a distinct log. To use this option, call the
CreateSwitchPolicyService(IUnityContainer container, ILogger logger) method of the
SwitchPolicyServiceFactory class. The passed logger (if it is not null) will be used for logging the
topmost messages.

• You can configure any switch container to use a specific logger. Objects created by the Unity container
(feature handlers, policy providers and so on) can use the container to resolve the ILogger for further
logging.

Tip
the classes provided by SPL resolve the ILogger (if there is one) at creation time. So,
if your application changes the ILogger resolution rule for the root container that was
previously passed into the SwitchPolicyService constructor after the corresponding
method call, this will not affect:

• Existing instances.
• Objects which are created in the container(s), for which special ILogger mapping rule is

configured.

Supported Functions

As mentioned above, SPL is driven by a configuration file that makes it possible to support a wide
variety of switch functions. The following table shows functions that are supported by SPL at

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 319

installation time, using the default configuration file.

Switch Functions Supported by SPL At Installation Time

Switch Function Description
DN and Agent Functions

RequestAgentLogin
Logs in the agent specified by the AgentId
parameter to the ACD group specified by the
parameter.

RequestAgentLogout Logs the agent out of the ACD group specified by
the Queue parameter.

RequestAgentNotReady

Sets a state in which the agent is not ready to
receive calls. The agents telephone set is specified
by the DN parameter; the ACD group into which the
agent is logged is specified by the Queue
parameter.

RequestAgentReady
Sets a state in which the agent is ready to receive
calls. The agents phone set is specified by the DN
parameter; the ACD group into which the agent is
logged is specified by the Queue parameter.

RequestCallForwardCancel Sets the Forwarding feature to Off for the telephony
object that is specified by the DN parameter.

RequestCallForwardSet Sets the Forwarding feature to On for the telephony
object that is specified by the DN parameter.

RequestCancelMonitoring

A request by a supervisor to cancel monitoring the
calls delivered to the agent. If this request is
successful, T-Server distributes
EventMonitoringCancelled to all clients registered
on the supervisor's and agent's DNs.

RequestMonitorNextCall

A request by a supervisor to monitor (be
automatically conferenced in as a party on) the
next call delivered to an agent. Supervisors can
request to monitor one subsequent call or all calls
until the request is explicitly canceled. If a request
is successful, EventMonitoringNextCall is
distributed to all clients registered on the
supervisor's and agent's DNs. Supervisors start
monitoring each call in Mute mode. To speak, they
must execute the function

RequestSetDNDOff Sets the Do-Not-Disturb (DND) feature to Off for the
telephony object specified by the DN parameter.

RequestSetDNDOn Sets the Do-Not-Disturb (DND) feature to On for the
telephony object specified by the DN parameter.

RequestSetMuteOff On an existing conference call, cancels the Mute
mode for the party specified by the DN parameter.

RequestSetMuteOn On an existing conference call, sets Mute mode for
the party specified by the DN parameter.

Call Handling Functions

RequestAlternateCall On behalf of the telephony object specified by the
DN parameter, places the active call specified by

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 320

Switch Function Description
thecurrent_conn_id parameter on hold and
connects the call specified by the held_conn_id
parameter.

RequestAnswerCall Answers the alerting call specified by the conn_id
parameter.

RequestAttachUserData

On behalf of the telephony object specified by the
DN parameter, attaches the user data structure
specified by the user_data parameter to the T-
Server information that is related to the call
specified by the conn_id parameter.

RequestClearCall
Deletes all parties, that is, all telephony objects,
from the call specified by conn_id and disconnects
the call.

RequestCompleteConference

Completes a previously-initiated conference by
merging the held call specified by the held_conn_id
parameter with the active consultation call
specified by the current_conn_id parameter on
behalf of the telephony object specified by the DN.
Assigns the held_conn_id to the resulting
conference call. Clears the consultation call
specified by the current_conn_id parameter.

RequestCompleteTransfer

On behalf of the telephony object specified by the
DN parameter, completes a previously initiated
two-step transfer by merging the held call specified
by the conn_id parameter with the active
consultation call specified by the current_conn_id
parameter. Assigns held_conn_id to the resulting
call. Releases the telephony object specified by the
DN parameter from both calls and clears the
consultation call specified by the current_conn_id
parameter.

RequestDeleteFromConference

A telephony object specified by DN deletes the
telephony object specified by dn_to_drop from the
conference call specified by conn_id. The client that
invokes this service must be a party on the call in
question.

RequestDeletePair
On behalf of the telephony object specified by the
DN parameter, deletes the key-value pair specified
by the key parameter from the user data attached
to the call specified by the conn_id parameter.

RequestDeleteUserData
On behalf of the telephony object specified by the
DN parameter, deletes all of the user data attached
to the call specified by the conn_id parameter.

RequestHoldCall
On behalf of the telephony object specified by the
DN parameter, places the call specified by the
conn_id parameter on hold.

RequestInitiateConference

On behalf of the telephony object specified by the
DN parameter, places the existing call specified by
the conn_id parameter on hold and originates a
consultation call from the same telephony object to
the called party, which is specified by the

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 321

Switch Function Description
destination parameter with the purpose of a
conference call.

RequestInitiateTransfer

On behalf of the telephony object specified by the
DN parameter, places the existing call specified by
the conn_id parameter on hold and originates a
consultation call from the same telephony object to
the called party, which is specified by the
destination parameter for the purpose of a two-
step transfer.

RequestListenDisconnect

On an existing conference call, sets Deaf mode for
the party specified by the listener_dn parameter.
For example, if two agents wish to consult
privately, the subscriber may temporarily be
placed in Deaf mode.

RequestListenReconnect On an existing conference call, cancels Deaf mode
for the party defined by the listener_dn parameter.

RequestMakeCall
Originates a regular call from the telephony object
specified by the DN parameter to the called party
specified by the Destination parameter.

RequestMakePredictiveCall

Makes a predictive call from the thisDN DN to the
otherDN called party. A predictive call occurs
before any agent-subscriber interaction is created.
For example, if a fax machine answers the call, no
agent connection occurs. The agent connection
occurs only if there is an actual subscriber
available on line.

RequestMergeCalls

On behalf of the telephony object specified by the
DN parameter, merges the held call specified by
the held_conn_id parameter with the active call
specified by the current_conn_id parameter in a
manner specified by the merge_type parameter.
The resulting call will have the same conn_id as the
held call.

RequestMuteTransfer

Initiates a transfer of the call specified by the
conn_id parameter from the telephony object
specified by the DN parameter to the party
specified by the destination parameter; completes
the transfer without waiting for the destination
party to pick it up. Releases the telephony object
specified by the DN parameter from the call.

RequestQueryCall
Requests the information specified by info_type
about the telephony object specified by conn_id. If
the query type is supported, the requested
information will be returned in EventPartyInfo.

RequestReconnectCall

Releases the telephony object specified by the DN
parameter from the active call specified by the
current_conn_id parameter and retrieves the
previously held call, specified by the held_conn_id
parameter, to the same object. This function is
commonly used to clear an active call and to return
to a held call, or to cancel a consult call (due to

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 322

Switch Function Description
lack of an answer, because the device is busy, and
so on) and then to return to a held call.

RequestRedirectCall
Requests that the call be redirected, without an
answer, from the party specified by the DN
parameter to the party specified by the dest_dn
parameter.

RequestRegisterAddress Registers for a DN. Your application must register
the DN before sending the RequestAgentLogin.

RequestReleaseCall
Releases the telephony object specified by the DN
parameter from the call specified by the conn_id
parameter.

RequestRetrieveCall
Connects the held call specified by the conn_id
parameter to the telephony object specified by the
DN parameter.

RequestSendDtmf
On behalf of the telephony object specified by the
DN parameter, sends the digits that are expected
by an interactive voice response system.

RequestSetCallInfo

Changes the call attributes.
Warning: Improper use of this function may result in
unpredictable behavior on the part of the T-Server and the
Genesys Framework. If you have any doubt on how to use it,
please consult with Genesys.

RequestSetMessageWaitingOff Sets the Message Waiting indication to off for the
telephony object specified by the DN parameter.

RequestSetMessageWaitingOn Sets the Message Waiting indication to on for the
telephony object specified by the DN parameter.

RequestSetMuteOff On an existing conference call, cancels the Mute
mode for the party specified by the DN parameter.

RequestSetMuteOn On an existing conference call, sets Mute mode for
the party specified by the DN parameter.

RequestSingleStepConference Adds a new party to an existing call and creates a
conference.

RequestSingleStepTransfer
Transfers the call from a specified directory number
DN that is currently engaged in the call specified
by the conn_id parameter to a destination DN that
is specified by the destination parameter.

RequestUnregisterAddress Unregisters a DN.

RequestUpdateUserData

On behalf of the telephony object specified by the
DN parameter, updates the user data that is
attached to the call specified by the conn_id
parameter with the data specified by the user_data
parameter.

Component Overviews Using the Switch Policy Library

Platform SDK Developer's Guide 323

Legacy Topics
Topics in this section are no longer applicable for new development, but are maintained here for
backwards compatibility.

• Using the Message Broker Application Block
• Event Handling Using the Message Broker Application Block
• Using the Protocol Manager Application Block
• Connecting to a Server Using the Protocol Manager Application Block
• Explicitly Choosing a Netty or Mina Connection Layer

Legacy Topics Using the Switch Policy Library

Platform SDK Developer's Guide 324

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheProtocolManagerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ChooseNettyMinaConnection

Using the Message Broker Application Block

Important
This application block is considered a legacy product starting with release 8.1.1.
Documentation is provided for backwards compatibility, but new development should
consider using the improved method of message handling.

The Message Broker Application Block is a reusable production-quality component that makes it easy
for your applications to handle events in an efficient way. It has been designed using industry best
practices and provided with source code so it can be used "as is," extended, or tailored if you need
to. Please see the License Agreement for details.

For information on the other application blocks that ship with the Genesys SDKs, consult Introducing
the Platform SDK.

Java

Installing the Message Broker Application Block

Software Requirements
To work with the Message Broker Application Block, you must ensure that your system meets the
software requirements established in the Genesys Supported Operating Environment Reference
Guide, as well as meeting the following minimum software requirements:

• JDK 1.6 or higher

Building the Message Broker Application Block
To build the Message Broker Application Block:

1. Open the <Platform SDK Folder>\applicationblocks\messagebroker folder.
2. Run either build.bat or build.sh, depending on your platform.

This will create the messagebrokerappblock.jar file, located within the <Platform SDK
Folder>\applicationblocks\messagebroker\dist\lib directory.

Legacy Topics Using the Message Broker Application Block

Platform SDK Developer's Guide 325

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IntroducingthePlatformSDK
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IntroducingthePlatformSDK

Working with the Message Broker Application Block
You can find basic information on how to use the Message Broker Application Block in the article on
Event Handling Using the Message Broker Application Block.

Configuring Message Broker

When you first work with Message Broker, you will probably use a single instance of
EventBrokerService. This means that all messages coming into your application will first pass
through this single instance, as shown in below. Note that configuration diagrams used here do not
show the Protocol Manager Application Block, in order to focus on the architecture of Message Broker.

However, there may be high-traffic scenarios that require multiple instances of Message Broker. This
might happen if you have one or more servers whose events use so much of Message Broker’s
processing time that events from other servers must wait for an unacceptable amount of time. In that
case, you could dedicate an instance of EventBrokerService to the appropriate server.

For example, you may have a scenario in which you frequently receive large volumes of statistics. To
handle that situation, you could dedicate an EventBrokerService instance to Stat Server. In other
situations, you might regularly receive large amounts of Configuration Layer data from Configuration
Server. You could handle this in a similar way by giving Configuration Server its own instance of
EventBrokerService, as shown here:

Legacy Topics Using the Message Broker Application Block

Platform SDK Developer's Guide 326

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB

Sometimes you may have large message volumes for each server, in which case you could use a
separate instance of EventBrokerService for each server, as shown here.

Using Message Filters

Message Broker comes with several types of message filters. You can filter on individual messages
using MessageIdFilter or MessageNameFilter. In most cases you will want to use
MessageIdFilter, as it is more efficient than MessageNameFilter. You can also use a
MessageRangeFilter to filter on several messages at a time.

As shown in the article on Event Handling Using the Message Broker Application Block, you can
specify these filters when you register an event handler with the Event Broker Service. Here is a
sample of how to set up a MessageIdFilter:

[Java]

eventBrokerService.register(new StatPackageOpenedHandler(),
packageEvents);

Legacy Topics Using the Message Broker Application Block

Platform SDK Developer's Guide 327

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB

There may be times when you want to process several events in the same event handler. In such
cases, you can use a MessageRangeFilter, which will direct all of these events to that handler. Here
is a sample of how to set up the filter:

[Java]

int[] messageRange = new int[] {EventPackageOpened.ID, EventPackageClosed.ID};
MessageRangeFilter packageStatusEvents = new MessageRangeFilter

(messageRange);
eventBrokerService.register(new StatPackageStatusChangedHandler(),

packageStatusEvents);

Your event handler might look something like this:

[Java]

class StatPackageStatusChangedHandler implements Action {

public void handle(Message obj) {
// Common processing goes here...
if (obj.messageId() == EventPackageOpened.ID) {

// EventPackageOpened processing goes here...
} else {

// EventPackageClosed processing goes here...
}

}
}

Some servers use events that have the same name as events used by another server. One example
is EventError, which is used by just about every server except Stat Server. The Event Handling Using
the Message Broker Application Block article shows how to use a Protocol Description object to filter
events by server type in order to avoid confusion when handling these events.

There also may be times when you have several instances of a given server in your environment and
you want to filter by a specific one. To do this, first specify an Endpoint for that server, using a name
for the server in the Endpoint constructor:

[Java]

String statServer1EndpointName = "StatServer1";
Endpoint statServer1Endpoint =

new Endpoint(statServer1EndpointName, statServer1Uri);

Now create the filter:

[Java]

MessageIdFilter statServer1EndpointFilter =
new MessageIdFilter(EventPackageOpened.ID);

And set the EndpointName in the filter:

[Java]

statServer1EndpointFilter.setEndpointName(statServer1EndpointName);

When you register this filter, the handler you specify will only receive messages that were sent from
the instance you mentioned above:

Legacy Topics Using the Message Broker Application Block

Platform SDK Developer's Guide 328

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB

[Java]

eventBrokerService.register(new StatPackageOpenedHandler_StatServer1(),
statServer1EndpointFilter);

Architecture and Design

The Message Broker Application Block is designed to make it easy for your applications to handle
events in an efficient way.

Message Broker allows you to set up individual classes to handle specific events coming from
Genesys servers. It receives all of the events from the servers you specify, and sends each one to the
appropriate handler class. Message Broker is a high-performance way to hide the complexity of
event-driven programming — so you can focus on other areas of your application.

Tip
Message Broker has been designed for use with the Protocol Manager Application
Block. Protocol Manager is another high-performance component that makes it easy
for your applications to connect to Genesys servers. You can find basic information on
how to use the Protocol Manager Application Block in the article on Connecting to a
Server.

The Message Broker Application Block Architecture
The Message Broker Application Block uses a service-based API that enables you to write individual
methods that handle one or more events.

For example, you might want to handle every occurrence of EventAgentLogin with a specific
dedicated method, while there might be other events that you wish to send to a common event-
handling method. Message Broker allows you write these methods and register them with an event
broker that manages them for you.

Message Filters

Message Broker uses message filters to identify specific messages, assign them to specified
methods, and route them accordingly.

Design Patterns

This section gives an overview of the design patterns used in the Message Broker Application Block.

Publish/Subscribe Pattern
There are many occasions when one class (the subscriber) needs to be notified when something

Legacy Topics Using the Message Broker Application Block

Platform SDK Developer's Guide 329

changes in another class (the publisher). The Message Broker Application Block use the Publish/
Subscribe pattern to inform the client application when events arrive from the server.

Factory Method Pattern
It is common practice for a class to include constructors that enable clients of the class instantiate it.
There are times, however, when a client may need to instantiate one of several different classes. In
some of these situations, the client should not need to decide which class is being created. In this
case, a Factory Method pattern is used. The Factory Method pattern lets a class developer define the
interface for creating an object, while retaining control of which class to instantiate.

How To Properly Manage the EventBrokerService Lifecycle

Unfortunately, a commonly encountered problem is that users create EventBrokerService but do
not dispose of it properly. EventBrokerService exclusively uses an invoker thread to run an infinite
cycle with MessageReceiver.receive() and incoming messages handling logic. EventBroker is
created by user code, so it should be disposed by user code as well. Useful methods are
MessageBrokerService.deactivate() and MessageBrokerService.dispose().

In PSDK 8.1 this class is deprecated and a new one is added to resolve the problem with thread
waiting: EventReceivingBrokerService. This new class implements the MessageReceiver interface
and may be used as external receiver for Platform SDK protocols. In this case, we have no
intermediate redundant queue and incoming messages are delivered from protocol(s) to handler(s)
directly. This class still requires async invoker to execute messages handling, but in this case the
invoker is called once per incoming message, so it's thread is not blocked during the .receive()
operation.

So, EventReceivingBrokerService does not need .dispose() and is GC friendly.

Tip
A similar change has been made to RequestBrokerService.

Also note that the Invoker instance still represents a "costly" resource (thread) and is managed by
user code, so proper attention (allocation/deallocation) is required.

Q: Does it matter if the event broker service is created by the BrokerServiceFactory or not?

A: Actually, BrokerServiceFactory just creates and activates the corresponding broker instance. So
if a broker is created by a call to the factory, it must be disposed of by user code in accordance to its
usage there.

.NET

Legacy Topics Using the Message Broker Application Block

Platform SDK Developer's Guide 330

Installing the Message Broker Application Block

Before you install the Message Broker Application Block, it is important to review the software
requirements and the structure of the software distribution.

Software Requirements
To work with the Message Broker Application Block, you must ensure that your system meets the
software requirements established in the Genesys Supported Operating Environment Reference
Guide.

Building the Message Broker Application Block
The Platform SDK distribution includes a
Genesyslab.Platform.ApplicationBlocks.Commons.Broker.dll file that you can use as is. This
file is located in the bin directory at the root level of the Platform SDK directory. To build your own
copy of this application block, follow the instructions below:

1. Open the <Platform SDK Folder>\ApplicationBlocks\MessageBroker folder.
2. Double-click MessageBroker.sln.
3. Build the solution.

Working with the Message Broker Application Block
You can find basic information on how to use the Message Broker Application Block in the article on
Event Handling Using the Message Broker Application Block.

Configuring Message Broker

When you first work with Message Broker, you will probably use a single instance of
EventBrokerService. This means that all messages coming into your application will first pass
through this single instance, as shown in the figure below. Note that the following configuration
diagrams do not show the Protocol Manager Application Block, in order to focus on the architecture of
Message Broker.

Legacy Topics Using the Message Broker Application Block

Platform SDK Developer's Guide 331

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB

However, there may be high-traffic scenarios that require multiple instances of Message Broker. This
might happen if you have one or more servers whose events use so much of Message Broker's
processing time that events from other servers must wait for an unacceptable amount of time. In that
case, you could dedicate an instance of EventBrokerService to the appropriate server.

For example, you may have a scenario in which you frequently receive large volumes of statistics. To
handle that situation, you could dedicate an EventBrokerService instance to Stat Server. In other
situations, you might regularly receive large amounts of Configuration Layer data from Configuration
Server. You could handle this in a similar way by giving Configuration Server its own instance of
EventBrokerService, as shown in the following figure:

Sometimes you may have large message volumes for each server, in which case you could use a
separate instance of EventBrokerService for each server, as shown here.

Legacy Topics Using the Message Broker Application Block

Platform SDK Developer's Guide 332

Using Message Filters

Message Broker comes with several types of message filters. You can filter on individual messages
using MessageIdFilter or MessageNameFilter. In most cases you will want to use
MessageIdFilter, as it is more efficient than MessageNameFilter. You can also use a
MessageRangeFilter to filter on several messages at a time.

As shown in the article on Event Handling Using the Message Broker Application Block in the
beginning of this guide, you can specify these filters when you register an event handler with the
Event Broker Service. Here is a sample of how to set up a MessageIdFilter:

[C#]

eventBrokerService.Register(this.OnEventPackageClosed,
new MessageIdFilter(EventPackageClosed.MessageId));

There may be times when you want to process several events in the same event handler. In such
cases, you can use a MessageRangeFilter, which will direct all of these events to that handler. Here
is a sample of how to set up the filter:

[C#]

eventBrokerService.Register(this.OnEventPackageStatusChanged, new MessageRangeFilter(new
int[] {

EventPackageOpened.MessageId, EventPackageClosed.MessageId}));

Your event handler might look something like this:

[C#]

private void OnEventPackageStatusChanged(IMessage theMessage)
{

// Common processing goes here...
if (theMessage.Id == EventPackageOpened.MessageId)
{

// EventPackageOpened processing goes here...
}
else

Legacy Topics Using the Message Broker Application Block

Platform SDK Developer's Guide 333

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB

{
// EventPackageClosed processing goes here...

}
}

Some servers use events that have the same name as events used by another server. One example
is EventError, which is used by just about every server except Stat Server. The Event Handling Using
the Message Broker Application Block article shows how to use a Protocol Description object to filter
events by server type in order to avoid confusion when handling these events.

There also may be times when you have several instances of a given server in your environment and
you want to filter by a specific one. To do this, first specify an Endpoint for that server, using a name
for the server in the Endpoint constructor:

[C#]

string statServer1EndpointName = "StatServer1";
Endpoint statServer1Endpoint =

new Endpoint(statServer1EndpointName, statServer1Uri);

Now create the filter:

[C#]

MessageIdFilter statServer1EndpointFilter =
new MessageIdFilter(EventPackageOpened.MessageId);

And set the EndpointName property of the filter:

[C#]

statServer1EndpointFilter.EndpointName = statServer1EndpointName;

When you register this filter, the handler you specify will only receive messages that were sent from
the instance you mentioned above:

[C#]

eventBrokerService.Register(
this.OnEventPackageOpened_StatServer1, statServer1EndpointFilter);

Architecture and Design

The Message Broker Application Block is designed to make it easy for your applications to handle
events in an efficient way.

Message Broker allows you to set up individual classes to handle specific events coming from
Genesys servers. It receives all of the events from the servers you specify, and sends each one to the
appropriate handler class. Message Broker is a high-performance way to hide the complexity of
event-driven programming — so you can focus on other areas of your application.

Legacy Topics Using the Message Broker Application Block

Platform SDK Developer's Guide 334

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB

Tip
Message Broker has been designed for use with the Protocol Manager Application
Block. Protocol Manager is another high-performance component that makes it easy
for your applications to connect to Genesys servers. You can find basic information on
how to use the Protocol Manager Application Block in the article on Connecting to a
Server Using the Protocol Manager Application Block.

The Message Broker Application Block Architecture
The Message Broker Application Block uses a service-based API that enables you to write individual
methods that handle one or more events.

For example, you might want to handle every occurrence of EventAgentLogin with a specific
dedicated method, while there might be other events that you wish to send to a common event-
handling method. Message Broker allows you write these methods and register them with an event
broker that manages them for you.

Message Filters
Message Broker uses message filters to identify specific messages, assign them to specified
methods, and route them accordingly. These message filters are shown in greater detail in the figure
below.

Legacy Topics Using the Message Broker Application Block

Platform SDK Developer's Guide 335

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB

Design Patterns

This section gives an overview of the design patterns used in the Message Broker Application Block.

Publish/Subscribe Pattern
There are many occasions when one class (the subscriber) needs to be notified when something
changes in another class (the publisher). Message Broker uses the Publish/Subscribe pattern to
inform the client application when events arrive from the server.

Factory Method Pattern
It is common practice for a class to include constructors that enable clients of the class instantiate it.
There are times, however, when a client may need to instantiate one of several different classes. In
some of these situations, the client should not need to decide which class is being created. In this
case, a Factory Method pattern is used. The Factory Method pattern lets a class developer define the
interface for creating an object, while retaining control of which class to instantiate.

Legacy Topics Using the Message Broker Application Block

Platform SDK Developer's Guide 336

Event Handling Using the Message Broker
Application Block

Important
The Message Broker Application Block is considered a legacy product as of release
8.1.1 due to changes to the default event-receiving mechanism. Documentation
related to this application block is retained for backwards compatibility. For
information about event handling without use of the deprecated Message Broker
Application Block, refer to the Event Handling article.

Once you have connected to a server using the Protocol Manager Application Block, much of the work
of your application will be to send messages to that server and then handle the events you receive
from it.

Genesys recommends that you use the Message Broker Application Block for most of your event
handling needs. This article shows how to send and receive simple synchronous events without using
Message Broker and then discusses how to use Message Broker for asynchronous event handling.

Tip
It is important to determine whether your application needs to use synchronous or
asynchronous messages. In general, you will probably use only one or the other type
in your application. If you decide to use synchronous messages, you must make sure
that your code handles all of the messages you receive from your servers. For
example, if you send a RequestReadObjects message to Configuration Server, you
will receive several EventObjectsRead messages, followed by an EventObjectsSent
message. If your application does not handle all of these messages, it will not work
properly.

The messages you send to a server are in the form of requests. For example, you may send a request
to log in an agent or to gather statistics. You might also send a request to update a configuration
object, or to shut down an application.

In each of these cases, the server will respond with an event message, as shown below.

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 337

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandling
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB

Some of the requests you send may best be handled with a synchronous response, while others may
best be handled asynchronously. Let’s talk about synchronous requests first.

Java

Synchronous Requests

Sometimes you might want a synchronous response to your request. For example, if you are using
the Open Media Platform SDK, you may want to log in an agent. To do this, you need to let the server
know that you want to log in. And then you need to wait for confirmation that your login was
successful.

The first thing you need to do is to create a login request, as shown here:

[Java]

RequestAgentLogin requestAgentLogin =
RequestAgentLogin.create(

tenantId,
placeId,
reason);

This version of RequestAgentLogin.Create specifies most of the information you will need in order
to perform the login, but there is one more piece of data required. Here is how to add it:

[Java]

requestAgentLogin.setMediaList(mediaList);

Once you have created the request and set all required properties, you can make a synchronous
request by using the request method of your ProtocolManagementService object, like this:

[Java]

Message response = null;
response = protocolManagementServiceImpl.getProtocol("Interaction_Server_App")

.request(requestAgentLogin);

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 338

Tip
For information on how to use the ProtocolManagementServiceImpl class of the
Protocol Manager Block to communicate with a Genesys server, see the article on
Connecting to a Server.

There are two important things to understand when you use the request method:

• When you execute this method call, the calling thread will be blocked until it has received a response
from the server.

• This method call will only return one message from the server. If the server returns subsequent
messages in response to this request, you must process them separately. This can happen in the
example of sending a RequestReadObjects message to Configuration Server, as mentioned at the
beginning of this article.

The response from the server will come in the form of a Message. This is the interface implemented
by all events in the Platform SDK. Some types of requests will be answered by an event that is
specific to the request, while others may receive a more generic response of EventAck, which simply
acknowledges that your request was successful. If a request fails, the server will send an
EventError.

A successful RequestAgentLogin will receive an EventAck, while an unsuccessful one will receive an
EventError. You can use a switch statement to test which response you received, as outlined here:

[Java]

switch(response.messageId())
{

case EventAck.ID:
OnEventAck(response);

case EventError.ID:
OnEventError(response);

...
}

Using Message Broker to Handle Asynchronous Requests

There are times when you need to receive asynchronous responses from a server.

First of all, some requests to a server can result in multiple events. For example, if you send a
RequestReadObjects message, which is used to read objects from the Genesys Configuration Layer,
Configuration Server may send more than one EventObjectsRead messages in response, depending
on whether there is too much data to be handled by a single EventObjectsRead.

In other cases, events may be unsolicited. To continue with our example, once you have received all
of the EventObjectsRead messages, Configuration Server will also send an EventObjectsSent,
which confirms that it has completed your request.

To make an asynchronous request, you would use the send method of your
ProtocolManagementServiceImpl class. For example, you might need to fetch information about

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 339

some objects in the Genesys Configuration Layer. Here is how to set up a RequestReadObjects,
followed by the send:

[Java]

KeyValueCollection filterKey = new KeyValueCollection();
filterKey.addObject("switch_dbid", 113);
filterKey.addObject("dn_type", CfgDNType.CFGExtension.asInteger());
RequestReadObjects requestReadObjects = RequestReadObjects.create(

CfgObjectType.CfgDN.asInteger(), filterKey);
protocolManagementServiceImpl.getProtocol("Config_Server_App")

.send(requestReadObjects);

This snippet is searching for all DNs that have a type of Extension and are associated with the switch
that has a database ID of 113.

There are several ways to handle the response from the server, but Genesys recommends that you
use the Message Broker Application Block, which is included with the Platform SDK. Message Broker
allows you to set up individual classes to handle specific events. It receives the events from the
servers you are working with, and sends them to the appropriate handler class. Message Broker is a
high-performance way to hide the complexity of event-driven programming — so you can focus on
other areas of your application.

To use the Message Broker Application Block, add the following .jar file to the classpath for your
application:

• messagebrokerappblock.jar

This .jar file was precompiled using the default Application Block code, and can be located at:
<Platform SDK Folder>\lib.

Tip
You can also view or modify the Message Broker Application Block source code. To do
this, open the Message Broker Java source files that were installed with the Platform
SDK. The Java source files for this project are located at: <Platform SDK
Folder>\applicationblocks\messagebroker\src\java. If you make any changes to
the project, you will have to run Ant (or use the build.bat file for this Application
Block) to rebuild the .jar archive listed above. After you run Ant, add the resulting .jar
to your classpath.

Now you can add the appropriate import statements to your source code. For example:

[Java]

import com.genesyslab.platform.applicationblocks.commons.broker.*;

In order to use the Message Broker Application Block, you need to create an EventBrokerService
object to handle the events your application receives. Since you are using the Protocol Manager
Application Block to connect to your servers, as shown in the section on Connecting to a Server, you
should specify the ProtocolManagementServiceImpl object in the EventBrokerService constructor:

[Java]

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 340

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB

EventBrokerService mEventBrokerService = new EventBrokerService(
(MessageReceiverSupport) protocolManagementServiceImpl

.getReceiver());

You also need to set up the appropriate filters for your event handlers and register the handlers with
the EventBrokerService. This allows that service to determine which classes will be used for event-
handling. Note that you should register these classes before you open the connection to the server.
Otherwise, the server might send events before you are ready to handle them. The sample below
shows how to filter on Message ID, which is an integer associated with a particular message:

[Java]

mEventBrokerService.register(new ConfObjectsReadHandler(),
new MessageIdFilter(EventObjectsRead.ID));

mEventBrokerService.register(new ConfObjectsSentHandler(),
new MessageIdFilter(EventObjectsSent.ID));

mEventBrokerService.register(new StatPackageInfoHandler(),
new MessageIdFilter(EventPackageInfo.ID));

Once you have registered your event-handling classes, you can activate the EventBrokerService
and open the connection to your server. In the following snippet, connections are being opened to
both Configuration Server and Stat Server:

[Java]

mEventBrokerService.activate();

protocolManagementServiceImpl.getProtocol("Config_Server_App")
.open();

protocolManagementServiceImpl.getProtocol("Stat_Server_App").open();

At this point, you are ready to set up classes to handle the events you have received from the server.
Here is a simple class that handles the EventObjectsRead messages:

[Java]

class ConfObjectsReadHandler implements Action {

public void handle(Message obj) {
EventObjectsRead objectsRead = (EventObjectsRead) obj;
// Add processing here...

}
}

As mentioned earlier, once Configuration Server has sent all of the information you requested, it will
let you know it has finished by sending an EventObjectsSent message. Note that this handler has a
structure that is similar to the one for EventObjectsRead:

[Java]

class ConfObjectsSentHandler implements Action {

public void handle(Message obj) {
EventObjectsSent objectsSent = (EventObjectsSent) obj;
// Add processing here...

}
}

Message Broker only routes non-null messages of the type you specify to your message

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 341

handlers. For example, if you send a RequestReadObjects and no objects in the
Configuration Layer meet your filtering criteria, you will not receive an
EventObjectsRead. In that case, you will only receive an EventObjectsSent. Therefore,
you do not need to check for a null message in your EventObjectsRead handler.|2

The EventPackageInfo handler also has a similar structure, but in this case, we show how to print
information about the statistics contained in the requested package:

[Java]

class StatPackageInfoHandler implements Action {

public void handle(Message obj) {
EventPackageInfo eventPackageInfo = (EventPackageInfo) obj;
if (eventPackageInfo != null)
{

int statisticsCount = eventPackageInfo.getStatistics().getCount();
StatisticsCollection statisticsCollection = eventPackageInfo.getStatistics();

for (int i = 0; i < statisticsCount; i++)
{

Statistic statistic = statisticsCollection.getStatistic(i);

System.out.println("\nStatistic Metric is: " +
statistic.getMetric().toString());

System.out.println("Statistic Object is: " +
statistic.getObject());

System.out.println("Statistic IntValue is: " +
statistic.getIntValue());

System.out.println("Statistic StringValue is: " +
statistic.getStringValue());

System.out.println("Statistic ObjectValue is: " +
statistic.getObjectValue());

System.out.println("Statistic ExtendedValue is: " +
statistic.getExtendedValue());

System.out.println("Statistic Tenant is: " +
statistic.getObject().getTenant());

System.out.println("Statistic Type is: " +
statistic.getObject().getType());

System.out.println("Statistic Id is: " +
statistic.getObject().getId());

System.out.println("Statistic TimeProfile is: " +
statistic.getMetric().getTimeProfile());

System.out.println("Statistic StatisticType is: " +
statistic.getMetric().getStatisticType());

System.out.println("Statistic TimeRange is: " +
statistic.getMetric().getTimeRange());

}
}

}
}

Filtering Messages by Server
Each server in the Genesys environment makes use of a particular set of events that corresponds to
the tasks of that server. For example, Configuration Server sends EventObjectsRead and
EventObjectsSent messages, among others, while Stat Server's events include EventPackageInfo
and EventPackageOpened. Although your applications can identify each of these events by name, it is
more efficient to use the ID field associated with an event, which you specify as an int. You can do
this by using a MessageIdFilter, as shown here:

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 342

[Java]

mEventBrokerService.register(new ConfEventErrorHandler(),
new MessageIdFilter(EventError.ID));

However, the integer used for the Message ID of, say, a Configuration Server message, could be
same as the integer used for a completely different message on another server. This could lead to
problems if your application works with messages from more than one server. For example, if a multi-
server application includes a handler that processes a specific type of message from the first server
and that message has an ID of 12, any messages from the other servers that also have a Message ID
of 12 will be sent by your MessageIdFilter to the same handler.

Fortunately, the Platform SDK allows you to filter messages on a server-by-server basis in addition to
filtering on MessageId. Here is how to set up a Protocol Description object that allows you to specify
that you want some of your handlers to work only with events that are coming from Configuration
Server:

[Java]

ConfServerProtocol confServerProtocol = (ConfServerProtocol)
protocolManagementServiceImpl.getProtocol("Config_Server_App");

ProtocolDescription configProtocolDescription = null;
if (confServerProtocol != null)
{

configProtocolDescription =
confServerProtocol.getProtocolDescription();

}

Once you have set up this Protocol Description, you can use it to indicate that you only want to
process events associated with that server, in addition to specifying which event or events you want
each handler to process:

[Java]

mEventBrokerService.register(new ConfEventErrorHandler(),
new MessageIdFilter(configProtocolDescription, EventError.ID));

You are now ready to open the connection to Configuration Server:

[Java]

protocolManagementServiceImpl.
getProtocol("Config_Server_App").open();

Using One Handler for Multiple Events
There may be times when you would like to use a single event handler for more than one event. In
that case, you can create the handler and then register the appropriate events with it. For example,
you might create a handler for both EventObjectsRead and EventObjectsSent:

[Java]

class ConfEventHandler implements Action {
...

}

You might use a case statement inside the handler, in order to process each event appropriately. In
any case, once you have set up this handler, all you need to do is register both events with it, as

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 343

shown here:

[Java]

mEventBrokerService.register(new ConfEventHandler(),
new MessageIdFilter(configProtocolDescription, EventObjectsRead.ID));

mEventBrokerService.register(new ConfEventHandler(),
new MessageIdFilter(configProtocolDescription, EventObjectsSent.ID));

These are the basics of how to use the Message Broker Application Block. For more information, see
the Using the Message Broker Application Block article.

.NET

Synchronous Requests

Sometimes you might want a synchronous response to your request. For example, if you are using
the Open Media Platform SDK, you may want to log in an agent. To do this, you need to let the server
know that you want to log in. And then you need to wait for confirmation that your login was
successful.

The first thing you need to do is to create a login request, as shown here:

[C#]

RequestAgentLogin requestAgentLogin =
RequestAgentLogin.Create(

tenantId,
placeId,
reason);

This version of RequestAgentLogin.Create specifies most of the information you will need in order
to perform the login, but there is one more piece of data required. Here is how to add it:

[C#]

requestAgentLogin.MediaList = mediaList;

Once you have created the request and set all required properties, you can make a synchronous
request by using the Request method of your ProtocolManagementService object, like this:

[C#]

IMessage response =
protocolManagementService["InteractionServer"].

Request(requestAgentLogin);

Tip

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 344

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheMessageBrokerAB

For information on how to use the ProtocolManagementService class of the Protocol
Manager Application Block to communicate with a Genesys server, see the article on
Connecting to a Server Using the Protocol Manager Application Block.

There are two important things to understand when you use the Request method:

• When you execute this method call, the calling thread will be blocked until it has received a response
from the server.

• This method call will only return one message from the server. If the server returns subsequent
messages in response to this request, you must process them separately. This can happen in the
example of sending a RequestReadObjects message to Configuration Server, as mentioned at the
beginning of this article.

The response from the server will come in the form of an IMessage. This is the interface implemented
by all events in the Platform SDK. Some types of requests will be answered by an event that is
specific to the request, while others may receive a more generic response of EventAck, which simply
acknowledges that your request was successful. If a request fails, the server will send an
EventError.

A successful RequestAgentLogin will receive an EventAck, while an unsuccessful one will receive an
EventError. You can use a switch statement to test which response you received, as outlined here:

[C#]

switch(response.Id)
{

case EventAck.MessageId:
OnEventAck(response);

case EventError.MessageId:
OnEventError(response);

...
}

Using Message Broker to Handle Asynchronous Requests

There are times when you need to receive asynchronous responses from a server.

First of all, some requests to a server can result in multiple events. For example, if you send a
RequestReadObjects message, which is used to read objects from the Genesys Configuration Layer,
Configuration Server may send more than one EventObjectsRead messages in response, depending
on whether there is too much data to be handled by a single EventObjectsRead.

In other cases, events may be unsolicited. To continue with our example, once you have received all
of the EventObjectsRead messages, Configuration Server will also send an EventObjectsSent,
which confirms that it has completed your request.

To make an asynchronous request, you would use the Send method of your
ProtocolManagementService class. Here is how to set up a RequestReadObjects, followed by the
Send:

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 345

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB

[C#]

KeyValueCollection filterKey = new KeyValueCollection();
filterKey.Add("switch_dbid", 113);
filterKey.Add("dn_type", (int) CfgDNType.Extension);
RequestReadObjects requestReadObjects =

RequestReadObjects.Create(
(int) CfgObjectType.CFGDN,
filterKey);

protocolManagementService["ConfigServer"].Send(requestReadObjects);

This snippet is searching for all DNs that have a type of Extension and are associated with the switch
that has a database ID of 113.

There are several ways to handle the response from the server, but Genesys recommends that you
use the Message Broker Application Block, which is included with the Platform SDK. Message Broker
allows you to set up individual handlers for specific events. It receives the events from the servers
you are working with, and sends them to the appropriate handler. Message Broker is a high-
performance way to hide the complexity of event-driven programming — so you can focus on other
areas of your application.

To use the Message Broker Application Block, open the Solution Explorer for your application project
and add a reference to the following file:

• Genesyslab.Platform.ApplicationBlocks.Commons.Broker.dll

This dll file is precompiled using the default Application Block code, and can be located at: <Platform
SDK Folder>\Bin.

Tip
You can also view or modify the Message Broker Application Block source code. To do
this, open the Message Broker Visual Studio project that was installed with the
Platform SDK. The solution file for this project is located at: <Platform SDK
Folder>\ApplicationBlocks\MessageBroker. If you make any changes to the
project, you will have to rebuild the .dll file listed above.

Once you have added the reference, you can add a using statement to your source code:

[C#]

using Genesyslab.Platform.ApplicationBlocks.Commons.Broker;

In order to use the Message Broker Application Block, you need to create an EventBrokerService
object to handle the events your application receives. Declare this object with your other fields:

[C#]

EventBrokerService eventBrokerService;

Then you can set up the EventBrokerService to receive events from the Protocol Manager
Application Block's ProtocolManagementService class, which you are using to connect to your
servers, as shown in the section on Connecting to a Server:

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 346

[C#]

eventBrokerService = new EventBrokerService(protocolManagementService.Receiver);

Now you are ready to set up your event handlers.

Note that there are two ways to do this. In 7.5, when Message Broker was introduced, you needed to
use attributes to filter the events you wanted processed by a particular handler. Starting in 7.6, you
can still do it that way, but you can also set up your filters in the statement that registers an event
handler with the Event Broker service, rather than using attributes that are associated with the
handler itself. This new method may perform better than the old way, but we will show you how to
use both.

Using Event Handlers Without Attributes
Let us start by setting up a couple of event handlers. First, here is a simple handler for the
EventError message:

[C#]

private void OnConfEventError(IMessage theMessage)
{

EventError eventError = theMessage as EventError;
/// Add processing here...

}

And here is one for the EventObjectsRead message:

[C#]

private void OnConfEventObjectsRead(IMessage theMessage)
{

EventObjectsRead objectsRead = theMessage as EventObjectsRead;
/// Add processing here...

}

As mentioned earlier, once Configuration Server has sent all of the information you requested, it will
let you know it has finished by sending an EventObjectsSent message. Here is a handler for that:

[C#]

private void OnConfEventObjectsSent(IMessage theMessage)
{

EventObjectsSent objectsSent = theMessage as EventObjectsSent;
/// Add processing here...

}

Now you can set up the appropriate filters for your event handlers and register the handlers with the
EventBrokerService. This allows that service to determine which classes will be used for event-
handling. Note that you should register these handlers before you open the connection to the server.
Otherwise, the server might send events before you are ready to handle them. The sample below
shows how to filter on Message ID, which is an integer associated with a particular message:

[C#]

eventBrokerService.Register(
this.OnConfEventError,
new MessageIdFilter(EventError.MessageId));

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 347

eventBrokerService.Register(
this.OnConfEventObjectsRead,
new MessageIdFilter(EventObjectsRead.MessageId));

eventBrokerService.Register(
this.OnConfEventObjectsSent,
new MessageIdFilter(EventObjectsSent.MessageId));

Message Broker only routes non-null messages of the type you specify to your message
handlers. For example, if you send a RequestReadObjects and no objects in the
Configuration Layer meet your filtering criteria, you will not receive an
EventObjectsRead. In that case, you will only receive an EventObjectsSent. Therefore,
you do not need to check for a null message in your EventObjectsRead handler.

Filtering Messages by Server
Each server in the Genesys environment makes use of a particular set of events that corresponds to
the tasks of that server. For example, Configuration Server sends EventObjectsRead and
EventObjectsSent messages, among others, while Stat Server's events include EventPackageInfo
and EventPackageOpened. Although your applications can identify each of these events by name, it is
more efficient to use the ID field associated with an event, which you specify as an int. You can do
this by using a MessageIdFilter, as shown here:

[C#]

eventBrokerService.Register(this.OnConfEventError);

However, the integer used for the Message ID of, say, a Configuration Server message, could be
same as the integer used for a completely different message on another server. This could lead to
problems if your application works with messages from more than one server. For example, if a multi-
server application includes a handler that processes a specific type of message from the first server
and that message has an ID of 12, any messages from the other servers that also have a Message ID
of 12 will be sent by your MessageIdFilter to the same handler.

Fortunately, the Platform SDK allows you to filter messages on a server-by-server basis in addition to
filtering on MessageId. Here is how to set up a Protocol Description object that allows you to specify
that you want some of your handlers to work only with events that are coming from Configuration
Server:

[C#]

ConfServerProtocol confServerProtocol =
protocolManagementService["Config_Server_App"]

as ConfServerProtocol;
ProtocolDescription configProtocolDescription = null;
if (confServerProtocol != null)
{

configProtocolDescription =
confServerProtocol.ProtocolDescription;

}

Once you have set up this Protocol Description, you can use it to indicate that you only want to
process events associated with that server, in addition to specifying which event or events you want
each handler to process:

[C#]

eventBrokerService.Register(

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 348

this.OnConfEventError,
new MessageIdFilter(

configProtocolDescription,
EventError.MessageId));

eventBrokerService.Register(
this.OnConfEventObjectsRead,

new MessageIdFilter(
configProtocolDescription,

EventObjectsRead.MessageId));
eventBrokerService.Register(

this.OnConfEventObjectsSent,
new MessageIdFilter(

configProtocolDescription,
EventObjectsSent.MessageId));

You are now ready to open the connection to Configuration Server:

[C#]

protocolManagementService["Config_Server_App"].Open();

Using One Handler for Multiple Events
There may be times when you would like to use a single event handler for more than one event. In
that case, you can create the handler and then register the appropriate events with it. For example,
you might create a handler for both EventObjectsRead and EventObjectsSent:

[C#]

private void OnConfEvents (IMessage theMessage) {
...

}

You might use a case statement inside the handler, in order to process each event appropriately. In
any case, once you have set up this handler, all you need to do is register both events with it, as
shown here:

[C#]

eventBrokerService.Register(
this.OnConfEvents,

new MessageIdFilter(
configProtocolDescription,
EventObjectsRead.MessageId));

eventBrokerService.Register(
this.OnConfEvents,

new MessageIdFilter(
configProtocolDescription,
EventObjectsSent.MessageId));

Using Attributes with Your Event Handlers
As mentioned above, you can also use attributes to filter your event handlers. It is important to note
that this may not perform as well as the method outlined above, but in case you would like to use
attributes in your application, here is how to proceed.

When you use attributes, you have to specify the name of the protocol object you are using, and the
name of the SDK it is part of, as shown here:

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 349

[C#]

private const string protocolName = "ConfServer";
private const string sdkName = "Configuration";

These values can be determined by accessing the ProtocolDescription.ProtocolName and
ProtocolDescription.SdkName properties of your protocol object. They are also provided in the
following table.

SDK SdkName Protocol Object ProtocolName
Configuration Platform
SDK Configuration ConfServerProtocol ConfServer

Contacts Platform SDK Contacts UniversalContactServerProtocolContactServer

Management Platform
SDK Management

• LocalControlAgentProtocol
• MessageServerProtocol
• SolutionControlServerProtocol

• LocalControlAgent
• MessageServer
• SolutionControlServer

Open Media Platform
SDK OpenMedia

• InteractionServerProtocol
• ExternalServiceProtocol

• InteractionServer
• ExternalService

Outbound Contact
Platform SDK Outbound OutboundServerProtocol OutboundServer

Routing Platform SDK Routing
• RoutingServerProtocol
• UrsCustomProtocol

• RoutingServer
• CustomServer

Statistics Platform SDK Reporting StatServerProtocol StatServer
Voice Platform SDK Voice TServerProtocol TServer

Web Media Platform
SDK WebMedia

• BasicChatProtocol
• FlexChatProtocol
• EmailProtocol
• EspEmailProtocol
• CallbackProtocol

• BasicChat
• FlexChat
• Email
• EspEmail
• Callback

Table 1: Platform SDK SdkName and ProtocolName Values

You also need to register the methods you will handle your events with. This allows the
EventBrokerService to determine which methods will be used for event-handling. When registering
for event handlers that use attributes, you only specify the name of the event-handling method. In
this case, you need to handle three different events. Note that you should register these methods
before you open the connection to the server, as shown here. Otherwise, the server might send
events before you are ready to handle them:

[C#]

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 350

eventBrokerService.Register(this.OnConfEventObjectsRead);
eventBrokerService.Register(this.OnConfEventObjectsSent);
eventBrokerService.Register(this.OnConfEventError);
protocolManagementService["Config_Server_App"].Open();

At this point, you are ready to set up methods to handle the events you have received from the
server. Here is a simple method that handles the EventError message:

[C#]

[MessageIdFilter(EventError.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]
private void OnConfEventError(IMessage theMessage)
{

EventError eventError = theMessage as EventError;
/// Add processing here...

}

Notice that there is a MessageIdFilter attribute right before the method body. This attribute
indicates that all EventError messages for the Configuration Platform SDK's Configuration protocol
will be handled by this method.

The attributes and methods for EventObjectsRead have a similar structure:

[C#]

[MessageIdFilter(EventObjectsRead.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]
private void OnConfEventObjectsRead(IMessage theMessage)
{

EventObjectsRead objectsRead = theMessage as EventObjectsRead;
/// Add processing here...

}

And so do the attributes and methods for EventObjectsSent:

[C#]

[MessageIdFilter(EventObjectsSent.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]
private void OnConfEventObjectsSent(IMessage theMessage)
{

//protocolManagementService["Config_Server_App"].Close();
EventObjectsSent objectsSent = theMessage as EventObjectsSent;
/// Add processing here...

}

If you want to process more than one event with a single handler, you can set up multiple attributes
for that handler, like this:

[C#]

[MessageIdFilter(EventObjectsRead.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]
[MessageIdFilter(EventObjectsSent.MessageId, ProtocolName = "ConfServer", SdkName =
"Configuration")]

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 351

private void OnConfEvents (IMessage theMessage) {
...

}

These are the basics of how to use the Message Broker Application Block. For more information, see
the Using the Message Broker Application Block article.

Legacy Topics Event Handling Using the Message Broker Application Block

Platform SDK Developer's Guide 352

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheMessageBrokerAB

Using the Protocol Manager Application
Block

Important
This application block is considered a legacy product starting with release 8.1.1.
Documentation is provided for backwards compatibility, but new development should
consider using the improved method of connecting to servers.

One of the two main functions of the Platform SDK is to enable your applications to establish and
maintain connections with Genesys servers.

The Protocol Manager Application Block is a reusable production-quality component that provides
unified management of server protocol objects. It takes care of opening and closing connections to
many different servers, as well as reconfiguration of high availability connections. It has been
designed using industry best practices and provided with source code so it can be used "as is,"
extended, or tailored if you need to. Please see the License Agreement for details.

For information on the other application blocks that ship with the Genesys SDKs, consult Introducing
the Platform SDK.

Java

Installing the Protocol Manager Application Block

Before you install the Protocol Manager Application Block, it is important to review the software
requirements.

Software Requirements
To work with the Protocol Manager Application Block, you must ensure that your system meets the
software requirements established in the Genesys Supported Operating Environment Reference
Guide, as well as meeting the following minimum software requirements:

• JDK 1.6 or higher

Building the Protocol Manager Application Block
To build the Protocol Manager Application Block:

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 353

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IntroducingthePlatformSDK
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IntroducingthePlatformSDK

1. Open the <Platform SDK Folder>\applicationblocks\protocolmanager folder.
2. Run either build.bat or build.sh, depending on your platform.

This will create the protocolmanagerappblock.jar file, located within the <Platform SDK
Folder>\applicationblocks\protocolmanager\dist\lib directory.

Working with the Protocol Manager Application Block
You can find basic information on how to use the Protocol Manager Application Block in the article on
Connecting to a Server Using the Protocol Manager Application Block.

Configuring ADDP

To enable ADDP, set the UseAddp property of your Configuration object to true. You can also set
server and client timeout intervals, as shown here:

[Java]

statServerConfiguration.setUseAddp(true);
statServerConfiguration.setAddpServerTimeout(10);
statServerConfiguration.setAddpClientTimeout(10);

Tip
To avoid connection exceptions in the scenario where a client has configured ADDP
but the server has not, "ADDP" is included as a default value for the "protocol" key in
the configure() method of the ServerChannel class.

Configuring Warm Standby

Enable warm standby in your application by setting your Configuration object's FaultTolerance
property to FaultToleranceMode.WarmStandby, as shown here. You can also configure the backup
server's URI, the timeout interval, and the number of times your application will attempt to contact
the primary server before switching to the backup:

[Java]

statServerConfiguration
.setFaultTolerance(FaultToleranceMode.WarmStandby);

statServerConfiguration.setWarmStandbyTimeout(10);
statServerConfiguration.setWarmStandbyAttempts((short) 5);
try {

statServerConfiguration.setWarmStandbyUri(new URI("tcp://"
+ statServerBackupHost
+ ":"
+ statServerBackupPort));

} catch (URISyntaxException e) {

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 354

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB

e.printStackTrace();
}

High-Performance Message Parsing

The Platform SDK exposes the protocols of supported Genesys servers as an API. This means you can
write .NET and Java applications that communicate with these servers in their native protocols.

Every message you receive from a Genesys server is formatted in some way. Most Genesys servers
use binary protocols, while some use XML-based protocols. When your application receives one of
these messages, it parses the message and places it in the message queue for the appropriate
protocol.

By default, the Platform SDK uses a single thread for all of this message parsing. Since this parsing
can be time-consuming in certain cases, some applications may face serious performance issues. For
example, some applications may receive lots of large binary-format messages, such as some of the
statistics messages generated by Stat Server, while others might need to parse messages in non-
binary formats, such as the XML format used to communicate with Genesys Multimedia (or e-
Services) servers.

This section gives an example of how you can modify Protocol Manager to selectively enable multi-
threaded parsing of incoming messages, in order to work around these kinds of performance issues.
It is important to stress that you must take a careful look at which kind of multi-threading options to
pursue in your applications, since your needs are specific to your situation.

Tip
Your application may also face other performance bottlenecks. For example, you may
need more than one instance of the Message Broker Application Block if you handle
large numbers of messages. For more information on how to configure Message
Broker for high-performance situations, see the Message Broker Application Block
Guide.

This example shows how to call com.genesyslab.platform.commons.threading.DefaultInvoker,
which uses SingleThreadInvoker behind the scenes. As mentioned, you need to determine whether
this is the right solution for your application.

The main thing to take from this example is how to set up an invoker interface, so that you can use
another invoker if DefaultInvoker doesn't meet your needs. For example, Genesys also supplies
com.genesyslab.platform.commons.threading.SingleThreadInvoker, which assigns a single
dedicated thread to each protocol that enables it in your application. This may be useful in some
cases where you have to parse XML messages.

The enhancement shown here will only require small changes to two of the classes in Protocol
Manager, namely ProtocolConfiguration and ProtocolFacility.

To get started, let's declare a new multi-threaded parsing property in the ProtocolConfiguration
class. In this example, the property is called useMultiThreadedMessageParsing. It is declared right
after some ADDP and Warm Standby declarations:

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 355

[Java]

private boolean useAddp;
private FaultToleranceMode faultTolerance;
private Boolean useMultiThreadedMessageParsing;

Now you can code the getter and setter methods for the property itself, as shown here:

[Java]

public Boolean getUseMultiThreadedMessageParsing()
{

return useMultiThreadedMessageParsing;
}

public void setUseMultiThreadedMessageParsing(Boolean value)
{

useMultiThreadedMessageParsing = value;
}

Once you have made these changes, add an if statement to the ApplyChannelConfiguration
method of the ProtocolFacility class so that your applications can selectively enable this property:

[Java]

private void applyChannelConfiguration(
ProtocolConfiguration conf, ProtocolInstance instance)

{
if (conf.getUri() != null)
{

instance.getProtocol().setEndpoint(
new Endpoint(conf.getName(), conf.getUri()));

}

if (conf.getUseMultiThreadedMessageParsing() != null &&
conf.getUseMultiThreadedMessageParsing().booleanValue())

{
instance.getProtocol().

setConnectionInvoker(DefaultInvoker.getSingletonInstance());
}

...

Enabling UseMultiThreadedMessageParsing now calls DefaultInvoker.

To enable multi-threaded parsing, set the useMultiThreadedMessageParsing property of your
Configuration object to true. Here is how to enable the new property for Stat Server messages:

[Java]

statServerConfiguration.setUseMultiThreadedMessageParsing(true);

Receiving Copies of Synchronous Server Messages

Most of the time, when you send a synchronous message to a server, you are satisfied to receive the
response synchronously. But there can be situations where you want to receive a copy of the
response asynchronously, as well. This section shows how to do that.

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 356

As in the previous section, this enhancement will only require small changes to the
ProtocolConfiguration and ProtocolFacility classes.

To get started, let's declare a new copyResponse property in the ProtocolConfiguration class. You
can put this declaration right after the useMultiThreadedMessageParsing declaration we created in
the previous section:

[Java]

private boolean useAddp;
private FaultToleranceMode faultTolerance;
private Boolean useMultiThreadedMessageParsing;
private Boolean copyResponse;

Now you can code the getter and setter methods for the property itself, as shown here:

[Java]

public Boolean getCopyResponse()
{

return copyResponse;
}

public void setCopyResponse(Boolean value)
{

copyResponse = value;
}

It might be a good idea to let anyone using Protocol Manager know whether this property is enabled.
One way to do this is to add it to the toString method in this class:

[Java]

public String toString()
{

StringBuilder sb = new StringBuilder();
.
.
.
sb.append(MessageFormat.format(

"AddpClientTimeout: {0}\n", addpClientTimeout));
sb.append(MessageFormat.format(

"AddpServerTimeout: {0}\n", addpServerTimeout));
sb.append(MessageFormat.format(

"CopyResponse: {0}\n", copyResponse));
...

Once you have made these changes, add an if statement to the applyChannelConfiguration
method of the ProtocolFacility class so that your applications can selectively enable this property:

[Java]

private void applyChannelConfiguration(
ProtocolConfiguration conf, ProtocolInstance instance)

{
if (conf.getUri() != null)
{

instance.getProtocol().setEndpoint(
new Endpoint(conf.getName(), conf.getUri()));

}

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 357

if (conf.getCopyResponse() != null)
{

instance.getProtocol().setCopyResponse(
conf.getCopyResponse());

}
...

To receive a copy of synchronous server messages, set the CopyResponse property of your
Configuration object to true. Here is how to enable the new property for Stat Server messages:

[Java]

statServerConfiguration.setCopyResponse(true);

Supporting New Protocols

When the Platform SDK was first developed, it supported many, but not all, of the servers in the
Genesys environment. As the SDK has matured, support has been added for more servers. As you
might expect, a given version of the Protocol Manager Application Block only supports those servers
that were supported by the Platform SDK at the time of its release. Since you may want to work with
a server that is not currently supported by Protocol Manager, it can be helpful to know how add
support for that server.

This section shows how the Protocol Manager Application Block supports the Stat Server Protocol. You
can use it as a guide if you need to add support for other servers or protocols.

Adding support for the Stat Server Protocol involved three basic steps:

1. Create a new subclass of ProtocolConfiguration called StatServerConfiguration.
2. Create a new subclass of ProtocolFacility called StatServerFacility.
3. Add a statement to the initialize method of ProtocolManagementServiceImpl that associates

StatServerFacility with StatServerProtocol.

The StatServerConfiguration Class
Here is the code for StatServerConfiguration:

[Java]

package com.genesyslab.platform.applicationblocks.commons.protocols;
import com.genesyslab.platform.reporting.protocol.StatServerProtocol;
import java.text.MessageFormat;

public final class StatServerConfiguration extends ProtocolConfiguration
{

private String clientName;
private Integer clientId;

public StatServerConfiguration(String name)
{

super(name, StatServerProtocol.class);
}

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 358

public Integer getClientId()
{

return clientId;
}

public void setClientId(Integer clientId)
{

this.clientId = clientId;
}

public String getClientName()
{

return clientName;
}

public void setClientName(String clientName)
{

this.clientName = clientName;
}

public String toString()
{

StringBuilder sb = new StringBuilder(super.toString());

sb.append(MessageFormat.format("ClientName: {0}\n", clientName));
sb.append(MessageFormat.format("ClientId: {0}\n", this.clientId));

return sb.toString();
}

}

As you can see, this class imports the protocol object, but you will also need to use MessageFormat
when we create the toString() method, so there must be an import statement for that class, as
well:

[Java]

import com.genesyslab.platform.reporting.protocol.StatServerProtocol;
import java.text.MessageFormat;

Here are the class declaration and the field and constructor declarations. Stat Server requires client
name and ID, so these must both be present in StatServerConfiguration:

[Java]

public final class StatServerConfiguration extends ProtocolConfiguration
{

private String clientName;
private Integer clientId;

public StatServerConfiguration(String name)
{

super(name, StatServerProtocol.class);
}

Here are the getter and setter methods for the client name and ID:

[Java]

public Integer getClientId()

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 359

{
return clientId;

}

public void setClientId(Integer clientId)
{

this.clientId = clientId;
}

public String getClientName()
{

return clientName;
}

public void setClientName(String clientName)
{

this.clientName = clientName;
}

And finally, the toString() method:

[Java]

public String toString()
{

StringBuilder sb = new StringBuilder(super.toString());

sb.append(MessageFormat.format("ClientName: {0}\n", clientName));
sb.append(MessageFormat.format("ClientId: {0}\n", this.clientId));

return sb.toString();
}

The StatServerFacility Class
Now we can take a look at the StatServerFacility class. Once again, we will start with the code for
the entire class:

[Java]

package com.genesyslab.platform.applicationblocks.commons.protocols;

import com.genesyslab.platform.commons.protocol.Endpoint;
import com.genesyslab.platform.commons.protocol.Protocol;
import com.genesyslab.platform.reporting.protocol.StatServerProtocol;
import java.net.URI;

public final class StatServerFacility extends ProtocolFacility
{

public void applyConfiguration(
ProtocolInstance instance, ProtocolConfiguration conf)

{
super.applyConfiguration(instance, conf);
StatServerConfiguration statConf = (StatServerConfiguration)conf;
StatServerProtocol statProtocol =

(StatServerProtocol) instance.getProtocol();

/*
if (statConf.getClientName() != null)
{

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 360

statProtocol.setClientName(statConf.getClientName());
}

*/
if (statConf.getClientId() != null)
{

statProtocol.setClientId(statConf.getClientId());
}

}

public Protocol createProtocol(String name, URI uri)
{

return new StatServerProtocol(new Endpoint(name, uri));
}

}

This class needs the following import statements:

[Java]

import com.genesyslab.platform.commons.protocol.Endpoint;
import com.genesyslab.platform.commons.protocol.Protocol;
import com.genesyslab.platform.reporting.protocol.StatServerProtocol;
import java.net.URI;

Here is how to declare the class:

[Java]

public final class StatServerFacility extends ProtocolFacility

There are two methods in this class. The first is applyConfiguration:

[Java]

public void applyConfiguration(
ProtocolInstance instance, ProtocolConfiguration conf)

{
super.applyConfiguration(instance, conf);
StatServerConfiguration statConf = (StatServerConfiguration)conf;
StatServerProtocol statProtocol =

(StatServerProtocol) instance.getProtocol();

/*
if (statConf.getClientName() != null)
{

statProtocol.setClientName(statConf.getClientName());
}

*/
if (statConf.getClientId() != null)
{

statProtocol.setClientId(statConf.getClientId());
}

}

The second method is createProtocol:

[Java]

public Protocol createProtocol(String name, URI uri)
{

return new StatServerProtocol(new Endpoint(name, uri));
}

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 361

Updating ProtocolManagementServiceImpl
To complete this enhancement, a single line of code was added to the initialize method of
ProtocolManagementServiceImpl:

[Java]

private void Initialize()
{

this.facilities.Add(typeof(ConfServerProtocol), new ConfServerFacility());
this.facilities.Add(typeof(TServerProtocol), new TServerFacility());
this.facilities.Add(typeof(InteractionServerProtocol), new

InteractionServerFacility());
this.facilities.Add(typeof(StatServerProtocol), new StatServerFacility());
this.facilities.Add(typeof(OutboundServerProtocol), new OutboundServerFacility());
this.facilities.Add(typeof(LocalControlAgentProtocol), new LcaFacility());
this.facilities.Add(typeof(SolutionControlServerProtocol), new ScsFacility());
this.facilities.Add(typeof(MessageServerProtocol), new MessageServerFacility());

}

Architecture and Design

The Protocol Manager Application Block uses a service-based API. You can use this API to open and
close your connection with Genesys servers and to dynamically reconfigure the parameters for a
given protocol. Protocol Manager also includes built-in warm standby capabilities.

Protocol Manager uses a ServerConfiguration object to describe each server it manages.

.NET

Installing the Protocol Manager Application Block

Before you install the Protocol Manager Application Block, it is important to review the software
requirements and the structure of the software distribution.

Software Requirements
To work with the Protocol Manager Application Block, you must ensure that your system meets the
software requirements established in the Genesys Genesys Supported Operating Environment
Reference Guide.

Building the Protocol Manager Application Block
The Platform SDK distribution includes a
Genesyslab.Platform.ApplicationBlocks.Commons.Protocols.dll file that you can use as is. This file is
located in the bin directory at the root level of the Platform SDK directory. To build your own copy of

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 362

this application block, follow the instructions below:

1. Open the <Platform SDK Folder>\ApplicationBlocks\ProtocolManager folder.
2. Double-click ProtocolManager.sln.
3. Build the solution.

Working with the Protocol Manager Application Block
You can find basic information on how to use the Protocol Manager Application Block in the article on
Connecting to a Server Using the Protocol Manager Application Block at the beginning of this guide.

Configuring ADDP

To enable ADDP, set the UseAddp property of your Configuration object to true. You can also set
server and client timeout intervals, as shown here:

[C#]

statServerConfiguration.UseAddp = true;
statServerConfiguration.AddpServerTimeout = 10;
statServerConfiguration.AddpClientTimeout = 10;

Configuring Warm Standby

Hot standby is not designed to handle situations where both the primary and backup servers are
down. It is also not designed to connect to your backup server if the primary server was down when
you initiated your connection. However, in cases like these, warm standby will attempt to connect. In
fact, warm standby will keep trying one server and then the other, until it does connect. Because of
this, you will probably want to enable warm standby in your applications, even if you are already
using hot standby.

You can enable warm standby in your application by setting your Configuration object's
FaultTolerance property to FaultToleranceMode.WarmStandby, as shown here. You can also
configure the backup server's URI, the timeout interval, and the number of times your application will
attempt to contact the primary server before switching to the backup:

[C#]

statServerConfiguration.FaultTolerance = FaultToleranceMode.WarmStandby;
statServerConfiguration.WarmStandbyTimeout = 5000;
statServerConfiguration.WarmStandbyAttempts = 5;
statServerConfiguration.WarmStandbyUri = statServerBackupUri;

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 363

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingUsingProtocolManagerAB

High-Performance Message Parsing

The Platform SDK exposes the protocols of supported Genesys servers as an API. This means you can
write .NET and Java applications that communicate with these servers in their native protocols.

Every message you receive from a Genesys server is formatted in some way. Most Genesys servers
use binary protocols, while some use XML-based protocols. When your application receives one of
these messages, it parses the message and places it in the message queue for the appropriate
protocol.

By default, the Platform SDK uses a single thread for all of this message parsing. Since this parsing
can be time-consuming in certain cases, some applications may face serious performance issues. For
example, some applications may receive lots of large binary-format messages, such as some of the
statistics messages generated by Stat Server, while others might need to parse messages in non-
binary formats, such as the XML format used to communicate with Genesys Multimedia (or e-
Services) servers.

This section gives an example of how you can modify Protocol Manager to selectively enable multi-
threaded parsing of incoming messages, in order to work around these kinds of performance issues.
It is important to stress that you must take a careful look at which kind of multi-threading options to
pursue in your applications, since your needs are specific to your situation.

Tip
Your application may also face other performance bottlenecks. For example, you may
need more than one instance of the Message Broker Application Block if you handle
large numbers of messages. For more information on how to configure Message
Broker for high-performance situations, see the Using the Message Broker Application
Block.

This example shows how to call Genesyslab.Platform.Commons.Threading.DefaultInvoker, which
uses the .NET thread pool for your message parsing needs. As mentioned, you need to determine
whether this is the right solution for your application, since, for example, the .NET thread pool may
be heavily used for other tasks.

The main thing to take from this example is how to set up an invoker interface, so that you can use
another invoker if DefaultInvoker doesn't meet your needs. For example, Genesys also supplies
Genesyslab.Platform.Commons.Threading.SingleThreadInvoker, which assigns a single
dedicated thread to each protocol that enables it in your application. This may be useful in some
cases where you have to parse XML messages.

The enhancement shown here will only require small changes to two of the classes in Protocol
Manager, namely ProtocolConfiguration and ProtocolFacility.

To get started, let's declare a new multi-threaded parsing property in the ProtocolConfiguration
class. In this example, the property is called useMultiThreadedMessageParsing. It is nullable and is
declared right after some ADDP and Warm Standby declarations:

[C#]

private bool? useAddp;

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 364

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheMessageBrokerAB

private FaultToleranceMode? faultTolerance;
private string addpTrace;
private bool? useMultiThreadedMessageParsing;

Now you can code the property itself, as shown here:

[C#]

public bool? UseMultiThreadedMessageParsing
{

get { return this.useMultiThreadedMessageParsing; }
set { this.useMultiThreadedMessageParsing = value; }

}

Once you have made these changes, add an if statement to the ApplyChannelConfiguration
method of the ProtocolFacility class so that your applications can selectively enable this property:

[C#]

private void ApplyChannelConfiguration(ProtocolInstance entry, ProtocolConfiguration conf)
{

if(conf.Uri != null)
{

entry.Protocol.Endpoint = new Endpoint(conf.Name, conf.Uri);
}

if (conf.UseMultiThreadedMessageParsing != null &&
conf.UseMultiThreadedMessageParsing.Value)

{
entry.Protocol.SetConnectionInvoker(DefaultInvoker.InvokerSingleton);

}
...

Enabling UseMultiThreadedMessageParsing now calls DefaultInvoker, which uses the .NET thread
pool, as mentioned above.

To enable multi-threaded parsing, set the UseMultiThreadedMessageParsing property of your
Configuration object to true. Here is how to enable the new property for Stat Server messages:

[C#]

statServerConfiguration.UseMultiThreadedMessageParsing = true;

Receiving Copies of Synchronous Server Messages

Most of the time, when you send a synchronous message to a server, you are satisfied to receive the
response synchronously. But there can be situations where you want to receive a copy of the
response asynchronously, as well. This section shows how to do that.

As in the previous section, this enhancement will only require small changes to the
ProtocolConfiguration and ProtocolFacility classes.

To get started, let's declare a new copyResponse property in the ProtocolConfiguration class. You
can put this declaration right after the useMultiThreadedMessageParsing declaration we created in
the previous section:

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 365

[C#]

private bool? useAddp;
private FaultToleranceMode? faultTolerance;
private string addpTrace;
private bool? useMultiThreadedMessageParsing;
private bool? copyResponse;

Now you can code the property itself, as shown here:

[C#]

public bool? CopyResponse
{

get { return this.copyResponse; }
set { this.copyResponse = value; }

}

It might be a good idea to let anyone using Protocol Manager know whether this property is enabled.
One way to do this is to add it to the ToString method overrides in this class:

[C#]

public override string ToString()
{

StringBuilder sb = new StringBuilder();
.
.
.
sb.AppendFormat("AddpClientTimeout: {0}\n", this.addpClientTimeout.ToString());
sb.AppendFormat("AddpServerTimeout: {0}\n", this.addpServerTimeout.ToString());
sb.AppendFormat("CopyResponse: {0}\n", this.copyResponse.ToString());
...

Once you have made these changes, add an if statement to the ApplyChannelConfiguration
method of the ProtocolFacility class so that your applications can selectively enable this property:

[C#]

private void ApplyChannelConfiguration(ProtocolInstance entry, ProtocolConfiguration conf)
{

if(conf.Uri != null)
{

entry.Protocol.Endpoint = new Endpoint(conf.Name, conf.Uri);
}

if (conf.CopyResponse != null)
{

entry.Protocol.CopyResponse = conf.CopyResponse.Value;
}
...

To receive a copy of synchronous server messages, set the CopyResponse property of your
Configuration object to true. Here is how to enable the new property for Stat Server messages:

[C#]

statServerConfiguration.CopyResponse = true;

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 366

Supporting New Protocols

When the Platform SDK was first developed, it supported many, but not all, of the servers in the
Genesys environment. As the SDK has matured, support has been added for more servers. As you
might expect, a given version of the Protocol Manager Application Block only supports those servers
that were supported by the Platform SDK at the time of its release. Since you may want to work with
a server that is not currently supported by Protocol Manager, it can be helpful to know how add
support for that server.

For example, early versions of Protocol Manager were developed before the Platform SDK supported
Universal Contact Server (UCS). This section shows how to add UCS support to the Protocol Manager
Application Block. You can also use these instructions as a guide if you need to add support for other
servers.

This enhancement involves three basic steps:

• Create a new subclass of ProtocolConfiguration. We will call this class
ContactServerConfiguration.

• Create a new subclass of ProtocolFacility called ContactServerFacility.
• Add a statement to the Initialize method of ProtocolManagementService that associates the new

ContactServerFacility class with UniversalContactServerProtocol.

Creating a ContactServerConfiguration Class
We will use the StatServerConfiguration class as a template for the new
ContactServerConfiguration class. Here is the code for StatServerConfiguration:

[C#]

using System;
using System.Text;

using Genesyslab.Platform.Reporting.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

public sealed class StatServerConfiguration : ProtocolConfiguration
{

#region Fields

private string clientName;
private int? clientId;

#endregion Fields

public StatServerConfiguration(string name)
: base(name, typeof(StatServerProtocol))

{
}

#region Properties

public string ClientName
{

get { return this.clientName; }

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 367

set { this.clientName = value; }
}

public int? ClientId
{

get { return this.clientId; }
set { this.clientId = value; }

}

#endregion Properties

public override string ToString()
{

StringBuilder sb = new StringBuilder();
sb.Append(base.ToString());

sb.AppendFormat("ClientName: {0}\n", this.clientName);
sb.AppendFormat("ClientId: {0}\n", this.clientId.ToString());

return sb.ToString();
}

}
}

To get started, make a copy of StatServerConfiguration.cs and call it
ContactServerConfiguration.cs. Rename the Platform SDK using statement and the class name,
as shown here:

[C#]

using System;
using System.Text;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

public sealed class ContactServerConfiguration : ProtocolConfiguration
{
...

The connection parameters required by Stat Server are different from those used by UCS. Instead of
clientName and clientId, UCS requires applicationName. Like clientName, applicationName is of
type string. One fairly simple way to modify this class is to delete all references to clientId and
rename the references to clientName to applicationName. Make sure to retain the capitalization in
the property name, which should become ApplicationName.

[C#]

using System;
using System.Text;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

public sealed class ContactServerConfiguration : ProtocolConfiguration
{

#region Fields

private string applicationName;
private int? clientId;

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 368

#endregion Fields

...

#region Properties

public string ApplicationName
{

get { return this.applicationName; }
set { this.applicationName = value; }

}

public int? ClientId
{

get { return this.clientId; }
set { this.clientId = value; }

}

#endregion Properties

public override string ToString()
{

StringBuilder sb = new StringBuilder();
sb.Append(base.ToString());

sb.AppendFormat("applicationName: {0}\n", this.applicationName);
sb.AppendFormat("ClientId: {0}\n", this.clientId.ToString());

return sb.ToString();
}

}
}

The constructor also needs to be renamed. This code:

[C#]

public StatServerConfiguration(string name)
: base(name, typeof(StatServerProtocol))

{
}

should be replaced with this:

[C#]

public ContactServerConfiguration(string name)
: base(name, typeof(UniversalContactServerProtocol))

{
}

When you have made all of these changes, your new class should look like this:

[C#]

using System;
using System.Text;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

public sealed class ContactServerConfiguration : ProtocolConfiguration

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 369

{
#region Fields

private string applicationName;

#endregion Fields

public ContactServerConfiguration(string name)
: base(name, typeof(UniversalContactServerProtocol))

{
}
#region Properties

public string ApplicationName
{

get { return this.applicationName; }
set { this.applicationName = value; }

}

#endregion Properties

public override string ToString()
{

StringBuilder sb = new StringBuilder();
sb.Append(base.ToString());

sb.AppendFormat("ApplicationName: {0}\n", this.applicationName);

return sb.ToString();
}

}
}

Creating a ContactServerFacility Class
The next step is to create a copy of StatServerFacility.cs and name it
ContactServerFacility.cs. Here is what the StatServerFacility class looks like:

[C#]

using System;
using System.Text;

using Genesyslab.Platform.Commons.Collections;
using Genesyslab.Platform.Commons.Protocols;
using Genesyslab.Platform.Reporting.Protocols;
using Genesyslab.Platform.Commons.Logging;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

internal sealed class StatServerFacility : ProtocolFacility
{

public override void ApplyConfiguration(ProtocolInstance entry, ProtocolConfiguration
conf, ILogger logger)

{
base.ApplyConfiguration(entry, conf, logger);

StatServerConfiguration statConf = (StatServerConfiguration)conf;
StatServerProtocol statProtocol = (StatServerProtocol)entry.Protocol;

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 370

if (statConf.ClientName != null)
{

statProtocol.ClientName = statProtocol.ClientName;
}
if (statConf.ClientId != null)
{

statProtocol.ClientId = statConf.ClientId.Value;
}

}

public override ClientChannel CreateProtocol(string name, Uri uri)
{

return new StatServerProtocol(new Endpoint(name, uri));
}

}
}

Start by renaming the using statement and the class name:

[C#]

using System;
using Genesyslab.Platform.Commons.Logging;
using Genesyslab.Platform.Commons.Protocols;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

internal sealed class ContactServerFacility : ProtocolFacility
...

Rename statConf and statProtocol, giving them the correct configuration and protocol types:

[C#]

ContactServerConfiguration ucsConf = (ContactServerConfiguration)conf;
UniversalContactServerProtocol ucsProtocol =

(UniversalContactServerProtocol)entry.Protocol;

And delete the references to ClientId:

[C#]

if (statConf.ClientId != null)
{

statProtocol.ClientId = statConf.ClientId.Value;

Now you can rename ClientName to ApplicationName:

[C#]

if (ucsConf.ApplicationName != null)
{

ucsProtocol.ApplicationName = ucsConf.ApplicationName;
}

When you are finished, you will have a new class that looks like this:

[C#]

using System;

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 371

using Genesyslab.Platform.Commons.Logging;
using Genesyslab.Platform.Commons.Protocols;
using Genesyslab.Platform.Contacts.Protocols;

namespace Genesyslab.Platform.ApplicationBlocks.Commons.Protocols
{

internal sealed class ContactServerFacility : ProtocolFacility
{

public override void ApplyConfiguration(ProtocolInstance entry, ProtocolConfiguration
conf, ILogger logger)

{
base.ApplyConfiguration(entry, conf, logger);

ContactServerConfiguration ucsConf = (ContactServerConfiguration)conf;
UniversalContactServerProtocol ucsProtocol =

(UniversalContactServerProtocol)entry.Protocol;

if (ucsConf.ApplicationName != null)
{

ucsProtocol.ApplicationName = ucsConf.ApplicationName;
}

}

public override ClientChannel CreateProtocol(string name, Uri uri)
{

return new UniversalContactServerProtocol(new Endpoint(name, uri));
}

}
}

Updating ProtocolManagementService
To complete this enhancement, add a single line of code to the Initialize method of
ProtocolManagementService:

[C#]

private void Initialize()
{

this.facilities.Add(typeof(ConfServerProtocol), new ConfServerFacility());
this.facilities.Add(typeof(TServerProtocol), new TServerFacility());
this.facilities.Add(typeof(InteractionServerProtocol), new

InteractionServerFacility());
this.facilities.Add(typeof(StatServerProtocol), new StatServerFacility());
this.facilities.Add(typeof(OutboundServerProtocol), new OutboundServerFacility());
this.facilities.Add(typeof(LocalControlAgentProtocol), new LcaFacility());
this.facilities.Add(typeof(SolutionControlServerProtocol), new ScsFacility());
this.facilities.Add(typeof(MessageServerProtocol), new MessageServerFacility());
this.facilities.Add(typeof(UniversalContactServerProtocol), new

ContactServerFacility());
}

Your copy of Protocol Manager now works with Universal Contact Server!

Architecture and Design

The Protocol Manager Application Block uses a service-based API. You can use this API to open and

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 372

close your connection with Genesys servers and to dynamically reconfigure the parameters for a
given protocol. Protocol Manager also includes built-in warm standby capabilities.

Protocol Manager uses a ServerConfiguration object to describe each server it manages. The figure
below gives examples of the structure of some of these objects.

Tip
Any protocol can be reconfigured dynamically.

Legacy Topics Using the Protocol Manager Application Block

Platform SDK Developer's Guide 373

Connecting to a Server Using the Protocol
Manager Application Block

Important
The Protocol Manager Application Block is considered a legacy product as of release
8.1.1 due to improvements in the configuration of core protocol classes.
Documentation related to this application block is retained for backwards
compatibility. For information about connecting to Genesys servers without use of the
Protocol Manager Application Block, refer to the Connecting to a Server article.

The applications you write with the Platform SDK will need to communicate with one or more Genesys
servers. So the first thing you need to do is create a connection with these servers. Genesys
recommends that you use the Protocol Manager Application Block to do this. Protocol Manager is
designed for high-performance communication with Genesys servers. It also includes built-in support
for warm standby.

Once you have connected to a server, you will be sending and receiving messages to and from this
server. The next article shows how to use the Message Broker Application Block for efficient event
handling using the Message Broker Application Block.

Tip
Protocol Manager may not support all of the servers you need to use in your
application. For information about how to update Protocol Manager to communicate
with these servers, see the Using the Protocol Manager Application Block article.

Java

To use the Protocol Manager Application Block, add the following file to your classpath:

• protocolmanagerappblock.jar

This jar file was precompiled using the default Application Block code, and can be
located at: <Platform SDK Folder>\lib.

Tip

Legacy Topics Connecting to a Server Using the Protocol Manager Application Block

Platform SDK Developer's Guide 374

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ConnectingtoaServer
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheProtocolManagerAB

You can also view or modify the Protocol Manager Application Block source code. To do
this, open the Protocol Manager Java source files that were installed with the Platform
SDK. The Java source files for this project are located at: <Platform SDK
Folder>\applicationblocks\protocolmanager\src\java. If you make any changes
to the project, you will have to run Ant (or use the build.bat file for this Application
Block) to rebuild the jar archive listed above. After you run Ant, add the resulting jar to
your classpath.

Now you can add import statements to your source code. For example:

[Java]

import com.genesyslab.platform.applicationblocks.commons.protocols.*;
import com.genesyslab.platform.applicationblocks.warmstandby.*;

You will also have to add additional JAR archives to your classpath and add import statements to
your project for each specific protocol you are working with. The steps are not explicitly described
here because the archives and classes required will vary depending on which SDKs and protocols you
plan to use.

In order to use the Protocol Manager, you need to create a ProtocolManagementServiceImpl object.
This object manages all of your server connections. Declare it with your other fields:

[Java]

ProtocolManagementServiceImpl protocolManagementServiceImpl;

Then you can initialize the service object inside the appropriate method body:

[Java]

protocolManagementServiceImpl =
new ProtocolManagementServiceImpl();

You are now ready to create an object that will be used to specify how to communicate with the
server. For example, if you are working with Configuration Server, you will set up a
ConfServerConfiguration object:

[Java]

ConfServerConfiguration confServerConfiguration = new
ConfServerConfiguration("Config_Server_App");

Note that you have to provide a string when you create the ConfServerConfiguration object. This
string should be unique for each protocol used in your application. It might be a good idea to use the
name of the server's application object from the configuration layer, which guarantees uniqueness as
well as clearly identifying which server you are communicating with.

After setting up the ConfServerConfiguration object, you need to specify the URI of the
Configuration Server you want to communicate with, as well as a few other necessary pieces of
information:

[Java]

Legacy Topics Connecting to a Server Using the Protocol Manager Application Block

Platform SDK Developer's Guide 375

try {
confServerConfiguration.setUri(

new URI("tcp://" + confServerHost + ":" + confServerPort));
} catch (URISyntaxException e) {

e.printStackTrace();
}
confServerConfiguration.setClientApplicationType(CfgAppType.CFGSCE);
confServerConfiguration.setClientName(clientName);
confServerConfiguration.setUserName(userName);
confServerConfiguration.setUserPassword(password);

At this point, you can register your ConfServerConfiguration object with Protocol Manager:

[Java]

protocolManagementServiceImpl.register(confServerConfiguration);

Now you can tell Protocol Manager to open the connection to your server:

[Java]

try {
protocolManagementServiceImpl.getProtocol("Config_Server_App").open();

} catch (ProtocolException e) {
e.printStackTrace();

} catch (IllegalStateException e) {
e.printStackTrace();

} catch (InterruptedException e) {
e.printStackTrace();

}

You may want to set up a connection to more than one server. To do that, you could repeat the steps
outlined above. Here is an example of how you might do that in order to add a connection to Stat
Server:

[Java]

StatServerConfiguration statServerConfiguration = new StatServerConfiguration(
"Stat_Server_App");

try {
statServerConfiguration.setUri(new URI(statServerUri));

} catch (URISyntaxException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
protocolManagementServiceImpl.register(statServerConfiguration);
.
.
.
// Add this line to the try block for the Configuration Server open()
protocolManagementServiceImpl.getProtocol("Stat_Server_App").open();

In some cases, you may want to use the beginOpen() method instead of using the open() method.
beginOpen() will open all of your connections with a single method call. However, unlike open(),
beginOpen() is asynchronous. This means you will need to make sure you have received the
onChannelOpened event before you send any messages. Otherwise, you might be trying to use a
connection that does not yet exist.

In order to use beginOpen(), you need to implement the ChannelListener interface:

Legacy Topics Connecting to a Server Using the Protocol Manager Application Block

Platform SDK Developer's Guide 376

[Java]

import com.genesyslab.platform.commons.protocol.ChannelListener;
.
.
.
public class YourApplication

implements ChannelListener, ...

You will also need to add a channel listener after you register your ServerConfiguration objects:

[Java]

protocolManagementServiceImpl.register(confServerConfiguration);
protocolManagementServiceImpl.register(statServerConfiguration);
.
.
.
protocolManagementServiceImpl.addChannelListener(this);

Now you can add a method to handle the OnChannelOpened event:

[Java]

public void onChannelOpened(EventObject event) {
if (event.getSource() instanceof ClientChannel) {

ClientChannel channel = (ClientChannel)event.getSource();

if (channel instanceof ConfServerProtocol) {
// Work with Configuration Server messages...

}
else if (channel instanceof StatServerProtocol) {

// Work with Stat Server messages...
}

}
}

Having done that, you can remove these lines from the try block:

[Java]

protocolManagementServiceImpl.getProtocol("Config_Server_App").open();
protocolManagementServiceImpl.getProtocol("Stat_Server_App").open();

And replace them with this one:

[Java]

protocolManagementServiceImpl.beginOpen();

However, if you want to issue an asynchronous open for a specific protocol, you can invoke
beginOpen for that protocol, like this:

[Java]

protocolManagementServiceImpl.getProtocol("Config_Server_App").beginOpen();
protocolManagementServiceImpl.getProtocol("Stat_Server_App").beginOpen();

Legacy Topics Connecting to a Server Using the Protocol Manager Application Block

Platform SDK Developer's Guide 377

Tip
When using the beginOpen() method, make sure that your code waits for the
onChannelOpened event to fire before attempting to send or receive messages.

Once you have opened your connection, you can send and receive messages, as shown in the article
on Event Handling. But before getting to that, please note that when you have finished
communicating with your servers, you should close the connection, like this:

[Java]

protocolManagementServiceImpl.beginClose();

Or like this:

[Java]

protocolManagementServiceImpl.getProtocol("Config_Server_App")
.close();

protocolManagementServiceImpl.getProtocol("Stat_Server_App")
.close();

Or like this:

[Java]

protocolManagementServiceImpl.getProtocol("Config_Server_App")
.beginClose();

protocolManagementServiceImpl.getProtocol("Stat_Server_App")
.beginClose();

This introduction has only covered the most basic features of the Protocol Manager Application Block.
Consult the Protocol Manager Application Block Guide for more information on how to use Protocol
Manager, including the following topics:

• Configuring ADDP
• Configuring Warm Standby
• High-Performance Message Parsing
• Supporting New Protocols

To learn how to send and receive messages, go to the article on Event Handling Using the Message
Broker Application Block.

.NET

To use the Protocol Manager Application Block, open the Solution Explorer for your application project
and add references to the following files:

• Genesyslab.Platform.ApplicationBlocks.Commons.Protocols.dll

Legacy Topics Connecting to a Server Using the Protocol Manager Application Block

Platform SDK Developer's Guide 378

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB

• Genesyslab.Platform.ApplicationBlocks.WarmStandby.dll

These dll files are precompiled using the default Application Block code, and can
be located at: <Platform SDK Folder>\Bin.

Tip
You can also view or modify the Protocol Manager Application Block source code. To do
this, open the Protocol Manager Visual Studio project that was installed with the
Platform SDK. The solution file for this project is located at: <Platform SDK
Folder>\ApplicationBlocks\ProtocolManager. If you make any changes to the
project, you will have to rebuild the two .dll files listed above.

Once you have added the references, you can add using statements to your source code:

[C#]

using Genesyslab.Platform.ApplicationBlocks.Commons.Protocols;
using Genesyslab.Platform.ApplicationBlocks.WarmStandby;

You will also have to reference additional libraries and add using statements to your project for each
specific protocol you are working with. The steps are not explicitly described here because the files
and namespaces required will vary depending on which SDKs and protocols you plan to use.

In order to use the Protocol Manager, you now need to create a ProtocolManagementService object.
This object manages all of your server connections. Declare it with your other fields:

[C#]

ProtocolManagementService protocolManagementService;

Then you can initialize the service object inside the appropriate method body:

[C#]

protocolManagementService =
new ProtocolManagementService();

You are now ready to create an object that will be used to specify how to communicate with the
server. For example, if you are working with Configuration Server, you will set up a
ConfServerConfiguration object:

[C#]

ConfServerConfiguration confServerConfiguration =
new ConfServerConfiguration("Config_Server_App");

Note that you have to provide a string when you create the ConfServerConfiguration object. This
string should be unique for each protocol used in your application. It might be a good idea to use the
name of the server's application object from the configuration layer, which guarantees uniqueness as
well as clearly identifying which server you are communicating with.

After setting up the ConfServerConfiguration object, you need to specify the URI of the

Legacy Topics Connecting to a Server Using the Protocol Manager Application Block

Platform SDK Developer's Guide 379

Configuration Server you want to communicate with, as well as a few other necessary pieces of
information:

[C#]

confServerConfiguration.Uri =
new Uri("tcp://" + confServerHost + ":" + confServerPort);

confServerConfiguration.ClientApplicationType = CfgAppType.CFGSCE;
confServerConfiguration.ClientName = clientName;
confServerConfiguration.UserName = userName;
confServerConfiguration.UserPassword = password;

At this point, you can register your ConfServerConfiguration object with Protocol Manager:

[C#]

protocolManagementService.Register(confServerConfiguration);

Now you can tell Protocol Manager to open the connection to your server:

[C#]

protocolManagementService["Config_Server_App"].Open();

You may want to set up a connection to more than one server. To do that, you could repeat the steps
outlined above. Here is an example of how you might do that in order to add a connection to Stat
Server:

[C#]

StatServerConfiguration statServerConfiguration = new
StatServerConfiguration("Stat_Server_App");
statServerConfiguration.Uri = statServerUri;
protocolManagementService.Register(statServerConfiguration);
.
.
.
protocolManagementService["Stat_Server_App"].Open();

In some cases, you may want to use the BeginOpen() method instead of using the Open() method.
BeginOpen() will open all of your connections with a single method call. However, unlike Open(),
BeginOpen() is asynchronous. This means you will need to make sure you have received the Opened
event before you send any messages. Otherwise, you might be trying to use a connection that does
not yet exist.

Once you have set up an event handler for the Opened event, you can remove these lines from your
code:

[C#]

protocolManagementService["Config_Server_App"].Open();
protocolManagementService["Stat_Server_App"].Open();

And replace them with this one:

[C#]

protocolManagementService.BeginOpen();

Legacy Topics Connecting to a Server Using the Protocol Manager Application Block

Platform SDK Developer's Guide 380

However, if you want to issue an asynchronous open for a specific protocol, you can invoke
BeginOpen for that protocol, like this:

[C#]

protocolManagementService["Config_Server_App"].BeginOpen();
protocolManagementService["Stat_Server_App"].BeginOpen();

Tip
When using the BeginOpen() method, make sure that your code waits for the Opened
event to fire before attempting to send or receive messages.

Once you have opened your connection, you can send and receive messages, as shown in the article
on Event Handling Using the Message Broker Application Block. But before getting to that, please
note that when you have finished communicating with your servers, you should close the connection,
like this:

[C#]

protocolManagementService.BeginClose();

Or like this:

[C#]

protocolManagementService["Config_Server_App"].Close();
protocolManagementService["Stat_Server_App"].Close();

Or like this:

[C#]

protocolManagementService["Config_Server_App"].BeginClose();
protocolManagementService["Stat_Server_App"].BeginClose();

This introduction has only covered the most basic features of the Protocol Manager Application Block.
Consult Using the Protocol Manager Application Block for more information on how to use Protocol
Manager, including the following topics:

• Configuring ADDP
• Configuring Warm Standby
• High-Performance Message Parsing
• Supporting New Protocols

To learn how to send and receive messages, go to the article on Event Handling Using the Message
Broker Application Block.

Legacy Topics Connecting to a Server Using the Protocol Manager Application Block

Platform SDK Developer's Guide 381

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/UsingtheProtocolManagerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/EventHandlingUsingMessageBrokerAB

Transport Layer Security (TLS) Support

Platform SDK now supports Transport Layer Security (TLS). This section contains two sample
configurations, but it is important to understand your environment and its unique requirements
before using this new support. You should refer to the appropriate server manual to configure TLS on
your server. You should also refer to Part 3 of the Genesys 8.0 Security Deployment Guide,
"Communications Integrity—Transport Layer Security".

The first sample configuration shows a situation where the client application specifies the name of a
server-based certificate:

[C#]

SolutionControlServerProtocol scsProtocol
= new SolutionControlServerProtocol(myEndpoint);

KeyValueCollection kvCollection = new KeyValueCollection();
kvCollection[CommonConnection.TlsKey] = 1;
kvCollection[CommonConnection.CertificateNameKey] = "name";
KeyValueConfiguration kvConfig = new KeyValueConfiguration(kvCollection);
scsProtocol.Configure(kvConfig);

In this sample configuration, "name" is the name of the certificate, which is located in the certificate
store on the server and used in the TLS configuration of the port/application/server in the Genesys
Configuration Layer.

The second sample configuration shows a client application using its own client certificate to
authenticate on the server:

[C#]

SolutionControlServerProtocol scsProtocol
= new SolutionControlServerProtocol(myEndpoint);

KeyValueCollection kvCollection = new KeyValueCollection();
kvCollection[CommonConnection.TlsKey] = 1;
kvCollection[CommonConnection.CertificateKey] = @"c:\directory\certificate.p12";
kvCollection[CommonConnection.CertificatePwdKey] = "password";
KeyValueConfiguration kvConfig = new KeyValueConfiguration(kvCollection);
scsProtocol.Configure(kvConfig);

In this sample configuration, CommonConnection.CertificateKey is the path to the certificate file
located on the client machine, while CommonConnection.CertificatePwdKey is the password which
will be used to open the certificate file, if it is password protected.

Legacy Topics Connecting to a Server Using the Protocol Manager Application Block

Platform SDK Developer's Guide 382

Explicitly Choosing a Netty or Mina
Connection Layer
Problem: A user wants to explicitly specify which connection layer Platform SDK should use, instead
of accepting the default one.

Resolution: Set the com.genesyslab.platform.commons.connection.factory.class system
property (defined by the ConnectionManager.CONN_FACTORY_KEY constant) to the fully qualified
name of connection factory class to use:

• com.genesyslab.platform.commons.connection.impl.netty.NettyConnectionFactory (or
NettyConnectionFactory.class.getName())

• com.genesyslab.platform.commons.connection.impl.mina.MinaConnectionFactory (or
MinaConnectionFactory.class.getName())

$> java -Dcom.genesyslab.platform.commons.connection.factory.class=
com.genesyslab.platform.commons.connection.impl.netty.NettyConnectionFactory
-jar your_application.jar

This property can be set either from command line using -D switch or from code, as shown in the
sample below.

Please note that Platform SDK looks up connection factory each time a connection is created,
allowing the user to use different connection layers for different connections.

package test;

import com.genesyslab.platform.commons.collections.KeyValueCollection;
import com.genesyslab.platform.commons.connection.Connection;
import com.genesyslab.platform.commons.connection.ConnectionManager;
import com.genesyslab.platform.commons.connection.configuration.KeyValueConfiguration;
import com.genesyslab.platform.commons.connection.impl.netty.NettyConnectionFactory;
import com.genesyslab.platform.commons.connection.impl.mina.MinaConnectionFactory;
import com.genesyslab.platform.commons.protocol.Endpoint;
import com.genesyslab.platform.commons.protocol.ServerChannel;
import com.genesyslab.platform.management.protocol.solutioncontrolserver.runtime.channel.

SolutionControlServerInternalProtocolFactory;

public class TlsServer {
private ServerChannel channel = null;

public void start() throws ProtocolException, InterruptedException {
// System.setProperty(ConnectionManager.CONN_FACTORY_KEY,
// NettyConnectionFactory.class.getName());
System.setProperty(ConnectionManager.CONN_FACTORY_KEY,
MinaConnectionFactory.class.getName());
KeyValueCollection kvc = new KeyValueCollection();
kvc.addString(Connection.TLS_KEY, "1"); // Turn on TLS
// Java keystore format, use "keytool" utility from JDK to generate one
kvc.addString(Connection.SSL_KEYSTORE_PATH_KEY, "D:\\Test\\keystore");
kvc.addString(Connection.SSL_KEYSTORE_PASS, "password");
Endpoint endpoint = new Endpoint("TlsServer", "localhost", 5500);
channel = new ServerChannel(endpoint, new SolutionControlServerInternalProtocolFactory());

Legacy Topics Explicitly Choosing a Netty or Mina Connection Layer

Platform SDK Developer's Guide 383

channel.configure(new KeyValueConfiguration(kvc));
channel.open();

}
// And so on...

}

Legacy Topics Explicitly Choosing a Netty or Mina Connection Layer

Platform SDK Developer's Guide 384

Platform SDK Resources
This page describes additional resources located on this site and the Genesys Support site.

Related Documentation

Depending on what type of development you are doing with the Platform SDKs, the following
resources may be useful for providing background information about your Genesys environment.

Genesys Events and Models Reference Manual
Use with: T-Server, Interaction Server

Download: Genesys Events and Models Reference Manual

If you are working with T-Server or Interaction Server, you should download and start reading the
Genesys Events and Models Reference Manual right away. This document provides you with a large
collection of two different types of important information, organized into two separate sections.

• Part 1: Genesys Events is the events portion of this document. The information in this part is wide-
ranging, and includes everything from the names and descriptions of events, to the attributes that go
with these events, to the definitions of event sub-states.

• Part 2: Genesys Interaction Models is the models portion of this document. It contains a selected
list of call and interaction models. This information is also wide ranging. Based on the history of how
this information has been presented in the past in various documents, model details may differ from
chapter to chapter.

In both parts of this document, chapters are organized according to the type of event or model being
described. So, for example, both parts one and two have specific chapters on voice-based issues that
center on T-Library’s generation of events and how calls are routed in a contact center.

Framework Stat Server User’s Guide
Use with: Stat Server

See the Stat Server page to download the User's Guide by version.

Reporting Technical Reference
Use with: Stat Server

Download: Reporting Technical Reference 8.0 Overview

Download: Reporting Technical Reference Guide for the Genesys 7.2 Release

Platform SDK Resources Explicitly Choosing a Netty or Mina Connection Layer

Platform SDK Developer's Guide 385

Multimedia Open Media Interaction Models Reference Manual
Use with: Interaction Server

Download: Multimedia 7.5 Open Media Interaction Models Reference Manual

Code Samples

The documentation for the Platform SDK includes a number of code samples. These samples are for
illustrative purpose only:

• Complex Platform SDK 7.6 .NET Code Sample
• Configuration Platform SDK 7.6 Java (with Message Broker) Code Sample
• Configuration Platform SDK 7.6 .NET Code Sample
• Open Media Platform SDK 7.6 Java (Client) Code Sample
• Open Media Platform SDK 7.6 .NET (Client) Code Sample
• Open Media Platform SDK 7.6 Java (Server) Code Sample
• Open Media Platform SDK 7.6 .NET (Server) Code Sample
• Statistics Platform SDK 7.6 Java Code Sample
• Statistics Platform SDK 7.6 .NET Code Sample
• Voice Platform SDK 7.6 Java Code Sample
• Voice Platform SDK 7.6 .NET Code Sample

Platform SDK Resources Explicitly Choosing a Netty or Mina Connection Layer

Platform SDK Developer's Guide 386

	Platform SDK Developer's Guide
	Table of Contents
	Welcome to the Developer's Guide!
	Introductory Topics
	Introducing the Platform SDK
	Architecture of the Platform SDK
	Connecting to a Server
	Configuring Platform SDK Channel Encoding for String Values
	Using the Warm Standby Application Block
	Event Handling
	Setting up logging in Platform SDK

	Advanced Platform SDK Topics
	Secure connections using TLS
	Quick Start
	Using the Platform SDK Commons Library
	Using the Application Template Application Block
	Configuring TLS Parameters in Configuration Manager
	Using and Configuring Security Providers
	OpenSSL Configuration File
	Use Cases

	Lazy Parsing of Message Attributes

	Server-Specific Overviews
	Telephony (T-Server)
	List of TLib Functions
	List of TLib Datatypes
	List of TLib Unstructured Data

	Configuration
	Connecting Using UTF-8 Character Encoding
	Change Password On Next Login
	Getting the Last Login Info
	Using the Configuration Object Model Application Block
	Introduction to the Configuration Layer Objects
	List of Configuration Layer Objects
	List of Configuration Layer Enumerations

	Stat Server
	Interaction Server
	Universal Contact Server
	Creating an E-Mail

	Chat
	Outbound
	Management Layer
	LCA Hang-Up Detection Support
	Handle Application "Graceful Stop" with the LCA Protocol

	Routing Server

	Component Overviews
	Using the Log Library
	Using the Switch Policy Library

	Legacy Topics
	Using the Message Broker Application Block
	Event Handling Using the Message Broker Application Block
	Using the Protocol Manager Application Block
	Connecting to a Server Using the Protocol Manager Application Block
	Explicitly Choosing a Netty or Mina Connection Layer

	Platform SDK Resources

