
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Platform SDK 8.1.1

Platform SDK Developer's Guide

12/30/2021

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Welcome to the Developer's Guide! 3
Lazy Parsing of Message Attributes 6
Platform SDK Implementation of TLS 9

Quick Start 13
Using the Platform SDK Commons Library 16
Using the Application Template Application Block 23
Configuring TLS Parameters in Configuration Manager 31
Using and Configuring Security Providers 51
OpenSSL Configuration File 62
Use Cases 69

LCA Hang-Up Detection Support 72
Using the Switch Policy Library 78
Developers Guide PDF - PSDK 7.6 89
Platform SDK Resources 90

Welcome to the Developer's Guide!
This document introduces you to the tools and examples provided to help you get started with
Platform SDK development.

Developer articles for the Platform SDK are divided broadly into the following categories:

• Introductory and Feature-Specific Topics describe general topics and common SDK functionality that all
Platform SDK developers should be familiar with.

• Application Blocks provide production-ready blocks of code you should leverage, and modify if
necessary, when creating applications.

• Server-Specific SDK Protocols work directly with Genesys servers using message-based requests and
events.

• Library Components offer additional features and functionality such as logging.

For additional information about the Platform SDKs, please check the introductory materials provided
as part of the Platform SDK API Reference for your release.

Introductory and Feature-Specific Topics

• Lazy Parsing of Message Attributes
• Platform SDK Implementation of TLS

Server-Specific SDK Protocols

Platform SDK Protocol Genesys Server(s) Related Documentation
Configuration Platform SDK Configuration Server
Contacts Platform SDK Universal Contact Server

Management Platform SDK

Message Server
Solution Control Server

Local Control Agent
LCA Hang-Up Detection Support

Open Media Platform SDK Interaction Server
Outbound Contact Platform SDK Outbound Contact Server

Routing Platform SDK
Universal Routing Server
Custom Server

Statistics Platform SDK Stat Server
Voice Platform SDK T-Servers
Web Media Platform SDK Chat Server

Welcome to the Developer's Guide!

Platform SDK Developer's Guide 3

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/Overview#Introductory_and_Feature-Specific_Topics
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/Overview#Application_Blocks
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/Overview#Server-Specific_SDK_Protocols
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/Overview#Library_Components
https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/LazyParsingofMessageAttributes
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/PlatformSDKImplementationofTLS
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/LCAHang-UpDetectionSupport

Platform SDK Protocol Genesys Server(s) Related Documentation

E-Mail Server Java

Callback Server

Library Components

Library Component Releated Documentation
Platform SDK Log Library
Platform SDK Switch Policy Library Using the Switch Policy Library

Application Blocks

Application Block Releated Documentation
Application Template Application Block (Java)
Configuration Object Model Application Block
Message Broker Application Block
Protocol Manager Application Block
Warm Standby Application Block

New Content by Release

This section provides a quick outline of developer content based on the release where that
information first became relevant, or where it where last updated.

Release 8.1.1 New Features:

• Platform SDK Implementation of TLS

Release 8.1.0

New Features:

• Lazy Parsing of Message Attributes
• LCA Hang-Up Detection Support

Release 8.0

• Please refer to developer information provided as part of the introductory material in the Platform SDK
API Reference for this release.

Release 7.6

Welcome to the Developer's Guide!

Platform SDK Developer's Guide 4

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/UsingtheSwitchPolicyLibrary
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/PlatformSDKImplementationofTLS
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/LazyParsingofMessageAttributes
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/LCAHang-UpDetectionSupport
https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome
https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome

• Please refer to the Platform SDK 7.6 Developer's Guide PDF.

Additional Resources

The following page contains reference materials that may be useful when developing applications
with Platform SDK.

• Platform SDK Resources

Welcome to the Developer's Guide!

Platform SDK Developer's Guide 5

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/DevelopersGuidePDF-PSDK7.6
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/PlatformSDKResources

Lazy Parsing of Message Attributes
This page provides:

• an overview and list of requirements for the lazy parsing feature
• design details explaining how this feature works
• code examples showing how to implement lazy parsing in your applications

Introduction to Lazy Parsing

Lazy parsing allows users to specify which attributes should always be parsed immediately, and
which attributes should be parsed only on demand.

Some complex attributes (such as the ConfObject attribute found in some Configuration Server
protocol messages) are large and very complex. Unpacking these attributes can be time-consuming
and, in cases when an application is not interested in that data, can affect program performance. This
issue is resolved by using the "lazy parsing" feature included with the Platform SDK 8.1 release,
which is described in this article.

When this feature is turned off, all message attributes are parsed immediately - which is normal
behavior for previous version of the Platform SDK. When lazy parsing is enabled, any attributes that
were tagged for lazy parsing are only parsed on demand. In this case, if the application does not
explicitly check the value of an attribute tagged for lazy parsing then that attribute is never parsed at
all.

Feature Overview

• Platform SDK includes configuration options to turn the lazy parsing functionality on or off for each
individual protocol that supports this feature.

• Potentially time-consuming attributes that are candidates for lazy parsing are selected and marked by
Platform SDK developers. Refer to your Platform SDK API Reference for details.

• To maintain backwards compatibility, there is no change in how user applications access attribute
values.

• By default, the lazy parsing feature is turned off.

System Requirements

Platform SDK for .NET:

Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 6

• Configuration SDK protocol release 8.1 or later<ref name="ConfObject">Note: Currently, lazy parsing
is only used with the EventObjectsRead.ConfObject property of the Configuration Platform
SDK.</ref>

• .NET Framework 3.5
• Visual Studio 2008 (required for .NET project files)

Platform SDK for Java:

• Configuration SDK protocol release 8.1 or later<ref name="ConfObject"/>
• J2SE 5.0 or Java 6 SE runtime

<references/>

Design Details

This section describes the main classes and interfaces you will need to be familiar with to implement
lazy parsing in your own application. For illustration purposes, .NET code snippets are provided.

Enabling and Disabling the Lazy Parsing Feature
At any time, a running application can enable or disable lazy parsing for a specific protocol in just a
few lines of code. This is done in three easy steps:

1. Create a new KeyValueCollection object.
2. Set the appropriate value for the CommonConnection.LazyParsingEnabledKey field. A value of True

enables the feature, while False disables lazy parsing.
3. Use a KeyValueConfiguration object to apply that setting to the desired protocol(s).

Note: The default value of the CommonConnection.LazyParsingEnabledKey field is always False,
with the lazy parsing feature disabled.

Once lazy parsing mode is enabled for a protocol, the change is applied immediately. Every new
message that is received takes the lazy parsing setting into account: parsing entire messages if the
feature is disabled, or leaving some attributes unparsed until their values are requested if the feature
is enabled.

To enable lazy parsing for the Configuration Server protocol, an application would use the following
code:

KeyValueCollection kvc = new KeyValueCollection();
kvc[CommonConnection.LazyParsingEnabledKey] = "true";
KeyValueConfiguration kvcfg = new KeyValueConfiguration(kvc);
ConfServerProtocol cfgChannel = new ConfServerProtocol(endpoint);
cfgChannel.Configure(kvcfg); //lazy parsing is immediately active after this line

To disable lazy parsing for the protocol, only the second line of code is changed (as shown below):

kvc[CommonConnection.LazyParsingEnabledKey] = "false";

Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 7

Accessing Attribute Values
There is no difference in how applications access attribute values from returned messages. Whether
the lazy parsing feature is enabled or disabled, whether the attribute being access supports lazy
parsing or not, your code remains exactly the same.

However, you should consider differences in timing when accessing attribute values.

• When lazy parsing is disabled, the entire message is parsed immediately when it is received. Accessing
attribute values is very fast, as the requested information is already prepared.

• When lazy parsing is enabled, the delay to parse the message upon arrival is smaller but accessing any
attributes that support lazy parsing causes a slightly delay as that information must first be parsed.
Note that accessing the same attribute a second time will not result in the attribute information being
parsed a second time; Platform SDK saves parsed data.

Additional Notes

• XML Serialization — The XmlMessageSerializer class has been updated to support lazy parsing. If a
message that contains unparsed attributes is serialized, then XmlMessageSerializer will trigger
parsing before the serialization process begins.

• ToString function — Use of the ToString method does not trigger parsing of attributes that support
lazy parsing. In this case, each unparsed attribute has its name printed along with a value of: "<value
is not yet parsed>".

Lazy Parsing of Message Attributes

Platform SDK Developer's Guide 8

Platform SDK Implementation of TLS
This page provides an introduction to creating and configuring Transport Layer Security (TLS) for your
Platform SDK connections, as introduced in release 8.1.1.

Introduction to TLS

This page provides an overview of the TLS implementation provided in the 8.1.1 release of Platform
SDK. It introduces Platform SDK users to TLS concepts and then provides links to expanded articles
and examples that describe implementation details.

Before working with TLS to create secure connections, you should have a basic awareness of how
public key cryptography works.

Certificates
Transport Layer Security (TLS) technology uses public key cryptography, where the key required to
encrypt and decrypt information is divided into two parts: a public key and a private key. These parts
are reciprocal in the sense that data encrypted using a private key can be decrypted with the public
key and vice versa, but cannot be decrypted using the same key that was used for encryption.

There is an X.509 standard for public key (certificate) format, and public-key cryptography standards
(PKCS) that define format for private key (PKCS#8) and related data structures.

Certificate Authority (CA)
In the context of TLS, a CA is an entity that is trusted by both sides of network connection. Each CA
has a public X.509 certificate and owns a related private key that kept secret. A CA can generate and
sign certificates for other parties using its private key, and then that CA certificate can be used by
the parties to validate their certificates. A CA can also issue public Certificate Revocation Lists (CRLs),
which are also used by parties for certificate validation.

The relation between certificates and CRL can be depicted like this:

Platform SDK Implementation of TLS

Platform SDK Developer's Guide 9

Certificate Usage
To create a secure connection, each party must have a copy of:

• a public CA certificate
• a CRL issued by the CA
• their own public certificate (with a corresponding private key)

When a network connection is established, the client initiates a TLS handshake process during which
the parties exchange their public certificates, prove that they own corresponding private keys, create
a shared session encryption key, and negotiate which cipher suite will be used.

Placement and exchange of certificate data is shown on the following diagram:

TLS only requires that servers send their certificates, but the client certificates can also be
exchanged depending on server settings. Cases where the client certificates are demanded by the
server are called “Mutual TLS”, as both sides send their certificates.

If all certificates pass validation and the ciphers are negotiated successfully, then a TLS connection is
established and higher-level protocols may proceed.

Implementing and Configuring TLS

Genesys strongly recommends reading all TLS in Platform SDK articles in order to get understanding
of how TLS works in general and how it is supported in Platform SDK. A Quick Start page is provided
for reference, but the specific implementation details and expanded information provided in other
pages will help you to better understand how to provide TLS support in your applications. Once you
have an understanding of how TLS is implemented, you can use the Use Case guide to quickly find
code snippets or relevant links for common tasks.

There are two main ways to implement TLS in your Platform SDK code:

1. Use the Platform SDK Commons Library to specify TLS settings directly when creating endpoints
2. Use the Application Template Application Block to read connection parameters inside configuration

Platform SDK Implementation of TLS

Platform SDK Developer's Guide 10

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSQuickStart
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSUseCases
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSUsingPSDKCommonsLibrary
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSUsingApplicationTemplateAB

objects retrieved from Configuration Server, then use those parameters to configure TLS settings.

Note: If using the Application Template Application Block, you will need to configure TLS Parameters
in Configuration Manager before the application is tested.

Recommendations are also provided for the configuration and use of security providers. The security
providers discussed on that page have been tested within the described configurations, and worked
reliably.

Migrating TLS Support From Previous Versions of Platform SDK

Platform SDK for Java

Platform SDK 8.1.0 had the following connection configuration parameters for TLS:

• Connection.TLS_KEY

• Connection.SSL_KEYSTORE_PATH_KEY

• Connection.SSL_KEYSTORE_PASS

The TLS_KEY parameter is the equivalent of enableTls flag in the current release, while the other
parameters specified the location and password for the Java keystore file containing certificates that
were used by the application to authenticate itself. TLS configuration code looked like this:

ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
connConf.setOption(Connection.TLS_KEY, "1");
connConf.setOption(Connection.SSL_KEYSTORE_PATH_KEY, "c:/certificates/client-certs.keystore");
connConf.setOption(Connection.SSL_KEYSTORE_PASS, "pa$$w0rd");

In Platform SDK 8.1.1, this code can be translated to the following:

boolean tlsEnabled = true;
// By default, PSDK 8.1.0 trusted any certificate
TrustManager trustManager = TrustManagerHelper.createTrustEveryoneTrustManager();
// Keystore entries may be protected with individual password,
// but usually, these passwords are the same as keystore password
KeyManager keyManager = KeyManagerHelper.createJKSKeyManager(

"c:/certificates/client-certs.keystore", "pa$$w0rd", "pa$$w0rd");
SSLContext sslContext = SSLContextHelper.createSSLContext(keyManager,
trustManager);

In most cases, certificates from other parties will need to be validated. Assuming there is a separate
keystore file with a CA certificate, this can be achieved with the following code:

TrustManager trustManager = TrustManagerHelper.createJKSTrustManager(
"c:/certificates/CA-cert.keystore", "pa$$w0rd", null, null);

Please note that different keystore files are used for the KeyManager and TrustManager objects. For
more information, see Using the Platform SDK Commons Library.

Platform SDK for .Net

There were no significant changes to interfaces for the .NET version of Platform SDK 8.1.1. In this

Platform SDK Implementation of TLS

Platform SDK Developer's Guide 11

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSUsingPSDKCommonsLibrary

case, the same code would work for 8.1.0 and 8.1.1 releases:

KeyValueConfiguration config = new KeyValueConfiguration(new KeyValueCollection());
config.TLSEnabled = true;
config.TlsCertificate = "29 3f 0d d9 65 a1 a9 92 dd 1c 8c 2a e7 20 74 06 c5 ba 0f 10";
Endpoint ep = new Endpoint(AppName, Host, Port, config);

Known Issues

For more details about the known issues listed here, refer to Using and Configuring Security
Providers.

• Java 5: MSCAPI provider is not supported.
• Java 6:

• MSCAPI provider is only supported in 32-bit version since update 27: http://bugs.sun.com/
bugdatabase/view_bug.do?bug_id=6931562.

• CRLs located in WCS are ignored, please use CRLs as files.

• Java 7:
• CRL files without extension section cannot be loaded: http://bugs.sun.com/bugdatabase/

view_bug.do?bug_id=7166885.
Note: Although the bug is marked as "Will not fix", it seems to be fixed since Java 7 update 7.

• CRLs located in WCS are ignored, please use CRLs as files.

• MSCAPI: MSCAPI does not have a documented way of programmatic setting of password to private key
stored in WCS. Regardless of password returned by CallbackHandler; if private key is protected with
confirmation prompt or password prompt, user will be shown OS popup dialog.

Platform SDK Implementation of TLS

Platform SDK Developer's Guide 12

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSSecurityProviders

Quick Start

Understanding Port Modes

TLS is configured differently depending on target port mode:

• default - Default mode ports do not use or understand TLS protocol.
• upgrade - Upgrade mode ports allow unsecured connections to be made, switching to TLS mode only

after TLS settings are retrieved from Configuration Server.
• secure - Secure mode ports require TLS to be started immediately, before sending any requests to

server.

Connecting to Default Mode Ports
Default mode is supported for all protocols; no specific configuration is needed for it to work.

Example:

Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort);
ConfServerProtocol protocol = new ConfServerProtocol(cfgServerEndpoint);
protocol.setClientName(appName);
protocol.setClientApplicationType(appType);
protocol.setUserName(username);
protocol.setUserPassword(password);
protocol.open();

It is also OK to specify explicit null parameters for the connection configuration and TLS parameters:

// Explicit null ConnectionConfiguration
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort, null);

// Explicit null ConnectionConfiguration and TLS parameters
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort, null, false, null, null);

Connecting to Upgrade Mode Ports
TLS upgrade mode is supported only for Configuration Protocol, since the TLS settings for connecting
clients must be retrieved from Configuration Server. No specific options are required; the TLS upgrade
logic works by default.

If a user has provided custom settings, then those settings are used if the TLS parameters received
from Configuration Server are empty. The only requirement that the tlsEnabled parameter in the
Endpoint constructor is not to true, otherwise the client side starts TLS immediately and the
connection would fail because an upgrade mode port expects the connection to be unsecured
initially.

// Setting tlsEnabled to true would cause failure when connecting to upgrade port:
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort,

Platform SDK Implementation of TLS Quick Start

Platform SDK Developer's Guide 13

connConf, true, sslContext, sslOptions);

Connecting to Secure Mode Port
Secure mode is supported for all protocols. TLS configuration objects/properties must be specified
before the connection is opened, and the tlsEnabled parameter must be set to true. Secure port
mode expects the client to start TLS negotiation immediately after connecting, otherwise the
connection fails.

Example:

boolean tlsEnabled = true;
// Here, the minimal TLS configuration is used, see the following section for details
TrustManager trustManager = TrustManagerHelper.createTrustEveryoneTrustManager();
KeyManager keyManager = KeyManagerHelper.createEmptyKeyManager();
SSLContext sslContext = SSLContextHelper.createSSLContext(keyManager, trustManager);
ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
Endpoint cfgServerEndpoint = new Endpoint(appName, cfgHost, cfgPort,

connConf, tlsEnabled, sslContext, sslOptions);
ConfServerProtocol protocol = new ConfServerProtocol(cfgServerEndpoint);
protocol.setClientName(appName);
protocol.setClientApplicationType(appType);
protocol.setUserName(username);
protocol.setUserPassword(password);
protocol.open();

TLS Minimal Configuration

Frequently, there is a need to quickly set up code for working TLS connections, dealing with detailed
TLS configuration later. The minimal configuration settings described below do exactly that.

Platform SDK for Java

The following code creates an SSLContext object that can be used to configure a connection to a
secure port or to configure a secure server socket. This code uses EmptyKeyManager which indicates
that the party opening connection/socket would not have any certificate to authenticate itself, and
TrustEveryoneTrustManager which trusts any certificate presented by the other party - even expired
or revoked certificates.

boolean tlsEnabled = true;
TrustManager trustManager = TrustManagerHelper.createTrustEveryoneTrustManager();
KeyManager keyManager = KeyManagerHelper.createEmptyKeyManager();
SSLContext sslContext = SSLContextHelper.createSSLContext(keyManager,
trustManager);

Note: Connections using this configuration would have a working encryption layer, but they are not
secure because they can neither authenticate themselves nor validate credentials provided by the
other party.

Note: If a server uses mutual TLS mode, then it requires the client to present a certificate. Minimal
configuration does not have certificates, so in this case the TLS negotiation would fail.

Platform SDK Implementation of TLS Quick Start

Platform SDK Developer's Guide 14

Platform SDK for .Net

Platform SDK for .Net requires less configuration, because it always uses the MSCAPI security
provider and Windows Certificate Services (WCS) by default. The following code would trust all
certificates located in the WCS Trusted Root Certificates folder for the current user account.

KeyValueConfiguration config = new KeyValueConfiguration(new KeyValueCollection());
config.TLSEnabled = true;
Endpoint ep = new Endpoint(AppName, Host, Port, config);

Note: If a server uses mutual TLS mode, then it requires clients to present a certificate. Minimal
configuration does not have certificates, so in this case the TLS negotiation would fail.

Platform SDK Implementation of TLS Quick Start

Platform SDK Developer's Guide 15

Using the Platform SDK Commons Library

Using the Platform SDK Commons Library to Configure TLS

Starting with Platform SDK 8.1.1, the only way to configure connections is by using Endpoint objects,
which contain all parameters related to the endpoint connection—including TLS parameters that
indicate whether TLS is enabled and provide details about the SSL context and extended options.

Note: In earlier releases, Platform SDK provided three ways to configure connections:

• using ConnectionConfiguration objects passed to Protocol constructors
• setting parameters in the protocol context
• adding a textual parameter representation to the URL query

The following diagrams show interdependencies among the Platform SDK objects used to establish
network connections and support TLS.

TLS Configuration Objects Containment Hierarchy

This page outlines each step required to create supporting objects for a TLS-enabled Endpoint.

Callback Handlers
In many cases, certificate or key storage is password-protected. This means that Platform SDK will
need the password to access storage. The Java CallbackHandler interface offers a flexible way to
pass this type of credential data:

package javax.security.auth.callback;

Platform SDK Implementation of TLS Using the Platform SDK Commons Library

Platform SDK Developer's Guide 16

...
public interface CallbackHandler {

void handle(Callback[] callbacks)
throws java.io.IOException, UnsupportedCallbackException;

}

The handle() method accepts credential requests in the form of Callback objects that have
appropriate setter methods. The most common callback implementation is PasswordCallback. User
code may use a GUI to ask the end user to:

• enter a password
• retrieve a password from a file, pipe, network, and so on

Here is an example of a CallbackHandler delegating password retrieval to a GUI:

CallbackHandler callbackHandler = new CallbackHandler() {
public void handle(Callback[] callbacks) throws IOException,

UnsupportedCallbackException {
for (Callback c : callbacks) {

if (c instanceof PasswordCallback) {
PasswordCallback p = (PasswordCallback) c;
p.setPassword(gui.getKeyStorePassword());

}
}

}
};

When No Password is Required

In some cases, certificate storage does not need a password. The API may still dictate that a
CallbackHandler be provided however, so the Platform SDK includes a predefined class that can be
used as a "dummy" CallbackHandler for this scenario:

com.genesyslab.platform.commons.connection.tls.DummyPasswordCallbackHandler

Here is an example of using this dummy class:

CallbackHandler callbackHandler = new DummyPasswordCallbackHandler();

Key Managers
Java provides a KeyManager interface. This interface defines functionality that can be used to load
and contain certificates or keys, or to select appropriate certificates or keys.

Classes based on the KeyManager interface are used by Java TLS support to retrieve certificates that
will be sent over the network to a remote party for validation. They are also used to retrieve the
corresponding private keys. On the client side, KeyManager classes retrieve client certificates or keys;
on the server side they retrieve server certificates or keys.

The Platform SDK Commons library has a helper class, KeyManagerHelper, which makes it easy to
create key managers using several types of key stores and security providers. The built-in key
manager types are:

• PEM — reads certificate/key pairs from X.509 PEM files.
• MSCAPI — uses the Microsoft CryptoAPI and Windows certificate services to retrieve certificate/key

Platform SDK Implementation of TLS Using the Platform SDK Commons Library

Platform SDK Developer's Guide 17

pairs.
• PKCS11 — delegates to an external security provider plugged in via the PKCS#11 interface, for

example, Mozilla NSS.
• JKS — retrieves a certificate/key pair from a Java Keystore file.
• Empty — does not retrieve anything. This type is for use as a dummy key manager. For example,

clients that do not have certificates can use it.

Here are some examples of key manager creation:

// From PEM file
X509ExtendedKeyManager km = KeyManagerHelper.createPEMKeyManager(

"c:/cert/client-cert.pem", "c:/cert/client-cert-key.pem");

// From MSCAPI
CallbackHandler cbh = new DummyPasswordCallbackHandler();
// Whitespace characters are allowed anywhere inside the string
String certThumbprint =

"4A 3F E5 08 48 3A 00 71 8E E6 C1 34 56 A4 48 34 55 49 D9 0E";
X509ExtendedKeyManager km = KeyManagerHelper.createMSCAPIKeyManager(

cbh, certThumbprint);

// From PKCS11
// This provider does not allow customization of Key Manager
// This is required for FIPS-140 certification
// Dummy callback handler will not work, must use strong password
CallbackHandler passCallback = ...;
X509ExtendedKeyManager km = KeyManagerHelper.createPKCS11KeyManager(

passCallback);

// From JKS
// JKS key store does not allow callback usage (bug in Java?)
// Individual entries in JKS key store can be password-protected
char[] keyStorePass = "keyStorePass".toCharArray();
char[] entryPass = "entryPass".toCharArray();
X509ExtendedKeyManager km = KeyManagerHelper.createJKSKeyManager(

"c:/cert/client-cert.jks", keyStorePass, entryPass);

// Empty key manager
// Using KeyManagerHelper class
X509ExtendedKeyManager km1 = KeyManagerHelper.createEmptyKeyManager();
// Direct creation
X509ExtendedKeyManager km2 = new EmptyX509ExtendedKeyManager();

Trust Managers
A Trust Manager is an entity that decides which certificates from a remote party are to be trusted. It
performs certificate validation, checks the expiration date, matches the host name, checks the
certificate against a CRL list, and builds and validates the chain of trust. The chain of trust starts from
a certificate trusted by both sides (for example, a CA certificate) and continues with second-level
certificates signed by CA, then possibly with third-level certificates signed by second-level authorities
and so on. Chain length can vary, but Platform SDK was designed to explicitly support two-level
chains consisting of a CA certificate and a leaf certificate signed by CA.

Trust manager instances are created based on storage that contains trusted certificates. The number
of trusted certificates can vary depending on the type of trust manager being used. With PEM files,
the storage contains only a single CA certificate; other provider types can have larger sets of trusted
certificates.

Platform SDK Implementation of TLS Using the Platform SDK Commons Library

Platform SDK Developer's Guide 18

The Platform SDK Commons library has a helper class, TrustManagerHelper, which makes it easy to
create trust managers that use several types of certificate stores and security providers, and which
can accept additional parameters that affect certificate validation. Built-in trust manager types are:

• PEM — Reads a CA certificate from an X.509 PEM file.
• MSCAPI — Uses the Microsoft CryptoAPI and Windows certificate services to retrieve CA certificates and

validate certificates.
• PKCS11 — Delegates certificate validation to an external security provider plugged in via the PKCS#11

interface, for example, Mozilla NSS.
• JKS — Retrieves a CA certificate from a Java Keystore file and uses Java built-in validation logic.
• Default — Uses trusted certificates shipped with or configured in Java Runtime and Java built-in

validation logic.
• TrustEveryone — Trusts any certificates. Can be used on the server side when you do not expect any

certificates from clients, or during testing.

Here are some examples of trust manager creation (with generic crlPath and expectedHostName
parameters defined in the first example):

// Generic parameters for trust manager examples
String crlPath = "c:/cert/ca-crl.pem";
String expectedHostName = "serverhost";
// From PEM file
X509TrustManager tm = TrustManagerHelper.createPEMTrustManager(

"c:/cert/ca.pem", crlPath, expectedHostName);

// From MSCAPI
// CRL is loaded from PEM file (Platform SDK supports only file-base CRLs)
// Concrete CA is not specified, all certificates from WCS Trusted Root are used
CallbackHandler cbh = new DummyPasswordCallbackHandler();
X509TrustManager tm = TrustManagerHelper.createMSCAPITrustManager(

cbh, crlPath, expectedHostName);

// From PKCS#11
// This provider implementation in Java does not allow custom host name check,
// but CRL can still be used
X509TrustManager tm = TrustManagerHelper.createPKCS11TrustManager(

cbh, crlPath);

// From JKS
// JKS key store does not allow callback usage (bug in Java?)
// Certificate-only entries cannot have passwords in JKS key store
// CRL and host name check are supported
char[] keyStorePass = "keyStorePass".toCharArray();
X509ExtendedKeyManager km = KeyManagerHelper.createJKSTrustManager(

"c:/cert/ca-cert.jks", keyStorePass, crlPath, expectedHostName);

// From Java built-in trusted certificates
// This one does not support CRL and host name check
X509ExtendedKeyManager km = KeyManagerHelper.createDefaultTrustManager();

// Trust Everyone
X509ExtendedKeyManager km =

KeyManagerHelper.createTrustEveryoneTrustManager();

Platform SDK Implementation of TLS Using the Platform SDK Commons Library

Platform SDK Developer's Guide 19

SSLContext and SSLExtendedOptions
An SSLContext instance serves as a container for all SSL and TLS parameters and objects and also as
a factory for SSLEngine instances.

SSLEngine instances contain logic that deals directly with TLS handshaking, negotiation, and data
encryption and decryption. SSLEngine instances are not reusable and must be created anew for each
connection. This is a good reason for requiring users to provide an SSLContext instance rather than
an instance of SSLEngine. SSLEngine instances are created by the Platform SDK connection layer
and are not exposed to user code.

Only some of the parameters for SSLEngine can be pre-set in SSLContext. However, the
SSLExtendedOptions class may be used to collect additional parameters.

SSLExtendedOptions currently contains two parameters:

• the "mutual TLS" flag
• a list of enabled cipher suites

The mutual TLS flag is used only by server applications. When the flag is turned on, the server will
require connecting clients to send their certificates for validation. The connections of any clients that
do not send certificates will fail.

The list of enabled cipher suites contains the names of all cipher suites that will be used as filters for
SSLEngine. As a result, only ciphers that are supported by SSLEngine and that are contained in the
enabled cipher suites list will be enabled for use.

Platform SDK includes the SSLContextHelper helper class to support one-line creation of SSLContext
and SSLExtendedOptions instances.

Here are some examples:

// Creating SSLContext
KeyManager km = ...;
TrustManager tm = ...;
SSLContext sslContext = SSLContextHelper.createSSLContext(km, tm);

String[] cipherList = new String[] {
"TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
"TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA"};

// Can be single String with space-separated suite names
String cipherNames = "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA " +

"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA " +
"TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA";

boolean mutualTLS = false;

// Creating SSLExtendedOptions directly
SSLExtendedOptions sslOpts1 =

new SSLExtendedOptions(mutualTLS, cipherList);
SSLExtendedOptions sslOpts2 =

new SSLExtendedOptions(mutualTLS, cipherNames);

// Create SSLExtendedOptions using the helper class:
SSLExtendedOptions sslOpts3 =

SSLContextHelper.createSSLExtendedOptions(mutualTLS, cipherList);
SSLExtendedOptions sslOpts4 =

Platform SDK Implementation of TLS Using the Platform SDK Commons Library

Platform SDK Developer's Guide 20

SSLContextHelper.createSSLExtendedOptions(mutualTLS, cipherNames);

Endpoints
Now that supporting objects have been created and configured, you are ready to create an Endpoint.

The connection configuration parameters of an Endpoint are read-only—they cannot be changed
after the Endpoint is created. This configuration information is then used by Protocol instances, the
warm standby service, the connection layer and the TLS layer.

A sample Endpoint configuration is shown below:

ConnectionConfiguration connConf = ...;
SSLContext sslContext = ...;
SSLExtendedOptions sslOpts = ...;
tlsEnabled = true;
// Specifying host name and port.
Endpoint ep1 = new Endpoint("Server-1", "serverhost", 9090, connConf,

tlsEnabled, sslContext, sslOpts);
// Specifying URI. Query part is still supported.
String uri = "tcp://Server-1@serverhost:9090/" +

"?protocol=addp&addp-remote-timeout=5&addp-trace=remote";
Endpoint ep2 = new Endpoint("Server-1", uri, connConf,

tlsEnabled, sslContext, sslOpts);

Note: Configuration parameters can be set directly in a Protocol instance context, but will be
overwritten and lost under the following conditions:

• a new Endpoint is set up
• the protocol is forced to reconnect
• a warm standby switchover occurs

Configuring TLS for Client Connections
Using the information above, you are now ready to configure actual client connections.

Example:

// Get TLS configuration objects for connection
String clientName = "ClientApp";
String host = "serverhost";
int port = 9000;
SSLContext sslContext = ...; // Assume it is created
SSLExtendedOptions sslOptions = ...; // Assume it is created
boolean tlsEnabled = true;

ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
Endpoint epTSrv = new Endpoint(

clientName, host, port, connConf, tlsEnabled, sslContext, sslOptions);

TServerProtocol tsProtocol = new TServerProtocol(epTSrv);
tsProtocol.setClientName(clientName);
tsProtocol.open();

Platform SDK Implementation of TLS Using the Platform SDK Commons Library

Platform SDK Developer's Guide 21

Configuring TLS for Servers
Using the information above, you are now ready to configure actual server connections.

String serverName = "ServerApp";
String host = "serverhost";
int port = 9000;
SSLContext sslContext = ...; // Assume it is created
SSLExtendedOptions sslOptions = ...; // Assume it is created
boolean tlsEnabled = true;

ConnectionConfiguration connConf = new KeyValueConfiguration(new KeyValueCollection());
Endpoint epTSrv = new Endpoint(

serverName, host, port, connConf, tlsEnabled, sslContext, sslOptions);

ExternalServiceProtocolListener serverChannel =
new ExternalServiceProtocolListener(endpoint);

Platform SDK Implementation of TLS Using the Platform SDK Commons Library

Platform SDK Developer's Guide 22

Using the Application Template Application
Block

Introduction

Instead of using the Platform SDK Commons Library to configure TLS connections with hard-coded
values, you can use the Platform SDK Application Template Application Block to retrieve configuration
objects from Configuration Server which contain parameters that are used to configure your TLS
settings.

The steps do accomplish this are as follows:

1. Parse a configuration object
2. Create a TLSConnectionConfiguration object for the configuration object
3. Customize your TLSConnectionConfiguration object:

• Add callback handlers
• For clients, set the expected host names for primary and backup servers

4. Create SSLContext and SSLExtendedOptions objects based on your TLSConnectionConfiguration
object

5. Use your SSLContext and SSLExtendedOptions objects to create Endpoints and/or
WarmStandbyConfiguration objects

6. Use your Endpoints and/or WarmStandbyConfiguration objects to create Protocol instances

The sections below describe these steps in more detail. If you plan on using this method to configure
TLS settings, be sure that related application objects in Configuration Manager have been configured
with TLS parameters.

Note: If you aren't familiar with TLS configuration settings then please read Using the Platform SDK
Commons Library to gain a better understanding of what is required.

Parsing Configuration Objects

The Platform SDK Application Template has a helper class, TLSConfigurationParser, which makes it
easy to extract TLS parameters from Configuration Server. Taken together, the
TLSConfigurationParser, ClientConfigurationHelper, and ServerConfigurationHelper classes
cover all of the connection-related options found in Configuration Server. They also provide other
useful functionality.

TLSConfigurationParser has two methods:

Platform SDK Implementation of TLS Using the Application Template Application Block

Platform SDK Developer's Guide 23

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSUsingPSDKCommonsLibrary
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSTLSParametersinConfigManager
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSUsingPSDKCommonsLibrary
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSUsingPSDKCommonsLibrary

public static void parseClientTLSConfiguration(
IGApplicationConfiguration appConfig,
IGApplicationConfiguration.IGAppConnConfiguration connConfig,
ITLSConnectionConfiguration config);

and

public static void parseServerTLSConfiguration(
IGApplicationConfiguration appConfig,
IGApplicationConfiguration.IGPortInfo portConfig,
ITLSConnectionConfiguration config);

Both of these methods require configuration objects and an ITLSConnectionConfiguration instance
as parameters. The ITLSConnectionConfiguration instance is provided with setter methods that
you can use to populate its TLS parameters.

For example:

// Client side
// Prepare configuration objects
String clientAppName = "<my-app-name>";
CfgAppType targetServerType = CfgAppType.CFGTServer;
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(clientAppName));
GCOMApplicationConfiguration appConfiguration =

new GCOMApplicationConfiguration(cfgApplication);
IGApplicationConfiguration.IGAppConnConfiguration connConfig =

appConfiguration.getAppServer(targetServerType);

// Parse TLS parameters
ITLSConnectionConfiguration tlsConfiguration =

new TLSConnectionConfiguration();
TLSConfigurationParser.parseClientTLSConfiguration(

appConfiguration, connConfig, tlsConfiguration);
// At this point, tlsConfiguration contains TLS parameters read from
// configuration objects

// Server side
// Prepare configuration objects
String serverAppName = "<my-app-name>";
String portID = "secure";
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(serverAppName));
GCOMApplicationConfiguration appConfiguration =

new GCOMApplicationConfiguration(cfgApplication);
IGApplicationConfiguration.IGPortInfo portConfig =

appConfiguration.getPortInfo(portID);

// Parse TLS parameters
ITLSConnectionConfiguration tlsConfiguration =

new TLSConnectionConfiguration();
TLSConfigurationParser.parseServerTLSConfiguration(

appConfiguration, portConfig, tlsConfiguration);
// At this point, tlsConfiguration contains TLS parameters read from
// configuration objects

Platform SDK Implementation of TLS Using the Application Template Application Block

Platform SDK Developer's Guide 24

Customizing TLS Configuration

After a TLSConnectionConfiguration object has been populated from configuration objects, it
requires further customization.

Note: The TLSConfiguration, TLSConfigurationHelper and TLSConfigurationParser classes in
the Platform SDK Commons Connection library are only used internally for TLS upgrade connections,
and currently are not intended for any other use. For custom TLS configuration, please use classes
from the Application Template Application Block.

Setting Callback Handlers for Password Retrieval
Callback handlers for password retrieval must be set explicitly and cannot be configured externally.
This applies to both client and server applications.

Note: Callback handlers for password retrieval must always be set—even if they are not going to be
used—because some security providers require them. If you do not require password retrieval then
Platform SDK provides a dummy class that can be used instead of creating a custom callback handler.

Here is how to set callback handlers in the ITLSConnectionConfiguration object for password
retrieval:

// Passwords are not used, so set dummies:
tlsConfiguration.setKeyStoreCallbackHandler(

new DummyPasswordCallbackHandler());
tlsConfiguration.setTrustStoreCallbackHandler(

new DummyPasswordCallbackHandler());

// Real password is needed:
tlsConfiguration.setKeyStoreCallbackHandler(new CallbackHandler() {

public void handle(Callback[] callbacks) {
char[] password = new char[] {

'p', 'a', 's', 's', 'w', 'o', 'r', 'd'};
for (Callback c : callbacks) {

if (c instanceof PasswordCallback) {
((PasswordCallback) c).setPassword(password);

}
}

}
}

);

Setting the Expected Host Name
Specifying the expected host name is not always a straightforward process. When you are configuring
TLS on the client side in particular, note that the expected host names for primary and backup
connections are usually (although not always) different. Users may also choose to use IP addresses
instead of DNS host names, or to use DNS names with wildcards.

No matter how these names have been set up, the expected host name must match one of names
specified in the server's certificate. In extreme cases, these names may not relate to the actual host
name at all. To allow for these kinds of situations, Platform SDK does not attempt to set the expected
host name for you. You will have to write your own code for this purpose.

The following sample code shows how to set the expected server name to the actual host name of

Platform SDK Implementation of TLS Using the Application Template Application Block

Platform SDK Developer's Guide 25

the target server:

// Client side
// Prepare configuration objects
String clientAppName = "<my-app-name>";
CfgAppType targetServerType = CfgAppType.CFGTServer;
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(clientAppName));
GCOMApplicationConfiguration appConfiguration =

new GCOMApplicationConfiguration(cfgApplication);
IGApplicationConfiguration.IGAppConnConfiguration connConfig =

appConfiguration.getAppServer(targetServerType);

// TLS-specific part
IGApplicationConfiguration.IGServerInfo primaryServer =

connConfig.getTargetServerConfiguration().getServerInfo();
IGApplicationConfiguration.IGServerInfo backupServer =

primaryServer.getBackup().getServerInfo();
tlsConfiguration.setExpectedHostname(primaryServer.getHost().getName());
// Or:
tlsConfiguration.setExpectedHostname(backupServer.getHost().getName());

Creating SSLContext Objects

The Platform SDK Application Template has a helper class, TLSConfigurationHelper, which creates
SSLContext and SSLExtendedOptions objects by using information from a
TLSConnectionConfiguration object.

TLSConfigurationHelper has two methods:

public static SSLContext createSSLContext(
ITLSConnectionConfiguration config);

and

static SSLExtendedOptions createSSLExtendedOptions(
ITLSConnectionConfiguration config);

The createSSLContext() method determines the security provider type, creates the necessary key
store objects, a key manager, and a trust manager, and then wraps it all into an SSLContext object.

The createSSLExtendedOptions() method does not contain any logic. It just creates a new
SSLExtendedOptions object containing the exact parameters taken from the
TLSConnectionConfiguration object.

Here are samples of how to use these methods:

// TLS preparation section follows
ITLSConnectionConfiguration tlsConfiguration =

new TLSConnectionConfiguration();
TLSConfigurationParser.parseClientTLSConfiguration(

appConfiguration, connConfig, tlsConfiguration);

SSLContext sslContext =
TLSConfigurationHelper.createSSLContext(tlsConfiguration);

SSLExtendedOptions sslOptions =

Platform SDK Implementation of TLS Using the Application Template Application Block

Platform SDK Developer's Guide 26

TLSConfigurationHelper.createSSLExtendedOptions(tlsConfiguration);

Configuring TLS for Client Connections

Platform SDK has a helper class, ClientConfigurationHelper, that makes it easier to prepare
connections for client applications. This class has the following methods:

public static Endpoint createEndpoint(
IGApplicationConfiguration appConfig,
IGAppConnConfiguration connConfig,
IGApplicationConfiguration targetServerConfig);

public static Endpoint createEndpoint(
IGApplicationConfiguration appConfig,
IGAppConnConfiguration connConfig,
IGApplicationConfiguration targetServerConfig,
boolean tlsEnabled,
SSLContext sslContext,
SSLExtendedOptions sslOptions);

public static WarmStandbyConfiguration createWarmStandbyConfig(
IGApplicationConfiguration appConfig,
IGAppConnConfiguration connConfig);

public static WarmStandbyConfiguration createWarmStandbyConfig(
IGApplicationConfiguration appConfig,
IGAppConnConfiguration connConfig,
boolean primaryTLSEnabled,
SSLContext primarySSLContext,
SSLExtendedOptions primarySSLOptions,
boolean backupTLSEnabled,
SSLContext backupSSLContext,
SSLExtendedOptions backupSSLOptions);

Two of these methods simply accept TLS-specific parameters and pass them through to the Endpoint
and WarmStandbyConfiguration instances being created. A code sample using the
createEndpoint() method is shown here:

String clientAppName = "<my-app-name>";
CfgAppType targetServerType = CfgAppType.CFGTServer;
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(clientAppName));

GCOMApplicationConfiguration appConfiguration =
new GCOMApplicationConfiguration(cfgApplication);

IGAppConnConfiguration connConfig =
appConfiguration.getAppServer(targetServerType);

// TLS preparation section follows
ITLSConnectionConfiguration tlsConfiguration =

new TLSConnectionConfiguration();
TLSConfigurationParser.parseClientTLSConfiguration(

appConfiguration, connConfig, tlsConfiguration);

// TLS customization code goes here...
// As an example, host name verification is turned on
IGApplicationConfiguration.IGServerInfo targetServer =

Platform SDK Implementation of TLS Using the Application Template Application Block

Platform SDK Developer's Guide 27

connConfig.getTargetServerConfiguration().getServerInfo();
tlsConfiguration.setExpectedHostname(targetServer.getHost().getName());

// Get TLS configuration objects for connection
SSLContext sslContext =

TLSConfigurationHelper.createSSLContext(tlsConfiguration);
SSLExtendedOptions sslOptions =

TLSConfigurationHelper.createSSLExtendedOptions(tlsConfiguration);
boolean tlsEnabled = true;
// TLS preparation section ends

Endpoint epTSrv = ClientConfigurationHelper.createEndpoint(
appConfiguration, connConfig,
connConfig.getTargetServerConfiguration(),
tlsEnabled, sslContext, sslOptions);

TServerProtocol tsProtocol = new TServerProtocol(epTSrv);
tsProtocol.setClientName(clientName);
tsProtocol.open();

Configuring Warm Standby
In cases when the target server has a backup in warm standby mode, configuration requires a little
extra effort, as shown in the following code sample.

Note: Configuring TLS for primary and backup servers in Warm Standby mode has some specifics
that may not be obvious. Primary and backup servers typically share the same settings. Thus, when a
server is selected as a backup for another server (the primary server), Configuration Manager copies
settings from the primary server to the backup server to make them the same. This is also true of TLS
settings, and the same TLSConnectionConfiguration object can be used to configure both the
primary and backup connections. On the other hand, primary and backup servers usually reside on
different hosts. This means that if a hostname check is used, each of these servers must have
different expectedHostname parameter values. This is not hard to do, as the following code sample
demonstrates, but it is not always obvious.

String clientAppName = "<my-app-name>";
CfgAppType targetServerType = CfgAppType.CFGStatServer;
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(appName));

GCOMApplicationConfiguration appConfiguration =
new GCOMApplicationConfiguration(cfgApplication);

IGAppConnConfiguration connConfig =
appConfiguration.getAppServer(targetServerType);

// TLS preparation section follows
ITLSConnectionConfiguration tlsConfiguration =

new TLSConnectionConfiguration();
TLSConfigurationParser.parseClientTLSConfiguration(

appConfiguration, connConfig, tlsConfiguration);

IGApplicationConfiguration.IGServerInfo primaryServer =
connConfig.getTargetServerConfiguration().getServerInfo();

IGApplicationConfiguration.IGServerInfo backupServer =
primaryServer.getBackup().getServerInfo();

// Configure TLS for Primary
tlsConfiguration.setExpectedHostname(primaryServer.getHost().getName());
SSLContext primarySSLContext =

Platform SDK Implementation of TLS Using the Application Template Application Block

Platform SDK Developer's Guide 28

TLSConfigurationHelper.createSSLContext(tlsConfiguration);
SSLExtendedOptions primarySSLOptions =

TLSConfigurationHelper.createSSLExtendedOptions(tlsConfiguration);
boolean primaryTLSEnabled = true;

// Configure TLS for Backup
tlsConfiguration.setExpectedHostname(backupServer.getHost().getName());
SSLContext backupSSLContext =

TLSConfigurationHelper.createSSLContext(tlsConfiguration);
SSLExtendedOptions backupSSLOptions =

TLSConfigurationHelper.createSSLExtendedOptions(tlsConfiguration);
boolean backupTLSEnabled = true;
// TLS preparation section ends

WarmStandbyConfiguration wsConfig =
ClientConfigurationHelper.createWarmStandbyConfig(

appConfiguration, connConfig,
primaryTLSEnabled, primarySSLContext, primarySSLOptions,
backupTLSEnabled, backupSSLContext, backupSSLOptions);

StatServerProtocol statProtocol =
new StatServerProtocol(wsConfig.getActiveEndpoint());

statProtocol.setClientName(clientName);

WarmStandbyService wsService = new WarmStandbyService(statProtocol);
wsService.applyConfiguration(wsConfig);
wsService.start();
statProtocol.beginOpen();

Configuring TLS for Servers

Platform SDK has a helper class, ServerConfigurationHelper, that makes it easier to prepare
listening sockets for server applications. This class has the following methods:

public static Endpoint createListeningEndpoint(
IGApplicationConfiguration application,
IGApplicationConfiguration.IGPortInfo portInfo);

public static Endpoint createListeningEndpoint(
IGApplicationConfiguration application,
IGApplicationConfiguration.IGPortInfo portInfo,
boolean tlsEnabled,
SSLContext sslContext,
SSLExtendedOptions sslOptions);

The overloaded version of the createListeningEndpoint() method accepts TLS parameters and
passes them through to the Endpoint object that is being created. The following code sample shows
how this is done:

String serverAppName = "<my-app-name>";
String portID = "secure";
CfgApplication cfgApplication = confService.retrieveObject(

CfgApplication.class, new CfgApplicationQuery(appName));
GCOMApplicationConfiguration appConfig =

new GCOMApplicationConfiguration(cfgApplication);
IGApplicationConfiguration.IGPortInfo portConfig =

appConfig.getPortInfo(portID);

Platform SDK Implementation of TLS Using the Application Template Application Block

Platform SDK Developer's Guide 29

// TLS preparation section follows
ITLSConnectionConfiguration tlsConfiguration =

new TLSConnectionConfiguration();
TLSConfigurationParser.parseServerTLSConfiguration(

appConfiguration, portConfig, tlsConfiguration);

// TLS customization code goes here...
// As an example, mutual TLS mode is turned on
tlsConfiguration.setTLSMutual(true);

// Get TLS configuration objects for connection
SSLContext sslContext =

TLSConfigurationHelper.createSSLContext(tlsConfiguration);
SSLExtendedOptions sslOptions =

TLSConfigurationHelper.createSSLExtendedOptions(tlsConfiguration);
boolean tlsEnabled = true;
// TLS preparation section ends

Endpoint endpoint = ServerConfigurationHelper.createListeningEndpoint(
appConfig, portConfig,
tlsEnabled, sslContext, sslOptions);

ExternalServiceProtocolListener serverChannel =
new ExternalServiceProtocolListener(endpoint);

...

Platform SDK Implementation of TLS Using the Application Template Application Block

Platform SDK Developer's Guide 30

Configuring TLS Parameters in
Configuration Manager

Introduction

As described earlier, the Platform SDK Application Template Application Block allows both client and
server applications to read TLS parameters from configuration objects. This page describes how to
set TLS parameters correctly in those configuration objects.

Configuration objects that will be used, and their relations, are shown in the diagram below:

To edit TLS-related parameters for these objects, you will need to have access to the Annex tab in
Configuration Manager.

Precedence of Configuration Objects
Platform SDK uses different sets of configuration objects to configure client- and server-side TLS
settings. For TLS parameters, these objects are searched from the most specific object to the most
general one. Parameters found in specific objects take precedence over those in more general
objects.

Note: This search occurs independently for each supported TLS parameter.

Location of specific TLS parameters can differ for each object, but is detailed in the appropriate
section on this page.

Configuration Object Precedence

Application type Configuration Objects Used, in Order of
Precedence

Client 1. Connection from the client application to the
server.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 31

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSUsingApplicationTemplateAB

Application type Configuration Objects Used, in Order of
Precedence

2. Application of the client.
3. Host where client application resides.
4. Port of the target server that client connects

to.[1]

Server
1. Port of the server application.
2. Application of the server.
3. Host where the server application resides.

1. If the tls parameter is not set to 1 in both the client Application and Connection objects, then the client
application will look to the Port object for the target server to determine if TLS should be turned on.
Configuration Manager does not automatically add the tls=1 parameter to Connection Transport
parameters when it is linked to a server's secure Port. This is the only case when a client application
considers settings in the server's configuration objects.

Displaying the Annex Tab in Configuration Manager
By default, Configuration Manager does not show Annex tab in Object Properties windows. This tab
can contain TLS parameters for Host and Application objects.

To show the Annex tab, select View > Options... from the main menu and ensure the Show Annex tab
in object properties option is selected.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 32

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSTLSParametersinConfigManager#1

Application Objects

Host Object
The properties window for a Host object includes most common TLS parameters on the General tab:

• Certificate
• Certificate Key
• Trusted CA

These fields allow copy/paste operations, so they can be set manually by copying and pasting the
"Thumbprint" field values from certificates in Windows Certificate Services (WCS) into the related
field in Configuration Manager.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 33

To select a certificate, use the button next to Certificate field. This opens the Select certificate
window, displaying a list of certificates installed in WCS under the Local Computer account for the
local machine.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 34

The Annex tab contains a security section that holds TLS settings for this object. Any change made to
TLS-related fields on the General tab are mirrored between the Annex tab automatically. You can also
specify additional TLS parameters here that aren't reflected on the General tab.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 35

Server Application Object
For the server Application object, TLS-related fields are located on the Server Info tab of the
properties window. Note the Certificate View controls group, where the server can be set to use Host
TLS parameters (generally recommended for Genesys Framework) or application-specific ones.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 36

If using application-specific TLS parameters, use the button next to the certificate information field to
open a certificate selection window where you can choose from a list of certificates installed for the
Local Computer account or manually enter certificate information:

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 37

Port Object
For port objects, TLS-related fields are located on the Server Info tab of the properties window. You
can see here whether a port is secured (TLS-enabled) or not, and have the option to edit existing
ports to update TLS parameters or to add new ports.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 38

When adding or editing a port, TLS parameters are specified on the following tabs:

• Port Info — Turn on Secured listening mode for the port (the same as adding the tls=1 string to
transport parameters).

• Certificate — Show certificate information, open a certificate selection window, or delete the current
certificate information.

• Advanced — Manually edit the Transport Protocol Parameters field. TLS parameters not reflected on the
Certificate tab can be added here.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 39

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 40

Client Application Object
For client Application objects, TLS-related fields are located under the security sections of both the
Options and Annex tabs. There is no certificate selection window provided, but TLS parameters can
be configured manually in either section.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 41

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 42

When processing a client Application object, Platform SDK looks at parameters from both sections. If
any parameters are specified in both places, then the values from the Options tab take precedence.

Connection Object
The properties window for all Application objects includes a Connection tab where connections to
servers can be added or edited. Each connection determines if TLS mode should be enabled based on
port settings for the target server.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 43

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 44

Similar to the Port properties window, the Certificate tab allows you to select from a list of certificates
or manually edit certificate properties. You can also use the Advanced tab to edit TLS settings not
included with the certificate. However, the Transport Protocol Parameters field behaves differently for
this object — which may result in lost or incorrect settings in some cases. See the Notes and Issues
section for details.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 45

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSTLSParametersinConfigManager#Notes_and_Issues

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 46

List of TLS Parameters

The following table lists all TLS parameters supported by Platform SDK, with their valid value ranges
and purpose:

Parameter Name Acceptable Values Purpose

tls

Boolean value.
Possible values are "1"/"0", "yes"/"no",
"on"/"off", "true"/"false".

Example:

• "tls=1"

Client:
1 - perform TLS handshake immediately
after connecting to server. 0 – do not turn
on TLS immediately but autodetect can
still work.

provider

"PEM", "MSCAPI", "PKCS11"
Not case-sensitive.

Example:

• "provider=MSCAPI"

Explicit selection of security
provider to be used. For example,
MSCAPI and PKCS11 providers
can contain all other parameters
in their internal database. This
parameter allow configuration of
TLS through security provider
tools.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 47

Parameter Name Acceptable Values Purpose

certificate

PEM provider: path to a X.509
certificate file in PEM format.
Path can use both forward and
backward slash characters.
MSCAPI provider: thumbprint of a
certificate – string with hexadecimal
SHA-1 hash code of the certificate.
Whitespace characters are allowed
anywhere within the string. PKCS11
provider: this parameter is ignored.

Examples:

• "certificate= C:\certs\client-
cert-3-cert.pem"

• "certificate=A4 7E A6 E4 7D
45 6A A6 2F 15 BE 89 FD 46
F0 EE 82 1A 58 B9"

Specifies location of X.509
certificate to be used by
application.
MSCAPI provider keeps certificates in
internal database and can identify them
by hash code; so called thumbprint. In
Java, PKCS#11 provider does not allow
selection of the certificate; it must be
configured using provider tools.

certificate-key

PEM provider: path to a PKCS#8
private key file without password
protection in PEM format. Path
can use both forward and
backward slash characters.

• MSCAPI provider: this
parameter is ignored; key is
taken from the entry
identified by "certificate"
field.

• PKCS11 provider: this
parameter is ignored.

Examples:

• "certificate-key= C:\certs\
client-cert-3-key.pem"

Specifies location of PKCS#8
private key to be used in pair
with the certificate by
application.
MSCAPI provider keeps private keys
paired with certificates in internal
database. In Java, PKCS#11 provider does
not allow selection of the private key; it
must be configured using provider tools.

trusted-ca

PEM provider: path to a X.509
certificate file in PEM format.
Path can use both forward and
backward slash characters.
MSCAPI provider: thumbprint of a
certificate – string with hexadecimal
SHA-1 hash code of the certificate.
Whitespace characters are allowed
anywhere within the string. PKCS11
provider: this parameter is ignored.

Examples:

• "trusted-ca= C:\certs\
ca.pem"

• "trusted-ca=A4 7E A6 E4 7D

Specifies location of a X.509
certificate to be used by
application to validate remote
party certificates. The certificate
is designated as Trusted
Certification Authority certificate
and application will only trust
remote party certificates signed
with the CA certificate.
MSCAPI provider keeps CA certificates in
internal database and can identify them
by hash code; so called thumbprint. In
Java, PKCS#11 provider does not allow
selection of the CA certificate; it must be
configured using provider tools.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 48

Parameter Name Acceptable Values Purpose

45 6A A6 2F 15 BE 89 FD 46
F0 EE 82 1A 58 B9"

tls-mutual

Boolean value.
Possible values are "1"/"0", "yes"/"no",
"on"/"off", "true"/"false".

Example:

• "tls-mutual=1"

Has meaning only for server
application. Client applications
ignore this value. When turned
on, server will require connecting
clients to present their
certificates and validate the
certificates the same way as
client applications do.

tls-crl

All providers: path to a Certificate
Revocation List file in PEM
format. Path can use both
forward and backward slash
characters.
Example:

• "tls-crl= C:\certs\crl.pem"

Applications will use CRL during
certificate validation process to
check if the (seemingly valid)
certificate was revoked by CA.
This option is useful to stop
usage of leaked certificates by
unauthorized parties.

tls-target-name-check

"host" or none. Not case-
sensitive.
Example:

• "tls-target-name-check=host"

When set to "host", enables
matching of certificate’s
Alternative Subject Name or
Subject fields against expected
host name. PSDK supports DNS
names and IP addresses as
expected host names.

cipher-list

String consisting of space-
separated cipher suit names.
Information on cipher names can
be found online.
Example:

• "cipher-list=
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA"

Used to calculate enabled cipher
suites. Only ciphers present in
both the cipher suites supported
by security provider and the
cipher-list parameter will be
valid.

fips140-enabled

Boolean value.
Possible values are "1"/"0", "yes"/"no",
"on"/"off", "true"/"false".

Example:

• "fips140-enabled=1"

PSDK Java: when set to true,
effectively is the same as setting
"provider=PKCS11" since only
PKCS11 provider can support
FIPS-140. If set to true while
using other provider type, PSDK
will throw exception.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 49

Notes and Issues

• Key/value pairs in Transport Protocol Parameters fields should be separated only with a single semicolon
character. Adding space characters to improve readability can cause applications, including those
based on Platform SDK, unable to parse these parameters correctly.

• Transport Protocol Parameters fields in Configuration Manager are limited to 256 characters in length.
Be sure to keep your parameter list as short as possible. For example: certificate thumbprints for
MSCAPI provider take 40 characters without spaces and 49 characters with them, and long paths to
certificate files can easily eat up all available space.

• The Connection properties window behaves differently from the Port properties window, as described
below. Be sure to double-check TLS settings for Connection objects.
• It does not save content of the Transport Protocol Parameters field unless a certificate was selected

using UI controls on the Certificate tab.
• If certificate information is deleted from the Certificate tab, then all transport protocol parameters

are also erased (including those entered manually).
• In some cases it does not save additional TLS parameters that were entered manually.

Platform SDK Implementation of TLS Configuring TLS Parameters in Configuration Manager

Platform SDK Developer's Guide 50

Using and Configuring Security Providers

Introduction

This page deals with Security Providers — an umbrella term describing the full set of cryptographic
algorithms, data formats, protocols, interfaces, and related tools for configuration and management
when used together. The primary reasons for bundling together such diverse tools are: compatibility,
support for specific standards, and implementation restrictions.

The security providers listed here were tested with the Platform SDK 8.1.1 implementation of TLS,
and found to work reliably when used with the configuration described below.

Java Cryptography Architecture Notes
Java Cryptography Architecture (JCA) provides a general API, and a pluggable architecture for
cryptography providers that supply the API implementation.

Some JCA providers (Sun, SunJSSE, SunRSA) come bundled with the Java platform and contain actual
algorithm implementations, they are named PEM provider since they are used when working with
certificates in PEM files. Some other (SunPKCS11, SunMSCAPI) serve as a façade for external
providers. SunPKCS11 supports PKCS#11 standard for pluggable security providers, such as hardware
cryptographic processors, smartcards or software tokens. Mozilla NSS/JSS is an example of pluggable
software token implementation. SunMSCAPI provides access to Microsoft Cryptography API (MSCAPI),
in particular, to Windows Certificate Services (WSC).

Platform SDK Implementation of TLS Using and Configuring Security Providers

Platform SDK Developer's Guide 51

PEM Provider: OpenSSL

Note: Working with certificates and keys is also covered in the Genesys 8.1 Security Deployment
Guide.

PEM stands for "Privacy Enhanced Mail", a 1993 IETF proposal for securing e-mail using public-key
cryptography. That proposal defined the PEM file format for certificates as one containing a
Base64-encoded X.509 certificate in specific binary representation with additional metadata headers.
Here, the term is used to refer to Java built-in security providers that are used in conjunction with
certificates and private keys loaded from X.509 PEM files.

One of the most popular free tools for creating and manipulating PEM files is OpenSSL. Instructions
for installing and configuring OpenSSL are provided below.

Installing OpenSSL

OpenSSL is available two ways:

• distributed as a source code tarball: http://www.openssl.org/source/
• as a binary distribution (specific links are subject to change): http://www.openssl.org/related/

binaries.html

The installation process is very easy when using a binary installer; simply follow the prompts. The
only additional step required is to add the <OpenSSL-home>\bin folder to your Path system variable
so that OpenSSL can run from command line directly with the openssl command.

Configuring OpenSSL

The OpenSSL configuration file contains settings for OpenSSL itself, and also many field values for
the certificates being generated including issuer and subject names, host names and URIs, and so on.
You will need to customize your OpenSSL file with your own values before using the tool. An example
of a customized configuration file is available here.

The OpenSSL database consists of a set of files and folders, similar to the sample database described
in the table below. To start using OpenSSL, this structure should be created manually except for files
marked as "Generated by OpenSSL". Other files can be left empty as long as they exist in the
expected location.

OpenSSL database file/folder structure
File or Folder Generated by OpenSSL? Description

openssl-ca\
openssl-ca\openssl.cfg OpenSSL configuration file

openssl-ca\.rnd Yes File filled with random data, used
in key generation process.

openssl-ca\ca-password.txt

Stores the password for the CA
private key.
Reduces typing required, but is very
insecure. Should only be used for testing
and development.

Platform SDK Implementation of TLS Using and Configuring Security Providers

Platform SDK Developer's Guide 52

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSOpenSSLConfigurationFile

File or Folder Generated by OpenSSL? Description

openssl-ca\export-password.txt

Stores the password used to
encrypt the private keys when
exporting PKCS#12 files.
Reduces typing required, but is very
insecure. Should only be used for testing
and development.

openssl-ca\ca\ CA root folder.

openssl-ca\ca\certs\
All generated certificates are
copied here.
Folder contents can be safely deleted.

openssl-ca\ca\crl\
Generated CRLs stored here.
Folder contents can be safely deleted.

openssl-ca\ca\newcerts\

Certificates being generated are
stored here.
Folder contents can be safely deleted
once generation process is finished.

openssl-ca\ca\private\ CA private files.

openssl-ca\ca\private\cakey.pem Yes
CA private key.
Must be kept secret.

openssl-ca\ca\crlnumber Serial number of last exported
CRL.

openssl-ca\ca\serial Serial number of last signed
certificate.

openssl-ca\ca\cacert.pem Yes CA certificate.

openssl-ca\ca\index.txt Textual database of all
certificates.

Short Command Line Reference

• This section assumes that the OpenSSL bin folder was added to the local PATH environment variable,
and that openssl-ca is the current folder for all issued commands.

• Placeholders for parameters are shown in the following form: "<param-placeholder>".
• The frequently used parameter "<request-name>" should be a unique name that identifies the

certificate files.

Task Description Command

Create a CA Certificate/Key

This is performed in three steps:

1. Create CA Private Key
2. Create CA Certificate

1. openssl genrsa -des3 -out
ca\private\cakey.pem 1024
-passin file:ca-
password.txt

Platform SDK Implementation of TLS Using and Configuring Security Providers

Platform SDK Developer's Guide 53

Task Description Command

3. Export CA Certificate

2. openssl req -config
openssl.cfg -new -x509
-days <days-ca-cert-is-
valid> -key ca\private\
cakey.pem -out ca\
cacert.pem -passin
file:ca-password.txt

3. openssl x509 -in ca\
cacert.pem -outform PEM
-out ca.pem

Create a Leaf Certificate/Key Pair

This is performed in three steps:

1. Create certificate request.
Certificate fields and
extensions are defined during
this step, and the certificate's
public and private keys are
created in the process.

2. Sign the request.
3. Export the certificate.

1. openssl req -new -nodes
-out requests\<request
name>-req.pem -keyout
requests\<request name>-
key.pem -days 3650
-config openssl.cfg

2. openssl ca -out
requests\<request-name>-
signed.pem -days 3650
-config openssl.cfg
-passin file:ca-
password.txt -infiles
requests\<request-name>-
req.pem

3. openssl pkcs12 -export
-in requests\<request-
name>-signed.pem -inkey
requests\<request-name>-
key.pem -certfile ca\
cacert.pem -name "<entry-
name-in-p12-file>" -out
<request-name>.p12
-passout file:export-
password.txt
openssl x509 -in
requests\<request-name>-
signed.pem -outform PEM
-out <request-name>-
cert.pem
openssl pkcs8 -topk8
-nocrypt -in
requests\<request-name>-
key.pem -out <request-
name>-key.pem

Revoke a Certificate
openssl ca -revoke
<certificate-pem-file>
-config openssl.cfg -passin
file:ca-password.txt

Export the CRL openssl ca -gencrl -crldays

Platform SDK Implementation of TLS Using and Configuring Security Providers

Platform SDK Developer's Guide 54

Task Description Command
<days-crl-is-valid> -out
crl.pem -config openssl.cfg
-passin file:ca-password.txt

MSCAPI Provider: Windows Certificate Services

Note: Working with Windows Certificate Services (WCS) is also covered in Genesys 8.1 Security
Deployment Guide.

MSCAPI stands for Microsoft CryptoAPI. This provider offers the following features:

• It is available only on Windows platform.
• It implies usage of WCS to store and retrieve certificates, private keys, and CA certificates.
• Every Windows account has its own WCS storage, including the System account.
• Depends heavily on OS configuration and system security policies.
• Has its own set of supported cipher suites, different from what is provided by Java.
• Java compatibility:

• Java 5 and lower versions do not support this provider.
• Java 6 supports this provider only in 32-bit version, since update 27: http://bugs.sun.com/

bugdatabase/view_bug.do?bug_id=6931562.
• Java 7 supports it in all versions.

• Java does not support CRLs located in WCS. With Java MSCAPI, CRL should be specified as a file.
• Does not accept passwords from Java code programmatically via CallbackHandler. If private key is

password-protected or prompt-protected, OS popup dialog will be shown to user.
• Certificates in WCS are configured using the Certificates snap-in for Microsoft Management Console

(MMC).

Note: If the version of Java being used does not support MSCAPI, a "WINDOWS-MY KeyStore not
available" exception appears in the application log. If you receive such exceptions, please consider
switching to a newer version of Java.

Starting Certificates Snap-in
There are two methods for accessing the Certificates Snap-in:

• Enter "certmgr.msc" at the command line. (This only gives access to Certificates for the current user
account.)

• Launch the MMC console and add the Certificates Snap-in for a specific account using the following
steps:
1. Enter "mmc" at the command line.
2. Select File > Add/Remove Snap-in... from the main menu.

Platform SDK Implementation of TLS Using and Configuring Security Providers

Platform SDK Developer's Guide 55

3. Select Certificates from the list of available snap-ins and click Add.
4. Select the account to manage certificates for (see Account Selection for important notes) and click

Finish.
5. Click OK.

Account Selection

It is important to place certificates under the correct Windows account. Some applications are run as
services under the Local Service or System account, while others are run under user accounts. The
account chosen in MMC must be the same as the account used by the application that certificates are
configured for, otherwise the application will not be able to access this WCS storage.

Note: Currently, most Genesys servers do not clearly report this error so WCS configuration must be
checked every time there is a problem with the MSCAPI provider.

Note: Configuration Manager is also a regular application in this aspect and can access WCS only for
the Local Computer (System) account on the local machine. It will not show certificates configured for
different accounts or on remote machines. Please consult your system and/or security administrator
for questions related to certificate configuration and usage.

Importing Certificates
There are many folders within WCS where certificates can be placed. Only two of them are used by
Platform SDK:

• Personal/Certificates – Contains application certificates used by applications to identify themselves.
• Trusted Root Certification Authorities/Certificates – Contains CA certificates used to validate remote

party certificates.

To import a certificate, right-click on the appropriate folder and choose All Tasks > Import... from the
context menu. Follow the steps presented by the Certificate Import Wizard, and once finished the
imported certificate will appear in the certificates list.

Platform SDK Implementation of TLS Using and Configuring Security Providers

Platform SDK Developer's Guide 56

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSSecurityProviders#Account_Selection

Although WCS can import X.509 PEM certificate files, these certificates cannot be used as application
certificates because they do not contain a private key. It is not possible to attach a private key from a
PKCS#7 PEM file to the imported certificate. To avoid this problem, import application certificates only
from PKCS#12 files (*.p12) which contain a certificate and private key pair.

CA certificates do not have private keys attached, so it is safe to import CA certificates from X.509
PEM files.

Importing CRL Files
CRL files can be imported to the following folder in WCS:

• Trusted Root Certification Authorities/Certificate Revocation List

The import procedure is the same as for importing certificate. CRL file types are automatically
recognized by the import wizard.

Note: Although an MSCAPI provider may choose to use CRL while validating remote party
certificates, this functionality is not guaranteed and/or supported by Platform SDK. Platform SDK
implements its own CRL matching logic using CRL PEM files.

Platform SDK Implementation of TLS Using and Configuring Security Providers

Platform SDK Developer's Guide 57

PKCS11 Provider: Mozilla NSS

PKCS11 stands for the PKCS#11 family of Public-Key Cryptography Standards (PKCS), published by
RSA Laboratories. These standards define platform-independent API-to-cryptographic tokens, such as
Hardware Security Modules (HSM) and smart cards, allowing you to connect to external certificate
storage devices and/or cryptographic engines.

In Java, the PKCS#11 interface is a simple pass-through and all processing is done externally. When
used together with a FIPS-certified security provider, such as Mozilla NSS, the whole provider chain is
FIPS-compliant.

Platform SDK uses PKCS11 because it is the only way to achieve FIPS-140 compliance with Java.

Installing Mozilla NSS
Currently Platform SDK only supports FIPS when used with the Mozilla NSS security provider. (Java has
FIPS certification only when working with a PKCS#11-compatible pluggable security provider, and the
only provider with FIPS certification and Java support is Mozilla NSS.)

Note: In theory, BSafe can be used since it supports JCA interfaces. However, Platform SDK was not
tested with RSA BSafe and such system would not be FIPS-certifiable as a while.

Generally, some security parameters and data must be configured on client host, requiring the
involvement of a system/security administrator. At minimum, the client host must have a copy of the
CA Certificate to be able to validate the Configuration Server certificate. The exact location of the CA
certificate depends on the security provider being used. It can be present as a PEM file, Java Keystore
file, a record in WCS, or as an entry in the Mozilla NSS database. Once the application is connected to
Configuration Server, the Application Template Application Block can be used to extract connection
parameters from Configuration Server and set up TLS.

Mozilla NSS is the most complex security provider to deploy and configure. In order to use NSS, the
following steps must be completed:

1. Deploy Mozilla NSS.
2. Create Mozilla NSS database (a "soft token" in terms of NSS), and set it to FIPS mode.
3. Adjust the Java security configuration, or implement dynamic loading for the Mozilla NSS provider.
4. Import the CA certificate to the Mozilla NSS database.
5. Use the Platform SDK interface to select PKCS11 as a provider (with no specific configuration options

required).

Configuring FIPS Mode in Mozilla NSS
To configure FIPS mode in Mozilla NSS, create a file named nss-client.cfg in Mozilla NSS deployment
folder with the following values configured:

• name - Name of a software token.
• nssLibraryDirectory - Library directory, located in the Mozilla NSS deployment folder.
• nssSecmodDirectory - Folder where the Mozilla NSS database for the listed software token is located.

Platform SDK Implementation of TLS Using and Configuring Security Providers

Platform SDK Developer's Guide 58

• nssModule - Indicates that FIPS mode should be used.

An example is provided below:

name = NSSfips
nssLibraryDirectory = C:/nss-3.12.4/lib
nssSecmodDirectory = C:/nss-3.12.4/client
nssModule = fips

More information about configuring FIPS mode is available from external sources.

Configuring FIPS Mode in Java Runtime Environment (JRE)
To configure your Java runtime to use Mozilla NSS, the java.security file should be located in Java
deployment folder and edited as shown below:

(Changes are shown in bold red, insertions are shown in bold blue)

#
List of providers and their preference orders (see above):
#
security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=sun.security.ec.SunEC
#security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.4=com.sun.net.ssl.internal.ssl.Provider SunPKCS11-NSSfips
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider
security.provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.9=sun.security.smartcardio.SunPCSC
security.provider.10=sun.security.mscapi.SunMSCAPI
security.provider.11=sun.security.pkcs11.SunPKCS11 C:/nss-3.12.4/nss-client.cfg

After those updates are complete, the Java runtime instance works with FIPS mode, with only the
PKCS#11/Mozilla NSS security provider enabled.

Short Command Line Reference
Please refer to the following references for more information:

• https://www.mozilla.org/projects/security/pki/nss/tools/certutil.html
• https://www.mozilla.org/projects/security/pki/nss/tools/crlutil.html
• https://www.mozilla.org/projects/security/pki/nss/tools/pk12util.html

Task Command

Create CA Certificate
certutil -S -k rsa -n "<CA-cert-name>" -s
"CN=Test CA, OU=Miratech, O=Genesys,
L=Kyiv, C=UA" -x -t "CTu,u,u" -m 600 -v 24
-d ./client -f "<keystore-password-file>"

Import CA Certificate
certutil -A -a -n “<CA-cert-name>” -t
"CTu,u,u" -i <ca-cert-file> -d ./client -f
"<keystore-password-file>"

Platform SDK Implementation of TLS Using and Configuring Security Providers

Platform SDK Developer's Guide 59

Task Command

Create New Leaf Certificate

certutil -S -k rsa -n "<cert-name>" -s
"CN=Test CA, OU=Miratech, O=Genesys,
L=Kyiv, C=UA" -x -t "u,u,u" -m 666 -v 24 -d
./client -f "<keystore-password-file>" -z
"<noise-file>"

Import Leaf Certificate
pk12util -i <cert-file.p12> -n <cert-name>
-d ./client -v -h "NSS FIPS 140-2
Certificate DB" -K <keystore-password>

Create CRL
crlutil -d ./client -f "<keystore-password-
file>" -G -c "<crl-script-file>" -n "<CA-
cert-name>" -l SHA512

Modify CRL
crlutil -d ./client -f "<keystore-password-
file>" -M -c "<crl-script-file>" -n "<CA-
cert-name>" -l SHA512 -B

Show Certificate Information certutil -d ./client -f "<keystore-
password-file>" -L -n "<cert-name>"

Show CRL Information crlutil -d ./client -f "<keystore-password-
file>" -L -n "<CA-cert-name>"

List Certificates certutil -d ./client –L
List CRLs crlutil -L -d ./client

JKS Provider: Java Built-in

This provider is supported by the Platform SDK Commons library, but the Application Template
Application Block does not support this provider due to compatibility guidelines with Genesys
Framework Deployment.

This provider can only be used when TLS is configured programmatically by Platform SDK users.

Short Command Line Reference
Refer to the following reference for more information:

• http://docs.oracle.com/javase/1.5.0/docs/tooldocs/solaris/keytool.html

Task Command
Creating and Importing - These commands allow you to generate a new Java Keytool keystore file,
create a Certificate Signing Request (CSR), and import certificates. Any root or intermediate certificates
will need to be imported before importing the primary certificate for your domain.

Generate a Java keystore and key pair keytool -genkey -alias mydomain -keyalg RSA
-keystore keystore.jks -keysize 2048

Generate a certificate signing request (CSR) for an
existing Java keystore

keytool -certreq -alias mydomain -keystore
keystore.jks -file mydomain.csr

Import a root or intermediate CA certificate to an
existing Java keystore

keytool -import -trustcacerts -alias root
-file Thawte.crt -keystore keystore.jks

Platform SDK Implementation of TLS Using and Configuring Security Providers

Platform SDK Developer's Guide 60

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSUsingPSDKCommonsLibrary

Task Command

Import a signed primary certificate to an existing
Java keystore

keytool -import -trustcacerts -alias
mydomain -file mydomain.crt -keystore
keystore.jks

Generate a keystore and self-signed certificate
keytool -genkey -keyalg RSA -alias
selfsigned -keystore keystore.jks
-storepass password -validity 360 -keysize
2048

Java Keytool Commands for Checking - If you need to check the information within a certificate, or
Java keystore, use these commands.
Check a stand-alone certificate keytool -printcert -v -file mydomain.crt
Check which certificates are in a Java keystore keytool -list -v -keystore keystore.jks

Check a particular keystore entry using an alias keytool -list -v -keystore keystore.jks
-alias mydomain

Other Java Keytool Commands

Delete a certificate from a Java Keytool keystore keytool -delete -alias mydomain -keystore
keystore.jks

Change a Java keystore password keytool -storepasswd -new new_storepass
-keystore keystore.jks

Export a certificate from a keystore keytool -export -alias mydomain -file
mydomain.crt -keystore keystore.jks

List Trusted CA Certs keytool -list -v -keystore $JAVA_HOME/jre/
lib/security/cacerts

Import New CA into Trusted Certs
keytool -import -trustcacerts -file /path/
to/ca/ca.pem -alias CA_ALIAS -keystore
$JAVA_HOME/jre/lib/security/cacerts

Platform SDK Implementation of TLS Using and Configuring Security Providers

Platform SDK Developer's Guide 61

OpenSSL Configuration File
This page provides an example of a customized OpenSSL configuration file that has been edited to
work with the Platform SDK implementation of TLS. For more details about OpenSSL and how it
relates to the Platform SDK implementation of TLS, refer to the Using and Configuring Security
Providers page.

Sample File

Customized file content is listed below.

• Changes are marked with bold red.
• Added lines are marked with bold blue.

#
OpenSSL example configuration file.
This is mostly being used for generation of certificate requests.
#

This definition stops the following lines choking if HOME isn't
defined.
HOME = .
RANDFILE = $ENV::HOME/.rnd

Extra OBJECT IDENTIFIER info:
#oid_file = $ENV::HOME/.oid
oid_section = new_oids

To use this configuration file with the "-extfile" option of the
"openssl x509" utility, name here the section containing the
X.509v3 extensions to use:
extensions =
(Alternatively, use a configuration file that has only
X.509v3 extensions in its main [= default] section.)

[new_oids]

We can add new OIDs in here for use by 'ca', 'req' and 'ts'.
Add a simple OID like this:
testoid1=1.2.3.4
Or use config file substitution like this:
testoid2=${testoid1}.5.6

Policies used by the TSA examples.
tsa_policy1 = 1.2.3.4.1
tsa_policy2 = 1.2.3.4.5.6
tsa_policy3 = 1.2.3.4.5.7

##
[ca]
default_ca = CA_default # The default ca section

##

Platform SDK Implementation of TLS OpenSSL Configuration File

Platform SDK Developer's Guide 62

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSSecurityProviders

[CA_default]

dir = ./ca # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
#unique_subject = no # Set to 'no' to allow creation of

several ctificates with same subject.
new_certs_dir = $dir/newcerts # default place for new certs.

certificate = $dir/cacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crlnumber = $dir/crlnumber # the current crl number

must be commented out to leave a V1 CRL
crl = $dir/crl.pem # The current CRL
private_key = $dir/private/cakey.pem # The private key
RANDFILE = $dir/private/.rand # private random number file

x509_extensions = usr_cert # The extentions to add to the cert

Comment out the following two lines for the "traditional"
(and highly broken) format.
name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

Extension copying option: use with caution.
copy_extensions = copy

Extensions to add to a CRL. Note: Netscape communicator chokes on V2 CRLs
so this is commented out by default to leave a V1 CRL.
crlnumber must also be commented out to leave a V1 CRL.
crl_extensions = crl_ext

default_days = 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md = default # use public key default MD
preserve = no # keep passed DN ordering

A few difference way of specifying how similar the request should look
For type CA, the listed attributes must be the same, and the optional
and supplied fields are just that :-)
policy = policy_anything

For the CA policy
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the 'anything' policy
At this point in time, you must list all acceptable 'object'
types.
[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

Platform SDK Implementation of TLS OpenSSL Configuration File

Platform SDK Developer's Guide 63

##
[req]
default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
x509_extensions = v3_ca # The extentions to add to the self signed cert

Passwords for private keys if not present they will be prompted for
input_password = secret
output_password = secret

This sets a mask for permitted string types. There are several options.
default: PrintableString, T61String, BMPString.
pkix : PrintableString, BMPString (PKIX recommendation before 2004)
utf8only: only UTF8Strings (PKIX recommendation after 2004).
nombstr : PrintableString, T61String (no BMPStrings or UTF8Strings).
MASK:XXXX a literal mask value.
WARNING: ancient versions of Netscape crash on BMPStrings or UTF8Strings.
string_mask = utf8only

req_extensions = v3_req # The extensions to add to a certificate request

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = UA
countryName_min = 2
countryName_max = 2

stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = None

localityName = Locality Name (eg, city)
localityName_default = Kyiv

0.organizationName = Organization Name (eg, company)
0.organizationName_default = Genesys

we can do this but it is not needed normally :-)
#1.organizationName = Second Organization Name (eg, company)
#1.organizationName_default = World Wide Web Pty Ltd

organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Engineering

commonName = Common Name (e.g. server FQDN or YOUR name)
commonName_default = xpigors
commonName_max = 64

emailAddress = Email Address
emailAddress_max = 64

SET-ex3 = SET extension number 3

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 0
challengePassword_max = 20

unstructuredName = An optional company name

[usr_cert]

Platform SDK Implementation of TLS OpenSSL Configuration File

Platform SDK Developer's Guide 64

These extensions are added when 'ca' signs a request.

This goes against PKIX guidelines but some CAs do it and some software
requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

Here are some examples of the usage of nsCertType. If it is omitted
the certificate can be used for anything *except* object signing.

This is OK for an SSL server.
nsCertType = server

For an object signing certificate this would be used.
nsCertType = objsign

For normal client use this is typical
nsCertType = client, email

and for everything including object signing:
nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer

This stuff is for subjectAltName and issuerAltname.
Import the email address.
#subjectAltName=issue:copy
subjectAltName = @alt_names
An alternative to produce certificates that aren't
deprecated according to PKIX.
subjectAltName=email:move

Copy subject details
issuerAltName=issuer:copy

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem
#nsBaseUrl
#nsRevocationUrl
#nsRenewalUrl
#nsCaPolicyUrl
#nsSslServerName

This is required for TSA certificates.
extendedKeyUsage = critical,timeStamping

[v3_req]

Extensions to add to a certificate request

basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]

Platform SDK Implementation of TLS OpenSSL Configuration File

Platform SDK Developer's Guide 65

DNS.1 = hostname.emea.int.genesyslab.com
DNS.2 = hostname
IP.1 = 192.168.1.1
IP.2 = fe80::21d:7dff:fe0d:682c
IP.3 = fe80::ffff:ffff:fffd
IP.4 = fe80::5efe:192.168.1.1
URI.1 = http://hostname/
URI.2 = https://hostname/
email.1 = UserName1@genesyslab.com
email.2 = UserName2@genesyslab.com

[v3_ca]

Extensions for a typical CA

PKIX recommendation.

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid:always,issuer

This is what PKIX recommends but some broken software chokes on critical
extensions.
#basicConstraints = critical,CA:true
So we do this instead.
basicConstraints = CA:true

Key usage: this is typical for a CA certificate. However since it will
prevent it being used as an test self-signed certificate it is best
left out by default.
keyUsage = cRLSign, keyCertSign

Some might want this also
nsCertType = sslCA, emailCA

Include email address in subject alt name: another PKIX recommendation
subjectAltName=email:copy
Copy issuer details
issuerAltName=issuer:copy

DER hex encoding of an extension: beware experts only!
obj=DER:02:03
Where 'obj' is a standard or added object
You can even override a supported extension:
basicConstraints= critical, DER:30:03:01:01:FF

[crl_ext]

CRL extensions.
Only issuerAltName and authorityKeyIdentifier make any sense in a CRL.

issuerAltName=issuer:copy
authorityKeyIdentifier=keyid:always

[proxy_cert_ext]
These extensions should be added when creating a proxy certificate

This goes against PKIX guidelines but some CAs do it and some software
requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

Platform SDK Implementation of TLS OpenSSL Configuration File

Platform SDK Developer's Guide 66

Here are some examples of the usage of nsCertType. If it is omitted
the certificate can be used for anything *except* object signing.

This is OK for an SSL server.
nsCertType = server

For an object signing certificate this would be used.
nsCertType = objsign

For normal client use this is typical
nsCertType = client, email

and for everything including object signing:
nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer

This stuff is for subjectAltName and issuerAltname.
Import the email address.
subjectAltName=email:copy
An alternative to produce certificates that aren't
deprecated according to PKIX.
subjectAltName=email:move

Copy subject details
issuerAltName=issuer:copy

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem
#nsBaseUrl
#nsRevocationUrl
#nsRenewalUrl
#nsCaPolicyUrl
#nsSslServerName

This really needs to be in place for it to be a proxy certificate.
proxyCertInfo=critical,language:id-ppl-anyLanguage,pathlen:3,policy:foo

##
[tsa]

default_tsa = tsa_config1 # the default TSA section

[tsa_config1]

These are used by the TSA reply generation only.
dir = ./demoCA # TSA root directory
serial = $dir/tsaserial # The current serial number (mandatory)
crypto_device = builtin # OpenSSL engine to use for signing
signer_cert = $dir/tsacert.pem # The TSA signing certificate

(optional)
certs = $dir/cacert.pem # Certificate chain to include in reply

(optional)
signer_key = $dir/private/tsakey.pem # The TSA private key (optional)

Platform SDK Implementation of TLS OpenSSL Configuration File

Platform SDK Developer's Guide 67

default_policy = tsa_policy1 # Policy if request did not specify it
(optional)

other_policies = tsa_policy2, tsa_policy3 # acceptable policies (optional)
digests = md5, sha1 # Acceptable message digests (mandatory)
accuracy = secs:1, millisecs:500, microsecs:100 # (optional)
clock_precision_digits = 0 # number of digits after dot. (optional)
ordering = yes # Is ordering defined for timestamps?

(optional, default: no)
tsa_name = yes # Must the TSA name be included in the reply?

(optional, default: no)
ess_cert_id_chain = no # Must the ESS cert id chain be included?

(optional, default: no)

Platform SDK Implementation of TLS OpenSSL Configuration File

Platform SDK Developer's Guide 68

Use Cases

Introduction

This page examines TLS functionality as a series of common use cases. Use cases are broken into two
categories: server or application.

Examples and explanations are provided for some use cases, while others simply provide links to the
related TLS documentation needed to understand the functionality.

Genesys Server Use Cases

Opening a TLS Port
Code snippets explaining how to open a basic TLS port are provided both with, and without using the
Application Template Application Block:

• Opening a TLS port using the Platform SDK Commons Library
• Opening a TLS port using the Application Template Application Block

Opening a Mutual TLS Port (With Expiration, Revocation and CA Checks)
This use case is an advanced variation on opening a simple TLS port. As such, it already has a CA and
expiration check, but needs additional parameters to turn on mutual mode and to enable a CRL
check.

Mutual Mode

If TLS is configured programmatically, then the mutualTLS parameter should be set to true when
creating an SSLExtendedOptions object:

SSLExtendedOptions sslOptions = new SSLExtendedOptions(true, (String) null);

If TLS is configured in Configuration Manager, then the tls-mutual parameter for the server port,
application or host should be set to 1. Please refer to the list of TLS parameters for details.

Revocation Check

If TLS is configured programmatically, then a valid path to the CRL file should be provided in the
crlFilePath parameter when creating a trust manager:

X509TrustManager tm = TrustManagerHelper.createPEMTrustManager(
"c:/cert/ca-cert.pem","c:/cert/crl.pem", null);

Platform SDK Implementation of TLS Use Cases

Platform SDK Developer's Guide 69

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSUsingPSDKCommonsLibrary#Configuring_TLS_for_Servers
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSUsingApplicationTemplateAB#Configuring_TLS_for_Servers
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters

If TLS is configured in Configuration Manager, then the tls-crl parameter for the server port,
application or host should contain the path to the CRL file located on server. Please refer to the list of
TLS parameters for details.

Opening a FIPS-Compliant Port
FIPS mode is not a property of a port or application; it is defined mostly by the type of security
provider in use and the OS/environment settings. For Java, the PKCS#11 security provider should be
used to support FIPS; for .Net, FIPS is configured at the OS level (http://technet.microsoft.com/en-us/
library/cc750357.aspx).

If TLS is configured programmatically, then a PKCS11 key/trust managers should be used:

X509TrustManager tm = TrustManagerHelper.createPKCS11TrustManager(
new DummyPasswordCallbackHandler(), (String) null);

X509ExtendedKeyManager km = KeyManagerHelper.createPKCS11KeyManager(
new DummyPasswordCallbackHandler());

If TLS is configured in Configuration Manager, then the fips140-enabled parameter for the server
port, application or host should be set to "1". Please refer to the list of TLS parameters for details.

Note: This parameter is used to detect the security provider type to use. If this setting conflicts with
other TLS parameters or points to a FIPS security provider that is not installed on host, then Platform
SDK will generate an exception when attempting to accept or open a connection.

Genesys Application Use Cases

Opening a TLS Connection to a TLS Autodetect Server Port
TLS autodetect ports (also called upgrade mode ports) allow you to establish an unsecured
connection to the server before specifying TLS settings. For details, please refer to Connecting to
Upgrade Mode Ports in the quick start instructions.

Opening a TLS Connection to a Backend Server (With Expiration, Revocation and
CA Checks)
Code snippets explaining how to open a basic TLS connection to a backend server are provided both
with, and without using the Application Template Application Block:

• Configuring TLS for Client Connections using the Platform SDK Commons Library
• Configuring TLS for Client Connections using the Application Template Application Block

Opening a FIPS-Compliant Connection to a FIPS-Compliant Port
In this use case, the application does not need to provide any special behavior because the server
will only handshake for FIPS-compliant ciphers. Details about setting up a FIPS-compliant port are
described above.

Platform SDK Implementation of TLS Use Cases

Platform SDK Developer's Guide 70

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSQuickStart#Connecting_to_Upgrade_Mode_Ports
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSQuickStart#Connecting_to_Upgrade_Mode_Ports
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSUsingPSDKCommonsLibrary#Configuring_TLS_for_Client_Connections
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSUsingApplicationTemplateAB#Configuring_TLS_for_Client_Connections
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSUseCases#Opening_a_FIPS-Compliant_Port

Ensuring the Certificate is Checked with CA
If TLS is configured programmatically, then a valid CA certificate data should be provided when
creating the trust manager:

X509TrustManager tm = TrustManagerHelper.createPEMTrustManager(
"c:/cert/ca-cert.pem","c:/cert/crl.pem", null);

If TLS is configured in Configuration Manager, then the trusted-ca parameter for the port, connection,
application or host should contain valid CA certificate data. Please refer to the list of TLS parameters
for details.

Note: CA certificates are configured differently for each type of security provider. Please refer to the
page on using and configuring security providers for detailed information.

Ensuring the Certificate Expiration is Checked
Certificate expiration is checked by default during the certificate validation process.

Note: If a server certificate is placed in a trusted certificates store on the client host, it will be
automatically trusted without any validation. A trust certificates store should not include application
certificates; instead, it should contain only CA certificates.

Handling a Certificate Revocation List
If TLS is configured programmatically, then a valid path to a CRL file should be provided in the
crlFilePath parameter when creating trust manager:

X509TrustManager tm = TrustManagerHelper.createPEMTrustManager(
"c:/cert/ca-cert.pem","c:/cert/crl.pem", null);

If TLS is configured in Configuration Manager, then the tls-crl parameter for the application
connection, application or host should contain the path to the CRL file located on the application's
host. Please refer to the list of TLS parameters for details.

Handling a User-Specified Cipher List
If TLS is configured programmatically, then the enabledCipherSuites constructor parameter should
contain a list of allowed ciphers when the SSLExtendedOptions object is being created:

SSLExtendedOptions sslOptions = new SSLExtendedOptions(
true, "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA " +
"TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA");

If TLS is configured in Configuration Manager, then the cipher-list parameter for the port, connection,
application or host should be set to contain list of allowed ciphers. Please refer to the list of TLS
parameters for details.

Platform SDK Implementation of TLS Use Cases

Platform SDK Developer's Guide 71

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSSecurityProviders
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/TLSTLSParametersinConfigManager#List_of_TLS_Parameters

LCA Hang-Up Detection Support
This page provides:

• an overview and list of requirements for the LCA Hang-Up Detection Support feature
• design details explaining how this feature works
• code examples showing how to implement LCA Hang-Up Detection Support in your applications

Introduction to LCA Hang-up Detection Support

Beginning with release 8.1, the Platform SDKs now allow user-developed application to include hang-
up detection functionality.

The Genesys Management Layer relies on Local Control Agent (LCA) to monitor and control
applications. An open connection between LCA and Genesys applications is typically used to
determine which applications are running or stopped. However, if an application that has stopped
responding still has a connection to LCA then it could appear to be running correctly - preventing
Management Layer from switching over to a backup application or taking other actions to restore
functionality.

Hang-up detection allows Local Control Agent (LCA) to detect unresponsive Genesys applications by
checking for regular heartbeat messages. When an unresponsive application is found, pre-configured
actions can be taken - including triggering alarms or restarting the application.

Note: Hang-up detection functionality has been available in the Genesys Management Layer
since release 8.0.1. For more information, refer to the Framework 8.0 Management Layer User's
Guide. For details about related configuration options, refer to the Framework 8.0 Configuration
Options Reference Manual.

Two levels of hang-up detection are available: implicit and explicit.

Implicit Hang-up Detection
The easiest form of hang-up detection to implement is implicit hang-up detection.

In this scenario, application status is monitored through the connection between your application and
LCA. This functionality can be extended by adding a requirement that your application periodically
interacts with LCA (either responding to ping request or sending its own heart-beat messages) as a
necessary condition of application liveliness.

This simple form of hang-up detection can be implemented internally by using the
LocalControlAgentProtocol to connect to LCA. In this case, existing applications only need to be
rebuilt with a version of LocalControlAgentProtocol that supports hang-up detection functionality -
no coding changes are required - and given the appropriate configuration options in Genesys
Management Layer.

LCA Hang-Up Detection Support Use Cases

Platform SDK Developer's Guide 72

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/LCAHang-UpDetectionSupport#Implicit_Hang-up_Detection
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/LCAHang-UpDetectionSupport#Explicit_Hang-up_Detection

Explicit Hang-up Detection
Explicit hang-up detection offers more robust protection from applications that may become
unresponsive, but is also more complex.

The periodic interaction that is monitored by implicit hang-up detection only confirms that your
application can interact with LCA. In most cases this means that the application is able to
communicate with other apps and that the thread responsible for communicating with LCA is still
active. However, multi-threaded applications may contain other threads that are blocked or have
stopped responding without interrupting communication with LCA. Explicit hang-up detection allows
you to determine when only part of your application hangs-up by monitoring individual threads in the
application.

In addition to allowing your application to register (or unregister) individual threads to be monitored,
explicit hang-up detection also allows your application to stop or delay the monitoring process.
Threads that execute synchronous functions (which can block thread execution for some extended
periods) or other features that prevent accurate monitoring should take advantage of this feature.

Feature Overview

• To maintain backwards compatibility, hang-up detection must be explicitly enabled in the application
configuration.

• Implicit hang-up detection can be used for applications that do not require complex monitoring
functionality. No code changes are required, just rebuild your application using the new version of
LocalControlAgentProtocol.

• Explicit hang-up detection requires minimal application participation - enabling monitoring, registering
and unregistering execution threads, and providing heartbeats. Most hang-up detection functionality is
implemented within the Management Layer component, while all timing information (such as maximum
allowed period between heartbeats) is configured through Genesys Management Layer.

System Requirements

Genesys Management Layer:

• Release 8.0.1 or later

Platform SDK for .NET:

• Management SDK protocol release 8.1 or later
• .NET Framework 3.5
• Visual Studio 2008 (required for .NET project files)

Platform SDK for Java:

• Management SDK protocol release 8.1 or later

LCA Hang-Up Detection Support Use Cases

Platform SDK Developer's Guide 73

• J2SE 5.0 or Java 6 SE runtime

Design Details

This section provides an overview of the main classes and interfaces used to add thread monitoring
functionality for Explicit hang-up detection. Before using the classes and methods described here, be
sure that you have implemented basic LCA Integration in your application using
LocalControlAgentProtocol.

Although the details of thread monitoring implementation are slightly differently for Java and .NET,
the basic idea is the same: to create and update a thread monitoring table that LCA can use to
confirm the status of your application.

Note that for implicit hang-up detection you are only required to rebuild your application and make
adjustments to the configuration options in Genesys Management Layer; the details described below
are not required for simple application monitoring.

Thread Monitoring Table
The new thread monitoring functions described below allow LocalControlAgentProtocol to create
and maintain a thread monitoring table within the application. This table tracks basic thread status.

Sample Thread Monitoring Table

OS Thread ID Logical Thread
ID Thread Class Heartbeat

Counter Flags

0 «main» 1 444345 active
1 «pool_1» 2 354354 suspend
2 «pool_2» 2 432432 deleted
3 «pool_3» 2 434323 active
4 «DB_store» 3 31212 active
....

Each row corresponds to a monitored thread. Columns of the table are:

• OS Thread ID—The OS-specific thread ID, used for thread identification during monitoring. OS thread ID
is not passed by application but is received directly from system.

• Logical Thread ID – Application logical thread ID (or logical name, in Java). Used for logging and thread
identification.

• Thread Class—Thread class integer. This value is only meaningful within the scope of the application;
threads with the same thread class value in a different application can have different roles. Examples of
thread classes might be the main loop thread, pool threads, or special threads (such as external
authentication threads in ConfigServer).

• Heartbeat Counter—Cumulative counter of Heartbeat() calls made by the corresponding thread.
Incrementing this value is the main way to indicate that the thread is still alive.

LCA Hang-Up Detection Support Use Cases

Platform SDK Developer's Guide 74

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/LCAHang-UpDetectionSupport#Explicit_Hang-up_Detection
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/LCAHang-UpDetectionSupport#Java_Implementation
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/LCAHang-UpDetectionSupport#.NET_Implementation
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/LCAHang-UpDetectionSupport#Thread_Monitoring_Table
https://docs.genesys.com/Documentation/IW/8.1.1/Developer/LCAHang-UpDetectionSupport#Implicit_Hang-up_Detection

NOTE: This value is initialized with a random value when the thread is registered for
monitoring. This prevents incorrect hang-up detection if threads are created and terminated with
high frequency, leading to repeating OS thread IDs.

• Flag—Special flags.
• Suspended/Resumed—Corresponds to the state of thread monitoring.
• Deleted—Used internally to notify LCA that a thread was unregistered from monitoring.

.NET Implementation
ThreadMonitoring Class

The ThreadMonitoring class is defined in the Genesyslab.Diagnostics namespace of
Genesyslab.Core.dll. This class contains the following public static methods:

• Register(int threadClass, string threadLogicId)—enables monitoring for this thread
• Unregister()—removes this thread from monitoring
• Heartbeat()—increases heartbeat counter for this thread (indicating that thread is still alive)
• SuspendMonitoring()—suspend monitoring for this thread
• ResumeMonitoring()—resumes monitoring for this thread

Note: Each method should be called from within the thread that is being monitored.

When a thread is registered for monitoring, the following parameters are included:

• threadClass—Any positive integer that represents the type of thread, allowing you to specify different
monitoring settings for groups of threads within an application.

• threadLogicId—A logical, descriptive thread ID that is independent from thread ID provided by OS.
This value is used for thread identification within LCA and for logging purposes. This ID should be
unique within the application.

PerformanceCounter Constants

The following String constants (names) are defined in the ThreadMonitoring class:

public const string CategoryName = "Genesyslab PSDK .NET";
public const string HeartbeatCounterName = "Thread Heartbeat";
public const string StateCounterName = "Thread State";
public const string ProcessIdCounterName = "ProcessId";
public const string OsThreadIdCounterName = "OsThreadId";

The Platform SDK thread monitoring functionality uses these constants to manage
PerformanceCounter values. In addition to these custom performance counters, you can also use
standard ones, such as those defined in Thread category: "% Processor Time", "% User Time", etc.

See MSDN<ref>MSDN PerformanceCounter Class (http://msdn.microsoft.com/en-us/library/
system.diagnostics.performancecounter.aspx)</ref> for details about performance counters.

Note: Use of PerformanceCounters is optional, and is not required for LCA hang-up detection
functionality.

LCA Hang-Up Detection Support Use Cases

Platform SDK Developer's Guide 75

Java Implementation
ThreadHeartbeatCounter class

The ThreadHeartbeatCounter class is defined in the
com.genesyslab.platform.commons.threading package, located within commons.jar. This class is
designed as a JMX<ref>JMX: Java Management Extensions (http://java.sun.com/javase/technologies/
core/mntr-mgmt/javamanagement/)</ref> MBean and implements the public
ThreadHeartbeatCounterMBean interface which is accessible through Java management framework.

There is no public constructor for the ThreadHeartbeatCounter class; each thread that you want to
monitor should create its own instance with following static method:

public static ThreadHeartbeatCounter createThreadHeartbeatCounter(
String threadLogicalName,
int threadClass);

When a thread is registered for monitoring, the following parameters are included:

• threadLogicalName—A logical, descriptive thread name that is used to identify the thread within LCA
and for logging purposes. This name should be unique within the application.

• threadClass—Any positive integer that represents the type of thread, allowing you to specify different
monitoring settings for groups of threads within an application.

One key difference from thread monitoring using .NET is the need to create a monitoring object
instance. The lifecycle of this object, including MBeanServer registration, is supported by the parent
class PSDKMBeanBase and is shown in the five steps below:

1. Start monitoring a thread:

ThreadHeartbeatCounter monitor =
ThreadHeartbeatCounter.createThreadHeartbeatCounter(

threadId, threadClass);
monitor.initialize();

2. Notify LCA that thread is still alive (increase heartbeat counter):

monitor.alive();

3. Suspend monitoring of this thread:

monitor.setActive(false);

4. Resume monitoring of this thread:

monitor.setActive(true);

5. Finish monitoring and unregister this thread:

monitor.unregister();

Note: Each of these methods must be called from within the thread that is being monitored.

Once a ThreadHeartbeatCounter object is unregistered, that instance cannot be reused. To begin

LCA Hang-Up Detection Support Use Cases

Platform SDK Developer's Guide 76

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/LCAHang-UpDetectionSupport#ThreadHeartbeatCounterMBean_interface

monitoring that thread again (or any other) you first need to create a new instance of the thread
monitoring object.

ThreadHeartbeatCounterMBean interface

The ThreadHeartbeatCounterMBean interface is intended to present an open API to the JMX MBean.
This interface contains the following publicly accessible methods:

public long getThreadSystemId();
public String getLogicalName();
public int getThreadClass();
public void setThreadClass(int newThreadClass);
public int getHeartbeatCounter();
public void setActive(boolean isActive);
public boolean isActive();

These methods are "MBean client-side" methods and are used by LCA protocol to get actual
information about the thread for the monitoring table. They also allow users to change the thread
class and suspend or resume thread monitoring (using setActive(false/true)) of a particular
thread at application runtime.

References

<references />

LCA Hang-Up Detection Support Use Cases

Platform SDK Developer's Guide 77

Using the Switch Policy Library
This document shows how to add simple T-Server functionality to your applications by using the
Switch Policy Library.

The Platform SDK Switch Policy Library (SPL) can be used in applications that need to perform agent-
related switch activity with a variety of T-Servers, without knowing beforehand what kinds of T-
Servers will be used. It simplifies these applications by indicating which switch functions are available
at any given time and also by showing how you can use certain switch features in your applications.
However, if your application works with only one kind of T-Server, you may want to have your
application communicate directly with the T-Server, rather than using SPL.

Switch Policy Library Overview

Some telephony applications need to work with more than one type of switch. Unfortunately,
however, one switch may not perform a particular telephony function in the same way as another
switch. This means that it can be useful to have an abstraction layer of some kind when working with
multiple switches, so that you do not need custom code for each switch that is used by the
application. The Switch Policy Library is designed with just this kind of abstraction in mind.

Setting Up Switch Policy Library

SPL should be used by your agent desktop applications as a library, which means that it would be
located within the agent desktop application shown above. The application can call SPL for guidance
on how to send requests to or process events from your T-Server, as shown in the Code Samples
section.

SPL is driven by an XML-based configuration file that supports many commonly-used switches in
performing agent-related functions. Your application can query SPL to determine whether a particular
feature is supported for the switch you want to work with. If a feature you need is not supported for
the switches you need to work with, you can make a copy of the default configuration file and modify
it as needed.

Note: Genesys does not support modifications to the SPL configuration file. Any modifications you
make are performed at your own risk.

A copy of the default configuration file is included inside the Switch Policy Library DLL. There is also a
copy in the Bin directory of the Platform SDK installation package. If you need to modify the
configuration file, you can use the app.config file for SPL to point to your copy.

Using the Switch Policy Library Use Cases

Platform SDK Developer's Guide 78

https://docs.genesys.com/Documentation/IW/8.1.1/Developer/UsingtheSwitchPolicyLibrary#Code_Samples

Code Samples

This section contains examples of how to perform useful functions with SPL.

The functions discussed here are all contained in a compilable and runnable sample application that
is available on the Downloads page of the Genesys Documentation Wiki. This site also hosts the SPL
IsPossible Feature Demo application. This sample application lets you specify a switch and certain
characteristics of the main and secondary parties to a call, as well DN state information. Once you
have done this, it will show you which functions are available for that switch, based on the
characteristics you have specified. This application can be very helpful in understanding the kinds of
things that are available to your application when you use SPL.

These samples each require a valid instance of the ISwitchPolicyService, which can be created as
shown here:

ISwitchPolicyService policyService =
SwitchPolicyFactory.CreateSwitchPolicyService();

Note: The DN classes specified below implement the IDNContext interface, while the Party classes
implement the IPartyContext interface, and the Call classes implement the ICallContext interface.

Get A Phone Set Configuration
On some switches, phone sets are presented as more than one Directory Number (DN). These DNs
may also have different types, such as Position and Extension. Because these configurations vary by
switch type, an application needs to know how the phone set configuration for a particular switch is
structured. For example, it needs to know how many DNs are used to represent a phone set, and
what their types are. To retrieve this phone set configuration information, perform the following steps:

1. Create an instance of PhoneSetConfigurationContext, specifying the switch type.
2. Call ISwitchPolicyService.GetPolicy, using this PhoneSetConfigurationContext.
3. Analyze the returned PhoneSetConfigurationPolicy. The PhoneSetConfigurationPolicy.Configurations

property will contain all possible phone set configurations for the specified switch.

The following code snippet shows how to do this:

PhoneSetConfigurationContext context =
new PhoneSetConfigurationContext("SomeSwitch");

PhoneSetConfigurationPolicy policy =
switchPolicyService.GetPolicy<PhoneSetConfigurationPolicy>(context);
foreach (PhoneSetConfiguration configuration in policy.Configurations)
{

Console.WriteLine(configuration);
}

Get Phone Set Availability Information
When working with a phone set, additional information about the included DNs may be required. This
could include information about which of the DNs should be available to the end user (for example,
which ones should be visible in the user interface), which of them is callable, and which number (the
Callable Number) the application should use to reach the agent who is logged into the phone set. To

Using the Switch Policy Library Use Cases

Platform SDK Developer's Guide 79

retrieve this phone set availability information, perform the following steps:

1. Create an instance of DNAvailabilityContext and populate it with the following required information:
• Specify the switch type
• Specify the Agent ID
• Fill the DN collection with valid implementations of IDNContext

2. Call ISwitchPolicyService.GetPolicy, using this DNAvailabilityContext.
3. Analyze the returned DNAvailabilityPolicy. The DNAvailabilityPolicy.DNStatuses property will contain

availability information for each DN in the request.

The following code snippet shows how to do this:

private static void DemonstrateDNAvailability(ISwitchPolicyService service)
{

DNAvailabilityContext dnacontext =
new DNAvailabilityContext("SomeSwitch");

dnacontext.AgentId = "AgentLogin1000";
dnacontext.DNs.Add(new Dn
{

AgentStatus = AgentStatus.Ready,
Identifier = "1000",
ServiceStatus = ServiceStatus.InService,
Type = AddressType.DN

});
dnacontext.DNs.Add(new Dn
{

AgentStatus = AgentStatus.Ready,
Identifier = "2000",
ServiceStatus = ServiceStatus.InService,
Type = AddressType.Position

});

DNAvailabilityPolicy dnpolicy =
service.GetPolicy<DNAvailabilityPolicy>(dnacontext);

DisplayInColor(dnpolicy, ConsoleColor.Red);
}

Get Function Availability Information for the Current Context
Some switches differ in when they allow certain functions to be performed. Also, some functions can
always be performed on certain switches, while others may be impossible to perform. For example,
RequestMergeCalls can never be performed on some switches. For other functions, whether or not
the function can be performed varies depending on context. For example, on some switches
RequestReleaseCall can only be used when a call is in a Held, Dialing, or Established state, while on
other switches it is also possible to release a call when it is in a Ringing state. In addition to this, on
some switches the phone set is presented as more than one Directory Number (DN) and each DN can
have a different type, such as Position and Extension. Some functions are allowed for both types,
while some other functions may be restricted to a certain DN type. To retrieve this kind of function
availability information for the current context, perform the following steps:

1. Create an instance of FunctionHandlingContext and populate it with the following required information:
• Specify the switch type

Using the Switch Policy Library Use Cases

Platform SDK Developer's Guide 80

• Specify the request by setting the Message property
• Describe the context as fully as possible

2. Call ISwitchPolicyService.GetPolicy, using this FunctionHandlingContext.
3. Analyze the returned FunctionAvailabilityPolicy. If the specified request is possible in the given context,

the IsFunctionAvailable property will be true. However, if the request is not supported, SPL will return
null.

The following code snippet shows how to do this:

foreach (string switchType in new[] { swTypeA4400Classic, swTypeA4400emul, swTypeA4400Subs })
{

DNContext dn = new DNContext //implements IDNContext
{

Identifier = "1001",
Type = AddressType.DN,
AgentStatus = AgentStatus.Ready,
ServiceStatus = ServiceStatus.InService,
DndStatus = FunctionStatus.Off,
ForwardStatus = FunctionStatus.Off

};

DNContext otherDN = new DNContext
{

Identifier = "2001",
Type = AddressType.DN,
AgentStatus = AgentStatus.Ready,
ServiceStatus = ServiceStatus.InService,
DndStatus = FunctionStatus.Off,
ForwardStatus = FunctionStatus.Off

};

foreach (CallType callType in Enum.GetValues(typeof(CallType)))
{

PartyContext mainParty = new PartyContext //implements IPartyContext
{

Identifier = "1002",
Status = PartyStatus.Established,
CallType = callType,
IsConferencing = true,
IsTransferring = true,
DN = dn

};

PartyContext otherParty = new PartyContext
{

Identifier = "1002",
CallType = callType,
DN = otherDN,
IsConferencing = true,
IsTransferring = true,
Status = PartyStatus.Established

};
CallContextStub ccontext = new CallContextStub //implements ICallContext
{

CallType = callType,
Destination = mainParty,
Origination = otherParty,
Identifier = "1002",
IsConferencing = true,
IsTransferring = true,

Using the Switch Policy Library Use Cases

Platform SDK Developer's Guide 81

Parties = new List<IPartyContext>{mainParty,otherParty},
Parent = null//no parentCall - our call is solitary call.

};

FunctionHandlingContext context = new FunctionHandlingContext(switchType)
{

Message = RequestHoldCall.Create(),
DN = dn,
Party = mainParty,
Call = ccontext

};
FunctionAvailabilityPolicy policy =

service.GetPolicy<FunctionAvailabilityPolicy>(context);

Console.WriteLine(policy);
}

}

Get Instructions On How To Implement a Feature
Some switches differ in how certain features can be accessed. The majority of their features may
map directly to individual switch functions, but this is not always so. For example, for some switches
it is not possible to log the agent out while the agent is in the ready state. So, the feature which
implements agent logout for these switches would require two steps:

1. Make sure the agent is in a NotReady state
2. Log the agent out

SPL implements a feature handler for each feature that it supports. To create and run a feature
handler, perform the following steps:

1. Create a new instance of FunctionHandlingContext and populate it with the following required
information:
• Specify the switch type.
• Specify the request by setting the Message property. This step can be omitted if the feature handler

is created by using the featureName parameter in the
ISwitchPolicyService.CreateFeatureHandler(String featureName, FunctionHandlingContext context)
method.

• Provide a valid IProtocol instance as the value of the Protocol property.
• Describe the context as fully as possible.

2. Call the ISwitchPolicyService.CreateFeatureHandler and pass this FunctionHandlingContext, either alone
or with the name of the feature.

3. Call the BeginExecute method on the returned handler, passing the same instance of
FunctionHandlingContext.

4. The remainder of the processing depends on the implementation, but the general approach is to
perform the following actions while the status of the handler is Executing:
1. Receive event from TServer
2. Update FunctionHandlingContext based on the received event
3. Assign the received event to the Message property of your FunctionHandlingContext instance

Using the Switch Policy Library Use Cases

Platform SDK Developer's Guide 82

4. Call the Handle method of IFeatureHandler passing with it the updated FunctionHandlingContext

The following code snippet shows how to do this:

private static void LoginReadyAgent(IProtocol protocol,
ISwitchPolicyService service, string thisdn, string agentID)

{
FunctionHandlingContext context = new FunctionHandlingContext("SomeSwitch");
RequestAgentLogin requestAgentLogin = RequestAgentLogin.Create();
requestAgentLogin.ThisDN = thisdn;
requestAgentLogin.AgentID = agentID;
requestAgentLogin.AgentWorkMode = AgentWorkMode.AutoIn;
context.Message = requestAgentLogin;
context.Protocol = protocol;

IFeatureHandler loginHandler = service.CreateFeatureHandler(context);

if(loginHandler == null)
{

protocol.Send(requestAgentLogin);
// Process the incoming events for the scenario
return;

}

// Processing feature handler
loginHandler.BeginExecute(context);
while (loginHandler.Status == FeatureStatus.Executing)
{

context.Message = context.Protocol.Receive();
// Update the context based on the received T-Server event
loginHandler.Handle(context);

}
}

Get Instructions On How To Accomplish Complex Functionality
Your application may sometimes need access to functionality that depends on the switch type. For
example, when an application receives events from the T-Server, the way a given event's fields are
used can depend on both the call scenario and the switch type. To retrieve this information, perform
the following steps:

1. Create a MessageHandlingContext and populate it with the following required information:
• Name of switch
• Name of handler

2. Call ISwitchPolicyService.CreateMessageHandler, pass this context into it, and receive the resulting
IMessageHandler.

3. Call the IMessageHandler.Handle method on the received handler.

The following code snippet shows how to do this:

private static void DemonstrateMessageHandler(ISwitchPolicyService service)
{

EventRinging message = EventRinging.Create();
message.ThirdPartyDN = "12345";
message.DNIS = "18009870987";
message.CallType = CallType.Internal;

Using the Switch Policy Library Use Cases

Platform SDK Developer's Guide 83

message.OtherDN = "9875";
MessageHandlingContext context35 =

new MessageHandlingContext("AlcatelA4400DHS3::Classic")
{ HandlerName = "OtherDN" };

IMessageHandler handler = service.CreateMessageHandler(context35);
string res = (string)handler.Handle(message);
DisplayInColor(res, ConsoleColor.Yellow);

}

Add Logging Support
To add logging support, carry out the following steps:

1. Create an instance of IUnityContainer and register an anonymous instance or type mapping for the
ILogger interface.

2. Pass the IUnityContainer created during the previous step to the factory method, which creates an
instance of ISwitchPolicyService.

The following code snippet shows how to do this:

IUnityContainer root = new UnityContainer();
root.RegisterInstance(new ConsoleLogger());
ISwitchPolicyService service =

SwitchPolicyFactory.CreateSwitchPolicyService(root);

SPL also provides the following options:

• Your application can log the topmost messages into a distinct log. To use this option, call the
CreateSwitchPolicyService(IUnityContainer container, ILogger logger) method of the
SwitchPolicyServiceFactory class. The passed logger (if it is not null) will be used for logging the
topmost messages.

• You can configure any switch container to use a specific logger. Objects created by the Unity container
(feature handlers, policy providers and so on) can use the container to resolve the ILogger for further
logging.

Note: the classes provided by SPL resolve the ILogger (if there is one) at creation time. So, if your
application changes the ILogger resolution rule for the root container that was previously passed into
the SwitchPolicyService constructor after the corresponding method call, this will not affect:

• Existing instances
• Objects which are created in the container(s), for which special ILogger mapping rule is configured

Supported Functions

As mentioned above, SPL is driven by a configuration file that makes it possible to support a wide
variety of switch functions. Table 1 shows the functions that are supported by SPL at installation time,
using the default configuration file.

Switch Functions Supported by SPL At Installation Time

Using the Switch Policy Library Use Cases

Platform SDK Developer's Guide 84

Switch Function Description
DN and Agent Functions

RequestAgentLogin
Logs in the agent specified by the AgentId
parameter to the ACD group specified by the
parameter.

RequestAgentLogout Logs the agent out of the ACD group specified by
the Queue parameter.

RequestAgentNotReady

Sets a state in which the agent is not ready to
receive calls. The agents telephone set is specified
by the DN parameter; the ACD group into which the
agent is logged is specified by the Queue
parameter.

RequestAgentReady
Sets a state in which the agent is ready to receive
calls. The agents phone set is specified by the DN
parameter; the ACD group into which the agent is
logged is specified by the Queue parameter.

RequestCallForwardCancel Sets the Forwarding feature to Off for the telephony
object that is specified by the DN parameter.

RequestCallForwardSet Sets the Forwarding feature to On for the telephony
object that is specified by the DN parameter.

RequestCancelMonitoring

A request by a supervisor to cancel monitoring the
calls delivered to the agent. If this request is
successful, T-Server distributes
EventMonitoringCancelled to all clients registered
on the supervisor's and agent's DNs.

RequestMonitorNextCall

A request by a supervisor to monitor (be
automatically conferenced in as a party on) the
next call delivered to an agent. Supervisors can
request to monitor one subsequent call or all calls
until the request is explicitly canceled. If a request
is successful, EventMonitoringNextCall is
distributed to all clients registered on the
supervisor's and agent's DNs. Supervisors start
monitoring each call in Mute mode. To speak, they
must execute the function

RequestSetDNDOff Sets the Do-Not-Disturb (DND) feature to Off for the
telephony object specified by the DN parameter.

RequestSetDNDOn Sets the Do-Not-Disturb (DND) feature to On for the
telephony object specified by the DN parameter.

RequestSetMuteOff On an existing conference call, cancels the Mute
mode for the party specified by the DN parameter.

RequestSetMuteOn On an existing conference call, sets Mute mode for
the party specified by the DN parameter.

Call Handling Functions

RequestAlternateCall

On behalf of the telephony object specified by the
DN parameter, places the active call specified by
thecurrent_conn_id parameter on hold and
connects the call specified by the held_conn_id
parameter.

Using the Switch Policy Library Use Cases

Platform SDK Developer's Guide 85

Switch Function Description

RequestAnswerCall Answers the alerting call specified by the conn_id
parameter.

RequestAttachUserData

On behalf of the telephony object specified by the
DN parameter, attaches the user data structure
specified by the user_data parameter to the T-
Server information that is related to the call
specified by the conn_id parameter.

RequestClearCall
Deletes all parties, that is, all telephony objects,
from the call specified by conn_id and disconnects
the call.

RequestCompleteConference

Completes a previously-initiated conference by
merging the held call specified by the held_conn_id
parameter with the active consultation call
specified by the current_conn_id parameter on
behalf of the telephony object specified by the DN.
Assigns the held_conn_id to the resulting
conference call. Clears the consultation call
specified by the current_conn_id parameter.

RequestCompleteTransfer

On behalf of the telephony object specified by the
DN parameter, completes a previously initiated
two-step transfer by merging the held call specified
by the conn_id parameter with the active
consultation call specified by the current_conn_id
parameter. Assigns held_conn_id to the resulting
call. Releases the telephony object specified by the
DN parameter from both calls and clears the
consultation call specified by the current_conn_id
parameter.

RequestDeleteFromConference

A telephony object specified by DN deletes the
telephony object specified by dn_to_drop from the
conference call specified by conn_id. The client that
invokes this service must be a party on the call in
question.

RequestDeletePair
On behalf of the telephony object specified by the
DN parameter, deletes the key-value pair specified
by the key parameter from the user data attached
to the call specified by the conn_id parameter.

RequestDeleteUserData
On behalf of the telephony object specified by the
DN parameter, deletes all of the user data attached
to the call specified by the conn_id parameter.

RequestHoldCall
On behalf of the telephony object specified by the
DN parameter, places the call specified by the
conn_id parameter on hold.

RequestInitiateConference

On behalf of the telephony object specified by the
DN parameter, places the existing call specified by
the conn_id parameter on hold and originates a
consultation call from the same telephony object to
the called party, which is specified by the
destination parameter with the purpose of a
conference call.

RequestInitiateTransfer On behalf of the telephony object specified by the

Using the Switch Policy Library Use Cases

Platform SDK Developer's Guide 86

Switch Function Description
DN parameter, places the existing call specified by
the conn_id parameter on hold and originates a
consultation call from the same telephony object to
the called party, which is specified by the
destination parameter for the purpose of a two-
step transfer.

RequestListenDisconnect

On an existing conference call, sets Deaf mode for
the party specified by the listener_dn parameter.
For example, if two agents wish to consult
privately, the subscriber may temporarily be
placed in Deaf mode.

RequestListenReconnect On an existing conference call, cancels Deaf mode
for the party defined by the listener_dn parameter.

RequestMakeCall
Originates a regular call from the telephony object
specified by the DN parameter to the called party
specified by the Destination parameter.

RequestMakePredictiveCall

Makes a predictive call from the thisDN DN to the
otherDN called party. A predictive call occurs
before any agent-subscriber interaction is created.
For example, if a fax machine answers the call, no
agent connection occurs. The agent connection
occurs only if there is an actual subscriber
available on line.

RequestMergeCalls

On behalf of the telephony object specified by the
DN parameter, merges the held call specified by
the held_conn_id parameter with the active call
specified by the current_conn_id parameter in a
manner specified by the merge_type parameter.
The resulting call will have the same conn_id as the
held call.

RequestMuteTransfer

Initiates a transfer of the call specified by the
conn_id parameter from the telephony object
specified by the DN parameter to the party
specified by the destination parameter; completes
the transfer without waiting for the destination
party to pick it up. Releases the telephony object
specified by the DN parameter from the call.

RequestQueryCall
Requests the information specified by info_type
about the telephony object specified by conn_id. If
the query type is supported, the requested
information will be returned in EventPartyInfo.

RequestReconnectCall

Releases the telephony object specified by the DN
parameter from the active call specified by the
current_conn_id parameter and retrieves the
previously held call, specified by the held_conn_id
parameter, to the same object. This function is
commonly used to clear an active call and to return
to a held call, or to cancel a consult call (due to
lack of an answer, because the device is busy, and
so on) and then to return to a held call.

RequestRedirectCall Requests that the call be redirected, without an

Using the Switch Policy Library Use Cases

Platform SDK Developer's Guide 87

Switch Function Description
answer, from the party specified by the DN
parameter to the party specified by the dest_dn
parameter.

RequestRegisterAddress Registers for a DN. Your application must register
the DN before sending the RequestAgentLogin.

RequestReleaseCall
Releases the telephony object specified by the DN
parameter from the call specified by the conn_id
parameter.

RequestRetrieveCall
Connects the held call specified by the conn_id
parameter to the telephony object specified by the
DN parameter.

RequestSendDtmf
On behalf of the telephony object specified by the
DN parameter, sends the digits that are expected
by an interactive voice response system.

RequestSetCallInfo

Changes the call attributes.
Warning: Improper use of this function may result in
unpredictable behavior on the part of the T-Server and the
Genesys Framework. If you have any doubt on how to use it,
please consult with Genesys.

RequestSetMessageWaitingOff Sets the Message Waiting indication to off for the
telephony object specified by the DN parameter.

RequestSetMessageWaitingOn Sets the Message Waiting indication to on for the
telephony object specified by the DN parameter.

RequestSetMuteOff On an existing conference call, cancels the Mute
mode for the party specified by the DN parameter.

RequestSetMuteOn On an existing conference call, sets Mute mode for
the party specified by the DN parameter.

RequestSingleStepConference Adds a new party to an existing call and creates a
conference.

RequestSingleStepTransfer
Transfers the call from a specified directory number
DN that is currently engaged in the call specified
by the conn_id parameter to a destination DN that
is specified by the destination parameter.

RequestUnregisterAddress Unregisters a DN.

RequestUpdateUserData

On behalf of the telephony object specified by the
DN parameter, updates the user data that is
attached to the call specified by the conn_id
parameter with the data specified by the user_data
parameter.

Using the Switch Policy Library Use Cases

Platform SDK Developer's Guide 88

Developers Guide PDF - PSDK 7.6

Description

This document is currently only applicable to the 7.6 release of Platform SDK.

This document introduces you to the tools and examples provided to help you get started with
Platform SDK development. In brief, you will find the following information in this guide:

• Descriptions of the Application Blocks included with Platform SDK 7.6.
• Setup instructions and analysis of the code examples included with Platform SDK 7.6.

Platform SDK 7.6 Developer's Guide

Developers Guide PDF - PSDK 7.6 Use Cases

Platform SDK Developer's Guide 89

Platform SDK Resources
Purpose: Describes additional resources located
on this site and the Genesys Support site.

Related Documentation

Depending on what type of development you are doing with the Platform SDKs, the following
resources may be useful for providing background information about your Genesys environment.

Genesys Events and Models Reference Manual
Use with: T-Server, Interaction Server

Download: Genesys Events and Models Reference Manual

If you are working with T-Server or Interaction Server, you should download and start reading the
Genesys Events and Models Reference Manual right away. This document provides you with a large
collection of two different types of important information, organized into two separate sections.

• Part 1: Genesys Events is the events portion of this document. The information in this part is wide-
ranging, and includes everything from the names and descriptions of events, to the attributes that go
with these events, to the definitions of event sub-states.

• Part 2: Genesys Interaction Models is the models portion of this document. It contains a selected
list of call and interaction models. This information is also wide ranging. Based on the history of how
this information has been presented in the past in various documents, model details may differ from
chapter to chapter.

In both parts of this document, chapters are organized according to the type of event or model being
described. So, for example, both parts one and two have specific chapters on voice-based issues that
center on T-Library’s generation of events and how calls are routed in a contact center.

Framework Stat Server User’s Guide
Use with: Stat Server

Download:

• Framework 8.1 Stat Server User’s Guide
• Framework 8.0 Stat Server User’s Guide

Platform SDK Resources Use Cases

Platform SDK Developer's Guide 90

Reporting Technical Reference
Use with: Stat Server

Download: Reporting Technical Reference 8.0 Overview

Download: Reporting Technical Reference Guide for the Genesys 7.2 Release

Code Samples

The documentation for the Platform SDK includes a number of code samples. These samples are for
illustrative purposes only:

• Complex Platform SDK 7.6 .NET Code Sample
• Configuration Platform SDK 7.6 Java (with Message Broker) Code Sample
• Configuration Platform SDK 7.6 .NET Code Sample
• Open Media Platform SDK 7.6 Java (Client) Code Sample
• Open Media Platform SDK 7.6 .NET (Client) Code Sample
• Open Media Platform SDK 7.6 Java (Server) Code Sample
• Open Media Platform SDK 7.6 .NET (Server) Code Sample
• Statistics Platform SDK 7.6 Java Code Sample
• Statistics Platform SDK 7.6 .NET Code Sample
• Voice Platform SDK 7.6 Java Code Sample
• Voice Platform SDK 7.6 .NET Code Sample

Platform SDK Resources Use Cases

Platform SDK Developer's Guide 91

	Platform SDK Developer's Guide
	Table of Contents
	Welcome to the Developer's Guide!
	Lazy Parsing of Message Attributes
	Platform SDK Implementation of TLS
	Quick Start
	Using the Platform SDK Commons Library
	Using the Application Template Application Block
	Configuring TLS Parameters in Configuration Manager
	Using and Configuring Security Providers
	OpenSSL Configuration File
	Use Cases

	LCA Hang-Up Detection Support
	Using the Switch Policy Library
	Developers Guide PDF - PSDK 7.6
	Platform SDK Resources

