
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Orchestration Server 8.1.4

Orchestration Server Developer's
Guide

7/18/2022

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Table of Contents
Orchestration Server 8.1.4 Developer Guide 6
Document Change History 8
SCXML Language Reference 9

Contents of SCXML Language Reference 55
Orchestration Extensions 56

Queue Interface 59
Classification Interface 128
Core Extensions 141
Interaction Interface 184
Interaction Interface Object Model 187
Interaction Interface Functions 207
Interaction Interface Action Elements 210
Interaction Interface Events 285
Dialog Interface 314
Statistic Interface 382
Resource Interface 394
Elasticsearch Connector 406
Agent Extension 413

Migration from IRD 418
Orchestration Server Integration 424
Orchestration Getting Started Guide 432
Orchestration Server How-To 444
External Interfaces 450
Orchestration Server Sample Applications 462

Route to DN 473
Route to DN Using Target ID 474
Handle Routing Failure 475
Route to DN and Put to Virtual Queue 476
Route to Agent 477
Route to Agent Using Target ID 478
Route to Agent Without Checking Ready State 479
Route to Agent on Specific DN Type 480
Route to Agent and Run Treatments in Parallel 481
Route to Place 482
Route to Place Using Target ID 483



Route to Place Without Checking Ready State 484
Route to Agent Group 485
Route to Agent Group Using Target ID 486
Route to Agent Group Without Checking Ready State 487
Route to Agent Group With Threshold 488
Route to Place Group 489
Route to Place Group Using Target ID 490
Route to Place Group Without Checking Ready State 491
Route to Queue 492
Route to Queue Using Target ID 493
Route to Agent by Skills 494
Route to Agent by Skills Using Target ID 495
Route to Routing Point 496
Route to Routing Point Using Target ID 497
Route to Multiple Agents 498
Route to Multiple Agents Using Target ID 499
Route to Agent Using Statistic 500
Set Default Destination 502
ECMA Script on Top Level 503
ECMA Script on Entry Into State 504
ECMA Script on Exit From State 505
ECMA Script During Transition 506
ECMA Script After Invoke 507
ECMA Script Function 508
ECMA Script and Data Model 509
Fetch Data 510
Fetch Data in JSON Format 511
Fetch Data With Parameters 513
Fetch Data Using POST Method 514
Handle Fetch Failure 515
Invoke Session 516
Invoke Session With Parameters 518
Receive Event From Invoked Session 520
Receive Event From Invoked Session and Extract Event Data 522
Cancel Invoked Session 523
Handle Invoke Failure 524
Access Interaction Properties 525



Set User Data 526
Delete User Data 527
Delete All User Data 528
Access Voice Interaction Properties 529
Create Call 530
Collect Digits 531
Play Announcement With One Prompt 532
Play Announcement With Two Prompts 533
Play Announcement and Collect Digits 534
Play Sound 535
Record User Announcement 536
Delete User Announcement 537
Play Application 538
Cancel Call 539
Start on Remote Resource 540
Run Series of Treatments 541
Get Statistic Value 542
Get Average Statistic Value 543
Get Minimum Statistic Value 544
Get Maximum Statistic Value 545
Get Configuration Option Name 546
Check If Special Day 547
Get List Item Value 548
Lookup Value 549
Get Time in Time Zone 550
Get Date in Time Zone 551
Get Day in Time Zone 552
Work With E-Mail Or SMS 553
Work With Chat 557

Orchestration Server Sample Templates 560
Expand Target List 564
Change the Ownership of an Interaction 566
Detach an Interaction 569
Detect Consult Call 572
Detect User Data Changes 577
Route to Fetched Targets With Invoking SCXML Strategies 581

Orchestration Server Troubleshooting 584



ECMAScript 586



Orchestration Server 8.1.4 Developer
Guide

SCXML Language Reference

Orchestration applications are created by writing SCXML documents either via your favorite text
editor or via Genesys Composer. SCXML is a W3C evolving standard which allows applications to be
described or represented in a state machine execution language.

See SCXML Language Reference.

Orchestration Extensions

Orchestration Extensions are provided in the form of one or more functional modules that package up
related actions, objects, functions and events that enable developers to interact with the Genesys
platform without having to directly leverage existing SDKs. This allows developers from within
Orchestration to create feature rich and open applications.

See Orchestration Extensions.

Migration from IRD

For customers with existing IRD strategies, Composer can be used to help migrate your existing
strategies. For information on the various mappings from IRD functions and objects please see IRD To
Composer Migration Guide. For supplementary information please refer to Migration from IRD.

Orchestration Integration

To facilitate richer application development Orchestration enables other enterprise applications and
systems within your environment to interact with it via open standard web based interfaces. By
enabling this it allows the full potential of Orchestration within an enterprise setting to be realized
and allows developers to build applications that extended past the capabilities of what is natively
supported by Orchestration. To allow other applications within your enterprise to directly interact with
Orchestration and the sessions that it is executing we support an external interface which is
described here in External Interfaces and to enable Orchestration sessions to reach out and interact
with other systems we support our Orchestration Integration Interfaces which is described here
Orchestration Server Integration.

Orchestration Server 8.1.4 Developer Guide

Orchestration Server Developer's Guide 6



Getting Started Guide

This guide is intended as a reference for those working with Orchestration for the first time, but can
also serve as a reference for common use cases. For first time users, it is recommended you walk
through the exercises sequentially as each section builds on the previous section. For users that is
familiar with Orchestration, this guide will provide various samples for common tasks.

See Orchestration Getting Started Guide.

How-To

This topic provides details on how to perform common tasks using SCXML and/or Orchestration

See Orchestration Server How-To.

Samples and Templates

This collection of SCXML files will help you develop your Orchestration Server applications. It gives
examples of typical use cases which serve as building blocks for your SCXML applications.

See Samples and Templates.

Troubleshooting

See Orchestration Server Troubleshooting.

Orchestration Server 8.1.4 Developer Guide

Orchestration Server Developer's Guide 7



Document Change History
The following topics are new or have been updated in the Orchestration Developer's Guide:

Orchestration Server Release 8.1.400.12

New “urs” method is added to the session:fetch Action Element. It simplifies usage of Universal
Routing Server functions, previously available for Orchestration Server only via the Universal Routing
Server Web interface. See <fetch> under the Action Elements section.

Document Change History

Orchestration Server Developer's Guide 8



SCXML Language Reference
Click here to view the organization and contents of the SCXML Language Reference.

SCXML stands for State Chart XML: State Machine Notation for Control Abstraction. Orchestration
Server utilizes an internally developed SCXML engine which is based on, and supports the
specifications outlined in the W3C Working Draft 7 May 2009 [1]. There are, however, certain changes
and/or notable differences (see Extensions and Deviations) between the W3C specification and the
implementation in Orchestration Server which are described on this page. Only the ECMAScript
profile is supported (the minimal and XPath profiles are not supported).

Usage

SCXML documents are a means of defining control behaviour through the design of state machines.
The SCXML engine supports a variety of control flow elements as well as methods to manipulate and
send/receive data, thus enabling users to create complex mechanisms.

For example, Orchestration, which is a consumer of the SCXML engine, uses SCXML documents to
execute strategies. A simple strategy may involve defining different call routing behaviours
depending on the incoming caller, however, the SCXML engine facilitates a wide variety of
applications beyond simple call routing.

Authoring SCXML documents can be done using any text editor or by leveraging the Genesys
Composer tool.

Syntax and Semantics

The appearance of an SCXML document is very similar to that of any other markup language. The use
of various SCXML-specific tags define the structure and operation of a state machine. The SCXML
snippet below illustrates how an SCXML document may look like in structure:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Specifying the encoding is important! -->

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
name="SCXML DOCUMENT NAME" >
<initial>

<transition target="FIRST_STATE">
<log expr="'Inside the initial transition'" />

</transition>
</initial>

<state id="FIRST_STATE">
<onentry>

<log expr="'Do things here when state is first entered'" />
<send event="LEAVE_STATE" />

</onentry>
<onexit>

SCXML Language Reference

Orchestration Server Developer's Guide 9



<log expr="'Do things here when state is being exited'" />
</onexit>
<transition event="LEAVE_STATE" target="exit">

<script>
var message = 'Do things here during a transition';

</script>
<log expr="message" />

</transition>
</state>

<final id="exit" />
</scxml>

Basic Elements
SCXML elements for defining states, transitions, and behavior include (but are not limited to):

• <state>
• <transition>
• <parallel>
• <initial>
• <final>
• <onentry>
• <onexit>

In addition, it is also possible to define actions which are performed during state transitions
(<onentry>, <onexit>, within <transition>) by using the following Executable Content elements (but
are not limited to):

• <if>/<elseif>/<else>
• <foreach> (planned feature)

• <raise>
• <log>

It is also possible to embed script code (ECMAScript) within the state machine by using the following
element:

• <script>

One may refer to the W3C Working Draft [2] for more detailed explanations of the above elements
and basic usage examples.

Managing Data
SCXML applications are commonly driven by data acquisition and manipulation, where the data
gathered can be processed to determine application behaviour. Users may define data models within
an SCXML document by using the <datamodel> element. A <datamodel> element may have any
number of <data> elements as seen below:

SCXML Language Reference

Orchestration Server Developer's Guide 10



<datamodel>
<data ID="target" expr="'Hello World!'" />
<data ID="this_is_one" expr="1" />
<data ID="m_array" expr="['a', 'b', 'c']" />

</datamodel>

Any data objects defined in this manner become accessible as a child of the _data global object. To
access a data object defined within a <datamodel>, the following syntax is used:

_data.data_ID    // Where data_ID is replaced by the ID of the data element

Alternatively, one may opt to declare data objects/variables within a <script> block instead if more
complex initialization routines are required. Variables defined within a <script> block, however,
become children of the <script> element's parent's local scope. That is, if it was defined in the global
scope (<scxml>), the variables will be globally accessible; if it was defined within a state, the
variables will become children of the state's local scope.

<script>
var target='Hello World!';
var this_is_one=1;
var m_array = ['a', 'b', 'c'];

</script>
<log expr="'The value of target is: ' + target" />

Data sharing between SCXML sessions

It may be desirable in many situations to be able to share data between multiple SCXML sessions.
Data may be shared between sessions using the following methods:

Session Initiated

When one SCXML session initiates another SCXML session via the <invoke>
action (or <session:start>, <session:fetch>, which are specific to
Orchestration only!) the initiating session can share data via the model
defined in the SCXML specification. For details, see the <invoke>
implementation section on the W3C website.

Session runtime

During the execution of a session, a session can shared data with another
session via events and the <send> action.

Events
Event handling (both internal and external) is fully supported by the SCXML engine. The event model
allows users to control SCXML sessions by sending events from external entities or by raising events
internally during the execution of an SCXML document. These events can be used to drive transitions
or send data to external systems.

Internal Events

These events are published and consumed by the same SCXML session. The following are the
methods of managing them:

SCXML Language Reference

Orchestration Server Developer's Guide 11



Publish

To generate an event, either the <event> or <send> element can be used.
The SCXML engine puts the event into the session's event queue. When using
<send>, it is possible to place the event on either the external event queue
or internal event queue, based on the value of the target attribute. (If the
special value '_internal' is specified, the event is added to the internal
event queue of the current session. If no value is specified, the event is
added to the external event queue of the current session.). When using
<send> to generate events, if there is an intention to cancel the event sent,
it is recommended to use the attribute idlocation instead of id.

Subscribe

Receiving events is achieved by using the <transition> element. If the event
contains properties, one may access the event's properties via the _event
system variable:

_event.data

The Orchestration platform supports the use of wildcards ("*") when evaluating event names.

External Events

These events are published and consumed by the given SCXML session and the corresponding
external entity. The following is a list of external entities that are supported:

• Other SCXML sessions
• External systems via Functional Modules
• External applications

The following are the methods of managing events from an SCXML-session standpoint:

Publish

The <send> element with the appropriate targettype attribute value:
• scxml - for other SCXML sessions. Events may be delivered to the appropriate session within the

same platform server or across platforms, and is facilitated by the message functionality of the
platform. The target attribute has the following format: url#sessionid

• basichttp - for external applications. These events are delivered to the appropriate external
application, based on the defined target URL and an HTTP POST message.

• fm - for any Functional Module-related systems. The target attribute is the functional module's
namespace name.

In addition to the <send> element, a given Functional Module may have an
action element to send events, as well.

SCXML Language Reference

Orchestration Server Developer's Guide 12



Subscribe

The <transition> element. If the event contains properties, one may access
the event's properties via the _event system variable:

_event.data

In general, overall external event subscription is implicit:
• Functional Modules
• External applications and other SCXML sessions - When these events are sent, they are sent

explicitly to the given session (by session ID), so no explicit subscription is needed.

The following are the methods of managing events from an external system standpoint:

Publish

The method depends on the source of the event:
• Other SCXML sessions - The <send> element is used.
• External applications - The platform external interface is used (SendTransitionEvent). The platform

has the appropriate functionality to receive events from external sources and deliver them to the
appropriate sessions.

• Functional Modules - The Functional Module sends the events to the platform based on the defined
Functional Module framework interfaces and the platform then delivers the events to the
appropriate session event queue.

Subscribe

For any of the potential subscribers, there is no explicit subscription method,
because the SCXML session is targeting a specific destination when
publishing the event, so the destination must have the appropriate interface
to receive the event.

• Functional Modules - The Functional Module supports the appropriate functional module framework
interface to receive the events from the session.

• External applications have the appropriate web application to process the HTTP post.
• Other SCXML sessions receive the event on their event queues via the platform.

Common Properties for Internal and External Events

The following common properties are present in all events, whether internal or external:

• name - This is a character string giving the name of the event. It is what is matched against the 'event'
attribute of <transition>. Note that transitions can carry out additional tests by using the value of this
field inside boolean expressions in the 'cond' attribute.

• type - This field describes the event type. It MUST contain one of an enumerated set of string values
consisting of: "platform" (for events raised by the platform itself, such as error events), "internal" (for
events raised by <event>), and "external" (for all other events, including those that the state machine
sends to itself via <send>).

SCXML Language Reference

Orchestration Server Developer's Guide 13



• sendid - In the case of error events triggered by a failed attempt to send an event, this field contains
the sendid or id of the triggering <send> element. Otherwise it is blank.

• invokeid - If this event is generated from an invoked child process, this field contains the invokeid of
the invocation (<invoke invokeid="..." or id="...">) that triggered the child process or in the case of
error events triggered by a failed attempt to invoke another process, this field contains the invokeid or
id of the invoking <invoke> element. Otherwise it is blank.

The following fields are logically present in all events, but are filled in only in external events:

• origin - This a URL, equivalent to the 'target' attribute on the <send> element. The combination of this
field with the 'origintype' field SHOULD allow the receiver of the event to <send> a response back to
the entity that originated this event. Not currently supported.

• origintype - This is a character string, similar to the 'targettype' or 'type" attribute in <send>. The
combination of this field with the 'origin' field SHOULD allow the receiver of the event to <send> a
response back to the entity that originated this event. Not currently supported.

• data - This field contains whatever data the sending entity chose to include in this event. The receiving
platform SHOULD reformat this data to match its data model, but MUST not otherwise modify it.

Extensions and Deviations

The Genesys SCXML implementation introduces various additions and differences from the W3C
SCXML specifications. The following extensions and deviations were introduced to accommodate the
needs of the SCXML engine.

ECMAScript
SpiderMonkey 1.8.5 is used as the ECMAScript engine. It implements a superset of ECMA-262 Edition
5. This allows for the inclusion of scripts within SCXML documents when more advanced
computational logic is required beyond the standard SCXML elements.

System Variables

The SCXML specification defines the following system variables which may provide useful information
to applications (all of which are available in the global scope):

_sessionid

This represents the unique ID associated with this SCXML session. It is set by
the platform.

_name

This represents the name that the developer gives this particular SCXML
document (for example, "Mortgage Process Logic". It is set by the developer
when creating the document.

_event

SCXML Language Reference

Orchestration Server Developer's Guide 14



This represents the event being presented to the application. It is set by the
platform when the event is available to the application.

_type

This represents the type of application that the developer gives this
particular SCXML document (that is, <SCXML> element _type attribute). It is
set by the developer when creating the document.

In addition to the above variables, the SCXML engine also provides the following extension system
variables:

_parentSessionid

This represents the unique ID associated with the parent of this SCXML
session. If the session has no parent, the value returned is an empty string. It
is set by the platform.

_genesys

This is the root object for accessing all Genesys-specific ECMAScript objects
and functions. Note that the user is not allowed to set properties in _genesys
as it is a protected system object. See Orchestration Extensions for more
information.

_data (<datamodel>)

These are the objects that are created based on the datamodels defined
within the SCXML document. For example, data to be used during the
processing of the logic and expected initiation and return parameters for the
session. See the _data (ORS Extensions) section below for Orchestration-
specific properties of the datamodel.

Protected Variables

Variables may be defined and set on any scope except within _genesys. In addition, top-level
variables starting with '_' are considered system variables and should not be modified. Defining top-
level variables with names starting with an underscore '_' is prohibited. However, the same restriction
does not apply if the variable is defined under a top level property such as the datamodel.

_data (ORS extensions)

In addition to storing session start parameters and user-defined datamodel items, the _data object
may sometimes be used by Orchestration to provide extra information about the session.

Property Name Description

_data.provision_object_name (8.1.200.48) Name of Enhanced Routing Script object associated
with session. Provided in sessions that are started

SCXML Language Reference

Orchestration Server Developer's Guide 15



Property Name Description
from a Script object (of type Enhanced Routing).

Variable Scoping

An SCXML session has one Global Scope, and many Local Scopes. Note that this implementation
differs from the W3C specification (as of February 16, 2012 [3]) as the specification dictates that all
variables must be placed into a single global ECMAScript scope. Nevertheless, it is still in compliance
with the W3C Working Draft 7 May 2009 [4].

The SCXML engine creates a scope for each state in the document. The parent scope for each local
scope is the parent state's local scope (or for <scxml>, the global scope). Each local scope shares it's
name with the state name. This allows the SCXML logic to access ECMAScript objects and variables in
its active ancestor's local scopes. For example, to access object x in the local scope of the
grandparent of the current local scope state, one may use the following syntax:

__grand-parent-name__.x    // Returns value of x from grandparent's local scope

See the following example on variable scoping:

<?xml version="1.0" encoding="UTF-8"?>
<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml" initial="outer">

<datamodel>
<data ID="dataval" expr="'Accessible from anywhere!'" />

</datamodel>

<script>
var globalval = 'Also accessible from anywhere!';

</script>

<state id="outer">
<onentry>

<script>
var parentval = 'Accessible from outer';

</script>
<log expr="_data.dataval" />
<log expr="globalval" />

</onentry>

<initial>
<transition target="inner" />

</initial>

<state id="inner">
<onentry>

<script>
var childval = 'Accessible from inner';

</script>
<log expr="childval" />
<log expr="__outer__.parentval" />

</onentry>
<transition target="done_inner" />

</state>

<final id="done_inner" />

<transition event="done.state.outer" target="exit" />
</state>

SCXML Language Reference

Orchestration Server Developer's Guide 16



<final id="exit" />
</scxml>

Functions and <script> Elements

ORS functions defined within SCXML documents (e.g., via <script> elements) may not behave as
expected following an Orchestration failover and session restoration. Specifically, the scope in which
a function executes may change following a session restore. Consider the following example:

<scxml initial=”my_state”>
...
<script>

// This is a top-level script block
var scope = “global”;

</script>

<state id=”my_state”>
<onentry>

<script>
var scope = “my_state”;
var hello = “hello world!”;
var fun = function(){

__Log(scope + “: “ + hello);
}

<script>
</onentry>
<transition event=”show_message”>

<script>
fun();

</script>
</transition>

</state>
...

The purpose of the function fun is simple: it will print the message "my_state: hello world!". Given
the example SCXML above, every time the event show_message is processed, the function fun will be
called.

Now assume that an ORS failover has occurred. On session recovery, the user may find that he/she
can no longer call the function fun without receiving an error like:

14:57:28.247 METRIC <exec_error sid='T5SL1E5D9923J7OG8TM4LCLQMG000001'
result='ReferenceError:
hello is not defined. Line 1 - in <script> at line: 117' thread='8596' />

An uneval of the session datamodel post-recovery might indicate the variables declared within the
state have all been persisted:

__my_state__:{
scope:”my_state”,
hello:”hello world!”,
fun:(function () {__Log(scope + “: “ + hello);})
}

The key difference between pre-recovery and post-recovery is that now, the function fun will execute
in global scope instead of local scope. This means that any variables referred to within the function
fun will only be resolved in the global scope. A slight modification can illustrate the difference:

SCXML Language Reference

Orchestration Server Developer's Guide 17



<scxml initial=”my_state”>
...
<script>

// This is a top-level script block
var scope = “global”;

</script>

<state id=”my_state”>
<onentry>

<script>
var scope = “my_state”;
var fun = function(){

__Log(scope);
}

<script>
</onentry>
<transition event=”show_message”>

<script>
fun();

</script>
</transition>

</state>
...

With the above code, fun() will now instead print: "global". The scope will be resolved to the variable
declared in the top-level script block.

One possible solution would be to design the function as follows:

<scxml initial=”my_state”>
...
<script>

// This is a top-level script block
var scope = “global”;

</script>

<state id=”my_state”>
<onentry>

<script>
var scope = “my_state”;
var hello = “hello world!”;
var fun = function(self){

__Log(self.scope + “: “ + self.hello);
}
</script>

</onentry>
<transition event=”show_message”>

<script>
fun(this);

</script>
</transition>

</state>
...

By passing in a reference to this, the scope of the variables are now strictly-defined and should
survive persistence with no change in behaviour.

Object Ownership

Objects and its associated properties are not implicitly shared with other sessions or external
applications, but there are methods to explicitly share these objects and properties with other

SCXML Language Reference

Orchestration Server Developer's Guide 18



sessions and applications. A session can only share snapshots of the current properties and objects -
they are not updated dynamically when the owning session changes them. The following are the
methods of how content can be shared:

• When the current session is starting another session, the current session can send these properties and
objects to the new session via the <invoke> or <session:start> with the <param> elements.

• One can use the <send> action element or the Web 2.0 API equivalent of the <send> element. This
allows any session or external application to get any property or object on any session.

Functions
The session has access to system functions (time, date, and so on) through the standard ECMAScript
objects and functions. In addition to the core ECMAScript script functions, the SCXML engine exposes
some other useful functions.

E4X (ECMAScript for XML)

SpiderMonkey supports E4X, which adds native XML support to ECMAScript. This allows the user to
access XML data as primitives, rather than as objects.

See the following example for usage:

var sales = <sales vendor="John">
<item type="peas" price="4" quantity="6"/>
<item type="carrot" price="3" quantity="10"/>
<item type="chips" price="5" quantity="3"/>

</sales>;

alert( sales.item.(@type == "carrot").@quantity );
alert( sales.@vendor );
for each( var price in sales..@price ) {

alert( price );
}
delete sales.item[0];
sales.item += <item type="oranges" price="4"/>;
sales.item.(@type == "oranges").@quantity = 4;

JSON

The following functions provide a convenient method of serializing and deserializing data to and from
the JavaScript Object Notation (JSON) format:

• JSON Function Set 1 - These functions are fast and should not be used on JSON-related data that is
untrusted:

uneval( object )
Converts object to JSON string form.

eval( string )
Converts JSON string to object form.

• JSON Function Set 2 - These functions are more secure (for example, will not run script logic) and are
defined in the ECMAScript 5th Edition standard. This function set is based on the open source version

SCXML Language Reference

Orchestration Server Developer's Guide 19



found at http://www.json.org/js. Note also that it is currently unable to handle cycles:

JSON.stringify( object, replacer function )
Converts object to string form.

JSON.parse( string, replacer function )
Converts JSON string to object form

__GetDocumentURL

Returns the URL of the currently running scxml strategy.

Usage:

__GetDocumentURL()

Parameters:

• None

Returns:

• url: STRING - e.g. "www.example.com/scxml/strategy.scxml"

__GetDocumentBaseURL

Returns the base URL of the currently running scxml strategy.

Usage:

__GetDocumentBaseURL()

Parameters:

• None

Returns:

• base_url: STRING - e.g. www.example.com/scxml/

__Log

This function is the ECMAScript equivalent to the <log> element. It allows an application to generate
a logging or debug message which a developer can use to help in application development or post-
execution analysis of application performance.

Usage:

__Log (expr) or __Log(expr, label, level)

Parameters:

SCXML Language Reference

Orchestration Server Developer's Guide 20



• expr: STRING which can be a variable or a constant - This parameter returns the value to be logged.
• label: STRING which can be a variable or a constant - This parameter may be used to indicate the

purpose of the log.
• level: STRING which can be a variable or a constant - This parameter specifies the log level.

Returns:

• None

__Raise

This function is the ECMAScript equivalent to the <raise> element. It allows an application to raise an
event which can be used to direct the execution flow of an SCXML strategy.

Usage:

1. __Raise(expr)
2. __Raise(expr, data)
3. __Raise(expr, delay)
4. __Raise(expr, data, delay)

Parameters:

• expr: STRING which can be a variable or a constant - This parameter specifies the event name.
• data: OBJECT which can be a variable or a valid expression - This parameter specifies a data model. The

data from which is included in the event (like <param> children of a <raise> element).
• delay: STRING which can be a variable or a constant - This parameter must evaluate to a valid CSS2

time designation. It specifies the time delay prior to firing the event.

Returns:

• None

__GetDocumentType

Returns the document type of the currently running scxml strategy. The value returned is equivalent
to the value of the _type attribute of the <SCXML> element, as specified by the developer.

Usage:

__GetDocumentType()

Parameters:

• None

Returns:

• type: STRING

SCXML Language Reference

Orchestration Server Developer's Guide 21



__GetCurrentStates

Returns an array of strings containing names of the currently active states.

Usage:

__GetCurrentStates()

Parameters:

• None

Returns:

• states: ARRAY[STRING1, STRING2, .. ]

__GetQueuedEvents

Returns an array of strings containing events currently placed into the event queue.

Usage:

__GetQueuedEvents()

Parameters:

• None

Returns:

• events: ARRAY[STRING1, STRING2, .. ]

In

Determines if the state specified is currently active. If so, returns true, otherwise returns false.

Usage:

In( "example_state_name" );

Parameters:

• state: STRING which can be a variable or a constant - This parameter specifies the name of the state to
be compared against.

Returns:

• is_in_state: BOOLEAN

Function Scoping
A caveat resulting from the Scoping Variable Scoping deviation is that developers must now be

SCXML Language Reference

Orchestration Server Developer's Guide 22



aware of the scope in which his/her functions execute. User-defined functions will generally execute
in the local scope where they were defined. This means that any variables referenced within a user-
defined function must also exist within that very same scope.

It is possible to invoke a function outside of its native scope (e.g. by referencing another state directly
through the object model, or by referencing a function that was defined in a parent state), but note
that its variable scoping will remain in that native scope (where the function was defined). See
example below:

<state id="outer" initial="inner">
<onentry>

<script>
var scope="outer";
var foo=function(){__Log("foo finds scope: " + scope);}

</script>
</onentry>
<state id="inner">

<onentry>
<script>

var scope="inner";
var bar=function(){__Log("bar finds scope: " + scope);}

</script>
<script>

foo(); // Outputs --> foo finds scope: outer
bar(); // Outputs --> bar finds scope: inner

</script>
</onentry>

</state>
</state>

Note for Orchestration users only:

Function scope will not be restored after session recovery! This is a critical difference that must be
accounted for when designing an SCXML application to survive fail-over and recovery. Tests have
shown that after a session has been restored from persistence, all user-defined functions (particularly
those defined within states will execute in the global scope as opposed to their original native scope.

To address this issue, it is highly recommended that developers explicitly specify the scope of their
variables rather than use implicit scoping. See example below:

<state id="outer" initial="inner">
<onentry>

<script>
var scope="outer";
var implicit=function(){__Log("implicit finds scope: " + scope);}
var explicit=function(self){__Log("explicit finds scope: " + self.scope);}

</script>
</onentry>
<state id="inner">

<onentry>
<script>

var scope="inner";
</script>
<script>

implicit();          // Outputs --> implicit finds scope: outer
explicit(this);      // Outputs --> explicit finds scope: inner
explicit(__outer__); // Outputs --> explicit finds scope: outer

</script>
</onentry>

</state>

SCXML Language Reference

Orchestration Server Developer's Guide 23



</state>

SCXML Elements

<anchor>
The <anchor> module is not supported by the SCXML engine. This element would otherwise be used
for providing 'go back' or 'redo'-like functionality for applications.

<cancel >
For <cancel>, either one of the attributes id and sendid may be used. However, both cannot be
defined at the same time.

When using <send> to generate events, if there is an intention to cancel the event sent, it is
recommended to use the attribute idlocation instead of id. The sendid stored at the location
specified by idlocation may then be used in <cancel>.

When the <cancel> request has been processed, the SCXML engine will send back the
"cancel.successful" event if the event was successfully removed, or "error.notallowed" if there was a
problem, along with the attribute sendid in the event.

<data>
The following are the additional Genesys attributes for <data> element. They are strictly used to
help define and administer the provisioning of this data from the appropriate source.

Attribute Details

Name Required Type Default Value Valid Values Description

_type false NMTOKEN data

The following is
the set of valid
values:

• data
• parameter

This allows the
developer to
identify the
data elements
that are to be
parameters
that the
platform must
obtain values
for when the
session is
initiated. Note
that this does
not impact the
way in which
the SCXML
document is
executed.

_desc false string none Any valid string This allows the

SCXML Language Reference

Orchestration Server Developer's Guide 24



Name Required Type Default Value Valid Values Description
developer to
provide a
description of
the parameter
that is to be
supplied at
session
initiation. Note
that this does
not impact the
way in which
the SCXML
document is
executed.

src Attribute

The currently supported URI schema types for the src attribute are:
• HTTPS
• HTTP
• FILE

id Attribute

The value of this attribute must be a valid ECMAScript variable name. This
means that variable semantics that include elements like "." (for example,
foo.foo) and "-" (for example, foo-foo) are not allowed. The rule is that the
variable name must be able to be processed on its own in an ECMAScript
snippet. If not, then a TypeError event is generated.

For example,

Valid element

<data id="foo" expr="'value1'"/>

Invalid element

<data id="foo.foo" expr="'value2'"/> <!--TypeError event generated ->

If you need to create complex objects you can always create them with the <script> element as a
child of the <scxml> element with the src attribute where the src attribute value points to a valid
JSON object with a mime type of application/json.

<foreach>
This element is an extension to the W3C Working Draft 7 May 2009. However, it has been formally
added to the W3C SCXML specification since the W3C Working Draft 26 April 2011. <foreach> is an
Executable Content element (like <if>, or <log>) and can be used to create iterators. The behaviour
of <foreach> is similar to that of the C# and Perl 'foreach' construct, which traverses items in a

SCXML Language Reference

Orchestration Server Developer's Guide 25



collection. This implementation differs from the W3C specification in that the SCXML engine behaves
as though a deep copy of each item in the collection is created during iteration as opposed to a
shallow copy. Nevertheless, iteration behaviour will remain unaffected by changes to the collection.

Attribute Details

Name Required Type Default Value Valid Values Description

array true Value
expression none

A value
expression that
evaluates to an
iterable
collection.

The <foreach>
element will
iterate over a
deep copy of
this collection.

item true string none

Any variable
name that is
valid in the
specified data
model.

A variable that
stores a
different item
of the
collection in
each iteration
of the loop.

index false string none

Any variable
name that is
valid in the
specified data
model.

A variable that
stores the
current
iteration index
upon each
iteration of the
foreach loop.

<history>
The <history> element is not supported by the SCXML engine. This element would otherwise be used
for allowing 'pause and resume' control flows.

<invoke>
The <invoke> element is used to create an instance of an external service. This implementation
differs from the W3C specification in that the SCXML engine does not support the typeexpr,
srcexpr, and namelist attirbutes, and the <content> child element.

Attribute Details

Name Required Type Default Value Valid Values Description

type false URI "scxml"
"scxml"
(equivalent to
“http://www.w3.org/
TR/scxml/”)

Type of the
external service.

typeexpr Not supported

SCXML Language Reference

Orchestration Server Developer's Guide 26



Name Required Type Default Value Valid Values Description

src false URI none Any URI
A URI to be passed
to the external
service.

srcexpr Not supported

id false ID none Any valid token

A string literal to
be used as the
identifier for this
instance of
<invoke>.

idlocation false Location
Expression none Any valid location

expression

Any data model
expression
evaluating to a
data model
location.

namelist Not supported

autoforward false Boolean false true or false
A flag indicating
whether to forward
events to the
invoked process.

For more details, see the <invoke> implementation section on the W3C website.

The currently supported URI schema types for the src attribute are:

• HTTPS
• HTTP
• FILE

The value of the id attribute must be a valid ECMAScript variable name.

Child Elements

• <param>: Element containing data to be passed to the external service. Occurs 0 or more times.
• <finalize>: Element containing executable content to massage the data returned from the invoked

component. Occurs 0 or 1 times.
• <content>: Not supported.

<scxml>
The following are the additional Genesys attributes for the <scxml> element:

SCXML Language Reference

Orchestration Server Developer's Guide 27



Attribute Details

Name Required Type Default Value Valid Values Description

_type false string combination Any valid string

This is set by
the developer
at the
beginning of
the SCXML
document to
define what
type of SCXML
logic has been
defined.
Composer sets
this property
based on the
type of logic
you are
building. It is
used for
reporting
purposes.

_persist false boolean
false
true (prior to 8.1.2)

The following is
the set of valid
values:

• true
• false

This allows the
developer to
suppress all
persistence
capabilities.
Persistence is not
always desired,
due to the
associated
performance
overhead. For
instance, in
Orchestration,
current voice-
related routing
strategies normally
run to completion
in a reasonable
amount of time,
and in the event of
a failure, restarting
the routing
strategy may not
be problematic.
Therefore, this
attribute allows
sessions to
suppress all use of
persistence, which
prevents the
orchestration
platform from ever
persisting the
session. (Note that
this does *not*
preclude the
orchestration
platform from
employing other
techniques, such

SCXML Language Reference

Orchestration Server Developer's Guide 28



Name Required Type Default Value Valid Values Description

as hot standby
servers, to achieve
fault tolerance for
these types of
session.

_statePersistDefaultfalse string "may"

The following is
the set of valid
values:

• must
• may
• no

To ensure
proper session
persistence
during High
Availability
recovery, the
_statePersistDefault
may be used
as an attribute
to the top-level
<scxml>
element.
Orchestration
Server uses the
value of
_statePersistDefault
as the default for
the <state>
_persist attribute,
if it is not specified
at the <state>
level.

• may—Default
value. ORS
will persist
the SCXML
session in
the entered
state once
the event
queue
becomes
empty.

• must—ORS
will
immediately
persist the
SCXML
session in
the entered
state.

• no—ORS
will not
persist the
SCXML
session in
the entered
state.

SCXML Language Reference

Orchestration Server Developer's Guide 29



Name Required Type Default Value Valid Values Description

_maxtime
(Since ORS
8.1.300.03, SCXML
8.1.300.00)

false integer "604800"
Any valid
positive
integer, inside
double quotes.

Specifies the
maximum age
in seconds that
an ORS session
should exist. If
this age is
reached, ORS
shall attempt
to exit the
session.
If specified, this
overrides the value
specified in
configuration for
ORS under scxml/
max-session-age.

To disable this
feature, set the
_maxtime to "0".

As of ORS
8.1.300.13, SCXML
8.1.300.13, an
available
Cassandra data
store will be
required for this
functionality.

_microStepLimit
(Since ORS
8.1.300.11, SCXML
8.1.300.10)

false integer 1000
Any valid
positive
integer, inside
double quotes.

Specifies the
maximum
number of
microsteps
allowed to be
taken following
the processing
of one event.
Subsequent
transitions may
arise from the
processing of
one event if
the following
transitions are
eventless. If
this number is
reached, ORS
shall attempt
to exit the
session. To use
ORS configured
default, leave
_microStepLimit
undefined. To
disable this
feature, set
_microStepLimit="0".

SCXML Language Reference

Orchestration Server Developer's Guide 30



Name Required Type Default Value Valid Values Description

_stateEntryLimit
(Since ORS
8.1.300.11, SCXML
8.1.300.10)

false integer 100
Any valid
positive
integer, inside
double quotes.

Specifies the
maximum
number of
times that a
state may be
entered as the
target of a
transition.
States entered
indirectly as
the result of a
transition
element or
initial attribute
are not
considered for
this limit (e.g.
ancestors of
the target
state that must
be entered
before entering
the target
state). If this
number is
reached, ORS
shall attempt
to exit the
session. To use
ORS configured
default, leave
_stateEntryLimit
undefined. To
disable this
feature, set
_stateEntryLimit="0".

_maxPendingEvents
(Since ORS
8.1.300.11, SCXML
8.1.300.10)

false integer 100

Positive integer
between 30 to
100000,
inclusive,
inside double
quotes.

Specifies the
maximum
number of
events allowed
to be queued
to a session
(inclusive of
internal,
external,
delayed and
undelivered
events). If this
number is
reached, ORS
shall attempt
to exit the
session. This
feature cannot
be disabled.

SCXML Language Reference

Orchestration Server Developer's Guide 31



Name Required Type Default Value Valid Values Description

_processEventTimeout
(Since ORS
8.1.300.11, SCXML
8.1.300.10)

false integer 10000
Any valid
positive
integer, inside
double quotes.

Specifies the
maximum time
allotted for the
processing of
the event
queue. The
processing of
one event may
lead to
additional
events being
queued.
Processing of
the event
queue does not
complete until
the event
queue is
empty. This
feature sets an
upper bound to
the amount of
time dedicated
to processing
these events. If
the timeout is
reached, ORS
shall attempt
to exit the
session. To use
ORS configured
default, leave
_processEventTimeout
undefined. To
disable this
feature, set
_processEventTimeout="0".

_sendSessionRecovered
(Since ORS
8.1.300.13, SCXML
8.1.300.13)

_recoveryEnabled
(Since ORS
8.1.300.12, SCXML
8.1.300.12)

false boolean false

The following is
the set of valid
values:

• true
• false

Specifies
whether or not
this strategy is
eligible for
proactive
recovery. If set
to true, the
session will be
explicitly
restored by
ORS when an
ORS node
performs
switch-over to
Primary.
Proactive
recovery shall
never be used

SCXML Language Reference

Orchestration Server Developer's Guide 32



Name Required Type Default Value Valid Values Description
for sessions
what process
multimedia
interactions.

_debug
(Since ORS
8.1.300.11, SCXML
8.1.300.10)

false boolean false

The following is
the set of valid
values:

• true
• false

Specifies
whether or not
debugging of
SCXML
strategy is
required. When
set to true, the
session will
save a copy of
the fully
assembled
SCXML
strategy to disk
(working
directory).

_transitionStyle
(Since ORS
8.1.300.28, SCXML
8.1.300.38)

false string legacy

The following is
the set of valid
values:

• legacy
• genesys
• w3c

Specifies the
order in which
the
<transition>
executable
content is to be
executed in the
scenario where
there are two
or more
selected
transitions
(only in
<parallel>
regions).

• legacy
setting
dictates
that
transitions
are
executed
by line
order
(lowest line
number
first)

• genesys
setting
orders
transitions
by reverse
scope

SCXML Language Reference

Orchestration Server Developer's Guide 33



Name Required Type Default Value Valid Values Description

order.
Transitions
of deepest
scope
(most
nested) are
executed
first. Ties
for scope
are broken
by lowest
line number
first.

• w3c setting
adheres to
the
ordering
prescribed
by the W3C
Working
Draft for
SCXML.
Transitions
are
executed in
the scope
order of the
states
which
selected
them. Ties
for scope
are broken
by lowest
line number
first.

<log>
<log> has three attributes (expr, label, level). For attribute details, please refer to State Chart XML
(SCXML): State Machine Notation for Control Abstraction W3C Working Draft 7 May 2009
(www.w3.org). As of version 8.1.200.46, specifying a level of 5 with a label of 22000 to 22020 will
result in behavior equivalent to that for URS/IRD.

<state>
The following are the additional Genesys attributes, children, and behavior for the <state> element:

SCXML Language Reference

Orchestration Server Developer's Guide 34



Attribute Details

Name Required Type Default Value Valid Values Description

_es_store (as of
8.1.400.40) false boolean false true, false

Introduced as
part of the
Elastic
Connector
feature
described in
the
Orchestration
Server 8.1.4
Deployment
Guide. When
set to true in
the state
description in a
strategy, ORS
will save
information
about session
states into
Elasticsearch,
which can be
used for
operational/
performance
monitoring and
analytics.
Example:
<state
id="routing"
_es_store=”true”>.

_type false NMTOKEN normal

The following is
the set of valid
values:

• normal

This allows the
developer to
control how the
platform is to
handle this
state and is a
place holder
for future
support.

_persist false NMTOKEN may

The following is
the set of valid
values:

• no
• may
• must

Long-running
sessions
typically
experience
concentrated
time windows
in which active
processing is
performed,
followed by a
relatively long
time window
during which
the system

SCXML Language Reference

Orchestration Server Developer's Guide 35



Name Required Type Default Value Valid Values Description
awaits follow-
up by a
customer or
potentially by
the agent. This
attribute is
used to
indicate to the
platform
whether a
session can or
must be
persisted:

• no - Used to
indicate a
state is
transitional,
or is not
meaningful
for
recovery
purposes
over the
last
persisted
state.

• may - The
platform
may persist
the session
in this state
at its
discretion.
This is the
default
value.

• must - The
platform
must
persist the
session as
part of
entry
processing
of this state
(before the
<onentry>
elements
are
executed).
This is used
to
guarantee

SCXML Language Reference

Orchestration Server Developer's Guide 36



Name Required Type Default Value Valid Values Description

that the
session can
be
recovered
from this
point in the
event of
failure (that
is, the
ability to
reenter the
session at
this state).

Note:
Orchestration
Server uses the
value of <scxml>
_statePersistDefault
as the default for
the <state>
_persist attribute,
if it is not specified
at the <state>
level.

_deactivate false string no

The following is
the set of
current valid
values:

• now
• no

This attribute
defines
whether the
session that
enters this
state and is
waiting for a
transition
should be
immediately
persisted,
removed from
platform
memory, and
marked as
inactive. This
attribute is
valid only if the
"_persist"
attribute is set
to "may" or
"must", since
only
persistable
sessions can
be de-
activated. This
attribute is
treated purely
as a hint to the
platform about

SCXML Language Reference

Orchestration Server Developer's Guide 37



Name Required Type Default Value Valid Values Description
how
meaningful it is
to persist the
session.

src Not Supported

Persist/Deactivate option matrix _persist
no may must

_deactivate

no

Persistence
disabled.
_deactivate
attribute is
ignored.

The session may
be persisted in this
state at the
platform's
discretion.

The platform
guarantees that
this state will be
persisted upon
entry.

now

Persistence
disabled.
_deactivate
attribute is
ignored.

The session may
be persisted in this
state at the
platform's
discretion and will
be marked as
inactive when
waiting for
transition.

The session that
enters this state
and is waiting for
transition will be
immediately
persisted and
marked as
inactive.

<param>
The <param> element has the following restriction:

• When using the <param> element with any action element, you must specify both the name and expr
attributes. Because of this, the platform does not support the name attribute value as a data model
location expression if the expr attribute is missing.

<transition>
The attribute anchor of the <transition> is not supported.

ORS Version 8.1.200.60/8.1.300.01

The behaviour of transitions in the SCXML engine is different from that which is described in the W3C
Working Draft 7 May 2009 [5]. This draft spec explains the following:

The LCA is the innermost <state>, <parallel>, or <scxml> element that is a proper ancestor of the
transition's source state and its target state(s).

During a transition, all active states that are proper descendants of the LCA are exited.

The new transition behaviour of the SCXML engine shares greater similarities with that of the W3C
Working Draft 16 December 2010 [6], in that in the case of a transition whose source state is a
compound state and whose target(s) is a descendant of the source, the transition will not exit and re-
enter its source state. In addition, the notion of the LCA is replaced by the LCCA:

SCXML Language Reference

Orchestration Server Developer's Guide 38



The LCCA is the innermost compound <state> or <scxml> element that is a proper ancestor of the
transition's source state and its target state(s).

During a transition, all active states that are proper descendants of the LCCA are exited.

<validate>
The <validate> element is not supported by the SCXML engine. This would otherwise be used to
invoke a validation of the datamodel.

<xi:include>
The xinclude recommendation (http://www.w3.org/TR/xinclude/) is used for inlining of ECMAScripts
(<script>) and states (<state>). An application developer may specify scripts, states, and other
content separately from the main SCXML document. The included document or fragment can be text
or xml. See section below on using <xi:include>.

When using xinclude, the following are important considerations to keep in mind:

• Developers should ensure that the 'resolveid' attribute value is unique within a document. This is
necessary when the same included document is used multiple times within the including document
since, the IDs of <state>, <parallel>, and so on, must be unique across the entire document.

• Included documents must NOT transition back to states that are defined in an including document. This
does not work.

Xinclude can also be used to provide a subroutine-like capability within an SCXML application by
using it like a macro facility. This replaces all <xi:include> elements with the referenced state content
during the initial document fetch and load. Once the SCXML application is fully assembled, it is
compiled and validated before sessions can be created based on this application.

In addition to the considerations above, the following guidelines must be followed when using
xinclude as a macro style "subroutine":

• For the included document:
• The document must be a valid <state> fragment that specifies the complete behavior of the

subroutine. The document can contain an <scxml> document, but if it does, the xinclude
declaration must use xpointer to reference the <state> that is to be used as the subroutine.

• The referenced <state> can be a simple or a compound state. If it is a compound state, it must
define <initial> as well as <final> states.

• An atomic state must use <raise>/<event> to return the appropriate output parameters. A
compound state, on the other hand, can use either <raise>, <event>, or the <donedata> element
of the <final> states to perform this function.

• The included <state> must be self-contained: it should not have transitions to states in the
including document or outside of itself.

• The included <state> must not use datamodel elements from the included document, unless the
<data> elements are defined within the <state> or one of its children. Using <data> elements
defined elsewhere in the included document will likely result in an error since they are not defined
in the including document.

SCXML Language Reference

Orchestration Server Developer's Guide 39



• The included <state> should not use datamodel elements from the including document. Doing so
makes subroutine information global to the application. It is recommended that data should be
passed to a subroutine via an event, or through variables defined via <script>.

• The included <state> must not rely on events from the including document other than the transition
to the included state.

• For the including document:
• The document must have a <transition> for the event generated by the included state or

subroutine. This event will contain the results from the subroutine.
• The document must have a <transition> to the included state. The event can contain the input

parameters for the subroutine. Alternately, the including state can use a <script> element in its
<onentry> element to define and initialize a set of parameters that are passed to the included
<state>. The included state can access these parameters through the variable scoping that
ECMAScript provides.

• When using <xi:include> elements, the namespaces used in the included document need to be
declared in the including document.

The following are the additional Genesys attributes for the <xi:include> element as well as existing
attribute limitations.

Attribute Details

Name Required Type Default Value Valid Values Description
accept false string Not supported
accept-
language false string Not supported

encoding false string Not supported

href true URL none

The URI of the
resource to
include.
As of ORS
8.1.300.27, this
attribute also
supports
substitution by
session start
parameters. These
parameters may
come from the
ApplicationParms
section of an
Enhanced Routing
Script, URL-
encoded
parameters of a
web-started
session, or the
<param>
elements nested
within a
<session:start>

For example:

<xi:include

SCXML Language Reference

Orchestration Server Developer's Guide 40



Name Required Type Default Value Valid Values Description

href="http://appsrv:80/
scxml/
subroutine_routing.scxml"
/>

It is possible to
parametrize the
URI as follows:

<xi:include
href="http://appsrv:80/
scxml/$$MY_SUBROUTINE$$"
/>

When a special
token of the form
$$parameter_name$$
is provided, it will
be automatically
substituted with
the value of the
matching session
start parameter
(case-sensitive).

If the session start
parameters are as
follows:

MY_SUBROUTINE
=
subroutine_chat.scxml

Resulting URI:

<xi:include
href="http://appsrv:80/
scxml/
subroutine_chat.scxml"
/>

parse false string "xml" "xml", "text"

See the
following for
details:
http://www.w3.org/
TR/
xinclude/#include_element

resolveid false string none Any value
string

In order to
support
subroutines
and avoid
issues with
duplicate
SCXML
element IDs
(for example,
<state id=x>),
this Genesys

SCXML Language Reference

Orchestration Server Developer's Guide 41



Name Required Type Default Value Valid Values Description
extension
attribute must
be used. If this
attribute is
specified, then
ID
modifications
will occur. All
the SCXML
elements with
an ID attribute
(<state>,
<parallel>,
<final>,
<history>,
<send>,
<invoke>,
<cancel>, and
<data>) in the
included
document are
prefixed by the
value of this
attribute, and a
separating dot.
In addition, the
IDREF
attributes in
the included
document (the
initial attribute
in the <state>
element and
the target and
event
attributes in
the
<transition>
element) can
also be
modified as
long as the
following
wildcard
substitution
key is specified
in the value.
Otherwise they
will not be
changed when
included. The
substitution
key is the
string
"$$_MY_PREFIX_$$".
If specified, it

SCXML Language Reference

Orchestration Server Developer's Guide 42



Name Required Type Default Value Valid Values Description
is replaced by
the value of
this attribute
for the
included
document.
IMPORTANT
NOTE: Developers
must ensure that
each use of the
'resolveid' attribute
value is unique
across the chain of
included
documents.

xmlns false string none Any value
string

Used to
provide
namespaces
for the
included
document. This
is necessary
for fragments.
If subroutines
include
subroutines,
this attribute
must be set to
the appropriate
namespace for
the including
element. For
example,
xmlns:xi="http://www.w3.org/
2001/
XInclude"

xpointer false string none

When
parse="xml",
xpointer may
be used to
specify a
particular
element and its
children to
include. The
value of
xpointer must
be a literal ID.
The first node
in the included
document that
matches that
ID is included.
When xpointer
is omitted, the

SCXML Language Reference

Orchestration Server Developer's Guide 43



Name Required Type Default Value Valid Values Description
entire resource
is included.
Note: XPath is
not supported.

When resolveid is used, two additional items can be used to handle the prefix provided by this
attribute:

Name Valid locations Description

$$_MY_PREFIX_$$

*initial attribute of <state>

• event and target attribute of
<transition>

During document assembly,
$$_MY_PREFIX_$$ is replaced
with the value of resolveid only in
the defined locations. The engine
does not perform global search
and replace with this token.

_my_prefix Any ECMAScript expression

During document assembly,
<state>, <parallel>, and <final>
is given a _my_prefix attribute
extension that contains the value
of resolveid. This allows the
prefix value to be used in
ECMAScript expressions within
these states.

Children

The child element <fallback> is not supported.

Event Extensions

In addition to the standard properties in all events (see the Events section), the following are the
additional attributes that are added to the SCXML events. They are accessible via the _event.data
variable.

Event Name Property Description

error.illegalcond.errortype

error.illegalloc.errortype

error.illegalvalue.errortype

error.illegaldata.errortype

error.script.errortype

error.unsupported.element

error.receive.datamismatch

error.send.nosuchsession (ORS only, since
8.1.2)

document

This is the URL of the document
in which the error occurred.
Note: this is important if the application
uses <xi:include>.

element
This is the name of the element
that was being executed when
the error occurred.

linenumber
This is the line number of the
document where the error
occurred.

SCXML Language Reference

Orchestration Server Developer's Guide 44



Event Name Property Description

error.send.datamismatch

error.send.ioprocessorerror

error.send.targettypeinvalid.stateid

error.send.failed

error.cancel.notallowed

error.illegalassign

error.send.noeventspecified

error.badfetch.protocol.response_code

error.send.targetunavailable.stateid

target
This is the target URL which was
being used in the element when
the error occurred.

document

This is the URL of the document
in which the error occurred.
Note: this is important if the application
uses <xi:include>.

element
This is the name of the element
that was being executed when
the error occurred.

linenumber
This is the line number of the
document where the error
occurred.

done.state.stateid

done.scxml.sessionid

done.invoke.invokeid

sessionid This is the session ID of the
session that has ended.

reason This is the reason the started
session has ended.

params

This is the list of parameters that
is passed back based on the
<param> elements defined in the
<donedata> element in the
<final> element which is
executed while the session is
finishing or terminating.

SCXML Language Reference

Orchestration Server Developer's Guide 45



Logging and Metrics
The recorded format of a metric is typically of the form:

<metric_name data_name="value" data_name1="value" ... />

The following table describes the standard metrics:

Metric Name Description Associated Data

appl_begin Logged when the session is
started

Name
Url (main Scxml document url)

appl_end Logged when the session ends

cancel
Recorded when a request to
cancel a delayed <send> event
is processed.

Sendid

doc_request A document has been requested
from the fetching service Requested URL

doc_retrieved A requested document has been
retrieved

Requested URL

Result (Success, Failure)

Error Message

Cache Hit (true/false)

eval_cond A condition attribute is evaluated
Condition

Result (true/false)

Line Number

eval_expr An expression is evaluated
Expression

Result (true/false)

Line Number

event_processed A queued event has been
processed

Event name

Disposition (normal, terminated, no
target)

event_queued
An event has been queued to the
session. Note that events may
appear more than once, as a
result of deserialization.

Event name

Queue

Line Number (of the element that
generated the event)

Type (internal/external/platform)

SCXML Language Reference

Orchestration Server Developer's Guide 46



Metric Name Description Associated Data

exec_error An error was encountered while
executing the document Message

fm_exec_error An FM encountered an error.
Function

Scope

Message

extension
A Custom Action Element has
been selected for execution (but
has not executed, yet).

Name

Namespace

initial An <initial> tag was entered.

invoke The <invoke> tag is about to be
executed.

Target Type

Target

js_diag
JS Diag data (occurs whenever
max ops is reached; only
available on Win32)

JSRuntime GC Bytes

JSRuntime GC MaxBytes

JSRuntime GC Max Malloc Bytes

JSRuntime GC Last Bytes

JSRuntime ID

log Summarizes the result of a
<log> tag.

Label

Expression

Level

onentry
The executable content of an
<onentry > element is about to
be run

Line Number

State (name of containing state)

onexit
The executable content of an
<onexit > element is about to be
run

Line Number

State (name of containing state)

param
The value of a param element
passed to <invoke> and
triggered sessions.

Name

Value

parse_warning
A warning generated while
parsing the document that does
NOT result in a failure to parse or
process the document

Message

send
The <send> tag has been
selected for execution, but has
not executed yet.

Target

Target Type

SCXML Language Reference

Orchestration Server Developer's Guide 47



Metric Name Description Associated Data

Event

Send ID

state_enter The specified state has been
entered

Name

Type (standard, parallel, final, history,
initial)

state_exit The specified state has exited
Name

Duration (the time in ms since the related
state_enter metric was logged)

transition The executable content of a
<transition> is about to be run.

State (name of containing state)

Condition (the string)

Line Number

Event

Target

persist_store A request to persist the session
has been made.

Type (document, session)

Key (for document type)

Request ID (for session type)

Message (for session type)

persist_result A request to persist has
completed. Message

persist_restore A request to restore the session
has been made.

persist_destroy A request to delete the session
from persistence has been made.

persist_error An error was encountered during
persistence.

Type (document, session)

Request Key

Error Code

Error Message

deactivate Deactivation was requested for
the session. Status (success, failed)

restored The session was restored.

SCXML Language Reference

Orchestration Server Developer's Guide 48



Supported URI Schemes

The following are the set of URI schemes that are supported:

• HTTP as defined by the RFC 2616
• HTTPS as defined by the RFC 2817
• File as defined by the RFC 1738
• gesp is a Genesys specific schema which is used to invoke an Interaction Server ESP function. (For

Orchestration only)
• FORMAT - gesp: <applname>\ [<type>\]<service>\[method>] For example,

gesp:CFGInteractionServer/Interaction/SubmitNew

• The following are the meanings of the different elements of the format:

• applname is the 3rd party application that is to be used to process this request.
• service is the name of the service with which this request is associated.

• method is the specific function to be performed by the 3rd party application.

• gdata is a Genesys specific schema which is used to address configuration layer objects and options in
Genesys Configuration Server, as well as data in an interaction's user data. Currently only supported in
<submit> and <createmessage> actions. (For Orchestration only)
• FORMAT - gdata:[<host>:<port>/]<source> [/<objtype>.<objname>][/<p-name>] For example,

gdata:config/AG.SalesGroup/supervisor, gdata:udata
• The following are the meanings of the different elements of the format:

• host is the IP host address for the targeted Configuration Server. This is optional. This element is
ignored if the source element is "udata"

• <ocde>port is the port number for the targeted Configuration Server. This is optional. This
element is ignored if the source element is "udata".

• source is the source of the data. The following are the possible values:
• config - data from Configuration Server.
• udata - data from the associated interaction.

• objtype is the type of configuration layer object. This element is only valid when the
source element is "config". The values are the following:
• DN - DN object
• SS - Script object
• AG - Agent Group object
• PG - Place Group
• CA - BA Category or Standard Response object
• CM - Campaign object
• CL - Calling ListTR-Transaction object
• AP - Application object

SCXML Language Reference

Orchestration Server Developer's Guide 49



• PE - Person object.
• SK - Skill object
• PL - Place object
• ST - Statistics Table
• SC - BA Screening Rule object

• objname is the unique name (ID) for the configuration layer object that is being referenced.
There is one exception where the name is not unique and this is with the CfgDN object. This
element is only valid when the source element is "config". So the unique name will be
the following combination of names:
• DN name - This is the name of the CfgDN object.
• Switch name - This is the name of the CfgSwitch object.
• The format of the objname string in this case will be dname@switchname.

• "p-name" is the name of a specific property of the object. For properties like annex data. The p-
name has the following format: "annex"/section-name/option-name. In the case where the
source element value is "udata", this will be the key name of the user data that you want to use.
For example, gdata:udata/CategoryID

Supported Profiles

The SCXML engine supports only the ECMAScript profile. Other profiles (such as minimal or XPath) will
not be supported.

Examples

Using <xi:include>
The following example illustrates how xinclude can be used to compose several subroutine
documents into the main application. The main application (complex_main.scxml) includes a
subroutine (complex_sub) that is composed of two additional subroutines (compound_sub and
simple_sub).

Main Document/SCXML Application (complex_main.scxml)
<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"

xmlns:queue="http://www.genesyslab.com/modules/queue"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
xmlns:dialog="http://www.genesyslab.com/modules/dialog"
xmlns:xi="http://www.w3.org/2001/XInclude">
<initial>

<transition target="start"/>
</initial>

<state id="start" initial="complex.complex_sub">
<onentry>

SCXML Language Reference

Orchestration Server Developer's Guide 50



<script>
var args = new Object( );
args.var1 = 3;
args.var2 = 'data3';

</script>
</onentry>

<transition event="done.state.complex.complex_sub" target="exit">
<log expr="_event.data.val1"/>
<log expr="_event.data.val2"/>

</transition>
<xi:include parse="xml" href="complex_sub.scxml" resolveid="complex" />

</state>

<final id="exit">
<onentry>

<log expr="'success!'"/>
</onentry>

</final>

<final id="error">
<onentry>

<log expr="'failed!'"/>
</onentry>

</final>
</scxml>

Primary Subroutine (complex_sub.scxml)
<state id="complex_sub" initial="$$_MY_PREFIX_$$.first_step" >

<onentry>
<script>

var usefulName1 = args.var1;
var usefulName2 = args.var2;

</script>
</onentry>
<state id="first_step" initial="$$_MY_PREFIX_$$.compound.compound_sub">

<onentry>
<log expr="'Performing complex_sub.results calculation for ' + _my_prefix" />
<script>

var args = new Object( );
args.var1 = 1;
args.var2 = 'data1';

</script>
</onentry>
<xi:include parse="xml" href="compound_sub.scxml" resolveid="compound"

xmlns:xi="http://www.w3.org/2001/XInclude" />
<transition event="done.state.$$_MY_PREFIX_$$.compound.compound_sub"

target="$$_MY_PREFIX_$$.second_step">
<log expr="_event.data.val1"/>
<log expr="_event.data.val2"/>

</transition>
</state>
<state id="second_step" initial="$$_MY_PREFIX_$$.simple.simple_sub">

<onentry>
<script>

var args = new Object( );
args.var1 = 2;
args.var2 = 'data2';

</script>
</onentry>
<xi:include parse="xml" href="simple_sub.scxml" resolveid="simple"

xmlns:xi="http://www.w3.org/2001/XInclude" />

SCXML Language Reference

Orchestration Server Developer's Guide 51



<transition event="simple_sub.results.*" target="$$_MY_PREFIX_$$.complete">
<log expr="_event.data.val1"/>
<log expr="_event.data.val2"/>

</transition>
</state>
<final id="complete">

<donedata>
<param name="val1" expr="usefulName1"/>
<param name="val2" expr="usefulName2"/>

</donedata>
</final>

</state>

Nested Compound Subroutine (compound_sub.scxml)
<state id="compound_sub" initial="$$_MY_PREFIX_$$.calculate" >

<onentry>
<script>

var usefulName1 = args.var1;
var usefulName2 = args.var2;

</script>
</onentry>
<state id="calculate">

<onentry>
<log expr="'Performing compound_sub.results calculation for ' + _my_prefix" />

</onentry>
<transition target="$$_MY_PREFIX_$$.complete"/>

</state>
<final id="complete">

<donedata>
<param name="val1" expr="usefulName1"/>
<param name="val2" expr="usefulName2"/>

</donedata>
</final>

</state>

Nested Simple Subroutine (simple_sub.scxml)
<state id="simple_sub">

<onentry>
<script>

var usefulName1 = args.var1;
var usefulName2 = args.var2;

</script>
<log expr="'Performing simple_sub.results calculation for ' + _my_prefix" />
<raise event="simple_sub.results.success">

<param name="val1" expr="usefulName1"/>
<param name="val2" expr="usefulName2"/>

</raise>
</onentry>

</state>

Fully Assembled SCXML Application Document
<scxml xmlns="http://www.w3.org/2005/07/scxml" version="1.0"

xmlns:dialog="http://www.genesyslab.com/modules/dialog"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
xmlns:queue="http://www.genesyslab.com/modules/queue"
xmlns:xi="http://www.w3.org/2001/XInclude">

<initial>
<transition target="start"/>

SCXML Language Reference

Orchestration Server Developer's Guide 52



</initial>

<state id="start" initial="complex.complex_sub">
<onentry>

<script>
var args = new Object( );
args.var1 = 3;
args.var2 = 'data3';

</script>
</onentry>
<transition event="done.state.complex.complex_sub" target="exit">

<log expr="_event.data.val1"/>
<log expr="_event.data.val2"/>

</transition>
<state _my_prefix="complex" id="complex.complex_sub" initial="complex.first_step" >

<onentry>
<script>

var usefulName1 = args.var1;
var usefulName2 = args.var2;

</script>
</onentry>
<state _my_prefix="complex" id="complex.first_step"

initial="complex.compound.compound_sub">
<onentry>

<log expr="'Performing complex_sub.results calculation for ' + _my_prefix"/>
<script>

var args = new Object( );
args.var1 = 1;
args.var2 = 'data1';

</script>
</onentry>
<state _my_prefix="complex.compound" id="complex.compound.compound_sub"

initial="complex.compound.calculate">
<onentry>

<script>
var usefulName1 = args.var1;
var usefulName2 = args.var2;

</script>
</onentry>
<state _my_prefix="complex.compound" id="complex.compound.calculate">

<onentry>
<log expr="'Performing compound_sub.results calculation for ' + _my_prefix"/>

</onentry>
<transition target="complex.compound.complete"/>

</state>
<final _my_prefix="complex.compound" id="complex.compound.complete">

<donedata>
<param expr="usefulName1" name="val1"/>
<param expr="usefulName2" name="val2"/>

</donedata>
</final>

</state>

<transition event="done.state.complex.compound.compound_sub"
target="complex.second_step">

<log expr="_event.data.val1"/>
<log expr="_event.data.val2"/>

</transition>
</state>
<state _my_prefix="complex" id="complex.second_step"

initial="complex.simple.simple_sub">
<onentry>

<script>

SCXML Language Reference

Orchestration Server Developer's Guide 53



var args = new Object( );
args.var1 = 2;
args.var2 = 'data2';

</script>
</onentry>
<state _my_prefix="complex.simple" id="complex.simple.simple_sub">

<onentry>
<script>

var usefulName1 = args.var1;
var usefulName2 = args.var2;

</script>
<log expr="'Performing simple_sub.results calculation for ' + _my_prefix"/>
<raise event="simple_sub.results.success">

<param expr="usefulName1" name="val1"/>
<param expr="usefulName2" name="val2"/>

</raise>
</onentry>

</state>
<transition event="simple_sub.results.*" target="complex.complete">

<log expr="_event.data.val1"/>
<log expr="_event.data.val2"/>

</transition>
</state>
<final _my_prefix="complex" id="complex.complete">

<donedata>
<param expr="usefulName1" name="val1"/>
<param expr="usefulName2" name="val2"/>

</donedata>
</final>

</state>
</state>
<final id="exit">

<onentry>
<log expr="'success!'"/>

</onentry>
</final>
<final id="error">

<onentry>
<log expr="'failed!'"/>

</onentry>
</final>

</scxml>

Output from Application
"Performing complex_sub.results calculation for complex"
"Performing compound_sub.results calculation for complex.compound"
"1"
"data1"
"Performing simple_sub.results calculation for complex.simple"
"2"
"data2"
"3"
"data3"
"success!"

SCXML Language Reference

Orchestration Server Developer's Guide 54



Contents of SCXML Language Reference
The organization and content of the SCXML Language Reference is detailed below. Numbers are
included on this page so you can see the items that fall under every subtopic.

1 Usage
2 Syntax and Semantics

2.1 Basic Elements
2.2 Managing Data

2.2.1 Data sharing between SCXML sessions
2.3 Events

2.3.1 Internal Events
2.3.2 External Events

3 Extensions and Deviations
3.1 ECMAScript

3.1.1 System Variables
3.1.1.1 Protected Variables
3.1.1.2 _data (ORS extensions)

3.1.2 Variable Scoping
3.1.3 Object Ownership
3.1.4 Functions

3.1.4.1 E4X (ECMAScript for XML)
3.1.4.2 JSON
3.1.4.3 __GetDocumentURL
3.1.4.4 __GetDocumentBaseURL
3.1.4.5 __Log
3.1.4.6 __Raise
3.1.4.7 __GetDocumentType
3.1.4.8 __GetCurrentStates
3.1.4.9 __GetQueuedEvents
3.1.4.10 In

3.2 SCXML Elements
3.2.1 <anchor>
3.2.2 <cancel >
3.2.3 <data>

3.2.3.1 Attribute Details
3.2.4 <foreach> (Since ORS 8.1.200.40, SCXML 8.1.000.77)

3.2.4.1 Attribute Details
3.2.5 <history>
3.2.6 <invoke>
3.2.7 <scxml>

3.2.7.1 Attribute Details
3.2.8 <log>
3.2.9 <state>

3.2.9.1 Attribute Details
3.2.10 <param>
3.2.11 <transition>

3.2.11.1 ORS Version 8.1.200.60/8.1.300.01
3.2.12 <validate>
3.2.13 <xi:include>

3.2.13.1 Attribute Details
3.2.13.2 Children

3.3 Event Extensions
4 Logging and Metrics
5 Supported URI Schemes
6 Supported Profiles
7 Examples

7.1 Using <xi:include>

SCXML Language Reference Contents of SCXML Language Reference

Orchestration Server Developer's Guide 55



Orchestration Extensions

_genesys Object

Every SCXML session will have a global root object (_genesys) from which an application will have
access to objects, properties, and functions to access Orchestration extensions. Each used extension
is accessed as a property of _genesys. For example, the Interaction Interface and the Queue Interface
will have the corresponding root object off of the _genesys object: _genesys.ixn and _genesys.queue.

Extension Namespaces

Each of the Orchestration Extensions have an associated set of namespaces for actions, events,
content, and functions. The following are the namespaces for the Orchestration Extensions:

Extension Action Namespace* Event prefix Object and
Function root

Core Extension -
Session

www.genesyslab.com/
modules/session session.xxx _genesys.session.xxx

Core Extension - Web www.genesyslab.com/
modules/ws ws.xxx _genesys.ws.xxx

Queue www.genesyslab.com/
modules/queue queue.xxx _genesys.queue.xxx

Interaction www.genesyslab.com/
modules/interaction

interaction.xxx,
voice.xxx,
msgbased.xxx, chat.xxx

_genesys.ixn.xxx

Dialog www.genesyslab.com/
modules/dialog dialog.xxx _genesys.dialog.xxx

Statistics www.genesyslab.com/
modules/statistic statistic.xxx _genesys.statistic.xxx

Classification www.genesyslab.com/
modules/classification classification.xxx _genesys.classification.xxx

Resource www.genesyslab.com/
modules/resource resource.xxx _genesys.resource.xxx

Elasticconnector
www.genesyslab.com/
modules/
elasticconnector

elasticconnector.xxx _genesys.elasticconnector.xxx

Agent www.genesyslab.com/
modules/agent agent.xxx _genesys.agent.xxx

* The namespaces used by an application must be included in the <scxml> element using the xmlns

Orchestration Extensions Contents of SCXML Language Reference

Orchestration Server Developer's Guide 56



attribute.

Core Extensions (Session and Web)

These interfaces provide functionality that is not specific to an external interface. This includes
capabilities for creating sessions and accessing external http based servers.

See Core Extensions.

Queue Interface

This Interface provides the ability to allow the orchestration logic to request the appropriate resource
for some processing and return the appropriate address information for the resource. The current URS
functionality (queuing, prioritization, and so on) will be used for this interface. In addition to core
queuing and target selection, this functional module interface will also support outbound interaction
processing.

See Queue Interface.

Interaction Interface

An interaction represents the various types of communications between a resource and a customer:

• Conversation-based communication between a customer and given contact center or enterprise
resources using a single logic media (certain media may support more than one media type over an
interaction (voice and video) (for example, a voice call or a chat session). This type of interaction
involves a series of information being communicated back and forth.

• Message-based communication with a customer (for example, an incoming e-mail or sms or an outgoing
e-mail or sms).

See Interaction Interface.

Dialog (Treatment) Interface

The dialog interface defines the functionality that allows Orchestration logic to do the following:

• Run a particular dialog application (VXML, HTML, and so on) on a specific interaction and by a specific
resource.

• Collect the results of the dialog application that was run.

See Dialog Interface.

Orchestration Extensions Contents of SCXML Language Reference

Orchestration Server Developer's Guide 57



Statistic Interface

This interface provides statistical information to the orchestration logic.

See Statistic Interface.

Classification Interface

This interface provides the ability to classify and screen interaction content to help the orchestration
logic determine what the customer wants.

See Classification Interface.

Resource Interface

This functional module contains enumeration objects that can be used in other functional modules.

See Resource Interface.

Elasticconnector

This extension helps remove the management of connectivity to Elasticsearch cluster from the
SCXML strategy. It also provides simplified access to Elasticsearch APIs.

See Elasticsearch Connector.

Agent

This extension is used for implementing agent management features like logout, DND, and ability
to change agent state for voice media.

See Agent Extension.

Orchestration Extensions Contents of SCXML Language Reference

Orchestration Server Developer's Guide 58



Queue Interface
This Interface provides the ability to allow the orchestration logic to request the appropriate resource
for some processing and return the appropriate address information for the resource. The current URS
functionality (queuing, prioritization, and so on) will be used for this interface.

Target Formats

All target definitions are strings, but the strings have a particular format, depending on where they
are used.

The following is the list of target formats that are used:

• Target DN: <number>@<switch>.DN. This is the format that is used for a DN that is being used as a
target. The following are the details of the different elements of the sub-strings:
• number is the address of the target resource.
• switch is the switch or media server that controls this address.
• DN is the type of target.

• Possible Target: {threshold}[weight] name@server.type or
{threshold}[weight]?name:skillexpression@server.type. This is the format that is used when
defining a target that should be considered as a possible target or group of targets during the target
selection process started by the <submit> action. The following are the details of the different elements
of the sub-strings.
• weight - same as defined in <target> element
• name - same as defined in <target> element
• server - same as defined in statserver attribute in the target> element
• type - same as defined in <target> element but with the following abbreviations:

• A (for agent),
• AP (for agent place),
• GA (for group of agents),
• GP (for group of places),
• Q (for Queues (real and virtual)),
• DN (for DN),
• GA (for skill),
• C (for campaigns),
• GC (for group of campaigns),
• RP (for routing points (real and virtual)),

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 59



• DL (for destination label),
• GQ (for group of queues (DNs)).

• skillexpr - same as defined in <target> element
• threshold - same as defined in <target> element

Skill Expressions

All skill expression definitions are strings, but the strings have a particular format. A skill expression is
a set of conditional expressions that are linked together via logic operators. When a skill expression
contains more than one conditional expression, the conditional expression to the left has precedence
over the conditional expression to the right. Parentheses can be used to overrule this precedence.
Your can use an ECMAScript logic expression to create the skill expression string. The following are
the parts of the skill expression:

• Conditional Expression - This is an expression that produces a result of true or false. This expression
has the following format and elements: dataname operator value - for example; english >3
• dataname - This element is a string which represents the name of these data types:

• Skill - This is the name of a skill defined in the configuration layer. Skill names are limited to
alphanumeric characters and underscores. The name cannot begin with a digit. The name of a
skill cannot exceed 126 characters in length.

• Statistic - This is the name of a statistic defined in the configuration layer. The statistic name in
a skill expression can be any agent statistic used in the function SData. It must be written in the
format: $(statisticname). For example; $(StatAgentLoggedIn)=1

• operator - This is the operator to be used to evaluate the condition. The following are the operators
that are supported:
• != - The meaning or support is different depending on the data type:

• Skill - not equal to the indicated level value
• Statistic - not equal to the indicated statistic value

• < (<=;) - The meaning or support is different depending on the data type:
• Skill - less than the indicated level value. Note: depending on how you use this operator, it

may result in including agents that do not have the skill at all (skillname = 0). For example,
with English <= 8, the queue functional module includes all agents with the English skill less
than 8, and also agents with no English skill at all.

• Statistic - less than the indicated statistic value

• <= (<=) - The meaning or support is different depending on the data type:
• Skill - less than or equal to the indicated level value
• Statistic - less than or equal to the indicated statistic value

• = - The meaning or support is different depending on the data type:
• Skill - equal to the indicated level value
• Statistic - equal to the indicated statistic value

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 60



• > (>) - The meaning or support is different depending on the data type:
• Skill - greater than the indicated level value
• Statistic - greater than the indicated statistic value

• >= (>=) - The meaning or support is different depending on the data type:
• Skill - greater than or equal to the indicated level value
• Statistic - greater than or equal to the indicated statistic value

• value - This is a value of the same data type as the dataname element. The value must already
evaluate to an integer. Floating point numbers are not supported. There are different limitations
depending on the data type:
• Skill value - This value represents the level of skill - for example, is the agent's English skill

level greater than 3 (English > 3). An agent can be excluded from a skill by setting that
agent's skill level for that skill to zero in the configuration layer (that is, English =0).

• Statistic - This value represents the value of the statistic - for example, has the agent been
ready longer than 20 seconds($(StatTimeInReadyState) > 20).

• Logic Operators: The logic operators are a way to evaluate multiple conditional expressions together.
The following logic operators are supported: AND(&- &) and OR (|). The AND and OR logic operators
have the same priority. For example; "English > 3 & $(StatAgentLoggedIn)=1"

A skill expression has the following limitations:

• The maximum size of an overall skill expression (as text) is 10239 bytes.
• A skill expression should have no more than 25 constructions, such as English > 1.

Routing Rules

Currently, Universal Routing Server supports the use of routing rules which are stored in
Configuration Server. These are really not rules, but routing profiles which define a unique set of
attributes and child elements for a <submit> element. An application can use the <submit> src
attribute for using routing rules. These routing rule definitions can come from transaction objects
from Configuration Server.

For details, see <submit>. The following are the properties for each routing rule and how they map to
the <submit> attributes and child elements:

Routing Rule Routing Rule Property Queue Functional Module Interface
equivalent

LoadBalancing
VQ name <submit> queue attribute

List of ACDQueue data (switch and name) <targets> and <target> or <targetid>

Percentage <submit> ordertype attribute

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 61



Routing Rule Routing Rule Property Queue Functional Module Interface
equivalent

="percentage"

VQ name <submit> queue attribute

Type of targets <targets> type attribute

List of targets and percentages <targets> <target> (name and weight
attributes)

Busy treatment data <runtreatments> and all child elements

Service Level

<submit> ordertype attribute = "min" or
"max"

VQ name <submit> queue attribute

Statserver name <targets> <target> statserver
attribute

Statistic name <submit> orderstat attribute

Skills to use and their skill levels <target> skillexpr attribute

Service Factor data (distribute X percent
of interaction in Y seconds)

Not supported through an attribute or
child element but can be supported
through <submit> src attribute and the
gdata scheme.

Busy treatment data <runtreatments> and all child elements

Importance
Not supported through an attribute or
child element but can be supported
through <submit> src attribute and the
gdata scheme.

Statistics

<submit> ordertype attribute = "min" or
"max"

VQ name <submit> queue attribute

Statserver name <targets> <target> statserver attribute

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 62



Routing Rule Routing Rule Property Queue Functional Module Interface
equivalent

Statistic name <submit> orderstat attribute

Type of targets <targets> type attribute

List of target names <targets> <target> or <targetid>

Busy treatment data <runtreatments> and all child elements

Workforce

VQ name <submit> queue attribute

Schedule data (activity name, cut off
time) <activity>

Busy treatment data <runtreatments> and all child elements

Object Model

_genesys.queue Object
This is the global root object for the Queue functional module interface. This object is maintained by
the Queue functional module that implements this interface.

The name of the object will be "_genesys.queue".

There are currently no data properties associated with this object.

_genesys.queue.overwriteType ENUM Object
This represents the DNIS overwrite type enumeration. This enumeration is maintained by the
orchestration platform.

This is the set of properties for the object:

Name Access Type Default Value Valid Values Description

UseNone read only integer none 0 Use nothing to
overwrite the DNIS.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 63



Name Access Type Default Value Valid Values Description

UseANI read only integer none 1
Use the ANI value
to overwrite the
DNIS.

UseDNIS read only integer none 2
Use the DNIS value
to overwrite the
DNIS.

UseConfig read only integer none 3
Use a configuration
value to overwrite
the DNIS.

UseValue read only integer none 4
Use the supplied
value to overwrite
the DNIS.

_genesys.queue.rType ENUM Object
This represents the rType enumeration. This enumeration is maintained by the orchestration
platform.

This is the set of properties for the object:

Name Access Type Default Value Valid Values Description

RouteTypeUnknown read only integer none 0
This represents an
unknown route
type

RouteTypeDefault read only integer none 1 This represents a
default route type

RouteTypeLabel read only integer none 2 This represents a
label route type

RouteTypeOverwriteDNISread only integer none 3
This represents an
overwrite DNIS
route type

RouteTypeDDD read only integer none 4 This represents a
DDD route type

RouteTypeIDDD read only integer none 5 This represents an
IDDD route type

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 64



Name Access Type Default Value Valid Values Description

RouteTypeDirect read only integer none 6 This represents a
direct route type

RouteTypeReject read only integer none 7 This represents a
reject route type

RouteTypeAnnouncementread only integer none 8
This represents an
announcement
route type

RouteTypePostFeature read only integer none 9
This represents a
post feature route
type

RouteTypeDirectAgent read only integer none 10
This represents a
direct agent route
type

RouteTypePriority read only integer none 11 This represents a
priority route type

RouteTypeDirectPriorityread only integer none 12
This represents a
direct priority route
type

RouteTypeGetFromDN read only integer none 13 This represents a
from DN route type

RouteTypeAgentID read only integer none 14 This represents an
agent ID route type

RouteTypeCallDisconnectread only integer none 15
This represents a
call disconnect
route type

_genesys.queue.quotaType ENUM Object
This represents the quotaType enumeration. This enumeration is maintained by the orchestration
platform.

This is the set of properties for the object:

Name Access Type Default Value Valid Values Description

QuotaMin read only integer none 0 This means to filter

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 65



Name Access Type Default Value Valid Values Description

on the minimum
quota values

QuotaTarget read only integer none 1
This represents
means to filter on
the target-based
quota values

QuotaMax read only integer none 2
This means to filter
on the maximum
quota values

_genesys.queue.statcond ENUM Object
This represents the statcond enumeration. This enumeration is maintained by the orchestration
platform.

This is the set of properties for the object:

Name Access Type Default Value Valid Values Description

ReadyIfLess read only integer none 0

This represents the
condition where
the agent is ready
and the associated
statistic is less
than the threshold
value.

ReadyIfGreater read only integer none 1

This represents the
condition where
the agent is ready
and the associated
statistic is greater
than the threshold
value.

ReadyIfNotGreater read only integer none 2

This represents the
condition where
the agent is ready
and the associated
statistic is not
greater than the
threshold value.

ReadyIfNotLess read only integer none 3

This represents the
condition where
the agent is ready
and the associated
statistic is not less
than the threshold

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 66



Name Access Type Default Value Valid Values Description

value.

_genesys.queue.usecapcond ENUM Object
This represents the usecapcond enumeration. This enumeration is maintained by the orchestration
platform.

This is the set of properties for the object:

Name Access Type Default Value Valid Values Description

OnStatError read only integer none 0

This indicates to
use the statistical
tables from the
configuration layer
when there is an
error with the Stat
Server results.

Never read only integer none 1
This indicates to
never use the
statistical tables

Only read only integer none 2
This indicates to
only use the
statistical tables.

Functions

_genesys.queue.reserveTarget
When the <submit> action returns a ready target, the target is always blocked by the functional
module during some time in seconds (the value of the platform's transition_time configuration
option). The reserveTarget function allows you to override such behavior and change the time interval
or even cancel it entirely (time parameter = 0). During the time the target is reserved, the functional
module does not distribute any interactions to the target as specified by the target parameter, which
is the result of the <submit> action. This function can be used in cases where a target may have
additional conditions (except a Stat Server-reported not-ready state) that should prevent the target
from being selected as a valid target. This blocking time will be applied to all <submit> action
resulting targets until it is changed again by this function.

void _genesys.queue.reserveTarget(ixnid, target, time) Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 67



the interaction which should have this action applied.
• target: STRING which can be a variable or a constant - This is the name of the target to be reserved in

the target DN format.
• time: INTEGER which can be a variable or a constant - This is the time interval in seconds to reserve

this target for (exclude from target selection process). A value of zero (0) will cancel it entirely.

Returns: void

The following is an example of this function:

_genesys.queue.reserveTarget( _data.ixnid, 'return:ok|n:_data.reqid|agent:703_sip|place:703|
dn:703|switch:SipSwitch', 40 );

_genesys.queue.cCTExtractTargets
This function produces a list of targets in "possible target" format from the supplied arguments and
stores target DN information associated to each target for subsequent use in number translation of
type[TARGET.CCTN].These are maintained for the life of the session by the functional module and
can be used for any interaction associated with session.

This function supports these target types:

• Agent (A)
• Place (P)
• Agent Group (GA)
• Place Group (GP)

targets _genesys.queue.cCTExtractTargets(ixnid, statserver, input)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• statserver: STRING which can be a variable or a constant - This parameter is used as the location
attribute for each of the targets listed in the output.

• input: STRING which can be a variable or a constant - This parameter must have the following key/
value list of the form: TargetID1.TargetType1:Value1|...|TargetIDN.TargetTypeN:ValueN with no spaces in
the list.

Returns: targets: STRING-The result of the function is a string of the form:
"TargetID1@StatServer.TargetType1,...,TargetIDN@StatServer.TargetTypeN". Thus, the
targets listed in the result are separated by commas and contain no spaces.

The following is an example of input and output for this function:

_data.myResult = _genesys.queue.cCTExtractTargets( _data.ixnid, 'StatServer', '701.A|702.P|
SipGr_3.GA|SipPlGr2.GP' );

_data.myResult will be the following string:

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 68



'701@StatServer.A,702@StatServer.P,SipGr_3@StatServer.GA,SipPlGr2@StatServer.GP'

_genesys.queue.checkAgentState
This function instructs the functional module for the associated session (across all associated
interactions) as to whether to take into account the state of an Agent, Place, Agent Group, or Place
Group as reported by Stat Server or to look only for free DNs belonging to the Agent, Place, or Agent
Group. For example, _genesys.queue.checkAgentState(false) makes it possible to route a voice
interaction to an agent that Stat Server reports as not ready. If agent capacity rules are set, this
function has no effect (as the Genesys Agent Capacity model does not use agent state).

To allow an agent to receive multiple voice interactions, this function must be false. However, the
side effect is that the functional module distributes interactions so as to occupy all DNs of Agent A
before considering Agent B. When this function is set to false, or the function
_genesys.queue.useAgentState is used, the functional module does not apply the verification_time
configuration option to agents, but still applies it to agent DNs.

void _genesys.queue.checkAgentState(ixnid, check)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• check: BOOLEAN which can be a variable or a constant - This parameter identifies whether the
functional module should use the agent state from StatServer or not.

Returns: void

The following is an example of this function:

_genesys.queue.checkAgentState( _data.ixnid, false);

_genesys.queue.clearThresholds
This function invalidates all thresholds previously set by <submit> actions for a given interaction. As
a result, the functional module now considers all targets that were previously affected by <submit>
actions as unconditionally ready for routing.

void _genesys.queue.clearThresholds(ixnid)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

Returns: void

The following is an example of this function:

_genesys.queue.clearThresholds( _data.ixnid );

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 69



_genesys.queue.countSkillInGroup
This function determines the number of agents with a skill set or statistical parameters that satisfy
the indicated skill expression. It returns the number of the agents belonging to the agent group based
on the defined skill expression. You can also just specify a Stat Server and a skill expression without
specifying an Agent Group. However, a skill expression and a Stat Server must be specified. The Stat
Server is used to query the content of the provided Agent Group (real or virtual).

total _genesys.queue.countSkillInGroup(ixnid, statserver, group, sexpr)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• statserver: STRING which can be a variable or a constant - This parameter is optional. This parameter
is the name of the Stat Server containing information on the agents for this function. If not supplied,
the Stat Server used will be the one defined by the default_stat_server configuration option of the
platform.

• group: STRING which can be a variable or a constant - This parameter is the agent group for the Stat
Server that this function checks against. It can either be an Agent Group name or a list of comma-
separated list of Agents, Agent Groups, Places, or Place Groups. Agents are included in this group either
by placing the agent name from the Persons folder into the Agent Groups folder or defining a virtual
group using a skill expression within the Annex tab of the Agent Group object.

• sexpr: STRING which can be a variable or a constant - This parameter defines the skill expression string
used to evaluate the agents. It can use skills, variables, numeric constants, and statistics to filter out
agents based on their state. The statistic name in a skill expression can be any agent statistic used in
the function SData. It must be written in the format:$(statistic). This ability to use statistics in a skill
expression allows you to conduct queries based on a statistic. For example, if you want to query the
number of agents with a Spanish skill of at least 5 who are logged in, the expression would be as
follows: 'Spanish >= 5 & $(StatAgentsLoggedIn)=1'. This can be passed to the function as a literal
string or as an an ECMAScript expression such as 'Spanish >=' + level + '
$(StatAgentsLoggedIn)=' + minAgents where level and miNAgents are variables defined else where
in your applciation.

Returns: total: NUMBER - The result of the function is an integer which represents the number of
agents that meet the critieria of the skill expression.

The following is an example of input and output for this function:

_data.myResult = _genesys.queue.countSkillInGroup( _data.ixnid, 'StatServer', 'SipGr_2',
'english > 3 & french > 4' );

_data.myResult will be the following:

5

_genesys.queue.createSkillGroup
This function converts the provided Agent Group, Skill Expression, and StatServer into a normal
target format that represents all agents belonging to the Agent Group supplied as a parameter that
satisfies the logical condition given by the Skill Expression.

tlist _genesys.queue.createSkillGroup(ixnid, statserver, group, sexpr)

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 70



Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• statserver: STRING which can be a variable or a constant - This parameter is optional. It contains the
name of the Stat Server containing information on the agents for this function. If not supplied, the Stat
Server used will be the one defined by the default_stat_server configuration option of the platform.

• group: STRING which can be a variable or a constant - This parameter is the agent group for the Stat
Server that this function checks against.

• sexpr: STRING which can be a variable or a constant - This parameter defines the skill expression used
to evaluate the agents. This parameter can use skills, variables, numeric constants, and statistics to
filter out agents based on their state. The statistic name in a skill expression can be any agent statistic
used in the function SData. It must be written in the format: $(statistic). This ability to use statistics
in a skill expression allows you to conduct queries based on a statistic. For example, if you want to
query the number of agents with a Spanish skill of at least 5 who are logged in, the expression would
be as follows: Spanish >= 5 & $(StatAgentsLoggedIn)=1.

Returns: tlist: STRING - The result of the function is a string which represents a list of targets (each
target is comma-separated in the string) that meet the critieria of the skill expression. It is of the
form:"?GroupName:SkillExpression@statserver.GA".

The following is an example of input and output for this function:

_data.myResult = _genesys.queue.createSkillGroup( _data.ixnid, 'StatServer', 'SipGr_2',
'english>3' );

_data.myResult will be the following string:

'?SipGr_2:english>3@StatServer.GA'

_genesys.queue.excludeAgents
This function instructs the functional module not to route interactions to any agent on the specified
list of agents. This applies across all <submit> actions associated with the session.

prev_agents _genesys.queue.excludeAgents(ixnid, agents)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• agents: STRING which can be a variable or a constant - This parameter is a comma-separated list of
agent IDs.

Returns: prev_agents: STRING - The result of the function is a string which represents a list of
previous excluded agents. Each agent ID is comma-separated in the string.

The following is an example of input and output for this function:

_data.myResult1 = _genesys.queue.excludeAgents( _data.ixnid, '702_sip' );
...
_data.myResult2 = _genesys.queue.excludeAgents( _data.ixnid, '703_sip' );

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 71



_data.myResult2 will be the following string:

'"702_sip"'

_genesys.queue.extRouterError
This function is used to change the default external routing in the case of a failure to get a remote
access number. This is only applicable across all interactions associated with the session when the
application is using the <submit> action with the route attribute set to true.

void _genesys.queue.extRouterError(ixnid, enable)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• enable: BOOLEAN which can be a variable or a constant - If this parameter is set to true, then the
functional module handles an external routing failure as a routing error (according to the functional
module on_route_error configuration option settings. This prevents the functional module from ignoring
any error messages in response to external routing requests and stops the functional module from
continuing to attempt to route based on the original remote access number. If set to false, the
functional module will continue the attempt to route the call based on the original number. By default,
enable is set to false.

Returns: void

The following is an example of input and output for this function:

_genesys.queue.extRouterError( _data.ixnid, true );

_genesys.queue.extRouteStatus
This function returns true if external routing is possible and false if not. status
_genesys.queue.extRouteStatus(ixnid, switch)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• switch: STRING which can be a variable or a constant - This parameter is a remote location where the
interaction is being routed (that is, the switch ID).

Returns: status: BOOLEAN - The result of the function is a boolean which indicates whether external
routing is possible for the given media server (switch).

The following is an example of input and output for this function:

_data.myResult = _genesys.queue.extRouteStatus( _data.ixnid, 'SipSwitch' );

_data.myResult will be the following string:

true

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 72



_genesys.queue.findServiceObjective
This function returns a value that is defined in a configuration layer objective table object for a given
a Service Objective, which is a unique combination of Customer Segment, Service Type, and Media
Type. If the Update parameter is true, the Service Objective with Service Type and Customer Segment
are automatically attached to the interaction.

value _genesys.queue.findServiceObjective(ixnid, table, media, service, segment,
update)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• table: STRING which can be a variable or a constant - This parameter is the name of the objective table
in the configuration.

• media: NUMBER which can be a variable or a constant - This parameter is the desired media type in
integer form.

• service: STRING which can be a variable or a constant - This parameter defines the type of service
desired.

• segment: STRING which can be a variable or a constant - This parameter defines the type of customer
segment desired.

• update: BOOLEAN which can be a variable or a constant - This parameter defines whether the
interaction should be updated with a value as well as the properties of the service objective (media
type, service type, and customer segment).

Returns: value: NUMBER - The result of the function is an integer which represents the configured
value for this service objective. Zero is returned if there are any issues (unsuccessful search - no
service objective defined) while processing this function.

The following is an example of input and output for this function:

_data.myResult = _genesys.queue.findServiceObjective( _data.ixnid, 'OBT3', 0, 'help',
'Bronze', true );

_data.myResult will be the following number:

150

_genesys.queue.incrementPriority
This function results in incrementing the selected interaction priority by the increment every
interval second. It affects the priority of the interaction for <submit> actions the interaction is
already waiting for and those it may be waiting for in the future.

void _genesys.queue.incrementPriority(ixnid, increment, interval)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have its priority incremented.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 73



• increment: NUMBER (INTEGER) which can be a variable or a constant - This parameter is the increment
by which the priority is to be adjusted.

• interval: NUMBER (INTEGER) which can be a variable or a constant - This parameter is the time interval
at which the priority is to be incremented. Note: the interval cannot be less than 5 seconds.

Returns: void

The following is an example of this function:

_genesys.queue.incrementPriority( _data.ixnid, 2, 10 );

_genesys.queue.priorityLimits (since ORS 8.1.200.40 and URS 8.1.200.21)
This function results in imposing additional limits on values of priority the interaction can have in any
routing queue. Without it interaction priority can accept any value in range [-1,000,000,000 :
1,000,000,000].

void _genesys.queue.priorityLimits(ixnid, min, max)

Parameters (all parameters are mandatory):

• ixnid: STRING which can be a variable or a constant - This parameter defines the ID of the interaction
to which provided priority limits will be applied.

• min: NUMBER (INTEGER) which can be a variable or a constant - This parameter is the minimal possible
value for the interaction priority in any routing queue.

• max: NUMBER (INTEGER) which can be a variable or a constant - This parameter is the maximal
possible value for the interaction priority in any routing queue.

Returns: void

The following is an example of this function:

_genesys.queue.priorityLimits( _data.ixnid, 1, 10 );

_genesys.queue.nMTExtractTargets
This function enables you to track the number of active interactions at a device that is not configured
in the Configuration Database. It establishes a counter for all active interactions at the non-
configured device. Using this counter, you can compare the number of active interactions to a
specified threshold and stop routing interactions to the device when the threshold has been reached.

This function parses a list of targets, which is a comma-separated list of attributes produced by a
database query or some outside application (an application on an application server, for example)
such as <fetch>. Each target can be described using four attributes: Target Name, Threshold,
Speaking Time, and RetryTime. These attributes are explained below:

• Target Name - This identifies the target.
• Threshold - The maximum number of interactions at the target when this target is considered to be

ready. The threshold value is considered as attribute to an interaction. This function sets this attribute
for each interaction it evaluates. When it is time for the interaction to be routed to the non-configured
device, the functional module compares the interaction's threshold attribute to the counter. If the

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 74



counter shows a value greater than the interaction's threshold attribute, the interaction is not routed
until the counter's value drops below that threshold.

• Speaking Time - The functional module considers an interaction to a non-configured device to be
terminated when the controlling server (for example, T-Server) reports that it has been terminated.
However, if no information is received from the controlling server (for example, T-Server) in the time
specified by the Speaking Time (in seconds), the functional module considers the call to be terminated.

• Retry Time - If the functional module receives an error message in response to a routing request to a
non-configured device that indicates that the number of interactions at the target is different from the
number the functional module believes are there, the functional module temporarily stops sending
interactions to that device for the amount of time specified by this element (Retry Time). This delay
enables synchronization of the number of interactions on the device with the number that the
functional module believes are there.

The following is an example of input and output for this function:

_data.myResult = _genesys.queue.nMTExtractTargets( _data.ixnid, '701,702,703', 1, 2, 5, 3 );

_data.myResult will be the following string:

'{RStatCallsInQueue<=2}701.DN,{RStatCallsInQueue<=2}702.DN,{RStatCallsInQueue<=2}703.DN'

Using the Function

Use of this function to track the number of interactions at non-configured devices usually includes:

• Setting a threshold, using the _genesys.queue.setThresholdEx function, for every nonconfigured
device that you want to include. The only threshold you can set for non-configured devices applies to
the value returned by the RStatCallsInQueue statistic. Alternatively, you can set a threshold by
prefixing Threshold{Statistic op value} before the target specification. When you set a threshold
in this way, this function automatically augments the targets with prefixes in the indicated format. The
output of this function is a comma-separated list of targets, with thresholds, that is ready to be used as
a parameter of standard target-selecting functions or objects.

• Configuring the functional module to count the RStatCallsInQueue statistic for nonconfigured devices.
• Setting all the non-configured devices as targets in <submit> actions.

Note: The functional module has no information about the current state of the device - only the
number of interactions active on it. Active interactions are considered to be the number of
interactions the functional module has sent to the target, minus the number of interactions that were
terminated. In addition to generating output, this function also overwrites the default values (15
seconds and 600 seconds) for Retry Time and Speaking Time. Thresholds for non-configured devices
set using the _genesys.FMname.SetThresholdEx function, for example, use the current default
values for Retry Time and Speaking Time that were set by the latest invocation of this function.

Note: Changes applied to default settings (RetryTime, Speaking Time) specified in this function work
only for non-configured devices that were created after this function was used. Those non-configured
devices that were created previously are not affected by any changes made using this function. If the
information about the non-configured devices (numbers, threshold values) is retrieved from an
outside source (for example, a database), use this function to transform the result of this query into a
target list suitable for use by the <submit> action. In this case, the use of this function automatically
sets all the specified thresholds and you do not need to call the _genesys.FMname.setThresholdEx
function.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 75



Setting Multiple Thresholds

You can set more than one threshold by using this function in more than one logic definition or you
can use it multiple times in the same logic. In this way, you can set a different allowable number of
concurrent interactions for different situations, as described below.

Note: If you use the same non-configured device in other logic definitions or in multiple places in the
same logic, the functional module uses the same counter for that device. So this definition is global
across the functional module.

Using NMTExtractTargets to Set Multiple Thresholds - Example:

You can set different thresholds for the same non-configured device to take account of different
business conditions. For example, between 9:00 AM and 5:00 PM, an outsourcer with a nonconfigured
device can handle 100 concurrent interactions. After 5:00PM, the outsourcer can handle only 50
concurrent interactions on this device.

Here is how it works:

1. Place this function in two places. You can use it twice in one logic definition or use two separate logic
definitions to handle this situation, depending on what is best suited to your environment. A global
counter is created for the non-configured device.

2. Using one instance of this function, set a default threshold value of 100 to be attached as an attribute
to all interactions that arrive between 9:00 AM and 5:00 PM.

3. Using the other instance of the function, set a default threshold value of 50 to be attached as an
attribute to all interactions that arrive between 5:00 PM and 9:00 AM.

When an interaction is ready to be routed, the interaction attribute is compared to the global counter,
which is incremented or decremented to correspond to the number of active interactions on this non-
configured device. If the value on the counter is greater than the interaction's Threshold attribute,
the interaction is not routed until the counter's value drops below the appropriate threshold.

Deployment Considerations

Only one orchestration platform can send interactions to the non-monitored device. If you require
multiple numbers to distribute to the same non-monitored device, align the SN-to-DN table, the
network switch, and platform so that all interactions sent to a nonmonitored device are processed by
the same platform. You can use a network-controlling server (for example, T-Server or a SIP Server)
as the network switch. To use this function, the platform and functional module must register on a
special device (called switch::) in order to receive notification from the controlling server (for
example, T-Server) about the termination of interactions. If you do not register, the
RStatCallsInQueuestatistic is not correctly calculated for non-monitored targets. Registration is not
automatic and is controlled by platform (using the call_monitoring configuration option).

tlist _genesys.queue.nMTExtractTargets(ixnid, targets, dThreshold, dSpeakTime,
dRetryTime, recordSize)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory It defines the ID of
the interaction which should have its priority incremented.

• targets: STRING which can be a variable or a constant - This parameter is the list of comma-separated

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 76



targets and their attributes. The recordSize parameter will identify how attributes are associated with a
target definition.

• dThreshold: NUMBER (INTEGER) which can be a variable or a constant - This parameter is the default
maximum number of interactions at the target when this target is considered to be ready. This
parameter will be used for targets that do not have this attribute specified in the targets parameter.

• dSpeakTime: NUMBER (INTEGER) which can be a variable or a constant - This parameter is the default
maximum amount of speak time for an interaction. If the functional module does not receive an event
indicating that the interaction has terminated with in this time frame, the functional module will
consider it terminated. This parameter will be used for targets that do not have this attribute specified
in the targets parameter.

• dRetryTime: NUMBER (INTEGER) which can be a variable or a constant - This parameter is the default
maximum amount of retry time for an interaction. If the functional module failed to route the
interaction, it will wait for this amount of time before trying to route the interaction again. This
parameter will be used for targets that do not have this attribute specified in the targets parameter.

• recordSize: NUMBER (INTEGER) which can be a variable or a constant - This parameter defines how
many attributes are entered to describe each target. If some of the four elements listed in the following
bullets [I don't see the bullets...] are absent (only Target name is mandatory) the corresponding default
parameter values are used instead.

Returns: tlist: STRING - The result of the function is a string of the form:
"{RStatCallsInQueue<=TargetThres1}TargetName1.DN,...,{RStatCallsInQueue<=TargetThresN}TargetNameN.DN".
Thus, the targets listed in the result are separated by commas and contain no spaces.

_genesys.queue.onRouteError
This function allows you to specify an individual functional module reaction for every type of error. If
used, this option overwrites theon_route_error configuration option for all interactions associated with
the current session. In the case of an error, the functional module behaves in the following way:

• Checks if this function was executed for this type of error. If yes, then the functional module behaves as
the function specifies.

• Otherwise, checks if there is a platform-defined default reaction (that is, the configuration option
on_route_error) for this error. If yes, then the functional module executes this reaction.

Note: This function should ONLY be used when using the <submit> action with the route attribute set
to true. void _genesys.queue.onRouteError(ixnid, type, option)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory It defines the ID of
the interaction which should have its priority incremented.

• type: NUMBER (INTEGER) which can be a variable or a constant - This parameter indicates the type of
error that can be encountered while trying to route an interaction.

• option: STRING which can be a variable or a constant - This parameter indicates the type of processing
the functional module should perform when this type of error is encountered. These options only work
for interactions routed to destinations specified in the <submit> actions with the route attribute set to
true. The values are defined as follows:
• try_other - The Queue functional module will resume waiting for a ready target and try to select

another available target. Unlike the reroute value, for which the Queue functional module
immediately attempts to reroute the interaction, for try_other the Queue functional module waits

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 77



for another target, if none are available before routing the interaction. Note: Be sure that the
transition_time platform configuration option has a value of 3 or higher to enable the Queue
functional module to handle the try_other setting correctly.

• strategy_error - The Queue functional module will abort its current waiting for a ready target, go to
error handling, and send the session an error event (error.queue.submit with the appropriate
error code).

Returns: void

The following is an example of input and output for this function:

_genesys.queue.onRouteError( _data.ixnid, 140, 'strategy_error' );

_genesys.queue.priorityTuning
The functional module always puts interactions into waiting queues according to their priorities. This
function defines how the functional module handles interactions with the same priorities. By default,
interactions with the same priority are ordered according to the time the interaction began to wait for
some target. This applies across all <submit> actions.

void _genesys.queue.priorityTuning(ixnid, useAge,usePredict, useObjective)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory It defines the ID of
the interaction which should have its priority incremented.

• useAge: BOOLEAN which can be a variable or a constant - This parameter defines whether the age of
the interaction should be used to prioritize interactions with the same priority. If this parameter is true,
the functional module uses the time the interaction was created instead of the time the interaction is
placed into the waiting queue. The age of the interaction is usually the time that the associated session
is started for the interaction. Setting the interaction age enables you to safely use multiple <submit>
actions. The interaction does not lose its position in the queue, because its position is based on the
age-of-interaction value, which is not affected by the <submit> actions. The following must be done in
your logic to use this function.
• Use function _genesys.queue.setInteractionAge() to timestamp the interaction. The age of

interaction will be counted from this moment on.
• Use the function to prioritize this interaction among others in the queue according to their age.

• usePredict: BOOLEAN which can be a variable or a constant - This parameter defines if the estimated
time for the interaction to be answered will be used instead of the time the interaction has waited when
prioritizing interactions with the same priority. If this parameter is true, then the functional module
calculates the estimated time for the interaction to be answered and will use this time instead of the
time that the interaction has already waited.

• useObjective: BOOLEAN which can be a variable or a constant - This parameter defines whether an
objective defined in the interaction should be used when prioritizing interactions with the same priority.
If this parameter is true, then the functional module calculates the objective defined in the interaction
to determine the priority of the interaction.

Returns: void

The following is an example of this function:

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 78



_genesys.queue.priorityTuning( _data.ixnid, true, true, true );

_genesys.queue.resetAdjustment
This function cancels any adjustment that may have been set for a statistic for a given target using
_genesys.queue.setAdjustment.

void _genesys.queue.resetAdjustment(_data.ixnid, target, statistic)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• target: STRING which can be a variable or a constant - This parameter defines the target whose
statistic adjustment is to be cleared. The string value of this parameter must be in the possible target
format. See the Target Formats section for details.

• statistic: STRING which can be a variable or a constant - This parameter defines the name of the
statistic for which the adjustment is to be removed.

Returns: void

The following is an example of this function:

_genesys.queue.resetAdjustment(_data.ixnid,'SipGr_2.GA','StatAgentsAvailable');

_genesys.queue.routed
This function marks the interaction as routed. When routing functions, such as <submit> actions with
the route attribute set to true, are successfully executed, an interaction is implicitly marked as
routed. This function explicitly marks the interaction as routed. This function allows the functional
module to dispose of the interaction when the strategy is completed and not route the interaction to
the default destination.

void _genesys.queue.routed(ixnid)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which routing has terminated.

Returns: void

The following is an example of this function:

_genesys.queue.routed( _data.ixnid );

_genesys.queue.selectTargets
This function removes from a list of Agent Groups, Place Groups, or Queue Targets those targets that
have already received a number of calls in excess of their quota for the interval when the function is
called. These types of quotas are specified in the configuration layer in the Statistical Days belonging

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 79



to Statistical Tables of type Quota Table, associated with each of the Agent Groups or Place Groups.
The queue is associated with that Quota Table that is associated with an Agent Group for which the
queue is an origination DN. If no agent group is found, the queue is associated with the Quota Table
that is associated to an Agent Group named after the alias of the queue. If an Agent Group or Place
Group target on the list has no Quota Table associated with it or no Statistical Day in the table
matches the current date, the target is retained in the list returned by the function: it has not
exceeded its quota since no quota was set for it.

Configuring Quota Tables Associated to Groups of Agents or Places

A Quota Table is configured in the configuration layer as a Statistical Table object of Quota Table type
(see the configuration layer documentation for more details on the process of configuration).
TheQuota Table associated with an Agent Group or a Place Group must be specified inside the
Advanced properties of the group. The sameQuota Table can be associated with more than one Agent
Group or Place Group. The Quota Table must contain Statistical Days. Use the information about
Statistical Days, but not the information about Statistical Values. The relevant values for Statistical
Values are as follows: Statistical Value 1, Statistical Value 2, and Statistical Value 3 for each Interval
of the day - during every interval. Value 1 is used when Quota type has a value of 0 (QuotaMin).
Value 2 is used when Quota type has a value of 1 (QuotaTarget). Value 3 is used when Quota type
has a value of 2 (QuotaMax). All other properties of Statistical Days are irrelevant for the purpose of
setting up quotas. Note: The same Statistical Day can belong to more than one Quota Table.

tlist _genesys.queue.selectTargets(ixnid, filter, targets)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• filter: genesys.queue.quotaType ENUM OBJECT which can be a variable or a constant - This parameter
indicates which of the three relevant entries in the statistical day will be treated as the current quota.

• targets: STRING which can be a variable or a constant - This parameter is a string of comma-separated
high-level Agent Groups Or Place Groups or Queue Targets (in the possible target format, see the Target
Formats section for details). If this parameter has queue targets, you need to make sure that every
queue for which you use this parameter is listed as an origination DN for at most one Agent Group in
the configuration layer. If more than one group or queue is associated with the same table, then the
interactions routed to all of them are counted together. That is, the quota is interpreted as a limit on
the total number of interactions routed to groups and queues associated with the same table.
Therefore, you must set up individual Quota Tables for groups and queues that you want to consider
separately, even if these tables consist of the same Statistical Days.

Returns: tlist: STRING - The result of the function is a string of targets in the possible Target
Formats that matches the quota filter criteria. However, if the function encounters a list element in a
different format, it does one of the following:

• If the element is a syntactically correct target in the complete high-level format but its type is not Group
of Agents or Group of Places, the target is retained in the list returned by the function.

• If the element is not a syntactically correct target in the complete high-level format, including targets
with an omitted type or location, it will be dropped from the list.

The following is an example of input and output for this function:

_data.myResult = _genesys.queue.selectTargets( _data.ixnid, 1,
'SipGr_3@StatServer.GA,SipPlGr2@StatServer.GP' );

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 80



_data.myResult will be the following string:

'SipGr_3@StatServer.GA,SipPlGr2@StatServer.GP'

_genesys.queue.selectTargetsByThreshold
This function finds the best available target(s) from a list of targets by applying a statistic with a
threshold comparison against the input target list. This function returns a subset of the targets List
parameter (possibly empty).

tlist _genesys.queue.selectTargetsByThreshold(ixnid, targets, statistic, value, cond)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• targets: STRING which can be a variable or a constant - This parameter is a string of comma-separated
high-level targets (in the possible target format, see the Target Formats section for details).

• statistic: STRING which can be a variable or a constant - This parameter is a statistic to be used in the
comparison.

• value: NUMBER (INTEGER) which can be a variable or a constant - This parameter is the value that will
be used in the comparison to see if a target meets the condition or not.

• cond: genesys.queue.statcond ENUM OBJECT which can be a variable or a constant - This parameter is
the condition which is to be used in the comparison.

Returns: tlist: STRING - The result of the function is a string of targets in the possible Target
Formats that matches the threshold filter criteria.

The following is an example of input and output for this function:

_data.myResult = _genesys.queue.selectTargetsByThreshold( _data.ixnid,
'701_sip.A,702_sip.A,703_sip.A', 'StatCallsAnswered', 3, 0 );

_data.myResult will be the following string:

'702_sip@StatServer.A,703_sip@StatServer.A'

_genesys.queue.setInteractionAge
This function overrides the default age of an interaction from a routing perspective. This function can
be useful if the age of the interaction will be used for placing interactions into waiting queues. The
interaction age is the time accumulated since the interaction was known by Genesys (normally set at
the very first resource or device the interaction enters).

By default, the interaction age is defined by the time of the last event (for example,
EventRouteRequest). However, if an interaction is going to be routed more than once (for example, if
an agent transfers an interaction on a routing point for re-routing or if the Voice Callback Universal
Callback Server resubmits a callback interaction to URS), the time of the last event (for example,
EventRouteRequest) is not always the best way to define interaction age.

void _genesys.queue.setInteractionAge(ixnid, keep)

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 81



Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• keep: BOOLEAN which can be a variable or a constant - This parameter indicates whether the default
age algorithm should be. If this parameter is true, it fixes the current interaction age so that it does not
depend on subsequent routing events. If the parameter is false, it unfixes the age of interaction so it
again will be defined by the moment of the last event.

Returns: void

The following is an example of this function:

_genesys.queue.setInteractionAge( _data.ixnid, true );

NOTE: This method currently applies to voice interactions only. For multimedia interactions
the following can be employed to provide the equivalent information. Do not apply the following to
voice interactions.

To set the interaction age at the time that the interaction is present, similar to keep set to true, for
example within a script on the entry to the next state:

var timestamp = Math.floor((new Date().getTime())/1000 ) + ' 0';
var setIXNAge = { RouterData70 : '("t"="' + timestamp + '")' };
_genesys.ixn.setuData(setIXNAge);

For the equivalent of keep set to false:

_genesys.ixn.deleteuData( "RouterData70" );

_genesys.queue.setAdjustment
This function enforces an adjustment of the values of a specified statistic for a particular target. The
adjustment does not apply to the result of explicit Stat Server queries by the function's
_genesys.statistic.sData() function. It is only used for thresholds, statistical interaction
distribution, or when a statistic is supplied as an argument to the <submit> actions. Once set, an
adjustment can be cleared by invoking the _genesys.queue.resetAdjustment function. This applies
across all interactions and the corresponding <submit> actions for the session.

void _genesys.queue.setAdjustment(ixnid, target, statistic, sign, value)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• target: STRING which can be a variable or a constant - This parameter defines the target whose
statistic adjustment is to be set. The string value of this parameter must be in the possible target
format. See the Target Formats section for details.

• statistic: STRING which can be a variable or a constant - This parameter defines the name of the
statistic which is to be adjusted.

• sign: STRING which can be a variable or a constant - This parameter defines the operation that will be
applied to adjust the statistic. The following are the valid values:

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 82



• +, the value is added to the result reported by Stat Server
• -, the value is subtracted from the result reported by Stat Server

• , the value is multiplied by the result reported by Stat Server

• /, the result reported by Stat Server is divided by value.

• value: NUMBER (FLOAT) which can be a variable or a constant - This parameter defines the value that
the statistic is to be adjusted by.

Returns: void

The following is an example of this function:

_genesys.queue.setAdjustment( _data.ixnid, 'SipGr_2.GA', 'StatAgentsAvailable', '*', 2 );

_genesys.queue.translationOverride
This function overrides any translation specified in configured Switch Access Codes for routing to
remote targets later in the session, and instructs the functional module to use the information
specified in the parameters for the purpose of number translation.

void _genesys.queue.translationOverride(ixnid, source, destination, location, rType,
DNIS, reason, extension)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• source: STRING which can be a variable or a constant - This parameter is the source device address to
be used in the translation.

• destination: STRING which can be a variable or a constant - This parameter is the destination device
address to be used in the translation.

• location: STRING which can be a variable or a constant - This parameter is the location of the source
device to be used in the translation.

• rType: genesys.queue.rType ENUM Object which can be a variable or a constant - This parameter is the
route type to be used in the translation.

• DNIS: STRING which can be a variable or a constant - This parameter is the DNIS to be used in the
translation.

• reason: STRING which can be a variable or a constant - This parameter is the routing reason to be used
in the translation.

• extension: STRING which can be a variable or a constant - This parameter is the extension information
to be used in the translation.

Returns: void

The following is an example of input and output for this function:

_genesys.queue.translationOverride( _data.ixnid, 'source', 'dest', 'location', 1, '702',
'reason', 'ext' );

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 83



_genesys.queue.targetSelectionTuning
This function activates a configured cost-based routing solution for this session and the associated
functional module objects (interactions and so on).

void _genesys.queue.targetSelectionTuning(ixnid, useCostFactor)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• useCostFactor: BOOLEAN which can be a variable or a constant - This parameter indicates whether
cost factors should be used for making routing decisions for this session and the <submit> actions.

Returns: void

The following is an example of this function:

_genesys.queue.targetSelectionTuning( _data.ixnid, true );

_genesys.queue.useAgentState
This function specifies the agent state the functional module will use instead of the default reported
by Stat Server. This will apply to the entire session and all the <submit> actions until the next
_genesys.queue.useAgentState invocation.

To use this option you must first set up URS as follows:

• In the Annex or Options tab of the platform application, create a section called AgentStates (case
sensitive).

• Within that section, create an option for every user-defined agent state. The platform can accept up to
32 options in the AgentStates section.

• For each option, specify its value in the format:

Function[DNtype]<op1>Function[DNtype]<op1>...Function[DNtype]<op2>number...(Format1
expression)<op3>(Format1 expression)<op3>...

Where:

• Function[DN type] is one of the following predefined functions:
• ready[DN type] - which returns the number of agent DNs of the specified type who are in the ready

state at the current moment.
• busy [DN type] - which returns the number of agent DNs of the specified type who are in the busy

state at the current moment.

DN type for these predefined functions is the agent's DN. Types include ACDPosition, Extension, E-
mail, Eaport, Cellular, Chat, Cobrowse, Fax, Voicemail, Voip, Video, and Workflow.

• op1 is an operator of either plus (+) or minus (-)
• op2 is an operator of either greater than (> - >), less than (< - <), or equal to (=)

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 84



• op3 is a logical operator of either or (|) or and (& - &)
• multiplication (*)
• division (/)
• number is zero or any positive number to evaluate the expression

For example, the agent is defined as ready if the agent has no calls on his or her extension or
position busy[extension]+busy[acdposition] = 0. An agent in this state will be considered not
ready if the agent has at least one call on the extension or position. The agent will be considered
ready in all other situations. So, for example, if the agent has the e-mail DN busy, the agent is still
considered ready.

Important Information

• When using the UseAgentState function, whole numbers are rounded (1.25 is counted as 1).
• Option values cannot contain spaces.
• If you want to use AgentStates for a backup functional module platform in addition to the primary

platform, create an identical AgentStates section in the backup platform.
• When using this function, you must use lowercase DN types that do not include a "-" (hyphen). For

example, use "email" instead of "E-mail".
• If function CheckAgentState is set to false, the functional module ignores any agent state, whether the

default one (reported by Stat Server) or the user-defined one (as described above).
• The functional module uses integer arithmetic in its calculations, such as for agent state and skill

expression evaluation. For this reason, you must always create expressions based on integer
arithmetic, not floating point arithmetic.

void _genesys.queue.useAgentState(ixnid, state)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• state: STRING which can be a variable or a constant - This parameter is the agent state that should be
used instead of the default reported from Stat Server.

Returns: void

The following is an example of this function:

_genesys.queue.useAgentState( _data.ixnid, 'ready' );

_genesys.queue.useAgentStatistics
This function makes the functional module apply statistics for target selection at the level of
individual Agents or Places even if the targets are groups of corresponding objects, such as Agent
Groups or Place Groups.

This function may be used for any appropriate statistic. It can also be used for cost-based routing.

void _genesys.queue.useAgentStatistics(ixnid, use)

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 85



Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• use: BOOLEAN which can be a variable or a constant - This parameter indicates whether individual
agent statistics should be applied. The default is false.

Returns: void

The following is an example of this function:

_genesys.queue.useAgentStatistics( _data.ixnid, true );

_genesys.queue.useCapacity
This function instructs the functional module on the condition for using configured capacity tables for
computing statistical values. If OnStatError is supplied to the parameter, the functional module will
compute a statistical value from statistical tables whenever an attempt to obtain the corresponding
value from Stat Server results in an error. The other two options are either always use statistical
tables for such values or never use them.

void _genesys.queue.useCapacity(ixnid, use)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• use: genesys.queue.usecapcond ENUM OBJECT which can be a variable or a constant - This parameter
indicates the method of computing statistical values.

Returns: void

The following is an example of this function:

_genesys.queue.useCapacity( _data.ixnid, 1 );

_genesys.queue.useCustomType
This function instructs the functional module on the value of a target property that the target must to
have to be considered a valid target for the current session and the associated interaction and the
<submit> actions that are being used.

void _genesys.queue.useCustomType(ixnid, tType, property, value)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• tType: STRING which can be a variable or a constant - This parameter indicates the type of target to
use. The following are the valid values:
• "Agent" - An agent target

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 86



• "DN" - A DN target
• "Place" - A Place target

• property: STRING which can be a variable or a constant - This parameter indicates which property of
the target will be used. The following is where these properties are defined and found:
• "Agent" target type - The property is specified under the Switch object, inside the folder with the

name of the platform application, in the Annex of the Agent Login. The functional module checks
the agent type for the following targets: Agents, Agent Groups, Places, and Place Groups. For the
last two targets, the agent type can be verified only if Stat Server reports the name of the agent
associated with the Place in question.

• "DN" target type - The property is specified under the Switch object, inside the folder with the name
of the platform application, in the Annex of the DN. The functional module checks the DN type for
the following targets: Agents, Agent Groups, Places, Place Groups, Routing Points, and Queues, as
well as custom DNs.

• "Place" target type - The property is specified in the Annex of Place inside the folder with the name
of the platform application. The functional module checks the Place type for the following targets:
Agents, Agent Groups, Places, and Place Groups.

• value: STRING which can be a variable or a constant - This parameter indicates the value of the target
property which should be evaluated to determine if the target should be used for routing.

Returns: void

The following is an example of this function:

_genesys.queue.useCustomType( _data.ixnid, 'DN', 'Extension', '702' );

_genesys.queue.useDNType
This function instructs the functional module on the type of DN to use when routing to a target.
Choose the DN-based type of session and interaction being routed. This delivers various sessions and
interactions to the correct DN on an agent's desktop.

Important information

• The functional module sets the default DN type from the MediaType attribute of the trigger event. This
function overrides that default.

void _genesys.queue.useDNType(ixnid, type)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• type: genesys.resource.resourceType ENUM OBJECT which can be a variable or a constant - This
parameter indicates the type of DN target to use.

Returns: void

The following is an example of input and output for this function:

_genesys.queue.useDNType( _data.ixnid, _genesys.resource.resourceType.CFGACDPosition );

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 87



_genesys.queue.useMediaType
This function instructs the functional module on the media types (for examples, voice, e-mail, or
chat) that a target is associated with. In order to accept sessions and interactions of a particular
media type, a target must be associated with that media type. If the interaction is not a voice
interaction, the functional module sets the initial media type from the Media Type attribute of the
trigger event. The UseMediaType function overrides this initial setting. The functional module can pick
up for routing either the available media of an agent or a ready DN of an agent.

Important Information

• For backward compatibility, if some DN type (DNTYPE) has a corresponding media (MEDIA) associated
with it (for example e-mail), then the _genesys.queue.useMediaType function is equivalent to
_genesys.queue.useDNType function.

• This function indicates the functional module will select only Extensions or ACDPositions of the agent.

void _genesys.queue.useMediaType(ixnid, type)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• type: STRING which can be a variable or a constant - This parameter indicates the type of Media target
to use. The set of valid values are from the media definitions in the configuration layer.

Returns: void

The following is an example of this function:

_genesys.queue.useMediaType( _data.ixnid, 'CFGEmail' );

_genesys.queue.expandGroup
This function creates a list of resources associated with a group. This list of (agent) resources can be
used for the following purposes:

• To propagate a target-selecting statistic on the resource level.
• To allow the Queue functional module to handle situations in which a particular resource is a member of

multiple groups and to solve related interaction-priority issues.

resourcelist _genesys.queue.expandGroup(ixnid, group)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• group: STRING which can be a variable or a constant - This parameter is a string in the Target Formats.
It will be the name of an Agent Group (real or virtual) or a Place Group (groupname@location.GA or
groupname@location.GP) Note: location is optional, type is mandatory.

Returns: resourcelist: STRING - The result of the function is a string which contains a comma-

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 88



separated list of Agents or Place resources belonging to the specified Agent Group or Place Group.
For example, "agent1@StatServer1.A,...,agentN@StatServer1.A"

The following is an example of input and output for this function:

_data.myResult = _genesys.queue.expandGroup( _data.ixnid, 'SipGr_2.GA' );

_data.myResult will be the following string:

'701_sip@StatServer.A,702_sip@StatServer.A'

_genesys.queue.getSkillInGroup
This function returns the list of the agents belonging to the Agent Group based on the defined skill
expression. You can also just specify a Stat Server and a skill expression without specifying an Agent
Group. However, a skill expression and a Stat Server must be specified. The Stat Server is used to
query the content of the provided Agent Group (real or virtual).

resourcelist _genesys.queue.getSkillInGroup(ixnid, statserver, group, sexpr)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• statserver: STRING which can be a variable or a constant - This parameter is optional. It is the name of
the Stat Server containing information on the agents for this function. If not supplied, the Stat Server
used will be the one defined by the default_stat_server configuration option of the platform.

• group: STRING which can be a variable or a constant - This parameter is optional. It is the agent group
for the Stat Server that this function checks against. It can either be an agent group name or a list of
comma-separated lists of agents, agent groups, places or place groups. Agents are included this group
by either placing the agent name from the Persons folder into the Agent Groups folder or defining a
virtual group using skill expression within the Annex tab of the Agent Group object.

• sexpr: STRING which can be a variable or a constant - This parameter defines the skill expression used
to evaluate the agents. It can use skills, variables, numeric constants, and statistics to filter out agents
based on their state. The statistic name in a skill expression can be any agent statistic used in the
function SData. It must be written in the format: $(statistic). This ability to use statistics in a skill
expression allows you to conduct queries based on a statistic. For example, if you want to query the
number of agents with a Spanish skill of at least 5 who are currently logged in, the expression would be
as follows: Spanish >= 5 & $(StatAgentsLoggedIn)=1.

Returns: resourcelist: String - The result of the function is a string which contains a comma-
separated list of Agents or Place resources that meet the conditions of the skill expression. For
example, "agent1@StatServer1.A,...,agentN@StatServer1.A"

The following is an example of input and output for this function:

_data.myResult = _genesys.queue.getSkillInGroup( _data.ixnid, 'StatServer', 'SipGr_2',
'english>3' );

_data.myResult will be the following string:

'701_sip@StatServer.A,702_sip@StatServer.A'

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 89



_genesys.queue.expandActivity
This function creates a list of resources associated with a workforce management activity. It is
intended for use with Genesys Workforce Management. It takes as a parameter a Workforce
Management Activity name (defined in the configuration layer) and returns the list of resources
assigned to the Activity from the current moment up to the next CutOffTime number of seconds. If a
resource assigned to the Activity in the given time interval has a break of any kind (including
assignment to another activity), that resource will not be included in the returned list.

resourcelist _genesys.queue.expandActivity(ixnid, activity, cutoff)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• activity: STRING which can be a variable or a constant - This parameter is a string. It will be the name
of the workforce management activity to be used.

• cutoff: NUMBER which can be a variable or a constant - This parameter is the number representing the
time in seconds that a resource has to be assigned to the activity starting from the current moment in
order to be considered as qualified.

Returns: resourcelist: STRING - The result of the function is a string which contains a comma-
separated list of agent resources belonging to the specified activity and meeting the cutoff time
criteria. For example, "agent1@StatServer1.A,...,agentN@StatServer1.A" If the specified activity
is not found, a null will be returned.

The following is an example of input and output for this function:

_data.myResult = _genesys.queue.expandActivity( _data.ixnid, 'taskA', 3 );

_data.myResult will be the following string:

'702_sip@StatServer.A'

_genesys.queue.resetTreatments (since 8.1.200.00)
This function clears the treatments associated with all outstanding <submit> actions associated with
this session and can suspend the <submit> processing for the current session until the appropriate
state has been reached to begin the next treatments.

When a list of busy treatments is used in a <queue:submit>, Universal Routing Server uses this list
and plays the busy treatments one after another (by default, this list loops around). When the
function _genesys.queue.resetTreatments is sent to Universal Routing Server, it will clear the list of
busy treatments. However, if a treatment was being played while this function is received, the
treatment currently playing will not be cleared. It is recommended to disable looping using repeat in
the resource attribute for <dialog:playsound>.

void _genesys.queue.resttreatments(ixnid)

Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 90



Returns: void

The following is an example of this function being used:

<state id="findAgent">
<onentry>

<queue:submit priority="5" timeout="60">
<queue:targets>

<queue:target type="agent" name="'agent1'" />
</queue:targets>
<dialog:runtreatments>

<dialog:playsound type="'music'" resource="'music/
on_hold;repeat=1'" duration="15" />

<dialog:playsound type="'music'" resource="'music/
in_queue;repeat=1'" duration="15" />

</dialog:runtreatments>
</queue:submit>

</onentry>
<transition event="stopMusic" target="resetTreatments" />
<transition event="queue.submit.done" target="state2" />
<transition event="error.queue.submit" target="state3" />

</state>
<state id="resetTreatments">

<onentry>
<script>

_data.myResult = _genesys.queue.resetTreatments(_data.ixnid);
</script>

</onentry>
</state>

If the stopMusic event is received within the first 15 seconds while the music/on_hold is playing, it
will play until the end of the file (ignoring the duration attribute), and music/in_queue will never be
played because resetTreatments has cleared it from the list.

If the stopMusic event is received 50 seconds after entering the state findAgent, music/in_queue
will be playing when the event is received, and the file will play until the end (igoring the duration
attribute). No other music file will be played after this.

_genesys.queue.setDNIS
This function replaces the DNIS of the interaction by the appropriate value. It will override any
previous_genesys.queue.setDNIS() function invocations.

Important Note: In order to get this DNIS override into the actual interaction on the controlling
server (T-Server), the session- and interaction-originating event (for example, EventRouteRequest)
must have had the routing type of RouteTypeOverwriteDNIS to make the change in the server.
Otherwise, the override is only set within the session and its associated interaction object.

void _genesys.queue.setDNIS(ixn, type, value)

Parameters:

• ixn: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have its DNIS overridden.

• type: genesys.queue.overwriteType ENUM OBJECT which can be a variable or a constant - This
parameter defines the source of the value to set the DNIS to.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 91



• value: STRING which can be a variable or a constant - This parameter defines the value that the DNIS is
to be set to. This parameter is only valid when the type parameter is set to "UseValue".

Returns: void

The following is an example of input and output for this function:

_genesys.queue.setDNIS( _data.ixnid, 2, '3318' );

_genesys.queue.useMediaChannel (since ORS 8.1.200.48 and URS 8.1.200.25)
This function provides information about the type of controller that owns the interaction (either T-
Server/SIP-Server or Interaction Server). In most cases, Queue FM itself defines the right controller
type and there is no need to use this function explicitly. However, some types of media interactions
(like chats) can be managed by either type of controller and Queue FM needs to be made aware of
the exact controller type.

If Queue FM is called in "interactionless" context (when ixnid is set to null), Queue FM assumes T-
Server/SIP-Server as the default controller type. If this is not the case, function useMediaChannel can
be used to change this default.

void _genesys.queue.useMediaChannel(ixnid, enable)

Parameters (all parameters are mandatory):

• ixnid: STRING which can be a variable or a constant - This parameter defines the ID of the interaction
which should have this action applied.

• enable: BOOLEAN which can be a variable or a constant - This parameter defines whether the
interaction is controlled by T-Server/SIP-Server (if it is set to false) or Interaction Server (if it is set to
true).

Returns: void

The following is an example of this function. When an SCXML session is started through Web API and
Queue FM is used to find an agent ready to accept chats controlled by Interaction Server, the
following should be invoked:

_genesys.queue.useMediaChannel(null, true);

Parameter Elements

The <submit> action element has parameter elements that can be used as input for the target and
outbound attributes.

<targets>
This is the top-level element which defines the set of targets from which a given target is selected for
the submit request.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 92



Attributes

Name Required Type Default Value Valid Values Description

type false NMTOKEN none

agent, place,
agentgroup,
placegroup, queue,
dn, skill,
campaigngroup,
routepoint, label

This specifies the
default resource
type that should be
used if a type
attribute is not
specified in the
associated
<target>
elements.

statserver false value expression none
any value
expression that
returns a valid
string

A value expression
which returns the
default statserver
that should be
used if a statserver
attribute is not
specified in the
associated
<target>
elements.

See SCXML Legal
Data Values and
Value Expressions
for details.

Children

• <target> Occurs 0 to N
• <targetid> Occurs 0 to N
• <activity> Occurs 0 to 1 - This element is also mutually exclusive with the other child elements.
• <workbin> Occurs 0 to 1 - This element is used as the target's workbin of objects specified in the

<targets> element.

<targetid>
This defines a specific means of representing a set of targets.

Attributes

Name Required Type Default Value Valid Values Description

expr true value expression none

Any value
expression that
returns a string
that follows the
format defined in
the description

This is the ID of the
target that is to be
used. It is a string
with a set of
comma-separated
sub-strings with
the following

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 93



Name Required Type Default Value Valid Values Description

format:
{threshold}[weight]name@server.type
or
{threshold}[weight]?name:skillexpression@server.type

The following is an
example:

"'{StatCallsInQueue
<10}[25]8001.Q,
{StatCallsInQueue
< 10}[25]8002.Q,
{StatCallsInQueue
<
20}[50]8003.Q"'

The following are
the details of the
different elements
of the sub-strings.

• weight -
same as
defined in
<target>
element

• name -
same as
defined in
<target>
element

• server -
same as
defined in
statserver
attribute in
the
<target>
element

• type - same
as defined
in <target>
element,
but with
the
following
abbreviations:
• A (for

agent),
• AP (for

agent
place)

• GA (for

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 94



Name Required Type Default Value Valid Values Description

group of
agents)

• GP (for
group of
places)

• Q (for
Queues)

• DN (for
dn)

• GA (for
skill)

• GC (for
campaign
group)

• RP (for
routing
points)

• DL (for
destination
label)

• skilexpr -
same as
defined in
<target>
element

• threshold -
same as
defined in
<target>
element

See SCXML Legal
Data Values and
Value Expressions
for details.

Children

None

<target>
This defines the resource criteria for selecting a target.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 95



Attributes

Name Required Type Default Value Valid Values Description

name false value expression none

Any value
expression that
returns a valid
string which
represents a
resource of the
defined type.

A value expression
which returns the
name of the target
that is to be used.

See SCXML Legal
Data Values and
Value Expressions
for details.

skillexpr false value expression none

Any value
expression that
returns a valid
string which
represents a valid
skill expression

This is the skill
expression
associated with
this <target>
element. For
details on the
format, see the
Skill Expressions
section.

See SCXML Legal
Data Values and
Value Expressions
for details.

type false NMTOKEN none

agent, place,
agentgroup,
placegroup, queue,
dn, skill,
campaigngroup,
routepoint, label

This specifies the
resource type
associated with
this <target>
element. The skill
and agentgroup
types are
synonymous.

statserver false value expression none

Any value
expression that
returns a valid
string which
represents a valid
stat server.

A value expression
which returns the
statserver that
should be used for
this target
definition.

See SCXML Legal
Data Values and
Value Expressions
for details.

threshold false value expression none

Any value
expression that
returns a valid
string which
represents a valid
threshold
expression

A value expression
which returns a
criteria definition
that is used to
further filter the
potential possible
targets associated
with this <target>
attribute. threshold
is an analog of the
strategy function

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 96



Name Required Type Default Value Valid Values Description

SetTargetThreshold
and defines
additional
conditions the
target must meet
to be considered
as valid target for
routing. The
following queue-
specific methods
can be used in a
value expression.
These methods are
not executed inline
as part of
interpreting this
attribute but are
processed by the
underlying queue
functional module:

• sdata(target,
statistic)-
Use this
function to
affect
routing
conditions
based on
statistics.

• Acfgdata(Application
name,
folder,
property,
default
value) -
Use this
function to
affect
routing
conditions
based on
external
data stored
in
properties
of
configuration
layer
application
objects
(ApplicationConFigDATA).

• Lcfgdata(list
name,
folder,
property,

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 97



Name Required Type Default Value Valid Values Description

default
value) -
Use this
function to
affect
routing
conditions
based on
external
data stored
in IRD list
objects.

• callage[]
- Use this
function to
return the
age of an
interaction
in seconds.

See SCXML Legal
Data Values and
Value Expressions
for details. Note:
Orchestration
evaluates this
expression to
create a string that
is sent to Universal
Routing Server.
That is, variables

and functions
available in ORS
may be used to
construct this
string; however
URS has no notion
of these values.
The resultant

string must be a
completely self
contained
expression for URS.
In other words, if

you have a
variable x in your
strategy, and you
want to use
callage[] < x, it
should be written
as: 'callage[] < ' +
x.

weight false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns a
value that defines
the weight of this
<target> element
against other

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 98



Name Required Type Default Value Valid Values Description

<target>
elements.

See SCXML Legal
Data Values and
Value Expressions
for details.

• The name, skillexpr, weight, statserver and type attributes are interpreted as constants. They are
components of the target specification format [weight]name@statserver.type. If skillexpr is present,
then the format is [weight]?name:skillexpression@statserver.type.

Children

None

<activity>
This defines the workforce management activity criteria for selecting a target.

Attributes

Name Required Type Default Value Valid Values Description

name true value expression none

Any value
expression that
returns a valid
string which
represents the
name of a WFM
activity

A value expression
which returns the
name of a WFM
activity that is to
be used for target
selection.

See SCXML Legal
Data Values and
Value Expressions
for details.

cutofftime false value expression none
Any value
expression that
returns an integer

A value expression
which returns the
cutoff time in
seconds. This
defines the window
time in which a
potential target
resource must be
assigned to the
given activity.

See SCXML Legal
Data Values and
Value Expressions
for details.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 99



Children

None

<workbin>
This defines the workbin criteria for selecting a target.

Attributes

Name Required Type Default Value Valid Values Description

type true NMTOKEN none
agent, place,
agentgroup,
placegroup

This specifies the
resource type
associated
<workbin>
element.

name true value expression none

Any value
expression that
returns a valid
string which
represents a
workbin.

A value expression
which returns the
name of the
workbin that is to
be used. See
SCXML Legal Data
Values and Value
Expressions for
details.

loggedinonly false boolean expression false
Any value
expression that
returns true or
false

A boolean
expression which
returns whether
logged out agents
can pull
interactions.

(Dis)Allow using of
logged out agents.

Children

None

Action Elements

<submit>
This action queues the request for a target based on the criteria specified in the request.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 100



Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated integer
identifier (based on
URS-3372 changed
from unique string)
to be associated
with the action
being sent. This
value will only be
valid when the
queue.submit.requestid
event is received.
If this attribute is
not specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
action completion
event. Every
request must
receive a unique
identifier.

queue false value expression none
Any value
expression which
returns a valid
string

A value expression
which returns the
name of the
(virtual) queue that
this request should
be put in. See
SCXML Legal Data
Values and Value
Expressions for
details.

priority false value expression 0 Any value A value expression

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 101



Name Required Type Default Value Valid Values Description

expression which
returns a value
integer

which returns the
priority that the
interaction will be
given in the queue.

See SCXML Legal
Data Values and
Value Expressions
for details.

ordertype false value expression any max, min, any,
percentage

A value expression
which returns how
type of ordering
that should be
used on the
targets. It is used
together with
orderstat. See
SCXML Legal Data
Values and Value
Expressions for
details.

orderstat false value expression none
Any value
expression which
returns a valid
string

A value expression
which returns the
name of the
statistic that will
be used as a target
selection criterion
for ordering the
targets. No
orderstat specified
means any target
and order. See
SCXML Legal Data
Values and Value
Expressions for
details.

interactionid false value expression none
Any value
expression which
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. There
is a special value
that can be
returned:

• ECMAScript
Null means
the
functional
module will
not use an
interaction
for the
request.

Note: if the

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 102



Name Required Type Default Value Valid Values Description

<outbound>
element is present
then this attribute
is ignored because
a new interaction
will be created.

See SCXML Legal
Data Values and
Value Expressions
for details.

route false boolean expression true
Any expression
which returns a
boolean (true,
false)

A boolean
expression which
returns whether or
not this action
should also
redirect the
interaction to the
selected
destination. There
are two values that
can be returned:

• "false"
means the
functional
module will
not attempt
to route the
associated
interaction.

• "true"
means the
functional
module will
use the
associated
interaction
to route the
interaction.
Note: a
value of
"true" is
only
supported
for voice-
related
interactions.

See SCXML
Conditional
Expressions for
details.

clearontimeout false boolean expression true Any expression A boolean

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 103



Name Required Type Default Value Valid Values Description

which returns a
boolean (true,
false)

expression which
indicates whether
or not the request
and all associated
<submit> requests
for this interaction
and queue should
be removed from
the queue after the
timeout of this
request.

See SCXML
Conditional
Expressions for
details.

timeout false value expression 0
A value expression
which returns an
integer

A value expression
which returns an
integer that
represents the
number of seconds
to wait. See SCXML
Legal Data Values
and Value
Expressions for
details. The integer
returned must be
interpreted as a
time interval. This
interval begins
when <submit> is
executed. A failed
and timed-out
submit must return
the
error.queue.submit
event.

If the <outbound>
element is present,
this attribute is
only used while
waiting for an
agent to become
available and not
for the request in
its entirety.

threshold false value expression none

Any value
expression that
returns a valid
string which
represents a valid
threshold
expression.

A value expression
which returns a
criteria definition
that is used to
further filter the
potential possible
targets associated
with the queue
attribute.
threshold is an
analog of the
strategy function
SetVQTargetThreshold
and defines

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 104



Name Required Type Default Value Valid Values Description

additional
conditions the
target must meet
to be considered
as a valid target
for routing with
this queue. The
following queue-
specific methods
can be used in a
value expression.
These methods are
not executed inline
as part of
interpreting this
attribute but are
processed by the
underlying queue
functional module:

• sdata(target,
statistic) -
Use this
function to
affect
routing
conditions
based on
statistics.

• acfgdata(Application
name,
folder,
property,
default
value) - Use
this
function to
affect
routing
conditions
based on
external
data stored
in
properties
of
configuration
layer
application
objects
(ApplicationConFigDATA).

• lcfgdata(list
name,
folder,
property,

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 105



Name Required Type Default Value Valid Values Description

default
value) - Use
this
function to
affect
routing
conditions
based on
external
data stored
in IRD list
objects.

• callage
function -
Use this
function to
return the
age of an
interaction
in seconds.

See SCXML Legal
Data Values and
Value Expressions
for details.

src false value expression none

A value expression
which returns one
of the following
valid URI schemes:

• gdata

This allows a
developer to
supply a URI which
identifies the
location of a
<submit>
definition that is to
be used in the
application. This
attribute is
mutually exclusive
with the following
attributes:

• queue
• ordertype
• orderstat
• timeout

This attribute is
also mutually
exclusive with the
children of this
element. This
source definition
will replace the
entire <submit>
element in the
application at load

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 106



Name Required Type Default Value Valid Values Description

time.

See SCXML Legal
Data Values and
Value Expressions
for details.

Other Considerations

• All events generated from the imbedded treatment actions will be suppressed as part of the action.
• The <submit> action does not work for targets such as multimedia queues. The <redirect> action is a

way to place interactions into those queues.
• The src attribute supports only the gdata scheme, which maps to routing rules of type:

• Statistic
• Load Balance
• Percentage
• Workforce

• The route=true attribute value is supported only for voice-related interactions. For all others, route=
false must be used with a subsequent <redirect> action. The error.queue.submit will be generated if
this attribute is implicitly or explicitly set to true for all other interaction media types.

• The following rules are applied to the interactionid parameter in this action as well as in any other from
the Queue functional module:
• Genesys recommends that you always specify it explicitly.
• If the <scxml> document has _type=routingstrategy and there are no interactions associated with

the session (for example, a session is started through web interfaces), the special value null can be
used. This will result in the Queue functional module using a platform-specific interactionid for
communication purposes.

The following are examples of different types of target selection that can be done with <submit> and
SCXML:

• Load Balancing

As you can see if you want to perform load balance functionality similar to the load balancing
function block, you would use one of the load balancing statistics (this is using the basic one). In
addition, you can really only load balance on DN-related resources (queue and dn types).

<state id="load_balancing">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<queue:submit requestid="_data.reqid" orderstat="'StatLoadBalance'" ordertype="'min'"
timeout="100" >

<queue:targets type="queue">
<queue:target name="'queue1'"/>
<queue:target name="'queue2'"/>

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 107



</queue:targets>
</queue:submit>

</onentry>
<transition event="queue.submit.done" target="statex">

<assign location="target" expr="_event.data.targetselected"/>
</transition>
<transition event="error.queue.submit" target="statey"/>
</state>

• Percentage

As you can see, if you want to perform percentage routing functionality similar to the percentage
function block, you set the ordertype attribute to "percentage" and set the appropriate target
weights.

<state id="percentage">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<queue:submit requestid="_data.reqid" ordertype="'percentage'" timeout="100" >
<queue:targets type="agentgroup">

<queue:target name="'agtgrp1'" weight="'20'"/>
<queue:target name="'agtgrp2'" weight="'80'"/>

</queue:targets>
</queue:submit>

</onentry>
<transition event="queue.submit.done" target="statex"/>
<transition event="error.queue.submit" target="statey"/>
</state>

• Selection (Generic Target Selection)

This type of target selection is generic and can be used to combine several different forms of target
selections. The biggest difference is the ability to define thresholds for a given target definition. This
example shows how to do that.

<state id="Selection">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<queue:submit queue="'VQ1'" requestid="_data.reqid" ordertype="'max'"
orderstat="'StatTimeInReadyState'" timeout="100">

<queue:targets type="agentgroup" statserver="'www.genesyslab.stserver1.com'">
<queue:target name="'agtgrp1'" threshold= "'sdata(agtgrp1.GA, StatAgentsAvailable) >

10'"/>
<queue:target name="'agtgrp2'"/>

</queue:targets>
</queue:submit>

</onentry>
<transition event="queue.submit.done" target="statex"/>
<transition event="error.queue.submit" target="statey"/>
</state>

• Statistics

As you can see here, if you want to perform statistical routing functionality similar to the statistics
function block, you just have to specify the ordertype and orderstat on the action and either specify a

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 108



single statserver for all targets or a specific one for each to do target selection.

<state id="Statistics">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<queue:submit queue="'VQ1'" requestid="_data.reqid" ordertype="'min'"
orderstat="'StatExpectedWaitingTime'" timeout="100">

<queue:targets type="agentgroup" statserver="'www.genesyslab.stserver1.com'">
<queue:target name="'agtgrp1'"/>
<queue:target name="'agtgrp2'"/>

</queue:targets>
</queue:submit>

</onentry>
<transition event="queue.submit.done" target="statex"/>
<transition event="error.queue.submit" target="statey"/>
</state>

• Skills-Based

As you can see here, if you want to perform skills-based routing functionality similar to that which is
available on several function blocks, you just have to specify the skillexpr attribute on a target
element. This can be mixed with other targets as well.

<state id="Skills-based">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<queue:submit queue="'VQ1'" requestid="_data.reqid" ordertype="'min'"
orderstat="'StatExpectedWaitingTime'" timeout="100">

<queue:targets type="agentgroup" statserver="'www.genesyslab.stserver1.com'">
<queue:target skillexpr="'service1 > 5 & english > 3'"/>
<queue:target name="'agtgrp2'"/>

</queue:targets>
</queue:submit>

</onentry>
<transition event="queue.submit.done" target="statex"/>
<transition event="error.queue.submit" target="statey"/>
</state>

• Using Busy Treatments

As you can see here, if you want to perform treatments in conjunction with routing functionality you
need to specify the appropriate <runtreatments> element defining which treatments are to run while
waiting for a target to be found.

<state id="Skills-based_with_treatments">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<queue:submit queue="'VQ1'" requestid="_data.reqid" ordertype="'min'"
orderstat="'StatExpectedWaitingTime'" timeout="100">

<queue:targets type="agentgroup" statserver="'www.genesyslab.stserver1.com'">
<queue:target skillexpr="'service1 > 5 & english > 3'"/>
<queue:target name="'agtgrp2'"/>

</queue:targets>
<dialog:runtreatments>

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 109



<dialog:playsound type="'music'" resource="'EMusicDN'" duration="100"/>
<dialog:play language="'English (US)'" >

<dialog:prompts type="'tts'">
<dialog:prompt interrupt="true" text="'The estimated wait time is' +

_genesys.statistic.sData('agtgrp2@.GA', 'StatExpectedWaitingTime')"/>
</dialog:prompts>

</dialog:play>
</dialog:runtreatments>

</queue:submit>
</onentry>
<transition event="queue.submit.done" target="statex"/>
<transition event="error.queue.submit" target="statey"/>
</state>

• Activity-Based

As you can see here, if you want to perform activity(WFM)-based routing functionality similar to that
which is available on several function blocks, you just have to specify the <activity> element in the
<targets> element.

<state id="Activity-based">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<queue:submit queue="'VQ1'" requestid="_data.reqid" ordertype="'min'"
orderstat="'StatExpectedWaitingTime'" timeout="100">

<queue:targets statserver="'www.genesyslab.stserver1.com'">
<queue:activity name="'service1'"/>

</queue:targets>
</queue:submit>

</onentry>
<transition event="queue.submit.done" target="statex"/>
<transition event="error.queue.submit" target="statey"/>
</state>

• Using Routing Rules From Configuration Server

As you can see here, if you want to perform routing rule routing functionality similar to the existing
routing function block, you just have to specify the src attribute using the gdata URI scheme.

<state id="RoutingRules_from_Configuration_Server">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<queue:submit src="gdata:routingrule1"/>
</onentry>
<transition event="queue.submit.done" target="statex"/>
<transition event="error.queue.submit" target="statey"/>
</state>

Children

• <targets> - Occurs 1 time. This instance defines a named set of targets.
• <runtreatments> - Occurs 0 or 1 times. This instance defines a set of treatments to apply while this

request is queued. The treatment-related events will not be generated as part of this request. The
treatment can have an additional parameter, duration (if it doesn't have it yet). When the treatment

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 110



expires, the next treatment in the definition will be applied. If treatments that collect digits are used,
the application will only get the digits collected by the last treatment that collected the digits when this
action has ended (successfully or unsuccessfully). These digits will be available to the application via
the _event.data.digits property.

Events

The following events can be generated as part of this action:

• queue.submit.done

• queue.submit.requestid

• error.queue.submit - This event will be sent as a result of the following conditions:
• A timeout of the request
• Problems with the request itself.
• The customer abandons the interaction
• The platform failed to contact the customer based on the criteria specified.
• The platform failed to contact the agent that was selected.

• queue.cancelled - This event will be sent either when a target was selected from another outstanding
<submit> action, in which case it indicates that this <submit> action request was cancelled, or when a
<submit> action request has been cancelled using the <cancel> action.

• interaction.deleted - This event will be sent when the customer abandons the interaction associated
with this <submit> request.

Note: For every <queue.submit> action, one and only one event can be created with the reference
id generated with this submit.action. Specifically:

• queue.submit.done - One of the targets from this queue was selected.
• error.queue.submit - The submit action fails to apply.
• queue.cancel.done - The interaction was explicitly requested to be removed specifically from the

queue with this request id.
• queue.cancelled - The interaction was removed from the queue as a side effect of another

successfully completed action.

<cancel>
This action removes the requests from the queue and from consideration as targets. This is
equivalent to doing another <submit> with the clearqueue attribute set to true or to issuing the IRD
function ClearTargets.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location This is the location

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 111



Name Required Type Default Value Valid Values Description

expression

of the ID of the
outstanding
request which is to
be canceled. Any
data model
expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details.

queue false value expression none
Any value
expression which
returns a valid
string

A value expression
which returns the
name of the
(virtual) queue that
this request is for.
If there was more
than one <submit>
request for the
same interaction
and this queue,
then all these
requests will be
removed from this
queue and from
consideration as a
target. See SCXML
Legal Data Values
and Value
Expressions for
details.

interactionid false value expression none
Any value
expression which
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. This is
only used in
conjunction with
the queue
attribute. There is
a special value
that can be
returned:

• ECMAScript
Null means
the
functional
module will
not use an
interaction
for the
request.

See SCXML Legal
Data Values and
Value Expressions
for details.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 112



The requestid and queue attributes are mutually exclusive. If the requestid is present, then just that
request is cleared from the queue and from target selection.

If the queue is present, then all outstanding requests are cleared from the defined queue. As part of
this processing, the appropriate queue.cancelled events will be fired for all requests that are cleared.

The interactionid attribute is only used in conjunction with the queue attribute and is only needed
when your application is handling multiple interactions.

The following are some examples:

<state id="cancel">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<queue:cancel requestid="_data.reqid"/>
</onentry>
<transition event="queue.cancel.done" target="statex"/>
<transition event="error.queue.cancel" target="statey"/>
</state>
<state id="cancel">
<onentry>

<queue:cancel queue="'vq1'" />
</onentry>
<transition event="queue.cancel.done" target="statex"/>
<transition event="error.queue.cancel" target="statey"/>
</state>
<state id="cancel">
<datamodel>

<data id="ixnid"/>
</datamodel>
<onentry>

<queue:cancel queue="'vq1'" interactionid="_data.ixnid" />
</onentry>
<transition event="queue.cancel.done" target="statex"/>
<transition event="error.queue.cancel" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• queue.cancel.done

• error.queue.cancel

• queue.cancelled - This event is sent for all requests that are cleared.

Note: The queue.cancelled events will be sent before the queue.clear.done.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 113



<update>
This action updates the criteria associated with an outstanding submit request.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid True location expression none Any valid location
expression

This is the location
of the ID of the
outstanding
request which is to
be updated. Any
data model
expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details.

interactionid False value expression none
Any value
expression which
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. If the
interactionid
attribute value is
not associated with
an outstanding and
corresponding
<submit> action,
then an error event
(error.queue.cancelled)
will be generated.
There is a special
value that can be
returned:

• ECMAScript
Null means
the
functional
module will
not use an
interaction
for the
request.

See SCXML Legal
Data Values and
Value Expressions
for details.

priority False value expression none
Any value
expression that
returns a valid
integer

A value expression
which returns the
priority that the
interaction will be
assigned in the

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 114



Name Required Type Default Value Valid Values Description

queue.

See SCXML Legal
Data Values and
Value Expressions
for details.

timeout False value expression none
A value expression
which returns an
integer

A value expression
which returns an
integer that
represents the
number of seconds
to wait. See SCXML
Legal Data Values
and Value
Expressions for
details. The integer
returned must be
interpreted as a
time interval. This
interval begins
when <update> is
executed. A failed
and timed-out
submit must return
the
error.queue.update
event.

If the original
submit request an
outbound one, this
attribute is only
used while waiting
for an agent to
become available
and not for the
request in its
entirety.

The following are examples:

This example updates the timeout value for this request:

<state id="update">
<datamodel>

<data id="reqid"/>
<data id="ixnid"/>

</datamodel>
<onentry>

<queue:update requestid="_data.reqid" interactionid="_data.ixnid" timeout="300"/>
</onentry>
<transition event="queue.update.done" target="statex"/>
<transition event="error.queue.update" target="statey"/>
</state>

This example updates the priority for this request:

<state id="update">
<datamodel>

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 115



<data id="reqid"/>
</datamodel>
<onentry>

<queue:update requestid="_data.reqid" priority="6" />
</onentry>
<transition event="queue.update.done" target="statex"/>
<transition event="error.queue.update" target="statey"/>
</state>

This example updates the set of targets to select from for this request:

<state id="update">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<queue:update requestid="_data.reqid"/>
<queue:targets>

<queue:target skillexpr="'service1 > 5 & english > 3'"/>
</queue:targets>

</queue/update>
</onentry>
<transition event="queue.update.done" target="statex"/>
<transition event="error.queue.update" target="statey"/>
</state>

This example updates the treatments of this request:

<state id="update">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<queue:update requestid="_data.reqid">
<dialog:runtreatments>

<dialog:playsound type="'music'" resource="'EMusicDN'" duration="'100'"/>
</dialog:runtreatments>

</queue:update>
</onentry>
<transition event="queue.update.done" target="statex"/>
<transition event="error.queue.update" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• queue.update.done

• error.queue.update

<query>
This action queries the status of the request. It returns the following information in the

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 116



queue.query.done event for a specific interaction:

• priority - This is the current priority of the request.
• positioninqueue - This is the current position of the request in the queue.
• Invqwaittime - This is the expected wait time for the queue in relationship to the request.

This action can be used in two cases:

• While <submit> requests are outstanding, to determine what to do next. For example, while the
application waits for a target, if the customer presses the "I cannot wait anymore" number, this event is
processed by the application (<transition>). The application queries the status of the request to
determine what type of treatment to present to the customer. If the customer has been waiting 10
minutes and the queue depth has not changed then the application may offer the customer the option
of having a callback set up for him or her (using a dialog or treatment).

• After a <submit> request has timed out, if the interaction was not cleared from target selection. The
application may need to collect information on where this interaction stands with respect to it still being
in the queue. This information would then be used to determine what to do next (for example, provide
the customer with other options, do another <submit> but with different target selection criteria (other
targets, a new queue, and so on).

Attribute Details

Name Required Type Default Value Valid Values Description

requestid true location expression none Any valid location
expression

This is the location
of the ID of the
outstanding
request which is to
be queried. Any
data model
expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details.

interactionid false value expression none
Any value
expression which
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. If the
interactionid
attribute value is
not associated with
the outstanding
corresponding
<submit> action,
then an error event
(error.queue.query)
will be generated.
There is a special
value that can be
returned:

• ECMAScript

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 117



Name Required Type Default Value Valid Values Description

Null means
the
functional
module will
not use an
interaction
for the
request.

See SCXML Legal
Data Values and
Value Expressions
for details.

The interactionid attribute is only used when your application is handling multiple interactions.

The following is an example:

<state id="Query">
<onentry>

<queue:query requestid="_data.reqid">
</onentry>
<transition event="queue.query.done" target="statex">

<if cond="_event.data.positioninqueue > 200">
<queue:update requestid="_data.reqid" priority="_event.data.priority + 5"/>

</if>
</transition>
<transition event="error.queue.query" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• queue.query.done

• error.queue.query

<default>
This action will redirect the interaction to its associated default destination or may optionally returns
the configured default target address with out redirecting the interaction. This may be used when the
orchestration logic cannot find a suitable destination to redirect the interaction to.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 118



Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. This value
will only be valid
when the
queue.default.requestid
event is received.
If this attribute is
not specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

interactionid false value expression none A valid value
expression

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. There
is a special value
that can be
returned:

• ECMAScript
Null means
the
functional
module will
not use an

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 119



Name Required Type Default Value Valid Values Description

interaction
for the
request.

See SCXML Legal
Data Values and
Value Expressions
for details.

route false boolean expression true
Any expression
that returns a
boolean (true,
false)

A boolean
expression which
returns true or
false. The meaning
of which implies
the following:

• "false"
means the
functional
module will
not attempt
to route the
associated
interaction
and only
the default
destination
associated
will be
returned in
the
queue.default.done
event.

• "true"
means the
functional
module will
use the
associated
interaction
to route the
interaction.
Note: a
value of
"true" is
only
supported
for voice-
related
interactions.

See SCXML
Conditional
Expressions for

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 120



Name Required Type Default Value Valid Values Description

details.

The following is an example:

<state id="Default">
<onentry>

<queue:default/>
</onentry>
<transition event="queue.default.done" target="statex"/>
<transition event="error.queue.default" target="statey"/>

</state>

Children

None

Events

The following events can be generated as part of this action:

• queue.default.done

• queue.default.requestid

• error.queue.default

Events

The following are the Queue action result events:

Event Attributes Description

queue.submit.done

This event indicates the success of the
request and that a target has been
selected.

requestid This is the ID associated with the request.

targetselected

This is the DN and the switch name of the
target to which the interaction was routed
or should be routed to definitively; the
target format is
(Name@SwitchName.Type).

vqselected This is the virtual queue that was
selected.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 121



Event Attributes Description

targetcomponentselected

This is the agent-level target to which the
interaction was routed or should be
routed to definitively.

If the target specified in <submit> and
selected for routing is of type Agent,
Place, Queue, or Routing Point, this
contains the target itself. If the desired
target type is Agent Group, Place Group,
or Queue Group, the function returns the
agent, place, or queue from the
corresponding group the interaction was
sent to. The target format is
(Name@StatServerName.Type).

targetobjectselected

This is the high-level target (one that you
specify in a <submit>) to which the
interaction was routed or should be
routed to definitively. If a skill expression
is used, the function returns:
?:SkillExpression@statserver.GA or
even
?GroupName:SkillExpression@statserver.GA

The target format is
(Name@StatServerName.Type).

resource

This is an ECMAScript resource object
which represents the target selected and
can be used on any interaction-related
action. See the Resource object for
details.

access

This attribute is optional and provided
only if <submit> parameter route set to
false and siwtch access code is defined
between source and destination swithces
for target type that match type of
selected target. When present it is an
ECMAScript object which represents
switch access code and has following sert
of properties: prefix, rtype, destination,
location and dnis. Their values match to
following switch access code fileds: Code,
Route Type, Destination Source, Location
Source and DNIS Source.

queue.submit.requestid

This event provides the application with
request ID for the given request that was
invoked.

requestid
This is the ID associated with the request
from the orchestration application or the
resource.

error.queue.submit This indicates that an abnormal condition
occurred while trying to perform the

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 122



Event Attributes Description

request. This event will be sent as a
result of a timeout of the request, as well
as problems with the request or
interaction itself.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• -001 Timeout
• 0001 Unknown error
• 0008 Routing done
• 0013 Remote error
• 0018 Unknown object
• 0019 Translation failed

description

if error parameter has value '0013
Remote error' then this field might
contain additional error information as
provided by call/interaction controller (for
example by TServer). Format of this
string field is 'ErrorNumber ErrorMessage'

queue.cancel.done

This event indicates the success of the
clear request and that the request has
been removed from the queue.

requestid This is the ID of the <cancel> request.

error.queue.cancel

This indicates that an error occurred while
trying to perform the <cancel> request.

requestid This is the ID associated with the request.

error This is the type of error that occurred.

description This is a more detailed description of the
error.

queue.update.done This event indicates that the request has
been updated successfully.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 123



Event Attributes Description

requestid This is the ID of the <update> request.

error.queue.update

This indicates that an error occurred while
trying to perform the <update> request.

requestid This is the ID associated with the request.

error
This is the type of error that occurred.
The following are the possible values:

• Invalidrequestid

description

This is a more detailed description of the
error. The following are the possible
values:

• Invalidrequestid - The request
id xxxx does not match any
outstanding <submit>
requests. xxxx is the value of
the requestid attribute.

queue.query.done

This event indicates the success of the
query request.

requestid This is the ID of the <query> request.

priority This is the current priority of the request.

positioninqueue This is the current position of the request
in the queue.

invqwaittime This is the expected wait for the queue in
relationship to the request.

totalsize
This is the total number of agents that
can be targetted for the request. (Only
since URS 8.1.3)

loginsize
This is the number of agents logged in
that can be targetted for the request.
(Only since URS 8.1.3)

error.queue.query This indicates that an error occurred while
trying to perform the <query> request.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 124



Event Attributes Description

requestid This is the ID associated with the request.

error This is the type of error that occurred.

description This is a more detailed description of the
error

queue.default.done

This event indicates the success of the
request and that a default target has
been selected.

requestid This is the ID associated with the request.

defaultselected This is the default configured target
address.

queue.default.requestid

This event provides the application with
request ID for the given request that was
invoked.

requestid
This is the ID associated with the request
from the orchestration application or the
resource.

error.queue.default

This indicates that an error occurred while
trying to perform the <default> request.

requestid This is the ID associated with the request.

error

This is the type of error that occurred:

• timeout
• invalidattribute
• abandoned
• unknown
• invalidstate.state (null,

ringing, hold, transferring,
treating, routed)

• badtranslation
• remote

description This is a more detailed description of the

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 125



Event Attributes Description

error.

The following are the possible values:

• timeout - the interaction was
not redirected to the default
target in a timely manner.

• invalidattribute - The attribute
yyy:xxx has an invalid value
(zzz) or is not allowed under
the conditions of the request.
yyy is the name of the
element associated with the
attribute. xxx is the name of
the attribute. zzz is the value
of the attribute.

• abandoned - The customer
has abandoned the
interaction.

• unknown - The cause of the
failure is unknown.

• invalidstate.state - The
interaction is in an invalid
state and cannot be
redirected to the default
target.

• badtranslation - The
destination address xxx could
not be translated. xxx is the
address of the default target.

• remote - There was an error in
the media server while trying
to redirect the interaction to
the default target.

The following are the queue asynchronous events:

Event Attributes Description

queue.cancelled

This event indicates that a target has
been selected from another <submit>
action request and that this <submit>
action request has been cancelled.

requestid This is the submit request ID associated
with the interaction.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 126



Notes

Prior to version 8.1.200.27, the Interaction's age was ignored for Multimedia Interactions.

Orchestration Extensions Queue Interface

Orchestration Server Developer's Guide 127



Classification Interface
This interface provides the ability to classify and screen interaction content to help the orchestration
logic determine what the customer wants.

Object Model

category

This object represents the result for an interaction classified against a given category. The name of
the object will be "category". This object is accessible either through the
classification.screen.done or the classification.classify.done events and the categories
property with those events. Another way is via the interaction object's categories property. This is the
set of properties for the object:

Name Access Type Default Value Valid Values Description

name read only string none This is the name of
the screen rule.

id read only string none This is screen rule
ID from UCS.

relevancy read only integer none 1-100

This indicates the
relevancy of the
category with
respect to the
interaction that
was classified.

screenrule

This object represents the result for an interaction screened against a given screen rule. The name of
the object will be "screenrule". This object is accessible through the classification.screen.done
event and the screenrule property of that event. This is the set of properties for the object:

Name Access Type Default Value Valid Values Description

name read only string none This is the name of
the screen rule

id read only string none This is screen rule
ID from UCS.

Orchestration Extensions Classification Interface

Orchestration Server Developer's Guide 128



Name Access Type Default Value Valid Values Description

match read only boolean none true, false

This indicates
whether the
interaction has met
the conditions of
the screen rule.

value read only string none
This is the
interaction content
that has met the
screen rules.

Action Elements

<classify>

This action takes the content of an interaction and classifies it into categories. This action is
equivalent to the IRD function block "Classify".

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among

Orchestration Extensions Classification Interface

Orchestration Server Developer's Guide 129



Name Required Type Default Value Valid Values Description

several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
action completion
event. Every
request must
receive a unique
identifier.

server false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
name of the
classification
server to be used
for classifying the
content of this
interaction. If not
supplied, the
functional module
will use the first
available server.
See SCXML Legal
Data Values and
Value Expressions
for details.

interactionid false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
of the interaction
that is to be
classified. There is
a special value
that can be
returned:

• ECMAScript
Null means
the
functional
module will
not use an
interaction
for the
request.

SCXML Legal Data
Values and Value
Expressions for
details.

root true value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
overall
classification

Orchestration Extensions Classification Interface

Orchestration Server Developer's Guide 130



Name Required Type Default Value Valid Values Description

category that
should be used for
this action. SCXML
Legal Data Values
and Value
Expressions for
details.

confidence false value expression 75

Any value
expression that
returns a valid
integer between 1
and 100

A value expression
which returns the
minimum
relevancy each
classification
category must
have in order for
Classification
Server to consider
an interaction as
belonging to that
category. See
SCXML Legal Data
Values and Value
Expressions for
details.

fromudata false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
udata key name to
use as the
classified data
source. If this
attribute and the
fromvar attribute
are not supplied,
then the data
source will be
Universal Contact
Server's database.
See SCXML Legal
Data Values and
Value Expressions

fromvar false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
ECMAScript
variable name to
be used as the
classified data
source. If this
attribute and the
fromudata
attribute are not
supplied then the
data source will be
Universal Contact
Server's database.
See SCXML Legal
Data Values and
Value Expressions
for details.

Orchestration Extensions Classification Interface

Orchestration Server Developer's Guide 131



Name Required Type Default Value Valid Values Description

allcategories false boolean expression true
Any expression
which returns a
boolean (true,
false)

A boolean
expression which
indicates whether
or not all
categories are to
be used for this
action. This
attribute is
mutually exclusive
with the categories
and subcategories
attributes. See
SCXML Conditional
Expressions for
details.

categories false value expression none
Any expression
that results in a
valid string

A value expression
which returns a set
of comma-
separated category
names (ids) that is
to be used to
classify this
interaction. For
example,
categories="'productx,
update'" This
attribute is
mutually exclusive
with the
allcategories
attribute. See
SCXML Legal Data
Values and Value
Expressions for
details.

subcategories false NMTOKEN no no, direct, all

This identifies how
the Classification
Server should
handle parent and
child categories
when classifying
the interaction:

• no - The
Classification
Server
considers
only the
categories
you
selected in
the tree
and does
not include
any child
categories.

• direct - The

Orchestration Extensions Classification Interface

Orchestration Server Developer's Guide 132



Name Required Type Default Value Valid Values Description

Classification
Server
considers
only the
direct
children of
the
selected
(parent)
categories.

• all - The
Classification
Server
considers
all children
of the
selected
(parent)
categories.

This attribute is
mutually exclusive
with the
allcategories
attribute.

attach false boolean true true and false

This indicates
whether the
classification
results should be
attached to the
interaction as
udata properties.

The following is an example:

<state id="do_classification">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<classification:classify requestid="_data.reqid" root="businessxcats"/>
</onentry>
<transition event="classification.classify.done" target="statex"/>
<transition event="error.classification.classify" target="statey"/>

</state>

Children

None

Orchestration Extensions Classification Interface

Orchestration Server Developer's Guide 133



Events

The following events can be generated as part of this action:

• classification.classify.done - This event is sent when the request has been accepted by the
system and the interaction has been classified.

• error.classification.classify - This event is sent when the request has failed for some reason.

<screen>

This action takes the content of an interaction and screens it using a set of rules. This action is
equivalent to the IRD function blocks "Screen" and "Multiscreen".

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
action completion
event. Every
request must
receive a unique
identifier.

Orchestration Extensions Classification Interface

Orchestration Server Developer's Guide 134



Name Required Type Default Value Valid Values Description

server false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
name of the
classification
server to be used
for screening this
interaction. If not
supplied, the
functional module
will use the first
available server.
See SCXML Legal
Data Values and
Value Expressions
for details.

interactionid false value expression "0"
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.FMname.interactions[x].g_uid
of the interaction
that is to be
screened. There is
a special value
that can be
returned:

• "0" means
the
functional
module will
use
_genesys.FMname.interactions[0].g_uid
as the
related
interaction.

SCXML Legal Data
Values and Value
Expressions for
details.

language false value expression English (US)

Any expression
that returns a
string with one of
the following
values: English
(US), Spanish,
Mandarin,
Cantonese,
Vietnamese,
French, French
(Canada), German,
Italian, Japanese,
Korean, Russian

A value expression
which returns a
string specifying a
language in which
screening should
be done. See
SCXML Legal Data
Values and Value
Expressions for
details.

fromudata false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
udata key name to
use as the

Orchestration Extensions Classification Interface

Orchestration Server Developer's Guide 135



Name Required Type Default Value Valid Values Description

screened data
source. If this
attribute and the
fromvar attribute
are not supplied,
then the data
source will be
Universal Contact
Server's database.
See SCXML Legal
Data Values and
Value Expressions

fromvar false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
ECMAScript
variable name to
be used as the
screened data
source. If this
attribute and the
fromudata
attribute are not
supplied, then the
data source will be
Universal Contact
Server's database.
See SCXML Legal
Data Values and
Value Expressions
for details.

allrules false boolean expression true
Any expression
which returns a
boolean (true,
false)

A boolean
expression which
returns whether or
not all rules are to
be used for this
action. This
attribute is
mutually exclusive
with the rules
attribute. See
SCXML Conditional
Expressions for
details.

rules false value expression none
Any expression
that results in a
valid string

A value expression
which returns a set
of comma-
separated rule
names (ids) that is
to be used to
screen this
interaction. For
example,
rules="'rule1,
rulen'" This
attribute is
mutually exclusive
with the allrules
attributes. See
SCXML Legal Data

Orchestration Extensions Classification Interface

Orchestration Server Developer's Guide 136



Name Required Type Default Value Valid Values Description

Values and Value
Expressions for
details.

results false NMTOKEN rules rules, matchpairs,
categories, all

This identifies what
results the
Classification
Server should
return after the
interaction has
been screened:

• rules -
Returns
screening
rule IDs
when a
match is
found.

• matchpairs
- Returns
the
matched
pairs of
screening
rule IDs and
specific
strings of
words in
the
interaction
content
that
matched
the
screening
rules.

• categories
- Returns
the
classification
categories
associated
with the
screening
rules.

• all - Returns
screening
rule IDs,
key-value
pairs, and
categories

Orchestration Extensions Classification Interface

Orchestration Server Developer's Guide 137



Name Required Type Default Value Valid Values Description

root false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
overall screening
category which
should be used for
this action. This is
attribute is
mandatory when
the results
attribute is either
"categories" or
"all". SCXML Legal
Data Values and
Value Expressions
for details.

The following is an example:

<state id="do_screening">
<datamodel>

<data id="reqid"/>
<data id="rulesetA" expr="Rule1, Rule2, Rule3"/>

</datamodel>
<onentry>

<classification:screen requestid="_data.reqid" rules="_data.rulesetA"
results="all" />

</onentry>
<transition event="classification.screen.done" target="statex"/>
<transition event="error.classification.screen" target="statey"/>

</state>

Children

None

Events

The following events can be generated as part of this action:

• classification.screen.done - This event is sent when the request has been accepted by the system
and the interaction has been screened.

• error.classification.screen - This event is sent when the request has failed for some reason.

Orchestration Extensions Classification Interface

Orchestration Server Developer's Guide 138



Events

Event Attributes Description

classification.classify.done

This event indicates the success of the
request and that the interaction has been
classified.

requestid This is the ID associated with the request.

categories
This is an array of category objects which
have met the criteria associated with this
request and the interaction. The array is
ordered from highest relevancy to lowest.

error.classification.classify

This indicates that an abnormal condition
occurred while trying to perform the
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
the interaction itself.

requestid This is the ID associated with the request.

error
This is the type of error that occurred:

• Request Invalid

description This is a more detailed description of the
error.

classification.screen.done

This event indicates the success of the
request and that the interaction has been
screened.

requestid This is the ID associated with the request.

screenrule

This is an object which contains
properties of screening rule what has met
the criteria associated with this request
and the interaction as well as collection of
matched keys.

categories
This is an array of category objects which
have met the criteria associated with this
request and the interaction. The array is
ordered from highest relevancy to lowest.

error.classification.screen This indicates that an abnormal condition

Orchestration Extensions Classification Interface

Orchestration Server Developer's Guide 139



Event Attributes Description

occurred while trying to perform the
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

error
This is the type of error that occurred:

• Request Invalid

description This is a more detailed description of the
error.

Orchestration Extensions Classification Interface

Orchestration Server Developer's Guide 140



Core Extensions

Session Interface

Object Model
_genesys.session Object

Every SCXML session instance running in the orchestration platform will have an object with a set of
common orchestration logic properties. These properties are maintained by the orchestration
platform, but they can be set or updated by the orchestration logic itself. They are also used by the
orchestration platform for orchestration logic reporting and management functionality. The name of
the object will be "_genesys.session". This is the set of properties for the object:

Name Access Type Default Value Valid Values Description

server read only genesys.session.server
object none

This is the Genesys
server information
on which this
session is running.

tenant read only string none

This is the name of
the tenant that this
session is
associated with. It
can be changed
with the
_genesys.session.setTenant()
function.

_genesys.session.server Object

Every SCXML session instance running in the orchestration platform will have a global root object
from which an application will have access to platform server information. This object is maintained
by the orchestration platform. The name of the object will be "_genesys.session.server". This is the
set of properties for the object:

Name Access Type Default Value Valid Values Description

name read only string none

This is the
configuration layer
application name
for the active
platform server
running this
session.

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 141



Name Access Type Default Value Valid Values Description

cluster read only string none

This is the
configuration layer
application name
of the platform
cluster (that is, the
primary platform
server) running
this session.

_genesys.session.lookupseq ENUM Object

This represents the lookupsequence enumeration. This enumeration is maintained by the
orchestration platform. This is the set of properties for the object:

Name Access Type Default Value Valid Values Description

StartFromStrategy Read only Integer None -1
The lookup starts
from the routing
strategy

StartFromCDN Read only Integer None 0 The lookup starts
from the CDN

StartFromTserver Read only Integer None 1 The lookup starts
from the T-Server

StartFromTenant Read only Integer None 2 The lookup starts
from the Tenant

StartFromRouter Read only Integer None 3 The lookup starts
from the URS

_genesys.session.day ENUM Object

This represents the day enumeration. This enumeration is maintained by the orchestration platform.
This is the set of properties for the object:

Name Access Type Default Value Valid Values Description

Sunday read only integer none 0 This represents
Sunday.

Monday read only integer none 1 This represent
Monday.

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 142



Name Access Type Default Value Valid Values Description

Tuesday read only integer none 2 This represents
Tuesday.

Wednesday read only integer none 3 This represents
Wednesday.

Thursday read only integer none 4 This represents
Thursday.

Friday read only integer none 5 This represents
Friday.

Saturday read only integer none 6 This represents
Saturday.

Functions
_genesys.session.dateInZone

This function returns the current date in the specified time zone. The results will be in the xml date
datatype format (that is, yyyy-mm-dd). This can be compared with other variables that use the same
time format. date _genesys.session.dateInZone(tzone) Parameters:

• tzone: STRING which can be a variable or a constant - This parameter is the name of a time zone
configured in the configuration layer.

Returns: date: xml date datatype - This value represents the current date, based on the time zone
specified. For example, "if (_genesys.dateInZone("EST") == "2009-01-28")".

_genesys.session.timeInZone

This function returns the current time in the specified time zone; that is, the number of minutes
elapsed since the last midnight (00:00 AM) in the specified time zone. The results will be in the xml
time datatype format (that is, hh:mm:ss or hh:mm). This can be compared with other variables that
use the same time format. time _genesys.session.timeInZone(tzone) Parameters:

• tzone: STRING which can be a variable or a constant - This parameter is the name of a time zone
configured in the configuration layer.

Returns: time: xml time datatype - This value represents the current time, based on the time zone
specified. For example, "if (_genesys.timeInZone("EST") == "17:00:00")".

_genesys.session.dayInZone

This function returns the current day of the week in the specified time zone. The results will be a
value from the _genesys.session.day enumeration. This can be compared with other objects that use

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 143



the same enumeration object. day _genesys.session.dayInZone(tzone) Parameters:

• tzone: STRING which can be a variable or a constant - This parameter is the name of a time zone
configured in the configuration layer.

Returns: day: genesys.session.day ENUM OBJECT which can be a variable or a constant - This value
represents the current day of the week, based on the time zone specified. For example, "if
(_genesys.session.dayInZone("PST") == 5)".

_genesys.session.isSpecialDay

This function checks to see if the current day and time is defined in the configuration layer as a
special day. value _genesys.session.isSpecialDay(stat_table, stat_day, zone, useTime)
Parameters:

• stat_table: STRING which can be a variable or a constant - This parameter is the stat table in the
configuration layer which this function will check.

• stat_day: STRING which can be a variable or a constant - This parameter is optional. If it is specified,
the platform inquires from the configuration layer whether the specified statistical day is configured for
the specified statistical table and whether the current date meets the definition of the statistical day. If
this parameter is not specified, the platform inquires from configuration layer whether the current date
meets the definition of any of the statistical days configured for the specified statistical table.

• zone: STRING which can be a variable or a constant - This parameter is optional. It defines the
timezone to be used to determine if the given day is a special one. If this parameter is not specified,
then the current date and time are used in the current TimeZone. If this parameter is specified, then
the specified time zone will be used to calculate the adjusted date and time.

• useTime: BOOLEAN which can be a variable or a constant - This parameter is optional. It specifies
whether or not to use the time limits specified within the stat day definition in the configuration layer.

Returns: value: BOOLEAN - This indicates if the current day and time is special, based on
configuration information.

_genesys.session.getConfigOption

This function allows the use of customized configuration options from the configuration layer and is
obtained via URS - the user can configure any option name that is different from the standard options
and then use its value in the session. In particular, you can specify any options you like in addition to
the required ones and then give them meaning in the logic. This function retrieves the current value
of any platform configuration option for use in the session. The search for the option starts with the
object properties given by lookup sequence (the DN or resource that triggered the start of the
session, the media server controlling this DN, the tenant to which they belong, or the orchestration
platform). If the option is not found there, the search continues in the object properties corresponding
to greater values of lookup sequence, in increasing order, until the option is found. The key should be
located within a section called __ROUTER__ of the corresponding objects from which the function will
search. Failure to provide the key within such a section of the objects will result in an empty string
being returned. Please refer to the Universal Routing Reference Manual for more details on setting
URS Options and supported sections where options may be located from. value
_genesys.session.getConfigOption(ixnid, key, lookupseq) Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 144



• key: STRING which can be a variable or a constant - This parameter is mandatory. It is the key name of
the configuration option in the configuration layer, it should be present under the required section of
the objects, i.e. __ROUTER__

• lookupseq: genesys.session.lookupseq ENUM OBJECT which can be a variable or a constant - This
parameter is mandatory. It defines the lookup sequence to use while searching the configuration layer..

Returns: value: STRING - This is the value of the configuration option key. The empty string is
returned if the option is not found.

_genesys.session.getServerVersion

Starting with ORS 8.1.400.24, this function allows you to retrieve the Orchestration Server version.

• Parameters: None
• Returns: STRING (version of Orchestration Server)

_genesys.session.getValue

This function searches an object tree to find a specific property and returns the value of that property.
This is needed for properties like _genesys.ixn.interactions[x].udata or
_genesys.ixn.interactions[x].xdata. object _genesys.session.getValue(object rObj, string
key) Parameters:

• rObj: OBJECT which can be a variable or a constant - This parameter is the object which is going to be
searched.

• key: STRING which can be a variable or a constant - This parameter is the name of property to search
for.

Returns: value: OBJECT - This is the value of the property. An empty object is returned if no property
was found in the object tree.

_genesys.session.setOptions

This function is an override for platform-level configuration options. It enables the session to take
control of certain options, instead of leaving them under the control of the platform or of functional
modules. These changes only affect the current session and are not applied to the entire platform.
Note: Using this function may negatively impact URS performance. void
_genesys.session.setOptions(ixnid, option, value) Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• option: STRING which can be a variable or a constant - This parameter is the configuration layer option
that is to be overridden. Previously, the options that could be overridden were as listed below. Starting
with Release 8.1.400.17, this restriction is now removed.
• request_timeout (all functional module requests)
• null_value (not valid any more, because DB access will be through the <fetch> element)
• default_object (Queue functional module)
• use_ivr_info (Queue functional module)

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 145



• default_destination (Queue functional module)
• use_agentid (Queue functional module)
• use_extrouter (Queue functional module)
• use_extrouting_type (Queue functional module)

• value: STRING which can be a variable or a constant - This parameter is the value that is to be used as
the override for the option.

Returns: VOID

_genesys.session.setTenant

This function overrides the tenant for this session. void _genesys.session.setTenant(name)
Parameters:

• name: STRING which can be a variable or a constant - This parameter is the configuration layer name
of the tenant to be set.

Returns: VOID

_genesys.session.getListItemValue

A developer can create string-related lists in the Configuration Layer. For example, these lists can be
used to create lists of toll-free numbers instead of references for each individual 800 number in the
logic. You can logically group numbers together and name the group. Then, when you need to add or
edit numbers, the logic does not need changing; you just add to or edit the list. This function looks for
an element item in the configured list and returns the value of its property key. value
_genesys.session.getListItemValue(list, item, key) Parameters:

• list: STRING which can be a variable or a constant - This parameter is the name of the list in the
configuration layer which this function will try and get the appropriate value for.

• item: STRING which can be a variable or a constant - This parameter is the name of the item in the list
which this function will try and get the appropriate value for.

• key: STRING which can be a variable or a constant - This parameter is optional. It is the name of the
key in the list which this function will try and get the appropriate value for. If this parameter is not
specified, all properties of the found list elements are returned in as an OBJECT of key/value pairs:
{Key1:value1, Key2:Value2, ...}.

Returns: value: STRING - This is the value of the key in the list that was found, or OBJECT - all key/
value pairs if the key wasn't specified. If the item or key is not found, this function returns an empty
string. If list object itself is not found the function returns error (i.e. raises exception).

Starting with ORS 8.1.400.49, if option functions-by-urs is false, an asterisk ('*') can be specified
as the value of item in the second parameter of the _genesys.session.getListItemValue(list,
item, key) function. The key parameter is then mandatory and cannot be an asterisk. In this case,
ORS performs a lookup for the specified key among all items. If only one key is found, the function
returns a string value that corresponds to the key. If the key is found in several items, then the
function returns object: {Item1:Value1, Item2:Value2…}

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 146



_genesys.session.listLookupValue

This function checks whether a List object in the configuration layer contains a particular element
item.

value _genesys.session.listLookupValue(list, item) Parameters:

• list: STRING which can be a variable or a constant - This parameter is the name of the list in the
configuration layer which will be searched to determine whether it contains the item.

• item: STRING which can be a variable or a constant - This parameter is the name of the item that will
be searched for in the list.

Returns: value: BOOLEAN - This return value indicates whether the the item is part of the list.

_genesys.session.getServerVersion

Starting from ORS 8.1.400.22, this function returns version of Orchestration Server. value
_genesys.session.getServerVersion()

Parameters: None

Returns: value: STRING - This is the version of Orchestration Server.

Action Elements

This covers action elements that are related to SCXML sessions, but are Genesys-specific. The
namespace for these session-related actions is www.genesyslab.com/modules/session .

<fetch>

This action element fetches business content or data from an application server and is an enabler for
Orchestration Server Integration within a customer's environment. The content could be generated
by actual "business logic" running on the application server or it could just be a static content file on
the application server, which could be updated (even manually) as required to allow things to be
dynamic. The business content and associated logic itself will be created based on the programming
technology of the application server it is going to run on. So the application server-specific
development tools will be used to create this content and associated logic. This element is used
within executable content processing. This business content and associated logic will be deployed
and executed on an application server. The orchestration platform will support both .NET and J2EE
application servers. The form of the returned business content will be JSON.

There is no explicit context or state shared between the orchestration platform and the application
server. All context or state that is needed by the business content and logic must be sent via this
action element. If the needed context or state is not totally known at the time of invocation, then the
developer can use the QuerySessionData web services within their business content-fetching logic to
get the current orchestration logic context for the given orchestration logic session. This provides a
more flexible and dynamic mechanism. It also allows the developer to optimize what context or state
is needed for each business content-fetching logic "application". This element may cover web service
invocations in the future. In the meantime, the customer can use business content-fetching logic as a
proxy for executing web services. This is also the way to invoke both database-related actions and

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 147



rules system-related actions.

In addition, this action will support ESP-based requests from Genesys Interaction Server through the
ESP (External Service Protocol) protocol and access URS REST API via direct ORS-URS connection. For
HTTP and HTTPS, basic authentication is supported if the username and or password is provided in
the request. This will result in the request being submitted to the application server with the
Authorization HTTP header element added to the message. In addition to this, for both HTTP and
HTTPS additional headers may be provided by passing an ECMAScript object into the request.

Attribute Details

Name Required Type Default Value Valid Values Description

attach_ixn_data false Boolean true/false
Any valid location
expression which
represents a string

Introduced in
8.1.400.48. Use to
enable/disable
attachment of
interaction
properties. ORS
will ignore this
attribute if
“method” attribute
is not “’esp’”.
Default value of
that attribute is
true. If true, ORS
will populate hr
UserData in the
ESP request with
the following
interaction
properties:
InteractionId,
ParentId, TenantId,
MediaType,
InteractionType,
InteractionSubtype,
InteractionState,
IsOnline, IsLocked,
Queue, Workbin,
WorkbinAgentId,
WorkbinAgentGroupId,
WorkbinPlaceId,
WorkbinPlaceGroupId,
SubmittedBy,
ReceivedAt,
SubmittedAt,
DeliveredAt,
SubmittedToRouterAt,
PlacedInQueueAt,
MovedToQueueAt,
AbandonedAt,
SubmitSeq,
PlaceInQueueSeq,
HeldAt, IsHeld,
AssignedAt,
CompletedAt,
AssignedTo.

requestid false location expression none Any valid location
expression which

This is the location
for the request ID

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 148



Name Required Type Default Value Valid Values Description

represents a string

that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

srcexpr true value expression none

Any value
expression that
returns a valid
string URI of the
following types:

• HTTP
• HTTPS
• File
• gesp

This value
expression will be
evaluated at the
time that the fetch
element is
executed to
produce the URI to
pass to the
application server.
The URI schemes
supported are
HTTP, HTTPS and
File. Note: when
the scheme is
'gesp', the URI will
have a specific
format. See the
ESP based <fetch>
actions section for
details. Note:
when the method
is 'urs', the URI will
have a specific
format. See SCXML
Legal Data Values
and Value

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 149



Name Required Type Default Value Valid Values Description

Expressions for
details.

type false value expression application/json
application/xml,
application/json,
text/plain

This value
expression returns
a character string
that specifies the
type of the fetched
content. Values
defined by the
specification are:

• application/
xml - This
specifies
that the
document
being
fetched
must be an
XML
document
for a given
namespace.

• application/
json - This
specifies
that the
fetched
content
must be
JSON
format. This
is the
default.

• text/plain -
This
specifies
that the
fetched
content
must be
plain text in
format.

If method attribute
is "esp" or "urs",
this attribute is
ignored. The type
attribute in the
issued HTTP
request will be
passed to the
application server
as the Accept

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 150



Name Required Type Default Value Valid Values Description

header. See SCXML
Legal Data Values
and Value
Expressions for
details.

method false value expression get get post esp urs
put delete

A value expression
which returns a
character string
that indicates the
HTTP method to
use. See SCXML
Legal Data Values
and Value
Expressions for
details. Values
defined by the
specification are:

• get - This
indicates
that the
"GET"
method
must be
used to
fetch the
URL.

• post - This
indicates
that the
"POST"
method
must be
used while
submitting
the URL to
the web
server.

• esp - This
indicates
that the
ixn-server
ESP
protocol is
to be used.

• urs - This
that URS
REST API
will be used
via direct
connection

• put - This

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 151



Name Required Type Default Value Valid Values Description

indicates
that the
"PUT"
method
must be
used while
submitting
the URL to
the web
server.

• delete - This
indicates
that the
"DELETE"
method
must be
used while
submitting
the URL to
the web
server.

timeout false value expression 0
A value expression
which returns an
integer

A value expression
which returns an
integer that
represents the
number of seconds
to wait. See SCXML
Legal Data Values
and Value
Expressions for
details. The integer
returned must be
interpreted as a
time interval. This
interval begins
when <fetch> is
executed. A failed
and timed out
fetch must return
the
error.session.fetch
event.

maxage false value expression

A value expression
which returns a
valid integer for
the HTTP 1.1
request RFC 2616

The integer
returned must be
interpreted as a
time interval. This
indicates that the
logic is willing to
use content whose
age must be no
greater than the
specified time in
seconds (compare
with 'max-age' in
HTTP 1.1 RFC

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 152



Name Required Type Default Value Valid Values Description

2616). The logic is
not willing to use
stale content,
unless maxstale is
also provided. If
method attribute is
"esp" or "urs", this
attribute is
ignored.

maxstale false value expression

A value expression
which returns a
valid integer for
the HTTP 1.1
request RFC 2616

The integer in
string form
returned must be
interpreted as a
time interval. This
indicates that the
logic is willing to
use content that
has exceeded its
expiration time (cf.
'max-age' in HTTP
1.1 RFC 2616). If
maxstale is
assigned a value,
then the logic is
willing to accept
content that has
exceeded its
expiration time by
no more than the
specified number
of seconds. If
method attribute is
"esp" or "urs", this
attribute is
ignored.

username (since
8.1.1) false value expression none

Any expression
that results in a
valid string value

This value
expression returns
a character string
that represents the
username to be
used as apart of
HTTP Basic
Authentication as
defined by HTTP
1.1 [See RFC
2616]. If method
attribute is "urs",
this attribute is
ignored.

password (since
8.1.1) false value expression none

Any expression
that results in a
valid string value

This value
expression returns
a character string
that represents the
password to be
used as apart of
HTTP Basic
Authentication as
defined by HTTP
1.1 [See RFC

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 153



Name Required Type Default Value Valid Values Description

2616]. If method
attribute is "urs",
this attribute is
ignored.

enctype false value expression application/x-www-
form-urlencoded

application/x-www-
form-urlencoded,
application/json

This value
expression returns
a character string
that specifies the
type of encoding to
be used for the
content of the
POST/PUT
message. Values
defined by the
specification are:

• application/
x-www-
form-
urlencoded
- This
specifies
that the
message
content
must be
encoded in
URL
encoded
form. This
is the
default.

• application/
json - This
specifies
that the
message
content
must be
encoded in
JSON
format.

If method attribute
is "esp" or "urs",
this attribute is
ignored. The
content type
returned by the
application server
response will be
checked against
the enctype
attribute. If it is
different, an
error.session.fetch

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 154



Name Required Type Default Value Valid Values Description

event will be raised
- the exception is
the text/plain value
case, in which case
any type of
returned value is
accepted.The
returned body is
provided "as-is" in
the content of the
session.fetch.done
event. The
application logic is
supposed to use
the JSON functions
to convert it into
appropriate values.
See SCXML Legal
Data Values and
Value Expressions
for details.

gdelivery false value expression false
A value expression
which returns a
boolean value (true
or false)

A value expression
which returns a
boolean value that
indicates whether
the platform is to
guarantee the
execution of the
<fetch> action.
This does not
guarantee that the
action associated
with the srcexpr
value has been
carried out
successfully. It just
guarantees that
the HTTP request
gets to the defined
destination
(srcexpr value) and
that a response
(positive or
negative) is
returned. If method
attribute is "urs",
this attribute is
ignored. See
SCXML Legal Data
Values and Value
Expressions for
details.

gd_retries false value expression 0
A value expression
which returns a
valid integer

A value expression
which returns an
integer that
indicates the
number of times
the platform
should try to
successfully deliver
the associated

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 155



Name Required Type Default Value Valid Values Description

HTTP request to
the defined
destination
(srcexpr value).
This attribute is
ignored if the
gdelivery attribute
value is false. If the
gdelivery attribute
value is true and
the gd_retries
value is 0, the
platform will try to
delivery the
associated HTTP
request
indefinitely. If
method attribute is
"urs", this attribute
is ignored. See
SCXML Legal Data
Values and Value
Expressions for
details.

gd_retry_interval false value expression 0
A value expression
which returns a
valid integer

A value expression
which returns an
integer that
represents the
number of seconds
to wait. The
integer returned
must be
interpreted as a
time interval. This
interval is the time
to wait between
retries. This
interval begins
after a failed retry.
This attribute is
ignored if the
gdelivery attribute
value is false. If
method attribute is
"urs", this attribute
is ignored. See
SCXML Legal Data
Values and Value
Expressions for
details.

headers false value expression none Any valid
ECMAScriipt object

A value expression
which returns an
ECMAScript object.
Each property
name within the
object will be
interpreted as a
separate HTTP
header. Its value
will be obtained
using toString()

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 156



Name Required Type Default Value Valid Values Description

and appended
after the property
name followed by
a ":" character. No
checking or
validation will be
performed on the
properties and or
values provided
within the object.
This will not
override any
headers
automatically
added by <fetch>
such as Cache-
Control and is
provided as a
means to provide
the ability to add
customer header
information. If
method attribute is
"urs", this attribute
is ignored. See
SCXML Legal Data
Values and Value
Expressions for
details.

Important Note: Any evaluated attribute, if specified, must evaluate to a valid value. Otherwise, an
error.script event will be generated. This also applies to attributes that are ignored under specific
conditions. The mapping of this action to the underlying HTTP request and response is described in
the Mapping of the SCXML and Functional Module Elements to the HTTP Messages section.

The following are examples of the <session:fetch> action.

The example below demonstrate how to use <fetch> with method=”’urs’”. If you need to call a
function from the URS REST API, the example demonstrates how to specify function name, how to
pass parameters, and how to retrieve the returning object. The example is applicable for any
function, not only FindConfigObject as is used below.

<state id="FindPersonByEmployeeID">
<datamodel>

<data id="reqid" />
</datamodel>

<onentry>
<script>

var s_URI = 'urs/call/@' + system.InteractionID + '/func';
var message = [3, "employeeid:EID_1000"];

</script>
<session:fetch requestid="_data.reqid" srcexpr="s_URI" method="'urs'">

<param name= "name" expr="'FindConfigObject'" />
<param name= "params" expr="uneval(message)" />

</session:fetch>
</onentry>
<transition event="session.fetch.done" target="statex">

<script>
var PersonObject = eval("(" + _event.data + ")");

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 157



</script>
<assign location="_interactionID"

expr="eventDataObject.envelope.Parameters.InteractionId"/>
</transition>
<transition event="error.session.fetch" target="statey" />
</state>

Another example:

<state id="get_business_data_using_param_child">
<datamodel>
<data id="reqid"/>
<data id="customervalue"/>

</datamodel>
<onentry>
<session:fetch requestid="_data.reqid" srcexpr="'www.joes.com\getbusinessdata'" timeout="30">

<param name="customerID" expr="_cv.customerid"/>
</session:fetch>

</onentry>
<transition event="session.fetch.done" target="statex">
<assign location="customervalue" expr="_event.data.cvalue"/>

</transition>
<transition event="error.session.fetch" target="statey"/>
</state>
<state id="get_business_data_using_content_child">
<datamodel>
<data id="reqid"/>
<data id="complexobject"/>

</datamodel>
<onentry>
<session:fetch requestid="_data.reqid" srcexpr="'www.joes.com\getbusinessdata'" timeout="30">

<content _expr="_data.complexobject"/>
</session:fetch>

</onentry>
<transition event="session.fetch.done" target="statex">
<assign location="customervalue" expr="_event.data.cvalue"/>

</transition>
<transition event="error.session.fetch" target="statey"/>
</state>
<state id="get_business_data_using_basic_auth_and_headers">
<datamodel>
<data id="reqid"/>
<data id="customervalue"/>

</datamodel>
<onentry>
<script>

var myheaders = new Objects();
myheaders["If-Modified-Since"] = "Sat, 1 Jan 2011 20:00:00 GMT";
myheaders["X-CUSTOM-HEADER"] = "Custom header information";

</script>
<session:fetch requestid="_data.reqid" srcexpr="'www.joes.com\getbusinessdata'" timeout="30"

username="'bob'" password="'mysecret'" headers="myheaders" >
<param name="customerID" expr="_cv.customerid"/>

</session:fetch>
</onentry>
<transition event="session.fetch.done" target="statex">
<assign location="customervalue" expr="_event.data.cvalue"/>

</transition>
<transition event="error.session.fetch" target="statey"/>
</state>

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 158



Children

• <param> Occurs 0 to N. See SCXML <param> for details. This element is mutually exclusive with the
<content> element. These parameters will be submitted differently, depending on the type of message
used:
• HTTP GET/DELETE Message - The <param> elements yield a URL parameter list (name1=

value1&name2=value2...) at the end of the path element. Note that if the srcexpr attribute
evaluates to a URL with URL parameters, the <param> element parameters will be concatenated to
the end of the URL component. If the <param> element value is a complex object, the value is the
result of evaluating the ECMAScript toString() function of that object, which is usually the string
"[object object]". As a result, instead of submitting objects directly, the application developer must
explicitly submit the properties of an object, for example, "_genesys.session.server.name". The
following is the mapping of the <param> element attributes to the URL parameter list format:
• name - The "name" attribute of the <param> element will be submitted with the given parameter

value as its key.
• value - The current value associated with this <param> element "expr" attribute:

• Simple types (string, integer, boolean, or decimal) will be converted into strings.
• ECMAScript objects will be converted into the string "[object object]". Complex objects should

not be used.

• HTTP POST/PUT Message - The <param> elements yield different formats depending on the
<fetch> enctype attribute value. Regardless, the results will be put into the body element of the
POST/PUT message:
• application/x-www-form-urlcoded - The <param> elements for this encoding format will be

transformed into a URL parameter list (name1=value1&name2=value2...) which will be inserted
into the body element of the message. If the <param> element value is a complex object, the
value is the result of evaluating the ECMAScript toString() function of that object, which is
usually the string "[object object]". As a result, instead of submitting objects directly, the
application developer must explicitly submit the properties of an object, for example,
"_genesys.session.server.name". The following is the mapping of the <param> element attributes
to the URL parameter list format:
• name - The "name" attribute of the <param> element will be submitted with the given

parameter value as its key.
• value - The current value associated with this <param> element "expr" attribute:

• Simple types (string, integer, boolean, or decimal) will be converted into strings.
• ECMAScript objects will be converted into the string "[object object]". Complex objects

should not be used.

• application/json - The <param> elements for this encoding format will be a JSON-formatted
string which will be inserted into the body element of the message. Each <param> element will
be a top-level attribute in the format. For example, <param name="a" expr="value1"/> <param
name="b" expr="complexb"/> <!- complexb has three properties e,f,g -> will result in
the following JSON-formatted string - {"a":value1, "b":{"e":88, "f":"john", "g":22}}.

• ESP Message - The <param> element can only be used to pass request parameters on the ESP
request message. If the ESP request message requires the passing of user-data parameters as well,
then the <content> element MUST be used instead. The <param> elements will put in the
Interaction Server TKVList format. The <fetch> enctype attribute value is ignored.

• urs Message - the same as for HTTP GET/DELETE

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 159



• <content> Occurs 0 to 1. See SCXML <content> for details. This element is mutually exclusive with the
<param> element. The content defined in this element will match the value of the <fetch> element
enctype attribute:
• application/x-www-form-urlencoded - The _expr attribute cannot be used and the content of this

element will be sent as is.
• application/json - The _expr attribute must be specified and must evaluate to an ECMAScript object.

The object will be sent as is.

Summary of URL and JSON encoding

The following table is a summary of the rules described above.

URL Encoded JSON Encoded

<param> <content> <param> <content>

GET, DELETE Name and expression
attributes of each
<param> element
(name and expr,
correspondingly) will be
evaluated, URL-
encoded, and combined
into a standard name-
value sequence
(n1=v1&n2=v2&...).
Duplicate parameter
names are acceptable.
The following rules will
be used when URL-
encoding the
expression attribute:

• String, number,
true, false, and
null - as usual.

• Any ECMAScript
object will be
encoded to the
following:
%5Bobject%20Object%5D

• Array will be
encoded as a
comma-
separated
string of
values. For
example,
[1,2,A] will be
encoded as the
following:
1%2C2%2C%5Bobject%20Object%5D

Content of the
<content> element will
be URL-encoded
without prior
evaluation. This
element cannot be
used together with
<param>.

Not supported. Not supported.

POST, PUT

Name and expression
attributes of each
<param> element
(name and expr,
correspondingly) will be
evaluated, combined
into a single object and
then converted into the
JSON string. Duplicate
parameter names are
acceptable, however,
remember that
duplicate property
names in JSON string
will be eliminated
during evaluation. For
example, the
ECMAScript expression:
eval('({"p1":1,"p1":2})');
will return the following
object: {"p1": 2}

Expression attribute
(_expr) of the
<content> element will
be evaluated and
converted into the JSON
string. This element
cannot be used
together with
<param>.

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 160



Events

The following events can be generated as part of this action:

• session.fetch.done
• error.session.fetch

As of 8.1.200.50, upon successful execution of <session:fetch>, the event session.fetch.done is
generated. It is possible to retrieve the response headers of the HTTP request from this event using:
_event.data.headers. The headers are provided as key-value pairs.

Important
Currently, the <fetch> element in ORS does not extract the response payload for a
non-200 OK response for HTTP requests. That is, the HTTP response body is not
extracted in case of a non-200 OK response.

ESP-Based <fetch> Actions

For backwards compatibility purposes the platform and the <fetch> element will support the
invocation of External Service Protocol (ESP) requests and responses. In order to use the <fetch>
element for ESP-related requests, the developer needs to do the following:
gesp:[<applname>]|[\<type>\]<service>\[<method>] The following are the meanings of the
different elements of the format:
For example,

MyEmailServer\CFGEmailServer\EMail\CreateEmailOut
\CFGContactServer\Contact\Update

• Specify a value of 'esp" for the method attribute.
• Construct the gesp URI with the following format for the srcexpr attribute:

• • "applname" is the 3rd party application (connected to Interaction Server) that is to be used to
process this request.

• "type" is the 3rd party application type that is to be used to process this request. (optional)
• "service" is the name of the service with which this request is associated.
• "method" is the specific function to be performed by the 3rd party application. (optional)

Important
If the type is specified as CFGInteractionServer in the gesp URI, ORS ignores
"applname". Instead, it sends the ESP request to the Interaction Server that handles
multimedia interactions and is attached to the current session. If there is no such

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 161



interaction (for example, if we have a voice call-initiated session), the ESP request will
be sent to a random Interaction Server among those connected to ORS.

• The only way to pass request parameters and interaction user data on an ESP-based <fetch> action is
with the <content> element. You use the _expr attribute with an ECMAScript object which contains
properties called "params" and "udata". The one with the name "udata" will be an ECMAScript object
which contains the user-data parameters that you want to pass with the action. The other properties in
the main ECMAScript object will be request parameters. All of these parameters will be in the
Interaction Server TKVList format.

• The <fetch> type, enctype, maxage, and maxstale attributes are ignored.
• The response data content will be return as a JSON string in the session.fetch.done event.

The following is an example of the <session:fetch> action:

<state id="updateContact">
<datamodel>

<data id="reqid" />
</datamodel>
<onentry>
<script>

var updateContactRequestContent = {
params: {
UseDataFromParameters: false
},

udata: {
TenantId: 101,
ContactId: "GK4MW583K80DTE04",
FirstName: "James",
LastName: "Johnson"
}

};
</script>
<session:fetch method="'esp'" requestid="_data.reqid"
srcexpr="'ContactServer_801_04\\CFGContactServer\\Contact\\Update'">

<content _expr="updateContactRequestContent" />
</session:fetch>
</onentry>
<transition event="session.fetch.done" target="statex">

<script>
var eventDataObject = eval("(" + _event.data + ")");

</script>
<assign location="_interactionID"

expr="eventDataObject.envelope.Parameters.InteractionId"/>
</transition>
<transition event="error.session.fetch" target="statey" />

</state>

For a successful ESP call the returned response will use the following conversion logic to determine
how the JSON object is structured.

• The ESP JSON response will contain an envelope and user_data only if the corresponding sections are
returned with the data section of the ESP response.

• The ESP response containing the ESP envelope will contain Service and Method properties together
with the associated envelope Parameters that will contain the key name value properties.

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 162



• The ESP response containing the ESP user_data will contain the key name value properties if provided
in the ESP response.

• For both the envelope Parameters and also for the user data if any key names are duplicated in the
ESP response then these will be converted to a JSON array of values. For entries that may have
incompatible types but share the same name then such values will be incorporated into the same
named array but provided as an object, rather than a value.

The following is an example of the above ESP-to-JSON conversion logic operating on the following ESP
response.

06:22:54.082 'external_srvice_response' (501) message:
attr_ref_id [int] = 294014
attr_envelope [list, size (unpacked)=604] =
'Service' [str] = "Contact"
'Method' [str] = "Identify"
'Parameters' [list] = (size=228)
'ContactCreated' [str] = "false"
'ContactIdList' [str] = "0005Ua6CJC69002J"
'ContactIdList' [str] = "0005Ua6CJC69002N"
'ContactIdList' [str] = "0005Ub6CJC6H0001"
'ContactIdList' [str] = "0005Ub6CJC6H0004"
'ContactIdList' [str] = "0005Ub6CJC6H0007"
'NumberOfContactsFound' [int] = 5

The following would be the JSON representation of the successful ESP call.

{
"envelope": {
"Service": "Contact",
"Method": "Identify",
"Parameters": {
"ContactCreated": "false",
"ContactIdList": [
"0005Ua6CJC69002J",
"0005Ua6CJC69002N",
"0005Ub6CJC6H0001",
"0005Ub6CJC6H0004",
"0005Ub6CJC6H0007"],
"NumberOfContactsFound": 5
}
}

}

For ESP calls that return user data in addition to an enevelope, the following would be expected to be
represented.

{
"envelope": {
"Service": "Contact",
"Method": "Identify",
"Parameters": {
"ContactCreated": "false",
"ContactIdList": "0005Ub6CJC6H0001",
"NumberOfContactsFound": 1
}
},
"user_data": {
"FirstName": "James",
"ContactId": "0005Ub6CJC6H0001",
"LastName": "Johnson"

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 163



}
}

Guaranteed Delivery of the <fetch> Action

When a web service request is made to the external service using <fetch>, the orchestration
platform guarantees delivery of such a request. That is, the orchestration platform handles situations
in which normal web service requests cannot be fulfilled. Here are some situations in which a web
service request cannot be fulfilled:

• Cannot establish a connection to a given URI
• Received a redirect response when making a request to a given URI
• Received an error response when making a request to a given URI
• No response received to the web service request during timeout

To handle these situations, the orchestration platform would queue web service requests, and retry
making the request within the configured timeout period. The orchestration platform would queue
web service requests on the basis of their URIs. Note that this functionality addresses both cases of:

• Temporary unavailability of the external service
• Unavailability of one of the nodes in the load-balanced external service

Important Note: If the session exits a state that has an outstanding <fetch> action, then the
outstanding <fetch> action will be terminated. Also if an invoked session with an outstanding
<fetch> action terminates, then the outstanding <fetch> action will be terminated.

Mapping of the SCXML and Functional Module Elements to the HTTP Messages

The following sections cover the mapping of the SCXML and functional module element's attributes
into the corresponding HTTP message elements.

Get/Delete message

Here is an example of the <fetch> action including basic authentication and optional headers:

<script>
var myheaders = new Object();
myheaders["If-Modified-Since"] = "Sat, 1 Jan 2011 20:00:00 GMT";
myheaders["X-CUSTOM-HEADER"] = "Custom header information";

</script>
<session:fetch requestid="_data.reqid"

srcexpr="'http://www.business1.com/data2/content'" type="'text/plain'"
method="'get or delete'" timeout="100" maxstale="10" maxage="20"
username="'open'" password="'sesame'" headers="myheaders">

<param name="param1" expr="'value1'"/>
<param name="p2" expr="'v2'"/>

</session:fetch>

Here is how it maps to an HTTP GET/DELETE message:

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 164



GET/DELETE /data2/content?param1=value1&p2=v2 HTTP/1.1
Host: www.business1.com
Cache-Control: max-age=10, max-stale=10
Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==
If-Modified-Since: Sat, 1 Jan 2011 20:00:00 GMT
X-CUSTOM-HEADER: Custom header information
...

Mapping Summary:

• The results of evaluating the srcexpr attribute yields the host and path elements of the HTTP message.
• The result of evaluating the child <param> elements yields the URL parameter list at the end of the

path. Note that if the srcexpr attribute evaluates to a URL with URL parameters, we would concatenate
the <param> element parameters to them. If the <param> element value is a complex object, the value
is the result of evaluating the toString() function of that object, which is usually [object object].

• The result of evaluating the maxage attribute yields the Cache-Control header with the max-age
directive.

• The result of evaluating the maxstale attribute yields the Cache-Control header with the max-stale
directive.

• The result of evaluating the username and password yields the addition of the Authorization header with
the type specified as basic and the username and password base64 encoded.

• The result of providing header yields a header element for each of the items provided within the
supplied object. No validation will occur on this and the headers will be appended "as-is".

• The result of evaluating the type attribute yields the Accept header. Also the data type returned by the
application server in the HTTP response will be checked against the type value. If it is different, an
error.session.fetch will be raised - an exception that is text-plain, which means any type of
returned value is accepted.

• There is no HTTP body for the GET request.

Note: The Basic authentication and optional headers will operate exactly the same for POST or
PUT types.

POST/PUT Message

Here is an example of the <fetch> action with enctype = application/x-www-form-urlcoded:

<session:fetch requestid="_data.reqid"
srcexpr="'http://www.business1.com/data2/content'" type="'text/plain'"
method="'post or put'" timeout="100" maxstale="10"
maxage="20" enctype="'application/x-www-form-urlencoded'">

<param name="param1" expr="'value1'"/>
<param name="p2" expr="'v2'"/>
<param name="p3" expr="v3"/>

</session:fetch>

Note: v3 is an object with two properties: "a" and "b". v3.a = 4 and v3.b = 5. Here is how it maps to
an HTTP POST/PUT message:

POST/PUT /data2/content HTTP/1.1
Host: www.business1.com
Cache-Control: max-age=10, max-stale=10
Content-Type=application/x-www-form-urlencoded

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 165



Content-Length=xx
param1=value1&p2=v2&p3=[object object]
...

Here is an example of the <fetch> action with enctype = application/json:

<session:fetch requestid="_data.reqid"
srcexpr="'http://www.business1.com/data2/content'" type="'text/plain'"
method="'post or put'" timeout="100" maxstale="10"
maxage="20" enctype="'application/json'">

<param name="param1" expr="'value1'"/>
<parm name="p2" expr="'v2'"/>
<parm name="p3" expr="v3"/>

</session:fetch>

Note: v3 is an object with two properties "a" and "b". v3.a = 4 and v3.b = 5. Here is how it maps to
an HTTP POST/PUT message:

POST/PUT /data2/content HTTP/1.1
Host: www.business1.com
Cache-Control: max-age=10, max-stale=10
Content-Type=application/json
Content-Length=xx
{"param1":"value1","p2":"v2","p3":{"a":4,"b":5}}
...

Mapping Summary:

• The results of evaluating the srcexpr attribute yields the host and path elements of the HTTP message.
• The results of the <param> elements depend on the enctype attribute. Note: the Content-Length

header value will be set to the total length of the resulting body element.
• application/x-www-form-urlcoded - The result of evaluating the <param> elements yields the body

element in the format p1=v1&p2=v2&p3=v3..., where p1, p2, p3,... are the names in the <param>
elements, and v1, v2, and v3 are values that result from evaluating the corresponding expr attributes.
If one of the values is not a simple type, we would put the result of the "toString()" function in the
body, as in the GET case.

• application/json - The result of evaluating the <param> elements yields the body element formatted
in JSON format, where each <parameter> name should appear as a top-level attribute.

• The result of evaluating the maxage attribute yields the Cache-Control header with the max-age
directive.

• The result of evaluating the maxstale attribute yields the Cache-Control header with the max-stale
directive.

• The result of evaluating the enctype attribute yields the Content-Type header value.
• The result of evaluating the type attribute yields the Accept header. Also the data type returned by the

application server in the HTTP response will be checked against the type value. If it is different, an
error.session.fetch will be raised - this exception is text-plain, which means any type of returned
value is accepted.

<start>
This starts an independent SCXML document and session and runs completely independently of the
starting (that is, parent) session. If the starting session ends, the started session does not, and vice
versa. Session content is not shared between the sessions. Any session or 3rd party application can

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 166



terminate (for example, <terminate>) this started session, as long as they have the session ID. When
this session terminates, a done event will be fired by the orchestration platform for all interested
parties (other sessions, and so on).

Attribute Details

Name Required Type Default Value Valid Values Description

sessionid false location expression none
Any value location
that represents a
valid string field

This is the location
for the session ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the newly created
session. This ID is
immediately
populated by the
platform and can
be used on
subsequent
elements (<send>,
for example).

src true value expression none
Any value
expression that
returns a valid URI

This value
expression returns
a character string
that represents the
URI of the SCXML
document. The URI
schemes
supported are
HTTP, HTTPS and
File. See SCXML
Legal Data Values
and Value
Expressions for
details.

Starting with
8.1.400.09,
Orchestration
Server provides
the ability to use
the Enhanced
Routing Script
object when
starting a new
session by the
<session:start>
action. The script

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 167



Name Required Type Default Value Valid Values Description

name in the
script:ScriptName
format can be
defined as a value
of the src attribute
of the
<session:start>
action element.
When the script:
notation is used,
the URL of the
SCXML strategy is
taken from the
Application
section of the
corresponding
Enhanced Routing
Script. Example:

<session:start
src="’script:Script1’"
sessionid="newid"/>

idealtime false value expression none
Any expression
that results in a
valid integer for
the dateTime value

This value
expression returns
a dateTime value
which will
represent the date
and time that this
session is to be
started. This value
should be the time
as returned by the
ECMAScript
Date(...).getTime()
function, which is
given in the
number of
milliseconds since
00:00:00 UTC on
January 1, 1970.
See SCXML Legal
Data Values and
Value Expressions
for details.

prewindow false value expression none
Any expression
that results in a
valid integer for
the duration value

This value
expression returns
a duration value
which will
represent the time
window prior to the
ideal time for
which the session
could be started.
For details on the
duration type, see
the duration
datatype . See
SCXML Legal Data
Values and Value
Expressions for
details.

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 168



Name Required Type Default Value Valid Values Description

postwindow false value expression none
Any expression
that results in a
valid integer for
the duration value

This value
expression returns
a duration value
which will
represent the time
window after the
ideal time for
which the session
could be started.
For details on the
duration type, see
the duration
datatype . See
SCXML Legal Data
Values and Value
Expressions for
details.

The following is an example:

<state id="Starting_a_new_session">
<datamodel>

<data id="newsession"/>
</datamodel>
<onentry>

<session:start src="'www.genesyslab.com\session\orchapp1'" sessionid="_data.newsessid" />
</onentry>
<transition event="session.start.done" target="statex">

<send event="'start.event'" target="_data.newsessid"/>
</transition>
<transition event="error.session.start" target="statey"/>

</state>

Children

• <param> Occurs 0 to N - This contains data to be passed to the newly created session. The use of this
element will follow the same rules as the SCXML <invoke> element definition.

Events

The following events can be generated as part of this action:

• session.start.done
• error.session.start
• session.restored

<updatestart>
This action updates the starting time of the SCXML session. It can only be used after the session is
started using the idealtime attribute and if the requested session has not been started yet.

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 169



Attribute Details

Name Required Type Default Value Valid Values Description

sessionid true value expression none
Any value
expression which
returns a valid
string.

A value expression
which returns the
session ID to be
updated. See
SCXML Legal Data
Values and Value
Expressions for
details.

idealtime false value expression none
Any expression
that results in a
valid integer for
the dateTime value

This value
expression returns
a dateTime value
which will
represent the
updated date and
time that this
session is to be
started. This value
should be the time
as returned by the
ECMAScript
Date(...).getTime()
function, which is
given in the
number of
milliseconds since
00:00:00 UTC on
January 1, 1970.
See SCXML Legal
Data Values and
Value Expressions
for details.

prewindow false value expression none
Any expression
that results in a
valid integer for
the duration value

This value
expression returns
a duration value
which will
represent the
updated time
window prior to the
ideal time for
which the session
could be started.
For details on the
duration type, see
the duration
datatype. See
SCXML Legal Data
Values and Value
Expressions for
details.

postwindow false value expression none
Any expression
that results in a
valid integer for
the duration value

This value
expression returns
a duration value
which will
represent the
updated time
window after the

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 170



Name Required Type Default Value Valid Values Description

ideal time for
which the session
could be started.
For details on the
duration type, see
the duration
datatype . See
SCXML Legal Data
Values and Value
Expressions for
details.

Children

None

Events

The following events can be generated as part of this action:

• session.updatestart.done
• error.session.updatestart

<terminate>
This action terminates an SCXML session from an unrelated SCXML session. As a result of
termination, the orchestration platform sends the done event to the invoking SCXML session (if it is
still running). It will also be used to cancel a scheduled session.

Attribute Details

Name Required Type Default Value Valid Values Description

sessionid true value expression none
Any value
expression which
returns a valid
string.

A value expression
which returns the
session ID to be
terminated. See
SCXML Legal Data
Values and Value
Expressions for
details.

Children

None

Events

The following events can be generated as part of this action:

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 171



• session.terminate.done
• error.session.terminate

<cancel>
This action terminates a pending fetch action request <session:fetch>. This is used to allow the
application to ensure that any guaranteed delivery fetch requests are terminated. This action should
be put in the <onexit> element where these types of fetch actions are invoked.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid true value expression none
Any valid value
expression which
returns a valid
string.

This is the request
ID of the
outstanding
<fetch> action.

Children

None

Events

The following events can be generated as part of this action:

• session.cancel.done
• error.session.cancel

Events
The event namespace convention is session.xxxx The following are the session action result events:

Event Attributes Description

session.fetch.done

This event indicates the success of the
request and that the data location has
been updated with the returned content
in JSON format.

requestid This is the ID of the <fetch> request.

content

This is the returned content. Its format is
based on the <fetch> request's type
attribute. If it is "JSON", the content will
be a JSON-based string and the
application must use the appropriate
function to convert it to the appropriate

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 172



Event Attributes Description

ECMAScript objects. The format of the
response content will be based on the
<fetch> type attribute. If there is not a
match, an error.session.fetch will be
raised. Note: when the <fetch> method
attribute value is "esp", the content value
will always be JSON.

hints

This is the protocol-specific data
associated with the fetch response (for
example, HTTP header data). Its format is
based on the <fetch> request's srcexpr
and type attributes. If it is HTTP, the
content will be ECMAScript Object with
the HTTP header elements as properties
of the object.

headers (8.1.200.50)
This is a collection of response headers,
presented as key-value pairs. HTTP
header data found in the fetch response
can be accessed here.

error.session.fetch

This indicates that an error occurred while
trying to perform the fetch request.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following is a specific error code:

• protocol.errorcode - This
represents the protocol-
specific errors that occur
when the attempting the
<fetch> request.

description This is a more detailed description of the
error

session.start.done

This event reflects the results of <start>
and is sent as a confirmation that the
session has been started. The sessionid
returned shall be the same as the
sessionid provided as a return parameter
for the sessionid attribute within <start>

sessionid This is the ID of the SCXML session that
has been started.

error.session.start This indicates that an error occurred while
trying to perform the <start> request.

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 173



Event Attributes Description

The sessionID returned on the action will
be invalid after receiving this event.

sessionid This is the ID of the SCXML session that
was supposed to have started.

error This is the type of error that occurred.

description This is a more detailed description of the
error

session.terminate.done

This event reflects the results of
<terminate>.

sessionid This is the ID of the SCXML session that
has terminated.

error.session.terminate

This indicates that an error occurred while
trying to perform the <terminate>
request.

error This is the type of error that occurred.

sessionid This is the ID associated with a fetch
request.

description This is a more detailed description of the
error

session.updatestart.done

This event reflects the results of
<updatestart>.

sessionid This is the ID of the SCXML session that
was updated.

error.session.updatestart

This indicates that an error occurred while
trying to perform the <updatestart>
request.

error This is the type of error that occurred.

description This is a more detailed description of the
error.

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 174



Event Attributes Description

session.cancel.done

This event reflects the results of
<cancel>.

requestid This is the ID associated with a fetch
request.

error.session.cancel

This indicates that an error occurred while
trying to perform the <cancel> request.

requestid This is the ID associated with a fetch
request.

error This is the type of error that occurred.

description This is a more detailed description of the
error

The following are the session asynchronous events:

Event Attributes Description

done.xxx

This event indicates that a started
session was finished or was terminated.
The xxx part of the event is different
depending on how the session was
started.

• <invoke> - The xxx is
"invoke.invokeid"

• <start> and web service
interface initiation - The xxx
is "scxml.sessionid"

• <final> for a state - The xxx
is "state.stateid" where statid
is the value from the <state>
id attribute and id is an
identifier generated by the
platform.

session.restored

This event indicated that a session was
restored from a previous checkpoint and
some state processing may be lost.

sessionid This is the session ID of the session that
is being restored.

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 175



Event Attributes Description

type This is the type of event. The only
possible value is "external"

session.terminating

This event indicates that the session is
being terminated because of a hung
condition.This is only sent when a session
is being terminated by the platform due
to an error condition (hung condition,
infinite loop, and so on). This gives the
session the ability to graceful terminate
itself. So this event is sent by the
platform to a session in trouble. A
done.xxx will not be sent at all in this
condition.

sessionid This is the session ID of the session that
is being terminated.

reason

This is the reason the platform is
terminating the session. The following is
the set of reasons:

• TerminationTimeout - The
termination cancel operation
has not finished in a
reasonable time frame or the
<final> processing for an
application has not finished in
a reasonable time frame.

• IdleTimeout - A session has
been idle for a given time
period (no events or
processing).

• ElementCountExceeded - A
session has executed too
many of the same type of
SCXML element
(<transition>).

• ElementTimeout - A session
spends too long executing an
element (<script>,
<queue:submit>, and so on).

session.cancelled

This event indicates that the session is
being cancelled from a <terminate>
action.

sessionid This is the session ID of the session that
is being terminated.

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 176



In addition to the above listed asynchronous session events, the following events are also available:

• session.recovered

• session.ixnrecovered

• session.restarted

Though the above three events are separate events, they are grouped together as they all signal
applications about session run failures on the original ORS instance. They indicate that the session
(and as a result the interaction/event processing) was aborted unexpectedly. The reason could be a
crash, termination, switchover, or any other factor). And after that processing was resumed on
another ORS instance – it could either be the same ORS instance after a restart, or a backup instance
switching to the primary mode.

Important
Transitions/handlers for these events (if needed) should be placed in the outermost
SCXML state due to the asynchronous nature of these events.

If one of these events is received in a session, the SCXML application could analyze current
conditions, and make some corrections in the application logic. The first two events
- session.recovered and session.ixnrecovered – can be seen only if session persistence is
enabled and working. The third event - session.restarted – does not require session persistence.
Moreover, when a session restart is requested in ORS, persistence for this session will be suppressed
even if configured.

Event Attributes Description

session.recovered

The session.recovered event could be
received as a result of proactive session
recovery upon changing ORS work mode
to primary. In order to perform this, in
addition to enabling persistence, the
SCXML application should be marked as
subjected to proactive recovery. In many
cases, proactive session recovery is not
required.

Important
Proactive session recovery is not
recommended for sessions
processing multi-media interactions
(because of specifics of working
with Interaction Server).

 The session.recovered event has no
payload/properties, and is sent out-of-
band to a proactively recovered session
to guarantee it is the very first event in
such a session after recovery.

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 177



Event Attributes Description

session.ixnrecovered

The session.ixnrecovered event could
be received if a session recovers on a
new ORS instance due to an interaction
related event. Or, if a session has already
been recovered proactively (usually not a
case), this event indicates that the new
ORS instance restores association
between the interaction and the session
receiving it. Session recovery by an
interaction related event (or recovery on
demand) is more frequently used in a live
production environment than proactive
recovery. In case of session recovery by
an interaction related event, it is
guaranteed that it is the very first event
after restoring the particular session.

interactionid (of type String)

This is the ID of the interaction re-
associated with a given session. Upon
processing this event, the restored
SCXML session could analyze related
interaction properties (for example, user
data) and jump to the appropriate SCXML
state, or perform other execution logic
corrections.

session.restarted

The session.restarted event could be
received when the Recovery of Voice
Calls Without Persistence functionality is
configured for a particular or all SCXML
applications. It is applicable only for
sessions processing voice calls (sessions
started by voice call related events). No
session persistence is needed at all in this
case. When a session restarts, it is
guaranteed that the
session.restarted event is the very
first event in the restarted session. The
event has no payload/properties.

Upon ORS switchover, a new primary ORS
instance restarts existing voice sessions if
it is requested to do so. For those
restarted sessions, the generated events
are the same as when a call arrives on
the loaded DN – the same set of session
startup events (interaction.added,
interaction.present,
interaction.partystatechanged) are
regenerated. There is no event prehistory
– session life starts from scratch with one
important exclusion. It is guaranteed that
the very first event in the restarted
session will be the session.restarted
event. Whereas there is no such event in
the original session.

A restarted session is expected to raise
an internal flag upon processing this
event in the same state where the
interaction.added event is handled.
Further, if a flag is set, the session could
analyze data when the startup

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 178



Event Attributes Description

interaction.added event is received
and processed, and make a reasonable
move to a desired SCXML state to avoid
repeating what was already done with the
call before restarting the session.
Probably, the easiest way to achieve that
is setting/checking a milestone mark in
call user data.

Important
User data is not updated upon
every SCXML state exit – the
milestone mark should be updated
upon completion of certain logical
units in strategy only. And
consequent jumps could be made
to re-entrant/independent parts of
the strategy. There could also be
other ways of making a decision on
which part of the strategy to jump
to, in a restarted session, if
required.

Web Services Interface

Action Elements
<response>

This action is used to send a response to a request-based event from an external application (for
details see Send Request to SCXML Session). It is recommended that you use this action element
within the <transition> element associated with event processing for the given request. If not, you
may encounter network-related timeouts and potential performance issues.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid true value expression none

This value
expression returns
the corresponding
request ID which
this response is for.
Note: this must be
the sendid
property from the

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 179



Name Required Type Default Value Valid Values Description

associated request
event (that is,
_event.sendid).
See SCXML Legal
Data Values and
Value Expressions
for details.

type false value expression positive positive negative

This value
expression returns
the type of
response this is.
Values defined are:

• positive -
This
indicates
that the
response is
positive.

• negative -
This
indicates
that the
response is
negative.

See SCXML Legal
Data Values and
Value Expressions
for details.

resultcode false value expression none
any expression
that results in a
valid string

This value
expression returns
a string which will
represent the
result code
associated with the
response. See
SCXML Legal Data
Values and Value
Expressions for
details.

headers

(since 8.1.200.50)
false value expression none

any expression
that evaluates to
an iterable
collection of key-
value pairs

This value
expression defines
custom headers (if
any) to be included
with the HTTP
response.

The following is an example of the response processing in the <transition> element:

<state id="processing_requests_in_transition">
<transition event="DoFunctionX" cond="_event.data.paramtype == 'application/json' &&

_event.data.param !=''">

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 180



<script>
<! - do specific function x logic ->

</script>
<ws:response requestid="_event.sendid">

<param name="op1" expr="ovar1"/>
<param name="op2" expr="ovar2"/>

</ws:response>
</transition>
<transition event="DoFunctionX" cond="_event.data.paramtype != 'application/json' ||

_event.data.param ==''">
<ws:response requestid="_event.sendid" type="negative"

resultcode="invalidparameter"/>
</transition>

</state>

The following is an example of the response processing in a sub-state model:

<state id="processing_requests_in_substate_model">
<datamodel>

<data id="reqid"/>
<data id="functionXparms"/>

</datamodel>
<transition event="DoFunctionX" cond="_event.data.paramtype == 'application/json' &&

_event.data.param !=''" target="functionX'>
<script>

_data.reqid = _event.sendid;
_data.functionXparms = _event.data.param;

</script>
</transition>
<transition event="DoFunctionX" cond="_event.data.paramtype != 'application/json' ||

_event.data.param ==''">
<ws:response requestid="_event.sendid" type="negative"

resultcode="invalidparameter"/>
</transition>
<! - This is the substate model to execute the processing associated with function X

->
<state id="functionX" initial="fXStep1">

<state id="fXStep1">
</state>
...
<final>

<onentry>
<ws:response requestid="_event.sendid">

<param name="op1" expr="ovar1"/>
<param name="op2" expr="ovar2"/>

</ws:response>
</onentry>

</final>
</state>

</state>

Children

• <param> (Since 8.1.200.25) Occurs 0 to N - This contains data to be passed in the HTTP response.

Events

None

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 181



HTTP Mappings

Here is an example of a positive <response> action:

<ws:response requestid="_event.sendid">
<param name="param1" expr="'value1'"/>
<parm name="p2" expr="'v2'"/>
<parm name="p3" expr="v3"/>

</ws:response>

Here is how it maps to an HTTP GET Response message:

HTTP/1.1 200
Content-Type=application/json
Content-Length=xx
{"param1":"value1","p2":"v2","p3":{"a":4,"b":5}}
...

Here is an example of a negative <response> action:

<ws:response requestid="_event.sendid" type="negative"
resultcode="invalidparameter">

<param name="description" expr="'Invalid value for parm2'"/>
</ws:response>

Here is how it maps to an HTTP GET Response message:

HTTP/1.1 500 invalidparameter
Content-Type=application/json
Content-Length=xx
{"description":"Invalid value for parm2"}
...

Mapping Summary:

• The result of evaluating the <param> elements yields the body element formatted in JSON format, where
each <parameter> name should appear as a top-level attribute. Note: the Content-Length header
value will be set to the total length of the resulting body element.

• The Content-Type header value will always be "application/json".
• The Status-Code header value will either be "200" for positive responses or "500" for negative

responses.
• The resultcode attribute will be mapped to the Reason-Phrase header element.

Here is an example of a positive <response> action:

<ws:response requestid="_event.sendid">
<param name="param1" expr="'value1'"/>
<parm name="p2" expr="'v2'"/>
<parm name="p3" expr="v3"/>

</ws:response>

Here is how it maps to an HTTP POST Response message:

HTTP/1.1 200
Content-Type=application/json
Content-Length=xx

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 182



{"param1":"value1","p2":"v2","p3":{"a":4,"b":5}}
...

Here is an example of a negative <response> action:

<ws:response requestid="_event.sendid" type="negative"
resultcode="invalidparameter">

<param name="description" expr="'Invalid value for parm2'"/>
</ws:response>

Here is how it maps to an HTTP POST Response message:

HTTP/1.1 500 invalidparameter
Content-Type=application/json
Content-Length=xx
{"description":"Invalid value for parm2"}
...

Mapping Summary:

• The result of evaluating the <param> elements yields the body element formatted in JSON format, where
each <parameter> name should appear as a top-level attribute. Note: the Content-Length header
value will be set to the total length of the resulting body element.

• The Content-Type header value will always be "application/json".
• The Status-Code header value will either be "200" for positive responses or "500" for negative

responses.
• The resultcode attribute will be mapped to the Reason-Phrase header element.

Orchestration Extensions Core Extensions

Orchestration Server Developer's Guide 183



Interaction Interface

Behavior Model

Once a session ID is associated with a given interaction, ORS will attach that session ID to the
interaction's properties with an "OP-Session-ID" key. This way, if the interaction is redirected or
transferred to another resource, the resource will know which orchestration session is associated with
this interaction so that it can communicate with it. Note that at any given moment of time, any
interaction can be associated with no more than one session. Conversely, several different
interactions may be associated with a single session. A caveat arising from this many-to-one
relationship is that the deletion of an interaction does not necessarily imply the termination of the
associated session.

Associating Interactions

Moving an Interaction's Association from One Session to Another

Typically, an interaction may only be associated with one session at a time. There are certain use
cases where an interaction that is currently associated with a session needs to be moved to another
session. This process is iniated by the session that is currently associated with the interaction. The
following is an example of the process for moving an interaction's association to a different session:
When the owning session determines that an interaction that it is working with needs to be
associated with another session, the session will associate this interaction using the <associate>
action. Orchestration Server will do the necessary processing and associate the interaction with the
target session by:

1. Adding the interaction to the list of interactions associated with this session (that is, change the
_genesys.ixn.interactions[] object)

2. Send the session the appropriate events (interaction.added, interaction.present)
3. Remove the interaction from the original session and send the appropriate events (interaction.deleted,

interaction.notcontrolled).

Addressing Resources

The following table indicates how to use the various types of interaction resources when using
interaction actions and objects. The resource attribute for these actions and objects can be either
a Resource Object or a string:

Orchestration Extensions Interaction Interface

Orchestration Server Developer's Guide 184



Resources string resource object Examples:

agents - multi-media) agent id resource.agent resource.type
= A

string - "agent1" resource
object - _data.res.agent

places - (multi-media) place id resource.place resource.type
= AP

string - "place2" resource
object - _data.res.place

agents and group - (voice) Not supported resource.agent resource.type
= A or GA

string - "agent1" resource
object - _data.res.agent

places and place groups -
(voice) Not supported resource.place

resource.type=AP or GP
string - "place2" resource
object - _data.res.place

DNs (voice, sip chat) DN number
resource.dn and
resource.switch (optional)
resource.type="Q,RP,DN"
(optional)

string - "9192340978"
resource object - _data.res.dn
and _data.res.switch (optional)
_data.res.type (optional)

interaction queues (multi-
media) Not supported resource.type=IQ resource.id

= the queue name
resource object - _data.res.id
and - data.res.type

workbins Not supported

resource.type=WB
resource.id= the workbin
name resource.wb_type= "A,
AP, GA, GP" (optional)
resource.wb_owner= the
name of the workbin owner.

resource object - _data.res.id
and _data.res.type and
optionally _data.res.wb_type
and _data.res.wb_owner.

e-mail addresses

<username>@<host>
"origin.all" "_origin" indicates
that the corresponding
address from the related
interaction message should be
used. "_origin.all" indicates
that all the corresponding
address from the related
interaction message should be
used. "_udata" indicates that
the corresponding address
from the related interaction
udata should be used.

Not supported
fred@gmail.com "_origin"
"_origin.all" "_udata"
"_customerview"

web users URL Not supported http://john.johnson@abc.com

customer numbers dn number resource.dn string - "9192340978"
resource object - _data.res.dn

target format addresses target DN Resource object from the
queue.submit.done event 12345@switch3.DN

Orchestration Extensions Interaction Interface

Orchestration Server Developer's Guide 185



Object Model

See Interaction Interface Object Model

Functions

See Interaction Interface Functions

Action Elements

See Interaction Interface Action Elements

Events

See Interaction Interface Events

Orchestration Extensions Interaction Interface

Orchestration Server Developer's Guide 186



Interaction Interface Object Model
The following are the ECMAScript objects for the interaction model interface. Notes:

• The object model is changed only in results of events. Every interaction event can result in a change in
content of the "object model".

• After the session is started, it does not have any interactions - the _genesys.ixn.interactions[] array is
empty (even if the platform started the session at the request of an interaction).

• Before accessing or manipulating interactions, the application logic must be sure that session has at
least one interaction in its data (that is, the _genesys.ixn.interactions[] array is not empty). For
example, the session needs to wait for an event like interaction.added before trying to use the
interaction array.

• Attempts to access interactions in the object model before they are available will result in a runtime
exception in the session, with the corresponding error event.

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 187



_genesys.ixn Object
Each SCXML session will have an association with the Interaction functional module (if an interaction
is involved with the session). This object allows the session to access the set of interaction-related
objects and properties that are associated with the given SCXML session. The name of the object will
be "_genesys.ixn". This object is accessible through the _genesys.FMname property.

Name Access Type Default Value Valid Values Description

interactions read only array of interaction
objects none

This is the list of
interactions
currently
associated with the
logic. Each
interaction will be
represented by an
ECMAScript object
owned by the
Interaction
functional module.
For routing
strategy-based
logic only the first
entry in the list
(interactions[0])
will be used. This
list is maintained
by the
orchestration
platform based on
the interaction
between the
orchestration logic
and the
interaction-related
functional
modules. So when
an interaction is
associated with the
orchestration logic
through an event
or action, it is
added to the list
and when the
interaction ends it
is removed from
the list. This
property (list only)
is read only. See
section interaction
object for details
on the interaction
object.

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 188



_genesys.ixn.mediaType ENUM Object

This represents the media type enumeration.

Name Access Type Default Value Valid Values Description

TMediaVoice read only integer none 0 The media for the
interaction is voice.

TMediaVoIP read only integer none 1 The media for the
interaction is VoIP.

TMediaEMail read only integer none 2
The media for the
interaction is e-
mail.

TMediaVMail read only integer none 3
The media for the
interaction is voice
mail.

TMediaSMail read only integer none 4
The media for the
interaction is snail
mail.

TMediaChat read only integer none 5 The media for the
interaction is chat.

TMediaVideo read only integer none 6
The media for the
interaction is
video.

TMediaCobrowsing read only integer none 7
The media for the
interaction is co
-browse.

TMediaWhiteboard read only integer none 8
The media for the
interaction is
whiteboard.

TMediaAppSharing read only integer none 9
The media for the
interaction is
application
sharing.

TMediaWebform read only integer none 10
The media for the
interaction is web
form.

TMediaWorkItem read only integer none 11 The media for the

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 189



Name Access Type Default Value Valid Values Description

interaction is work
item.

TMediaCallback read only integer none 12
The media for the
interaction is
callback.

TMediaFax read only integer none 13 The media for the
interaction is fax.

TMediaIMChat read only integer none 14 The media for the
interaction is IM.

TMediaBusinessEvent read only integer none 15
The media for the
interaction is
business event.

TMediaAlert read only integer none 16 The media for the
interaction is alert.

TMediaSMS read only integer none 17 The media for the
interaction is SMS.

TMediaOutboundPreviewread only integer none 18
The media for the
interaction is
outbound preview.

TMediaOpenMedia read only integer none 19
The media for the
interaction is open
media item.

TMediaNativeSMS read only integer none 20
The media for the
interaction is
native SMS.

_genesys.ixn.callState ENUM Object (since 8.1.3)

This represents the call state type enumeration.

Name Access Type Default Value Valid Values

Ok read only integer none 0

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 190



Name Access Type Default Value Valid Values

Transferred read only integer none 1

Conferenced read only integer none 2

GeneralError read only integer none 3

SystemError read only integer none 4

RemoteRelease read only integer none 5

Busy read only integer none 6

NoAnswer read only integer none 7

SitDetected read only integer none 8

AnsweringMachineDetectedread only integer none 9

AllTrunksBusy read only integer none 10

SitInvalidnum read only integer none 11

SitVacant read only integer none 12

SitIntercept read only integer none 13

SitUnknown read only integer none 14

SitNocircuit read only integer none 15

SitReorder read only integer none 16

FaxDetected read only integer none 17

QueueFull read only integer none 18

Cleared read only integer none 19

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 191



Name Access Type Default Value Valid Values

Overflowed read only integer none 20

Abandoned read only integer none 21

Redirected read only integer none 22

Forwarded read only integer none 23

Consult read only integer none 24

Pickedup read only integer none 25

Dropped read only integer none 26

Droppednoanswer read only integer none 27

Unknown read only integer none 28

Covered read only integer none 29

ConverseOn read only integer none 30

Bridged read only integer none 31

SilenceDetected read only integer none 32

Deafened read only integer none 49

Held read only integer none 50

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 192



Interaction Objects

interaction Object

Each interaction associated with a given SCXML session will have an object to represent the common
properties of an interaction. This object and its properties are maintained by the functional module,
but certain properties can be set or updated by the orchestration logic itself. The name of the object
will be "interaction". This object is accessible through the _genesys.FMname.interactions[] property.
This is the set of properties for the object:

Name Access Type Default Value Valid Values Description

g_uid read only string none

This is the globally
unique ID for the
interaction that is
defined by the
underlying media
system.

• T-Server -
g_uid

• Interaction
Server -
attr_itx_id

category read only string none voice, msgbased,
chat

This is the media
category
associated with the
interaction. It
defines the type of
media extension
that is associated
with the
interaction.

tenantid read only string none
This is the ID of the
tenant that this
interaction was
originated from.

parentid read only string none
This is the globally
unique ID of this
interaction's parent
interaction.

contactedaddr read only string none
Any valid string
that represents the
address

This is the address
of the resource
that was initially
contacted and

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 193



Name Access Type Default Value Valid Values Description

started this
interaction. This
property will also
be represented in a
media- or channel-
specific property.
For example:

• _genesys.ixn.interactions[x].voice.dnis
for voice
interactions

• _genesys.ixn.interactions[x].msgbased.toaddr
for
msgbased
interactions

parties read only array of party
objects none

This is the list of
parties or
resources currently
associated with the
interaction. Each
party will be
represented by an
ECMAScript object
owned by the
Interaction
functional module.

udata read only object none Any valid
ECMAScript object

This is application
data that can be
associated with
and attached to
the interaction so
that the
coordination of
processing
between resources
is seamless. An
application will
manage this data
through this
property and the
defined set of
functions. For
example,

• Get udata
kvpair
value -
xvalue =
_genesys.ixn.interactions[x].udata.x

• Set or add
udata
kvpair -
_genesys.ixn.setuData(a);

• Remove

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 194



Name Access Type Default Value Valid Values Description

udata
kvpair -
_genesys.ixn.deleteuData("y");

As a result of these
actions, the
appropriate action
will be taken on
the underlying
Interaction
functional module
system (for
example, T-Server
and user data).
The udata property
does not support
ECMAScript arrays
either as a value of
the udata property
or as a property of
any object in the
tree. This will be
used not only for
user data, but also
for URS-based
business data and
interaction data.

voice read only voice object

This is the object
that contains the
voice extensions to
the interaction.
NOTE: This
property only
exists for voice
interactions.

msgbased read only msgbased object

This is the object
that contains the
msgbased
extensions to the
interaction. NOTE:
This property only
exists for message
based interactions.

chat read only chat object

This is the object
that contains the
chat extensions to
the interaction.
NOTE: This
property only
exists for chat
interactions.

xdata read only object none
Any valid
ECMAScript
object

This is extension
data that has been
associated with the
interaction as a

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 195



Name Access Type Default Value Valid Values Description

result of the event
that started this
session and is read
only. An application
may access
extension data
through this
property. For
example,
Get xdata kvpair
value - x value =
_genesys.ixn.interactions[x].xdata.x

location read only object none

This is the location
property of the
interaction. This
object conists of
the following
properties:
control_server
media_server

party Object

Each party or business resource involved in the associated interaction will be represented by an
object and a common set of properties. These objects and their properties are maintained by the
functional module, but certain properties can be set or updated by the orchestration logic itself. The
name of the object will be "parties" and is accessible through the interaction object. This is the set of
properties for the object:

Name Access Type Default Value Valid Values Description

g_uid read only string none

This is the globally
unique ID for the
party that is
defined by the
underlying media
system.

interactionid read only string none
This is the globally
unique ID of the
interaction this
party belongs to.

devicetype read only unknown

For voice: agent,
queue, routepoint,
treatmentport,
unknown For
multimedia:
queue, unknown
For non-voice

This is the general
type of device
associated with
this interaction.

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 196



Name Access Type Default Value Valid Values Description

and non-
multimedia:
customer

device read only string null
This is the device
associated with
this interaction
party.

resource read only string null

This is the
resource ID
associated with
this interaction
party.

voicep read only voicep object

This is the object
that contains the
voice extensions to
the party. NOTE:
This property only
exists for voice
interactions.

msgbasedp read only msgbasedp object

This is the object
that contains the
msgbased
extensions to the
party. NOTE: This
property only
exists for message
based interactions.

chatp read only chatp object

This is the object
that contains the
chat extensions to
the party. NOTE:
This property only
exists for chat
interactions.

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 197



Voice Objects

voice Object

The following is the ECMAScript object which contains the interaction extensions for voice-related
interactions. Properties of that object may be updated during interaction lifetime, for example, when
interaction parties have been added/removed/changed, so keep that in mind when you decide to use
them. This object is accessible through the _genesys.FMname.interactions[].voice property. These
properties can be dynamically accessed using the following format:
_genesys.FMname.interactions[x].[_genesys.FMname.interactions[x].category].xxx. They are also
accessible via actions or events. The following are the voice extension properties of the interaction
object.

Name Access Type Default Value Valid Values Description

type read only string none
unknown, internal,
inbound, outbound,
consult, callback

This is the origin
type of the
interaction.

media read only string none

The following
properties from
_genesys.ixn.mediaType
object: TMediaAny,
TMediaCallback,
TMediaOutboundPreview,
TMediaVideo,
TMediaVMail,
TMediaVoice,
TMediaVoIP

This is the
originating media
type of the
interaction.

ani read only string none
This is the ANI
associated with the
calling party.

dnis read only string none

This is the DNIS
associated with
phone number that
the customer
called.

ced read only string none

This is the last set
of digits collected
from the caller.
NOTE: This
property is
populated from the
event data, which
is optional. If
digits were
collected, then this

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 198



Name Access Type Default Value Valid Values Description

propertly is set.

acdq read only string none

This is the ACD
queue that this
interaction is or
was queued in.
NOTE: This
property is
populated from the
event data, which
is optional. If ACD
queue was used,
then this propertly
is set.

callid read only string none
This is the callid
created by the
switch.

connid read only string none

This is the
connection ID
generated for this
interaction by the
underlying media
system (that is, T-
Server).

voicep Object

The following are the voice-specific values for the party object.

Name Access Type Default Value Valid Values Description

state read only string none
null initiated
alerting connected
hold queued fail

This is the state of
the party in
relationship to the
interaction.

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 199



Message Objects

msgbased Object

The following is the ECMAScript object which contains the interaction extensions for msgbased-
related interactions. This object is accessible through the _genesys.FMname.interactions[].msgbased
property. These properties can be dynamically accessed using the following format:
_genesys.FMname.interactions[x].[ _genesys.FMname.interactions[x].category].xxx. They are also
accessible via actions or events. The following are the msgbased extension properties of the
interaction object.

Name Access Type Default Value Valid Values Description

type read only string none

The list of valid
values are those
that are defined in
configuration
server under:
Business Attributes
/ Interaction
Attributes /
Attributes Values

This is the origin
type of the
interaction.

state read only string none
queued, cached,
routing, handling,
unknown

This is the state of
the interaction.

media read only string none

The following
properties from
_genesys.ixn.mediaType
object: TMediaAny,
TMediaEMail,
TMediaFax,
TMediaSMail,
TMediaNativeSMS,
TMediaSMS,
TMediaWebForm,
TMediaOpenMedia

This is the
originating media
type of the
interaction.

from read only URI none Any valid string or
Resource Object

This is the address
that the message
came from.

to read only array of URIs none Any valid string or
Resource Object

This is the list of
addresses that this
message was sent
to

cc read only array of URIs none Any valid string or This is the list of

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 200



Name Access Type Default Value Valid Values Description

Resource Object
addresses that
were copied on this
message.

queue read only string none Any valid string
This is the current
queue name
associated with
this interaction.

view read only string none Any valid string

This is the current
view associated
with this
interaction. First
appears in
Orchestration
release 8.1.2

subject read only string none Any valid string
This is the subject
line of the
associated
message.

content read only content object none none

• • • This
property
is
not
yet
supported***

This is the content
of the message
itself.

received_at read only string none none
Value of
"_attr_itx_received_at"
interaction
attribute

submitted_at read only string none none
Value of
"_attr_itx_submitted_at"
interaction
attribute

placed_in_queue_at read only string none none
Value of
"_attr_itx_placed_in_queue_at"
interaction
attribute

is_online read only boolean none none
Value of
"_attr_itx_is_online"
interaction
attribute

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 201



Name Access Type Default Value Valid Values Description

is_locked read only boolean none none
Value of
"_attr_itx_is_locked"
interaction
attribute

moved_to_queue_at read only string none none
Value of
"_attr_itx_moved_to_queue_at"
interaction
attribute

externalID read only string none none

This is the ID of the
interaction that
has been assigned
by the originating
media server.

msgbasedp Object

The following are the msgbased-specific values for following the party object.

Name Access Type Default Value Valid Values Description

state read only string none
null initiated
alerting connected
hold queued fail

This is the state of
the party in
relationship to the
interaction.

content Object

The following are the msgbased-specific values for following the message content object.

Name Access Type Default Value Valid Values Description

btype read only string none

application/
msword,
application/octet-
stream,
application/
postscript,
application/rtf,
application/
vnd.ms-
powerpoint,
application/

This is a string that
specifies the MIME
type of the binary
content.

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 202



Name Access Type Default Value Valid Values Description

vnd.ms-project,
application/
vnd.visio,
application/
voicexml+xml,
application/xml,
application/xml-
dtd, application/
zip, audio/basic,
audio/mpeg, audio/
mpeg4- generic,
image/g3-fax,
image/gif, image/
jpeg, image/tiff,
message/delivery-
status, message/
http, message/
news, message/
partial, message/
rfc822, message/
sip, message/
sipfrag, message/
tracking-status,
multipart/
alternative,
multipart/form-
data, multipart/
mixed, multipart/
parallel, multipart/
voice-message,
text/html, text/
plain, text/richtext,
text/xml, video/DV,
video/JPEG, video/
MPEG, video/
mpeg4-generic,
video/quicktime,
video/raw

binary ready only binary none none

This is the
complete content
of the message
(for example, raw
text plus MIME
content, if any,
plus attached files
if any).

structuredtext ready only string none none
This is only the
structured content
of the message.

text read only string none

This is only the raw
text content
(unformatted and
unstructured) of
the message

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 203



Chat Objects

chat Object

The following is the ECMAScript object which contains the interaction extensions for chat-related
interactions. This object is accessible through the _genesys.ixn.interactions[].chat property. These
properties can be dynamically accessed using the following format:
_genesys.ixn.interactions[x].[_genesys.FMname.interactions[x].category].xxx. They are also
accessible via actions or events. The following are the chat extension properties for the interaction
object.

Name Access Type Default Value Valid Values Description

queue read only string none any valid string
This is the current
queue name
associated with
this interaction.

type read only string none
unknown, chat,
chatrequest,
cobrowse,

This is the origin
type of the
interaction.

state read only string none
queued, cached,
routing, handling,
unknown

This is the state of
the interaction.

media read only string none

The following
properties from the
_genesys.ixn.mediaType
object: TMediaAny,
TMediaChat,
TMediaCoBrowsing,
TMediaIMChat

This is the
originating media
type of the
interaction.

received_at read only string none none
Value of
"_attr_itx_received_at"
interaction
attribute

submitted_at read only string none none
Value of
"_attr_itx_submitted_at"
interaction
attribute

placed_in_queue_at read only string none none
Value of
"_attr_itx_placed_in_queue_at"
interaction
attribute

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 204



Name Access Type Default Value Valid Values Description

is_online read only boolean none none
Value of
"_attr_itx_is_online"
interaction
attribute

is_locked read only boolean none none
Value of
"_attr_itx_is_locked"
interaction
attribute

moved_to_queue_at read only string none none
Value of
"_attr_itx_moved_to_queue_at"
interaction
attribute

externalID read only string none none

This is the ID of the
interaction that
has been assigned
by the originating
media server.

chatp Object

The following are the chat-specific values for the following party object.

Name Access Type Default Value Valid Values Description

state read only string none
null initiated
alerting connected
hold queued fail

This is the state of
the party in
relationship to the
interaction.

chatmessage Object

The following are the chat message object properties:

Name Access Type Default Value Valid Values Description

date read only integer none none
This is the number
of seconds since 1/
1/1970.

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 205



Name Access Type Default Value Valid Values Description

device read only URI none Any valid string or
Resource Object.

This is the device
address of the
party that created
the message.

text read only string none none
This is the text
message that was
sent.

Orchestration Extensions Interaction Interface Object Model

Orchestration Server Developer's Guide 206



Interaction Interface Functions
= Functions =

_genesys.ixn.getMediaIntValue

This function returns the integer value for the interaction media type name based on the string
name. intvalue _genesys.ixn.getMediaIntValue(media) Parameters:

• media: STRING which can be a variable or a constant - This parameter is the string form of the media
type name.

Returns: intvalue: NUMBER - The result of the function is an integer value which represents the
given media type. A value of -1 will indicate that an integer value could not be found (before
8.1.200.50, the default value was 0 when the value was not found). The following is an example of
the function:

<state id="check">
<onentry>

<log expr="'This function returns the integer value for the interaction media type'"
/>

<script>
if ( _genesys.ixn.getMediaIntValue( 'TMediaVoice' ) == 0 &&

_genesys.ixn.getMediaIntValue( 'TMediaVoIP' ) == 1 &&
_genesys.ixn.getMediaIntValue( 'TMediaEMail' ) == 2 &&
_genesys.ixn.getMediaIntValue( 'TMediaVMail' ) == 3 &&
_genesys.ixn.getMediaIntValue( 'TMediaSMail' ) == 4 &&
_genesys.ixn.getMediaIntValue( 'TMediaChat' ) == 5 &&
_genesys.ixn.getMediaIntValue( 'TMediaVideo' ) == 6 &&
_genesys.ixn.getMediaIntValue( 'TMediaCobrowsing' ) == 7 &&
_genesys.ixn.getMediaIntValue( 'TMediaWhiteboard' ) == 8 &&
_genesys.ixn.getMediaIntValue( 'TMediaAppSharing' ) == 9 &&
_genesys.ixn.getMediaIntValue( 'TMediaWebform' ) == 10 &&
_genesys.ixn.getMediaIntValue( 'TMediaWorkItem' ) == 11 &&
_genesys.ixn.getMediaIntValue( 'TMediaCallback' ) == 12 &&
_genesys.ixn.getMediaIntValue( 'TMediaFax' ) == 13 &&
_genesys.ixn.getMediaIntValue( 'TMediaIMChat' ) == 14 &&
_genesys.ixn.getMediaIntValue( 'TMediaBusinessEvent' ) == 15 &&
_genesys.ixn.getMediaIntValue( 'TMediaAlert' ) == 16 &&
_genesys.ixn.getMediaIntValue( 'TMediaSMS' ) == 17 &&
_genesys.ixn.getMediaIntValue( 'TMediaOutboundPreview' ) == 18 &&
_genesys.ixn.getMediaIntValue( 'TMediaOpenMedia' ) == 19 &&
_genesys.ixn.getMediaIntValue( 'TMediaNativeSMS' ) == 20 &&
_genesys.ixn.getMediaIntValue( 'unknown' ) == -1 &&
typeof( _genesys.ixn.getMediaIntValue( 'TMediaVoice' ) ) == 'number')

{
_data.testPassed = 1;

}
</script>

</onentry>
<transition cond="_data.testPassed==1" target="routing"/>
<transition cond="_data.testPassed==0" target="error" >

<log expr="uneval( _event )" />

Orchestration Extensions Interaction Interface Functions

Orchestration Server Developer's Guide 207



</transition>
</state>

_genesys.ixn.setuData

This function adds new udata or updates existing udata for an interaction. This function will not affect
existing udata values that do not match the property names defined in the input parameter. For
example:

Existing udata Requested additions and updates Resulting udata

udata.d1 = 3 udata.d2 = 4 udata.d3 = 5 d3 = 10000 d6 = 67 d7.a = 88 d7.b =99
udata.d1 = 3 udata.d2 = 4 udata.d3 =
10000 udata.d6 = 67 udata.d7.a = 88
udata.d7.b = 99

void _genesys.ixn.setuData(input, ixnid) Parameters:

• input: OBJECT which must be a variable - This parameter is an object which CONTAINs the properties
which are to be added to the udata of the given interaction. This means that the input object itself is
NOT added to the interaction's udata (for example, if the input parameter object is "a", with properties
"b=7" and "c=9" then the resulting udata properties for the interaction will be
_genesys.ixn.interactions[_data.ixnid].udata.b and
_genesys.ixn.interactions[_data.ixnid].udata.c). The following is an example
_genesys.ixn.setuData({b:7, c:9});

• ixnid: STRING which can be a variable - This parameter is optional. It defines the ID of the interaction
which should have its udata added to or updated.

Returns: void The following is an example of this function:

<state id="setudata">
<onentry>

<script>
var data = { details : { name : "Smith, John", age : 45 } };
_genesys.ixn.setuData( data );
_genesys.ixn.setuData( { category : 1 } );

</script>
</onentry>
<transition target="update"/>

</state>
<state id="update">

<onentry>
<script>

_genesys.ixn.setuData( { category : 2 }, _data.ixnid );
</script>

</onentry>
<transition target="check"/>

</state>

<state id="check">
<transition event="interaction.udata.changed"

cond="_genesys.ixn.interactions[_data.ixnid].udata.category==2 &&

_genesys.ixn.interactions[_data.ixnid].udata.details.name=='Smith, John' &&

Orchestration Extensions Interaction Interface Functions

Orchestration Server Developer's Guide 208



_genesys.ixn.interactions[_data.ixnid].udata.details.age==45" target="routing" />
</state>

_genesys.ixn.deleteuData

This function deletes a udata property or all of the udata properties from the given interaction. void
_genesys.ixn.deleteuData(key, ixnid) Parameters:

• key: STRING (variable or constant) or JavaScript object (variable or object literal) - This parameter may
be a STRING that represents the key or object, which represents a subset of udata properties that are
to be deleted from udata (see example below).

• ixnid: STRING, which can be a variable - This parameter is optional. It defines the ID of the interaction
which should have a given udata property removed.

Returns: void The following is an example of the function:

<state id="setudata">
<onentry>

<script>
var data = { details : { name : "Smith, John", age : 45 } };
_genesys.ixn.setuData( data );

</script>
</onentry>
<transition event="interaction.udata.changed"

cond="_genesys.ixn.interactions[_data.ixnid].udata.details.name=='Smith,
John' &&

_genesys.ixn.interactions[_data.ixnid].udata.details.age==45"
target="delete"/>

</state>
<state id="delete">

<onentry>
<script>

_genesys.ixn.deleteuData( { details:{ age:0 } }, _data.ixnid );
</script>

</onentry>
<transition event="interaction.udata.changed"

cond="_genesys.ixn.interactions[_data.ixnid].udata.details.name=='Smith,
John' &&

_genesys.ixn.interactions[_data.ixnid].udata.details.age==undefined"
target="delete_all_udata"/>

</state>

<state id="delete_all_udata">
<onentry>

<script>
_genesys.ixn.deleteuData( { $ALL: 0 } );

</script>
</onentry>
<transition event="interaction.udata.changed"

cond="_genesys.ixn.interactions[_data.ixnid].udata.ORSession==undefined &&
_genesys.ixn.interactions[_data.ixnid].udata.ORDbid==undefined &&
_genesys.ixn.interactions[_data.ixnid].udata.ORUrl==undefined &&
_genesys.ixn.interactions[_data.ixnid].udata.details==undefined"

target="routing"/>
</state>

Orchestration Extensions Interaction Interface Functions

Orchestration Server Developer's Guide 209



Interaction Interface Action Elements

Common Actions

The following are the common actions across interactions:

<terminate>
This is the action to terminate the interaction. It is equivalent to the TClearCall request in T-Server.
For non-voice interactions, this action can only be done when the interaction is "presented" with
RequestStopProcessing.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 210



Name Required Type Default Value Valid Values Description

identifier.

interactionid true value expression
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

reason false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns a
character string
which identifies the
reason why the
interaction is being
terminated. See
SCXML Legal Data
Values and Value
Expressions for
details.

resource false value
expression none

Any value
expression that
returns a valid
string

A value expression
which returns the
resource address
for the call to be
terminated. Has
no meaning when
used with a
multimedia
interaction. See
SCXML Legal Data
Values and Value
Expressions Note:
Since 8.1.100.19

hints false value expression none Any valid
ECMAScript object

A value expression
which returns the
ECMAScript object
containing
information which
may be used by
the implementing
functional module
when redirecting
this interaction.
This information
may consist of
protocol-specific
parameters,
protocol selection
guidelines, and so
on. Note: The
meaning of these
hints is specific to
the implementing
functional module.
See SCXML Legal

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 211



Name Required Type Default Value Valid Values Description

Data Values and
Value Expressions
for details.

hints Attribute Considerations

• When the interaction is non-voice, properties "ucs" and "delete" could be defined in "hints" object.
• "ucs" - if true, OCS will also send ESP request with Method=StopProcessing via Ixn Server to UCS.
• "delete" - value of this property will be attached as "Delete" parameter to ESP request.

The following is an example:

<state id="do_terminate">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<ixn:terminate requestid="_data.reqid" interactionid="_data.ixnid"
reason="'finished service X'"

resource="_genesys.ixn.interactions[_data.ixnid].voice.dnis"/>
</onentry>
<transition event="interaction.terminate.done" target="statex"/>
<transition event="error.interaction.terminate" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• interaction.terminate.done - This event is sent when the request has been accepted by the system
and the interaction has started the termination process.

• error.interaction.terminate - This event is sent when the request itself has failed for some reason.
• interaction.deleted - This event is sent when the interaction is actually terminated.

<clear>
This is the action to clear a given party from the interaction. Note that in cases of conference
interactions, the interaction will remain alive until there is no more than one party in the interaction.
This is equivalent to the TReleaseCall request in T-Server. Note: This action is only for voice
interactions at this time, but will apply to other media in the future.

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 212



Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

interactionid true value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

resource true value expression none Any valid string or
Resource Object

A value expression
which returns the
resource address
currently involved
in the interaction
for which the
connection will be
cleared. See
SCXML Legal Data

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 213



Name Required Type Default Value Valid Values Description

Values and Value
Expressions for
details.

reason false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns a
character string
which identifies the
reason why the
resource
connection with
the interaction is
being cleared. See
SCXML Legal Data
Values and Value
Expressions for
details.

The following is an example:

<state id="do_clear">
<datamodel>

<data id="reqid"/>
<data id="ixnid"/>
<data id="rscid"/>

</datamodel>
<onentry>

<ixn:clear requestid="_data.reqid" interactionid="_data.ixnid" resource="_data.rscid"
reason="'finished service X'"/>
</onentry>
<transition event="interaction.clear.done" target="statex"/>
<transition event="error.interaction.clear" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• interaction.clear.done - This event is sent when the request has been accepted by the system and
the resource's connection to the interaction has started the clearing process.

• error.interaction.clear - This event is sent when the request itself has failed for some reason.
• interaction.partydeleted - This event is sent when the resources's connection to the interaction is

actually cleared.

<redirect>
This is the action to redirect the interaction to another resource. This action is used for the following
media server actions:

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 214



• T-Server - TRouteCall, (IRD Functions - DeliverCall, DeliverToIVR, RouteCall, TRoute)
• Interaction Server - RequestPlaceInQueue, RequestPlaceInWorkbin, RequestDeliver (IRD Function

Blocks - Queue Interaction, IRD Functions - RouteCall, TRoute)

When using the <redirect> call, the redirected interaction may or may not start a new session
depending on whether or not the redirecting session is already terminated. In the event that the
interaction arrives on the target resource after the redirecting session has terminated, a new session
will be started. Otherwise, if the interaction arrives on the target resource prior to the termination of
the redirecting session, no new session will be created. To guarantee the creation of a new session for
the redirected interaction, it is suggested to use <detach> to dissolve the interaction/session
association.

Attribute Details

Name Required Type Default Value Valid Values Description

detach false Boolean expression false true, false

ORS Release
8.1.400.21
introduced a
detach attribute
for the
<ixn:redirect>
action. The default
value is false to
comply with
existing/previous
ORS behavior. The
attribute controls
whether ORS
should detach an
interaction from
the current session
before routing to
the specified
target, which can
allow ORS to start
processing the
next session. As
further detailed
below, if the value
is true, then the
interaction is
detached from the
session before
routing to the
specified target. If
the value is false,
then no detach
occurs before
routing.

Succesful
Redirect/
detach=true

In the case of a
successful
execution of a
redirect action with
detach=true, a
routed interaction
(previously
belonging to the

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 215



Name Required Type Default Value Valid Values Description

session that
invoked this
action) will be
automatically
detached. The
SCXML session
invoking this action
receives
interaction.notcontrolled
and
interaction.deleted
events with
resultof=detaching,
and then
interaction.redirect.done
event.

Unsuccesesful
Redirect/
detach=true

In the case of a
failed
<ixn:redirect>
action (with
detach=true), the
session invoking
this action receives
only the
error.interaction.redirect
event. The
interaction remains
in the same
attached/detached
state as it was
before invoking
<ixn:redirect>
action with
detach=true.

Note:

If the
<ixn:redirect>
action is provided
with the ID of an
interaction that is
already detached,
then the detach
attribute has no
effect. In this case,
ORS produces
warning
IxnVMMThreadData::CommonPartHandler
WARNING - ixn
action attribute
'detach' has no
effect, interaction
'ZZZ' is already
detached and
operates as if
detach=false. If a
redirect error
happens, the
interaction remains
in the same state

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 216



Name Required Type Default Value Valid Values Description

(is still detached)
and the application
developer must
decide the next
step for the
interaction.

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

interactionid true value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

from true value expression none Any valid string or
Resource Object

A value expression
which returns the
address that this
interaction is to be

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 217



Name Required Type Default Value Valid Values Description

redirected from.
For details, on the
format, see
Addressing
Resources. See
SCXML Legal Data
Values and Value
Expressions

to true value expression none Any valid string or
Resource Object

A value expression
which returns the
destination
address for this
interaction. For
details, on the
format, see
Addressing
Resources. See
SCXML Legal Data
Values and Value
Expressions

type false NMTOKEN _genesys.queue.rType.RouteTypeDefault
Values from the
genesys.queue.rType
enumeration

This defines the
type of redirection
processing that is
to be done.

hints false value expression none Any valid
ECMAScript object

A value expression
which returns the
ECMAScript object
containing
information which
may be used by
the implementing
functional module
when redirecting
this interaction.
This information
may consist of
protocol-specific
parameters,
protocol selection
guidelines, and so
on. Note: The
meaning of these
hints is specific to
the implementing
functional module.
See SCXML Legal
Data Values and
Value Expressions
for details.

hints Attribute Considerations Note: you can use a special interaction queue name (__STOP__)
which will do the processing required to stop the interaction.

• When the interaction is non-voice, inPersistentQueues and OutPersistentQueues properties of the
Interaction Server interaction will be set automatically to the appropriate queues defined for the
session (this information comes from the trigger information). So these properties do not need to be

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 218



exposed. BUT if the developer wants to explicitly specify these properties, they can supply them
through the hints attribute object. The object should have the following properties
• "inqueues" - This is an ECMAScript object with a collection of string properties. The name of the

property is an interaction queue name and the value is a description of that queue.
• "outqueues" - This is an ECMAScript object with a collection of string properties. The name of the

property is an interaction queue name and the value is a description of that queue.

• Property extensions of hints object allows to specify the content of AttributeExtension for the
corresponding TRequestRouteCall request. A valid value for property extensions is an ECMAScript
object. (Since 8.1.2)

• Property reasons of hints object allows to specify the content of AttributeReason for the
corresponding TRequestRouteCall request. A valid value for property reasons is an ECMAScript
object. (Since 8.1.4)

The following are some examples:

<state id="do_redirect_voice_interaction_to_an_agent_dn">
<onentry>

<ixn:redirect interactionid="_data.ixnid" from="'1010'" to="'1111'"/>
</onentry>
<transition event="interaction.redirect.done" target="statex"/>
<transition event="error.interaction.redirect" target="statey"/>

</state>
<state id="do_redirect_mm_interaction_to_an_agent">

<onentry>
<ixn:redirect interactionid="_data.ixnid" from="'1010'" to="'1111'"/>

</onentry>
<transition event="interaction.redirect.done" target="statex"/>
<transition event="error.interaction.redirect" target="statey"/>

</state>
<state id="do_redirect_mm_interaction_to_an_interaction_queue">

<onentry>
<ixn:redirect requestid="_data.reqid" to="'queueF'"/>

</onentry>
<transition event="interaction.redirect.done" target="statex"/>
<transition event="error.interaction.redirect" target="statey"/>

</state>
<state id="do_redirect_multi-resource_interaction_to_another_agent">

<onentry>
<ixn:redirect requestid="_data.reqid" interactionid="_data.ixnid"

from="'3444'" to="'6555'"/>
</onentry>
<transition event="interaction.redirect.done" target="statex"/>
<transition event="error.interaction.redirect" target="statey"/>

</state>
<state id="do_redirect_voice_interaction_to_another_queue-route_point">

<onentry>
<ixn:redirect requestid="_data.reqid" to="'6666'"/>

</onentry>
<transition event="interaction.redirect.done" target="statex"/>
<transition event="error.interaction.redirect" target="statey"/>

</state>
<state id="do_redirect_with_resource_object">

<onentry>
<script>

var dest = {type:"A",
agent:"702_sip",
dn:"702",
id:"702_sip",

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 219



place:"702",
'switch':"SipSwitch"};

var myhints = { extensions : { ext1:"extval1" }, reasons : {reason1:2} };
</script>
<ixn:redirect requestid="_data.reqid" interactionid="_data.ixnid"

from="'RP_sip1'" to="dest" type="1" hints="myhints" />
</onentry>
<transition event="interaction.redirect.done" target="statex"/>
<transition event="error.interaction.redirect" target="statey"/>

</state>

Children

None

Events

The following events can be generated as part of this action:

• interaction.redirect.done - This event is sent when the request has been accepted by the system
and the interaction has started the redirection process.

• error.interaction.redirect - This event is sent when the request itself has failed for some reason.
• interaction.ondivert - This event is sent when the interaction has been moved to the defined

destination.

<singlesteptransfer>
This is the action to transfer the interaction to another resource in a single step. This is equivalent to
the TSingleStepTransfer request in T-Server. Note: This action is only for voice interactions at this
time

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 220



Name Required Type Default Value Valid Values Description

specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

interactionid true value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

from true value expression none Any valid string or
Resource Object.

A value expression
which returns the
address that this
interaction is to be
transferred from.
For details, on the
format, see
Addressing
Resources. See
SCXML Legal Data
Values and Value
Expressions

to true value expression none Any valid string or
Resource Object.

A value expression
which returns the
destination
address for this
interaction. For
details, on the
format, see
Addressing
Resources. See
SCXML Legal Data
Values and Value
Expressions

hints false value
expression none

Any valid
ECMAScript
object

A value
expression
which returns
the ECMAScript
object

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 221



Name Required Type Default Value Valid Values Description

containing
information
which may be
used by the
implementing
functional
module when
transferring
this
interaction.
This
information
may consist of
protocol-
specific
parameters,
protocol
selection
guidelines, and
so on.
Note: The
meaning of these
hints is specific to
the implementing
functional module.
See SCXML Legal
Data Values and
Value Expressions
for details.

The following are some examples:

<state id="dosingle_step_transfer_voice_interaction_to_an_agent_dn">
<datamodel>

<data id="reqid"/>
<data id="ixnid"/>
<data id="rscid"/>

</datamodel>
<onentry>

<script>
var myhints = { extensions:{ key_1:'Value1', key_2:200*200, key_3:300*300 } };

</script>
<ixn:singlesteptransfer requestid="_data.reqid" interactionid="_data.ixnid"

from="_data.rscid" to="'1111'" hints="myhints" />
</onentry>
<transition event="interaction.singlesteptransfer.done" target="statex"/>
<transition event="error.interaction.singlesteptransfer" target="statey"/>
</state>

Children

None

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 222



Events

The following events can be generated as part of this action:

• interaction.singlesteptransfer.done - This event is sent when the request has been accepted by
the system and the interaction has started the single step transfer process.

• error.interaction.singlesteptransfer - This event is sent when the request itself has failed for
some reason.

• interaction.onsinglesteptransfer - This event is sent when the interaction has been transferred to
the defined destination.

<singlestepconference>
This is the action to conference another resource into the interaction in a single step. It is equivalent
to the TSingleStepConference request in T-Server. Note: This action is only for voice interactions at
this time

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 223



Name Required Type Default Value Valid Values Description

receive a unique
identifier.

interactionid true value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

from true value expression none Any valid string or
Resource Object

A value expression
which returns the
address that this
interaction is to be
conferenced from.
For details, on the
format, see
Addressing
Resources. See
SCXML Legal Data
Values and Value
Expressions

to true value expression none Any valid string or
Resource Object.

A value expression
which returns the
destination
address for the
resource that is to
be conferenced
into the
interaction. For
details, on the
format, see
Addressing
Resources. See
SCXML Legal Data
Values and Value
Expressions

The following is an example:

<state id="dosingle_step_conference_voice_interaction_to_an_agent_dn">
<datamodel>

<data id="reqid"/>
<data id="ixnid"/>
<data id="rscid"/>

</datamodel>
<onentry>

<ixn:singlestepconference requestid="_data.reqid" interactionid="_data.ixnid"
from="_data.rscid" to="'1111'"/>
</onentry>
<transition event="interaction.singlestepconference.done" target="statex"/>
<transition event="error.interaction.singlestepconference" target="statey"/>
</state>

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 224



Children

None

Events

The following events can be generated as part of this action:

• interaction.singlestepconference.done - This event is sent when the request has been accepted
by the system and the interaction has started the single step conference process.

• error.interaction.singlestepconference - This event is sent when the request itself has failed for
some reason.

• interaction.onsinglestepconference - This event is sent when the specified resource has been
conferenced into the interaction.

<associate>
This is the action to associate an interaction with the target SCXML session and un-associate it with
the current session. This is implicitly done when a session is triggered by an interaction event, but
there are cases where an interaction that is currently not associated with another SCXML session
needs to be associated with it by the session that currently owns the interaction. The association
process will add the interaction to the target session's _genesys.ixn.interactions[] array. In
addition, the functional module will do the necessary media-specific processing to ensure that this
session will be able to receive events associated with this interaction as well as be able to take action
against it. This may also include the taking of ownership of this interaction from another SCXML
session or 3rd party application. This level of processing will depend on the capabilities of the
underlying functional module and its associated system.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 225



Name Required Type Default Value Valid Values Description

dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

category true value expression none

Any value
expression that
returns one of the
following values:
voice, msgbased,
chat, web

A value expression
which returns the
category for this
interaction. See
SCXML Legal Data
Values and Value
Expressions for
details.

Interactionid true value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
interaction id that
is to be associated
with this session.
See SCXML Legal
Data Values and
Value Expressions
for details.

sessionid true value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
session id to
associate
interaction with.
See SCXML Legal
Data Values and
Value Expressions
for details.

The following is an example:

<state id="do_associate">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<ixn:associate requestid="_data.reqid" category="'voice'"
interactionid="_event.data.id" sessionid="'12345678'"/>
</onentry>
<transition event="interaction.associate.done" target="statex"/>
<transition event="error.interaction.associate" target="statey"/>

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 226



</state>

Children

None

Events

The following events can be generated as part of this action:

• interaction.associate.done - This event is sent when the request has been initiated to associate the
interaction with the SCXML session.

• error.interaction.associate - This event is sent when the request itself has failed for some reason.
• interaction.deleted and interaction.notcontrolled - These events indicate that the interaction

has been associated with the originating session.
• interaction.added and interaction.present - These events indicate that the interaction is now

associated with the new session.

Note: A current limitation is that using the association function with an incorrect 'sessionid' results in
the event 'interaction.associate.done' being generated, but the interaction remains with the current
session.

<accept>
This is the action that accepts and answers an interaction at the specific resource. This is used to
answer a voice interaction or accept a multi-media-based interaction. It is equivalent to the
TAnswerCall request in T-Server. Note: This action is only for voice interactions at this time.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 227



Name Required Type Default Value Valid Values Description

event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

interactionid true value expression
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

resource true value expression none Any valid string or
Resource Object.

A value expression
which returns the
address that this
interaction is to be
accepted for. For
details, on the
format, see
Addressing
Resources. See
SCXML Legal Data
Values and Value
Expressions

The following is an example:

<state id="do_accept">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<ixn:accept requestid="_data.reqid"/>
</onentry>
<transition event="interaction.accept.done" target="statex"/>
<transition event="error.interaction.accept" target="statey"/>
</state>

Children

None

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 228



Events

The following events can be generated as part of this action:

• interaction.accept.done - This event is sent when the request has been initiated to accept
theinteraction by the resource.

• error.interaction.accept - This event is sent when the request itself has failed for some reason.
• Interaction.partystatechanged - This event is sent when the resource accepts or answers the

interaction for processing.

<attach>
This action (as well as the 2 other related actions <detach> and <associate>) change the ownership
relation between sessions and interactions. It is used to associate an ownerless interaction with
current session. Attempting to apply this action to an interaction owned by another session will fail -
taking the interaction from another session is supposed to be done by agreement with this session
the (see <associate> action). For multimedia interactions <attach> will not pull an interaction - it
must be already pulled to work. Typically, when using this action for multimedia, the <detach> would
be used prior to <attach>.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false
location
expression

none
Any valid location
expression

This is the
location for the
request ID that is
returned as part
of this request.
Any data model
expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value
will be set to an
internally
generated unique
string identifier to
be associated

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 229



Name Required Type Default Value Valid Values Description

with the action
being sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish
among several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion
event. Every
request must
receive a unique
identifier.

Interactionid true value expression none

Any value
expression that
returns a valid
string

A value
expression which
returns the
interaction id that
is to be attached
to this session.
See SCXML Legal
Data Values and
Value
Expressions for
details.

Example
<state id="do_attach">

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 230



<datamodel>
<data id="reqid"/>

</datamodel>
<onentry>

<ixn:attach requestid="_data.reqid" interactionid="_event.data.id"/>
</onentry>
<transition event="interaction.attach.done" target="statex"/>
<transition event="error.interaction.attach" target="statey"/>

</state>

Children

None

Events

The following events can be generated as part of this action:

• interaction.attach.done - Success; will be accompanied with asynchronous events interaction.added
and interaction.present.

• error.interaction.attach - This event is sent when the request has failed for some reason (for
example - interaction does not exist or interaction is owned by another session).

<detach>
This action (as well as the 2 other related actions <attach> and <associate>) change the ownership
relation between sessions and interactions. It is the opposite of <attach> and is used to dis-associate
an interaction from the current session. A session that <detach>'s for some interaction is still
responsible for this interaction, or ensuring that the interaction is handled by some other session.
This applies to both voice and multimedia interactions (in the case of multimedia, a detached
interaction will not be returned back into queue). Normally after <detach> the session should either
move the interaction to another session via <associate> or <attach> back to the interaction.
Note. As <detach> action relies on interaction attached data it cannot be done immediately after
assigning the interaction to the session. If invoked before interaction data properly updated the
action will result error.interaction.detach with error invalidstate. In such cases application should
repeat the action after short delay

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false
location
expression

none
Any valid location
expression

This is the
location for the
request ID that is
returned as part
of this request.
Any data model
expression

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 231



Name Required Type Default Value Valid Values Description

evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value
will be set to an
internally
generated unique
string identifier to
be associated
with the action
being sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish
among several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion
event. Every
request must
receive a unique
identifier.

Interactionid true value expression none
Any value
expression that

A value
expression which

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 232



Name Required Type Default Value Valid Values Description

returns a valid
string

returns the
interaction id that
is to be attached
to this session.
See SCXML Legal
Data Values and
Value
Expressions for
details.

Children

None

Events

The following events can be generated as part of this action:

• interaction.detach.done - Success; will be accompanied with asynchronous events
interaction.notcontrolled and interaction.deleted.

• error.interaction.detach - This event is sent when the request has failed for some reason (for
example - interaction does not exist or interaction is owned by another session).

• interaction.notcontrolled - This event is sent when the interaction is no longer associated with a
session.

• interaction.deleted - This event is sent when the interaction is deleted from the current session.

Note: SCXML application may have transition for events interaction.notcontrolled and
interaction.deleted in some of outer states. In this case, if those events, raised after ixn:detach
action, will not be handled in a state where ixn:detach has been executed, they may cause undesired
transitions. To avoid that, add target-less transitions for those events into state where ixn:detach is
executed. In Composer, it may be done by adding exceptions for those events in "properties" of
corresponding block (for example "Detach" or "ForceRoute" with detach=true), with "Target"
checkbox un-checked.

Voice Interaction Actions

<createcall>
This is the initiation or creation of a voice interaction between a customer or resource and a resource.
This is equivalent to the T-Server TMakeCall or TMakePredictiveCall functions.

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 233



Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

from true value expression none Any valid string or
Resource Object

A value expression
which returns the
address that this
call is to be made
from. See SCXML
Legal Data Values
and Value
Expressions

to true value expression none Any valid string or
Resource Object

A value expression
which returns the
destination
address for this
call. See SCXML
Legal Data Values
and Value
Expressions

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 234



Name Required Type Default Value Valid Values Description

type false NMTOKEN regular
regular, agent,
supervisor, priority,
agentpriority,
predictive

This defines the
type of call that is
to be created.

• Regular - is
a call to a
customer.

• Agent - is a
call to
another
agent.

• Supervisor -
is a call to a
supervisor.

• Priority - is
a priority
call to a
customer.

• Agentpriority
- is a
priority call
to another
agent.

• Predictive -
is a
predictive
call to a
customer.

reason false value expression none Any valid string

A value expression
which returns the
reason for making
this call. See
SCXML Legal Data
Values and Value
Expressions for
details.

udata false value expression none Any valid
ECMAScript object

A value expression
which returns a
valid ECMAScript
object. This
object's data will
become part of the
call's interaction
object. See SCXML
Legal Data Values
and Value
Expressions for
details.

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 235



Name Required Type Default Value Valid Values Description

hints false value expression none Any valid
ECMAScript object

A value expression
which returns the
ECMAScript object
containing
information which
may be used by
the implementing
functional module
when establishing
this call. This
information may
consist of protocol-
specific
parameters,
protocol selection
guidelines, and so
on. Note: The
meaning of these
hints is specific to
the implementing
functional module.
See SCXML Legal
Data Values and
Value Expressions
for details.

timeout false value expression none
A value expression
which returns an
integer

A value expression
which returns an
integer which
represents the
number of seconds
to wait. See SCXML
Legal Data Values
and Value
Expressions for
details. The integer
returned is
interpreted as a
time interval. This
interval begins
when
<createcall> is
executed. The
<createcall>
must fail if not
completed by the
end of this interval.
Completion is
defined as the call
getting to a
CONNECTED state
as signaled by an
interaction.created
event. A failed
<createcall>
must return either
error.voice.createcall
event or the
interaction.partystatechanged
event. This
attribute is only
used when the
type attribute is
set to "predictive".

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 236



The following is an example:

<state id="do_createcall">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<ixn:createcall requestid="_data.reqid" from="'1234'" to="'+1919466600'" />
</onentry>
<transition event="voice.createcall.done" target="statex"/>
<transition event="error.voice.createcall" target="statey"/>

</state>

hints Attribute Considerations When property type of <createcall> action is set to predictive,
property extensions of hints object allows to specify the content of AttributeExtension for the
corresponding TMakePredictiveCall request. This is used to control call progress detection (CPD)
processing. A valid value for property extensions is an ECMAScript object. Valid extensions to use for
CPD purposes are described in the Deployment Guide for a specific T-Server. The following is an
example using CPD to detect answering machine:

<state id="do_createcall">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<script>
var cpdExtensions = {"extensions":{

"cpd-record":"off",

"call_answer_type_recognition":"positive_am_detection",
"cpd-on-connect":"off",
"call_timeguard_timeout":"10000"}};

</script>
<ixn:createcall requestid="_data.reqid" from="'1234'" to="'+1919466600'"

type="predictive" hints="cpdExtensions" />
</onentry>
<transition event="voice.createcall.done" target="statex"/>
<transition event="error.voice.createcall" target="statey"/>

</state>

Children

None

Events

The following events can be generated as part of this action:

• voice.createcall.done - This event is sent when the request has been accepted by the system and
the call has started the creation process.

• interaction.added - This event is sent when either party is connected to the call.
• interaction.partystatechanged - This event is sent when the call has been created and either party

is connected to the call.
• interaction.partystatechanged - This event is sent when the call has failed for some reason. This

includes timeouts based on the timeout attribute.
• error.voice.createcall - This event is sent when the request itself has failed for some reason.

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 237



<hold>
This action puts a voice interaction on hold for a specific resource's device. This is equivalent to the T-
Server THoldCall function.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

interactionid true value expression
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

resource true value expression none Any valid string or
Resource Object

A value expression
which returns the

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 238



Name Required Type Default Value Valid Values Description

holding device
address for this
call. See SCXML
Legal Data Values
and Value
Expressions

The following is an example:

<state id="do_holdcall">
<datamodel>

<data id="reqid"/>
<data id="ixnid"/>

</datamodel>
<onentry>

<ixn:hold requestid="_data.reqid" interactionid="_data.ixnid" resource="'1234'" />
</onentry>
<transition event="voice.hold.done" target="statex"/>
<transition event="error.voice.hold" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• voice.hold.done - This event is sent when the request has been accepted by the system and the
interaction has started the hold process.

• interaction.partystatuschanged - This event is sent when the actual resource is on hold for the call.
• <samp>error.voice.hold</samp> - This event is sent when the request itself has failed for some

reason.

<retrieve>
This action retrieves a voice interaction from hold for a specific resource's device. This is equivalent
to the T-Server TRetrieveCall function.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 239



Name Required Type Default Value Valid Values Description

model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

interactionid true value expression
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

resource true value expression none Any valid string or
Resource Object

A value expression
which returns the
retrieved device
address for this
call. See SCXML
Legal Data Values
and Value
Expressions

The following is an example:

<state id="do_retrievecall">
<datamodel>

<data id="reqid"/>
<data id="ixnid"/>

</datamodel>

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 240



<onentry>
<ixn:retrieve requestid="_data.reqid" interactionid="_data.ixnid" resource="'1234'" />

</onentry>
<transition event="voice.retrieve.done" target="statex"/>
<transition event="error.voice.retrieve" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• voice.retrieve.done - This event is sent when the request has been accepted by the system and the
interaction has started the retrieve process.

• interaction.partystatuschanged - This event is sent when the actual resource is retrieved from hold
for the call.

• error.voice.retrieve - This event is sent when the request itself has failed for some reason.

<consultation>
This action extends an existing voice interaction to consult with a new resource's device. This is
equivalent to the T-Server TInitiateTransfer and TInitiateConference functions.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 241



Name Required Type Default Value Valid Values Description

handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

interactionid true value expression
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

from true value expression none Any valid string or
Resource Object

A value expression
which returns the
address that this
consultation is to
be made from. See
SCXML Legal Data
Values and Value
Expressions

to true value expression none Any valid string or
Resource Object

A value expression
which returns the
destination
address for this
consultation See
SCXML Legal Data
Values and Value
Expressions

udata false value expression none Any valid
ECMAScript object

A value expression
which returns a
valid ECMAScript
object. This
object's data will
be come part of
the consultation
call's interaction
object. See SCXML
Legal Data Values
and Value
Expressions for
details.

The following is an example:

<state id="do_consultationcall">

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 242



<datamodel>
</datamodel>

<onentry>
<ixn:consultation requestid="_data.reqid" interactionid="_data.ixnid" from="'1234'"

to="'5678'" />
</onentry>
<transition event="voice.consultation.done" target="statex"/>
<transition event="error.voice.consultation" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• voice.consultation.done - This event is sent when the request has been accepted by the system and
it has started the consultation process.

• error.voice.consultation - This event is sent when the request itself has failed for some reason.
• interaction.partyadded - This event is sent when the consulting or consulted party has been added

to the consultation interaction.
• interaction.partystatechanged - This event is sent when the consulting or consulted party has

changed states.

<alternate>
This action alternates a resource from a held call and an active call. This is equivalent to the T-Server
TAlternateCall function.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 243



Name Required Type Default Value Valid Values Description

attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

heldinteractionid true value expression
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

heldresource true value expression none Any valid string or
Resource Object

A value expression
which returns the
address that is the
held call. For
details, see
Addressing
Resources. See
SCXML Legal Data
Values and Value
Expressions

activeinteractionid true value expression
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

activeresource true value expression none Any valid string or
Resource Object

A value expression
which returns the
address that is in
the active call. For
details, see
Addressing
Resources. See
SCXML Legal Data

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 244



Name Required Type Default Value Valid Values Description

Values and Value
Expressions

The following is an example:

<state id="do_alternatecall">
<datamodel>

<data id="reqid"/>
<data id="Aixnid"/>
<data id="Hixnid"/>

</datamodel>
<onentry>

<ixn:alternate requestid="_data.reqid" heldinteractionid="_data.Hixnid"
heldresource="'1234'" activeinteractionid="_data.Aixnid"

activeresource="'5678'" />
</onentry>
<transition event="voice.alternate.done" target="statex"/>
<transition event="error.voice.alternate" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• voice.alternate.done - This event is sent when the request has been accepted and the system has
started the alternate process.

• error.voice.alternate - This event is sent when the request itself has failed for some reason.
• interaction.partystatechanged - This event is sent when the held and active resource in the calls

changes state (held to active and active to held).

<reconnect>

This action drops the active call in the consultation and retrieves the held call for a specific resource.
This is equivalent to the T-Server TReconnectCall function.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 245



Name Required Type Default Value Valid Values Description

part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

heldinteractionid true value expression
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

heldresource true value expression none Any valid string
orResource Object

A value expression
which returns the
address that is the
held call. For
details, see
Addressing
Resources. See
SCXML Legal Data
Values and Value
Expressions

activeinteractionid true value expression
Any value
expression that
returns a valid

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 246



Name Required Type Default Value Valid Values Description

string

associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

activeresource true value expression none Any valid string or
Resource Object

A value expression
which returns the
address that is in
the active call. For
details, see
Addressing
Resources. See
SCXML Legal Data
Values and Value
Expressions

The following is an example:

<state id="do_reconnectcall">
<datamodel>

<data id="reqid"/>
<data id="Aixnid"/>
<data id="Hixnid"/>

</datamodel>
<onentry>

<ixn:reconnect requestid="_data.reqid" heldinteractionid="_data.Hixnid"
heldresource="'1234'"

activeinteractionid="_data.Aixnid" activeresource="'5678'" />
</onentry>
<transition event="voice.reconnect.done" target="statex"/>
<transition event="error.voice.reconnect" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• voice.reconnect.done - This event is sent when the request has been accepted by the system, which
has started the reconnect process.

• interaction.partystatuschanged - This event is sent when the held resource in the calls changes
state.

• interaction.partydeleted - This event is sent when the parties of the active call are dropped.
• interaction.deleted - This event is sent when the active call is terminated.
• error.voice.reconnect - This event is sent when the request itself has failed for some reason.

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 247



<conference>
This action conferences a consultation call from a specific resource. This is equivalent to the T-Server
TCompleteConference function.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

heldinteractionid true value expression
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

activeinteractionid true value expression Any value
expression that

A value expression
which returns the

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 248



Name Required Type Default Value Valid Values Description

returns a valid
string

_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

resource true value expression none Any valid string or
Resource Object

A value expression
which returns the
address that is
conferencing the
call. For details,
see Addressing
Resources. See
SCXML Legal Data
Values and Value
Expressions

The following is an example:

<state id="do_conferencecall">
<datamodel>

<data id="reqid"/>
<data id="Aixnid"/>
<data id="Hixnid"/>

</datamodel>
<onentry>

<ixn:conference requestid="_data.reqid" heldinteractionid="_data.Hixnid"
activeinteractionid="_data.Aixnid" resource="'1234'"/>

</onentry>
<transition event="voice.conference.done" target="statex"/>
<transition event="error.voice.conference" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• voice.conference.done - This event is sent when the request has been accepted by the system, which
has started the conference process.

• error.voice.conference - This event is sent when the request itself has failed for some reason.
• interaction.onmerge - This event is sent when the active call is merged with the held call.
• interaction.partydeleted - This event is sent when the party on the active call is dropped.
• interaction.deleted - This event is sent when the active call is terminated.

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 249



<transfer>
This action transfers a consultation call from a specific resource. This is equivalent to the T-Server
TCompleteTransfer function.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

heldinteractionid true value expression
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

activeinteractionid true value expression Any value
expression that

A value expression
which returns the

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 250



Name Required Type Default Value Valid Values Description

returns a valid
string

_genesys.ixn.interactions[x].g_uid
associated with
this request. See
SCXML Legal Data
Values and Value
Expressions for
details.

resource true value expression none Any valid string or
Resource Object

A value expression
which returns the
address that is
transferring the
call. For details,
see Addressing
Resources section.
See SCXML Legal
Data Values and
Value Expressions

The following is an example:

<state id="do_transfercall">
<datamodel>

<data id="reqid"/>
<data id="Aixnid"/>
<data id="Hixnid"/>

</datamodel>
<onentry>

<ixn:transfer requestid="_data.reqid" heldinteractionid="_data.Hixnid"
activeinteractionid="_data.Aixnid" resource="'1234'"/>

</onentry>
<transition event="voice.transfer.done" target="statex"/>
<transition event="error.voice.transfer" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• voice.transfer.done - This event is sent when the request has been accepted by the system, which
has started the transfer process.

• error.voice.transfer - This event is sent when the request itself has failed for some reason.
• interaction.onmerge - This event is sent when the held call and consult call on the transferring party

are merged.
• interaction.partydeleted - This event is sent when the transferring party drops.
• interaction.deleted - This event is sent when the consult call is terminated.

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 251



<privateservice>
This action enables an application to pass data and request services (such as Set Feature, SIP Advice
of Charge, change T-Server behavior, and so on) that are supported only by certain T-Servers and
which are not covered by general feature requests. This is equivalent to the T-Server
TPrivateService function and the applicable T-Server documentation should be consulted for the
applicability of this request.

Attribute Details

Name Required Version Type Default Value Valid Values Description

requestid false 8.1.1 location
expression none

Any valid
location
expression

This is the
location for the
request ID that
is returned as
part of this
request. Any
data model
expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value
will be set to an
internally
generated
unique string
identifier to be
associated with
the action being
sent. If this
attribute is not
specified, the
event identifier
is dropped. This
identifier can be
tested by the
completion
event handler
to distinguish
among several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from
the completion
event. Every
request must
receive a
unique
identifier.

serviceid true 8.1.1 value
expression none

Any value
expression that
returns a valid
integer

A value
expression
which returns
an integer to
indicate the

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 252



Name Required Version Type Default Value Valid Values Description

type of
information
being passed or
the service
being
requested. This
is specific to the
T-Server
handling the
call. Please
refer to the T-
Server
documentation
for your switch
when setting
this value. See
SCXML Legal
Data Values and
Value
Expressions for
details.

interactionid true 8.1.1 value
expression none

Any value
expression that
returns a valid
string

A value
expression
which returns
the
_genesys.ixn.interactions[x].g_uid
associated with
this request.
Non voice
interactions will
result in an
error.voice.privateservice
being
generated. See
SCXML Legal
Data Values and
Value
Expressions for
details.

resource false 8.1.1 value
expression none

Any valid string
or Resource
Object

A value
expression
which returns
the DN of the
controlling
agent or route
point on whose
behalf the
information is
provided. For
details, see
Addressing
Resources. See
SCXML Legal
Data Values and
Value
Expressions
Note: This
corresponds to
the thisDN
parameter
within the TLib

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 253



Name Required Version Type Default Value Valid Values Description

TPrivateService
method. Please
refer to the T-
Server
documentation
for your switch
when setting
this value

udata false 8.1.1 ECMAScript
Object none

Any valid
ECMAScript
object

An ECMAScript
Object which
contains the list
of key/value
pairs which
should be
attached to the
call in question.
See SCXML
Legal Data
Values and
Value
Expressions for
details.

reasons false 8.1.1 ECMAScript
Object none

Any valid
ECMAScript
object

An ECMAScript
Object which
contains the list
of key/value
pairs which
provide
additional
information
associated with
this private
service request
intended to
specify reasons
for and results
of actions taken
by the user. See
SCXML Legal
Data Values and
Value
Expressions for
details.

extensions false 8.1.1 ECMAScript
Object none

Any valid
ECMAScript
object

An ECMAScript
Object which
contains the list
of key/value
pairs which
provides an
additional data
structure
intended to
take account of
switch-specific
features that
cannot be
described by
other
parameters or

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 254



Name Required Version Type Default Value Valid Values Description

in the original
structure of
user data
associated with
this private
service request.
See SCXML
Legal Data
Values and
Value
Expressions for
details.

Note: When submitting the Private Service request the target T-Server to which this request will be
submitted will be determined based upon the following;

• If resource attribute contains both a switch and DN the switch will be used to locate the T-Server to
submit the request to.

• • If resource attribute contains only a switch part, the switch will be used to locate the T-Server to
submit the request to and the thisDN value of the underlying TLib TPrivateService will not be
populated

• If resource attribute contains only a DN part, then the switch and associated T-Server will be determined
from the accommodating interactionid. The switch will be determined based upon the first party that
has the DN resource referenced.

• If resource is not provided then the T-Server will be determined by the last party within the associated
parties entries for the supplied interaction. No resource (thisDN) will be provided in this case to the
target T-Server.

In cases where by the target T-Server cannot be determined from the information provided then an
error.voice.privateservice will be generated. The following is an example, please consult your T-
Server manual for explicit information and appropriate examples on TPrivateService and
applicable parameters:

<state id="do_private_service">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<script>
var myuserdata = { details : { name : "Smith, John", age : 45 } };
var myreasons = { code : "New Update"};
var myextensions = { keyname : "Its value" };

</script>

<ixn:privateservice requestid="_data.reqid"
serviceid="1234" interactionid="_data.ixnid"
resource="'9000'"
udata = "myuserdata"
reasons = "myreasons"
extensions = "myextensions"/>

</onentry>

<transition event="voice.privateservice.done"

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 255



cond="_event.data.requestid==_data.reqid"  target="statex"/>
<transition event="error.voice.privateservice"

cond="_event.data.requestid==_data.reqid"  target="statey"/>

</state>

Children

None

Events

The following events can be generated as part of this action, please refer to your specific T-Server
manual for details of how and when these events are to be generated as they are specific to the
service and T-Server implementation:

• voice.privateservice.done - This event is sent when the request has been accepted by the
orchestration system and sent. It is not an indication that the T-Server has handled or accepted the
event.

• error.voice.privateservice - This event is sent when the request itself has failed for some reason.

<userevent>
This action provides access to the Tlib function TSendUserEvent and allows distributing of specified
user events to registered clients of the TServer. ORS only supports sending of user events and cannot
be the recipient of such events from other sources, to interact with sessions directly from an external
source it is recommended to use the External Interfaces which are described here External Interfaces

Attribute Details

Name Required Version Type Default Value Valid Values Description

requestid false 8.1.2 location
expression none

Any valid
location
expression

This is the
location for the
request ID that
is returned as
part of this
request. Any
data model
expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value
will be set to an
internally
generated
unique string
identifier to be
associated with
the action being
sent. If this
attribute is not

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 256



Name Required Version Type Default Value Valid Values Description

specified, the
event identifier
is dropped. This
identifier can be
tested by the
completion
event handler
to distinguish
among several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from
the completion
event. Every
request must
receive a
unique
identifier.

resource true 8.1.2 value
expression none

Any valid string
or resource
object

A value
expression
which returns
the Switch and
DN that will be
used send
message. The
receving client
for the user
event should be
this DN See
SCXML Legal
Data Values and
Value
Expressions for
details.

event false 8.1.2 value
expression none

Any valid
ECMAScript
object
containing the
zero one or
more of the
following
properties:

• AttributeCallID
• AttributeCallType
• AttributeCustomerID
• AttributeConnID
• AttributeThisDN
• AttributeOtherDN
• AttributeThirdPartyDN

An
ECMAScript
Object which
contains the
list of key/
value pairs
which
describe the
content of
sent event,
with the
exception of
the user
data,
extensions
and reasons
which are
provided if
required in
additional
attributes

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 257



Name Required Version Type Default Value Valid Values Description

• AttributeDNIS
• AttributeANI
• AttributeCollectedDigits

• AttributeMediaType

for this
action.

interactionid false 8.1.2 value
expression none interaction id

Id of interaction
which
properties will
be partially
used to
populate
attributes of
distributed user
event.

udata false 8.1.2 ECMAScript
Object none

Any valid
ECMAScript
object

An ECMAScript
Object which
contains the list
of key/value
pairs which
should be sent
as user data
with the user
event See
SCXML Legal
Data Values and
Value
Expressions for
details.

reasons false 8.1.2 ECMAScript
Object none

Any valid
ECMAScript
object

An ECMAScript
Object which
contains the list
of key/value
pairs which
should be sent
as reason
information
with the user
event See
SCXML Legal
Data Values and
Value
Expressions for
details.

extensions false 8.1.2 ECMAScript
Object none

Any valid
ECMAScript
object

An ECMAScript
Object which
contains the list
of key/value
pairs which
should be sent
as extensions
with the user
event. See
SCXML Legal

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 258



Name Required Version Type Default Value Valid Values Description

Data Values and
Value
Expressions for
details.

Note 1. If the interactionid is provided in teh action then following 7 attributes will be copied from
the specified interaction if they are not explcitely defined in event (and only them): AttributeCallID,
AttributeCallType, AttributeCustomerID, AttributeConnID, AttributeDNIS, AttributeANI,
AttributeCollectedDigits. Note 2. User Event Attributes type
AttributeCallID must be provided as string or number. If taken from interaction then matches to
voice.callid property.

• AttributeCallType must be provided as string. If taken from interaction then matches to voice.type
property.

• AttributeCustomerID must be provided as string. If taken from interaction then matches to tenantid
property.

• AttributeConnID must be provided as string. If taken from interaction then matches to voice.connid
property.

• AttributeThisDN must be provided as string. Cannot be taken from interaction.
• AttributeOtherDN must be provided as string. Cannot be taken from interaction.
• AttributeThirdPartyDN must be provided as string. Cannot be taken from interaction.
• AttributeDNIS must be provided as string. If taken from interaction then matches to voice.dnis

property.
• AttributeANI must be provided as string. If taken from interaction then matches to voice.ani

property.
• AttributeCollectedDigits must be provided as string. If taken from interaction then matches to

voice.ced property.

• AttributeMediaType must be provided as number. Cannot be taken from interaction.

Sample:

<state id="do_userevent">
<datamodel>

<data id="reqid"/>
</datamodel>

<onentry>
<script>

var myuserdata = { "details": { "name": "Smith, John", "age": 45 } };
var myreasons = { "code": "New Update" };
var myextensions = { "keyname": "Its value" };
var myevent = { "AttributeThisDN": "4000", "AttributeConnID":

genesys.ixn.interactions[0].voice.connid };
var dest={ "switch":"target_switch", "dn" : "4000" };

</script>
<ixn:userevent requestid="_data.reqid"

resource = "dest"
event = "myevent"

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 259



udata = "myuserdata"
reasons = "myreasons"
extensions = "myextensions"/>

</onentry>
<transition event="voice.userevent.done" cond="_event.data.requestid==_data.reqid"

target="statex"/>
<transition event="error.voice.userevent" cond="_event.data.requestid==_data.reqid"

target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action :

• voice.userevent.done - This event is sent when the request has been accepted by the orchestration
system and sent. It is not an indication that the T-Server has handled or accepted the event.

• error.voice.userevent - This event is sent when the request itself has failed for some reason.

<querycalls>
This action queries a call from a specific resource.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 260



Name Required Type Default Value Valid Values Description

distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

resource true value expression none Any valid string or
Resource Object

A value expression
which returns the
DN of the
controlling agent
or route point on
whose behalf the
information is
provided. For
details, see
Addressing
Resources. See
SCXML Legal Data
Values and Value
Expressions

The following is an example:

<state id="do_querycalls">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<ixn:querycalls requestid="_data.reqid" resource="'600'" />
</onentry>

<transition event="voice.querycalls.done"
cond="_event.data.requestid==_data.reqid"  target="statex"/>

<transition event="error.voice.querycalls"
cond="_event.data.requestid==_data.reqid"  target="statey"/>

</state>

Children

None

Events

The following events can be generated as part of this action:

• voice.querycalls.done - This event is sent when the request has been accepted by the orchestration
system and sent.

• error.voice.querycalls - This event is sent when the request itself has failed for some reason.

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 261



Message Based Actions

The following are the msgbased-specific interaction actions.

<createmessage>
This action creates a new message and an associated interaction which can be used for the following
purposes:

• Acknowledgements (source interaction - e-mail and open media)
• AutoResponses (source interaction - e-mail and open media)
• New e-mail notifications
• SMS messages (e-mail and native)
• Forwarded e-mail
• Reply e-mail from an external resource
• Redirect e-mail
• E-mail a chat transcript
• Create outbound e-mail

This action will also give the developer the options to send the message after it is created.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 262



Name Required Type Default Value Valid Values Description

handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

type false NMTOKEN emailout_reply

acknowledgement,
auto_response,
customer_reply,
outbound_new,
emailout_reply,
inbound_collaboration_reply,
ndr_interaction,
outbound_collaboration_invite,
outbound_notification,
redirect, forwarded

This specifies the
type of message
header that is to
be used for the
message.

media false NMTOKEN _genesys.ixn.mediaType.TMediaEMail

Values from the
_genesys.ixn.mediaType
enumeration
object: TMediaAny,
TMediaEMail,
TMediaFax,
TMediaNativeSMS,
TMediaSMail,
TMediaSMS,
TMediaWebForm,
TMediaOpenMedia

This is the media
type of the
message. The
TMediaOpenMedia
is only valid when
the type attribute
value is
"acknowledgement"
or "autoresponse".

server false value expression

If not supplied, the
functional module
will determine the
server based on
the type attribute

Any value
expression that
returns a valid
string

A value expression
which returns the
name of the
msgbased server
to create this
message on. See
SCXML Legal Data
Values and Value
Expressions for
details.

relatedixnid false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
of the interaction
that is associated
with the interaction
being created with
this request. There
are special values
that can be
returned:

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 263



Name Required Type Default Value Valid Values Description

• "$NOT" -
means that
there is not
an
interaction
that is to be
related to
the new
one.

See SCXML Legal
Data Values and
Value Expressions
for details.

thread false boolean expression true
Any boolean
expression that
returns a true or
false

A boolean
expression which
returns a boolean
that identifies
whether this new
message is going
to be part of the
related
interaction's
thread. See SCXML
Conditional
Expressions for
details.

includeorig false boolean expression false
Any boolean
expression that
returns a true or
false

A boolean
expression which
returns a boolean
that identifies
whether the
original message is
going to be added
to this new
message. See
SCXML Conditional
Expressions for
details.

msgsrc false value expression none

Any of the
following valid URI
schemes:

• gdata

A value expression
which returns a URI
that identifies the
location of the
source message
(suggested
response, and so
on) to use for this
new message. The
following are the
URI schemes that
are supported:

• gdata
• Configuration

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 264



Name Required Type Default Value Valid Values Description

data
(for
example,
gdata:config\
CA.name
or
gdata:config\
SR.name)
- This
will be
the
name
(id) of
the
suggested
responses
or
categories
from
the
Configuration
Server.

• User
data
(for
example,
gdata:udata)
- this
indicates
that the
message
will be
taken
from
the user
data of
the
related
interaction.
So the
related
interaction
must
have
key/
value
pairs for
the
CategoryId
key. If
SRLid
and

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 265



Name Required Type Default Value Valid Values Description

CtgId
are in
the
related
interaction's
message
and the
CategoryId
in udata
is null,
then an
error is
generated
(error.msgbased.createmessage).

See SCXML Legal
Data Values and
Value Expressions
for details.

to false value expression none

Any list of valid
addresses. This will
be a single-quoted
string with the
address URIs
separated by
either a "," or ";".

A value expression
which returns a list
of addresses to
send this message
to. An example is
to='joe@cox.com;joe@coy.com'
or to="_origin.all".
The following are
the valid values for
this attribute:

• _origin
• _origin.all
• _udata - if

this URI
value is
used, then
this can be
the only
entry in list.
You can
also specify
a specific
key name
to be using
_udata\\<keyname>.

• List of
addresses

See SCXML Legal
Data Values and
Value Expressions
for details.

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 266



Name Required Type Default Value Valid Values Description

from false value expression none

Any valid e-mail
address(es). If
multiple addresses
are supplied, the
string with the
URIs will be single-
quoted and will be
separated by
either a "," or ";".

A value expression
which returns the
address(es) that
this message will
be from. An
example is
from="joe@cox.com"
or from="_origin".
The following are
the valid values for
this attribute:

• _origin
• List of

addresses
Note: This
attribute is
required when the
type attribute
value is:

• outbound_new
See SCXML Legal
Data Values and
Value Expressions

cc false value expression none

Any list of valid
addresses. This will
be a single-quoted
string with the
address URIs
separated by
either a "," or ";".

A value expression
which returns a list
of addresses to
send a copy of this
message to. An
example is
cc='joe@cox.com;joe@coy.com'.
cc="_origin" The
following are the
valid values for this
attribute:

• _origin
• List of

addresses
See SCXML Legal
Data Values and
Value Expressions

exclude false value expression none

Any list of valid
addresses. This will
be a single-quoted
string with the
address URIs
separated by
either a "," or ";".

A value expression
which returns a list
of addresses to
exclude from the
"to" or "cc" list of
addresses. An
example is
exclude='joe@cox.com;joe@coy.com'.
The following are
the valid values for
this attribute:

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 267



Name Required Type Default Value Valid Values Description

• List of
addresses

See SCXML Legal
Data Values and
Value Expressions

subject false value expression none Any valid string

A value expression
which returns the
subject of the new
message. There
are special values
that can be
returned:

• "$USESRL"
means the
functional
module will
use the
subject
from the
suggested
response
template.

If not specified,
there will be no
subject for the new
message. See
SCXML Legal Data
Values and Value
Expressions for
details.

queue false value expression none Any valid string

A value expression
which returns the
queue that the
new interaction or
message should be
put into when it is
created. The
SCXML session
associated with
this queue will be
responsible for
explicitly sending
this message or
interaction
later.The following
are the values that
can be provided
and what
processing will be
done:

• "$CURQUEUE"
means that
the current

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 268



Name Required Type Default Value Valid Values Description

queue
associated
with the
interaction
is used.
This value
cannot be
used if the
relatedixnid
value is
"$NOT".

• If no value
is specified
the
message
will be sent
by platform
automatically.
The session
will not get
any other
events
(except
masgbased.createmessage.done)
related with
this
message.

It is recommended
that you do not use
this attribute and
allow the
functional module
to send the
interaction or
message. See
SCXML Legal Data
Values and Value
Expressions for
details.

chattranscript false boolean expression false Any valid boolean
value

A boolean
expression which
identifies whether
the chat transcript
of the related
interaction (must
be a chat
interaction) should
be attached to the
message. This
attribute is only
valid when the
relatedixn attribute
does not have a
value of "NOT".
See SCXML

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 269



Name Required Type Default Value Valid Values Description

Conditional
Expressions for
details.

delivery false boolean expression false
Any boolean
expression that
returns true or
false

A boolean
expression which
returns a boolean
that identifies
whether this
message being
sent should include
a request for a
return message
indicating whether
and how the
original message
was delivered.

• If one of the
SMTP
servers
involved in
the
transport of
the original
message
fails to
deliver it,
the return
message
comes into
the system
with
subtype
InboundNDR.
It contains
no
additional
information.

• If the
original
message is
successfully
delivered,
the return
message
comes into
the system
with
subtype
InboundReport.
It uses
attached
data to

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 270



Name Required Type Default Value Valid Values Description

indicate
delivery
statuses
such as
delayed,
delivered,
relayed,
and so on.

This attribute is
only used when
the "send"
attribute is equal
to "true". User's
Guide. See SCXML
Conditional
Expressions for
details.

disposition false boolean expression false
Any boolean
expression that
returns true or
false

A boolean
expression which
returns a boolean
that identifies
whether the
message should
include a request
for a return
message indicating
what happened to
the original
message after it
was delivered; for
example, whether
it was displayed,
printed, deleted
without displaying,
and so on. The
return message
comes into the
system with
subtype
InboundDisposition
and it provides the
delivery status in
attached data. This
attribute is only
used when the
"send" attribute is
equal to "true".
See SCXML
Conditional
Expressions for
details.

codefields false ECMAScript object none
Any valid
ECMAScript object
with a set of key/
value properties

An ECMAScript
Object which
contains the list of
key/value pairs
which should be
used to substitute
the values into the

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 271



Name Required Type Default Value Valid Values Description

suggested
response message
that is created. See
SCXML Legal Data
Values and Value
Expressions for
details.

associated false boolean expression true Any valid boolean
value

Release 8.1.400.36
introduces an
optional Boolean
attribute,
associated, for the
<ixn:createmessage>
action. The default
value is true to
comply with
previous behavior.
If the associated
attribute is set to
false, a new
interaction is not
associated with the
session that
created it. In this
case, the creating
session should not
expect any
asynchronous
events (such as
interaction.added,
and so on) that are
related to the new
interaction and the
only published
event will be
msgbased.createmessage.done.

The following is an example:

<state id="do_simple_autorsp_or_Ack">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<ixn:createmessage requestid="_data.reqid" type="customer_reply"
server="'JEmailServer1'"

msgsrc="'gdata:config\CA.SR27'" includeorig="true" to="'_origin.all'"
from="'_origin'" subject="'$USESRL'">

<ixn:field key="'$servicename'" value="_data.service"/>
</ixn:createmessage>

</onentry>
<transition event="msgbased.createmessage.done" target="statex"/>
<transition event="error.msgbased.createmessage" target="statey"/>
</state>
<state id="do_new_email">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<ixn:createmessage requestid="_data.reqid" type="emailout_reply"

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 272



server="'JEmailServer1'"
msgsrc="'gdata:config\CA.SR45'" relatedixn="'$NOT'"

to="'joee@abc.com'"
from="'doitco@xyz.com'" subject="'$USESRL'">

<ixn:field key="'$servicename'" value="_data.service"/>
</ixn:createmessage>

</onentry>
<transition event="msgbased.createmessage.done" target="statex"/>
<transition event="error.msgbased.createmessage" target="statey"/>
</state>
<state id="do_new_sms">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<ixn:createmessage requestid="_data.reqid" type="outbound_notification"
server="'JEmailServer1'"

msgsrc="'gdata:config\CA.SR888'" relatedixn="'$NOT'"
to="'joee@abc.com'"

from="'doitco@xyz.com'" subject="'Hello to Bank xyz'">
<ixn:field key="'$custname'" value="_data.custname"/>

</ixn:createmessage>
</onentry>
<transition event="msgbased.createmessage.done" target="statex"/>
<transition event="error.msgbased.createmessage" target="statey"/>
</state>
<state id="do_forward">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<ixn:createmessage requestid="_data.reqid" type="forwarded" server="'JEmailServer1'"
thread="false" to="'joee@abc.com'" from="'doitco@xyz.com'"/>

</onentry>
<transition event="msgbased.createmessage.done" target="statex"/>
<transition event="error.msgbased.createmessage" target="statey"/>
</state>
<state id="do_redirect">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<ixn:createmessage requestid="_data.reqid" type="redirect" server="'JEmailServer1'"
thread="false" to="'joee@abc.com'" from="'doitco@xyz.com'"/>

</onentry>
<transition event="msgbased.createmessage.done" target="statex"/>
<transition event="error.msgbased.createmessage" target="statey"/>
</state>
<state id="do_reply_from_extresource">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<ixn:createmessage requestid="_data.reqid" type="inbound_collaboration_reply"
server="'JEmailServer1'" thread="false" to="'joee@abc.com'"
from="'doitco@xyz.com'"/>

</onentry>
<transition event="msgbased.createmessage.done" target="statex"/>
<transition event="error.msgbased.createmessage" target="statey"/>
</state>
<state id="do_chat_transcript">
<datamodel>

<data id="reqid"/>

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 273



</datamodel>
<onentry>

<ixn:createmessage requestid="_data.reqid" type="emailout_reply"
server="'JEmailServer1'" msgsrc="'gdata:config\CA.SR988'"
thread="false" relatedixnid="_genesys.ixn.interactions[x].g_uid"
to="'joee@abc.com'" from="'doitco@xyz.com'" chattranscript="true"/>

</onentry>
<transition event="msgbased.createmessage.done" target="statex"/>
<transition event="error.msgbased.createmessage" target="statey"/>
</state>
<state id="do_new_task">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<ixn:createmessage requestid="_data.reqid" type="outbound_new"
server="'JEmailServer1'" msgsrc="'gdata:config\CA.SR999'"
thread="false" relatedixnid="'$NOT'" to="'agent1'"
from="'doitco@xyz.com'"/>

</onentry>
<transition event="msgbased.createmessage.done" target="statex"/>
<transition event="error.msgbased.createmessage" target="statey"/>
</state>

Required Attributes based on Request and Media Type

Note: For <createmessage>, all request types except outbound_new require a related interaction
(relatedixnid). For send, all requests require a related interaction (relatedixnid). The related
interaction id defaults to _genesys.ixn.interactions[main_ixnid].g_uid if none is specified on
the request (so it's not listed as a required attribute in the following table).

Type Media Required Attributes Comments

acknowledgement,
auto_response

TMediaEMail,
TMediaOpenMedia msgsrc

msgsrc may be gdata:config\
CA.id or gdata:config\SA.id or
gdata:udata A valid related
interaction is required.

acknowledgement,
auto_response TMediaNativeSMS msgsrc

msgsrc contains text string of
message. A valid related
interaction is required.

forwarded TMediaEMail msgsrc, to
msgsrc must be gdata:config\
SA.id A valid related
interaction is required.

inbound_collaboration_reply TMediaEMail

no required attributes A valid
related interaction is required.
The related interaction must
be of type
"InboundCollaborationReply"

outbound_new TMediaEMail, TMediaSMS msgsrc, from If 'to' is not specified then
'ContactId' must be in user

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 274



Type Media Required Attributes Comments

data of related interaction.
msgsrc may be gdata:config\
CA.id or gdata:config\SA.id or
gdata:udata

outbound_new TMediaNativeSMS msgsrc, to, from msgsrc contains text string of
message.

outbound_notification TMediaEMail msgsrc A valid related interaction is
required.

redirect TMediaEMail to A valid related interaction is
required.

Children

None

Events

The following events can be generated as part of this action:

• msgbased.createmessage.done - This event is sent when the request has been accepted by the
system, creating the msgbased interaction.

• error.msgbased.createmessage - This event is sent when the request has failed for some reason.
• interaction.present - This event is sent when the actual new msgbased interaction is created and is

available to the session (if the queue is not specified).

<sendmessage>
This action sends a message that was created either by the <createmessage> action or by an outside
source (for example, agent desktop).

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 275



Name Required Type Default Value Valid Values Description

Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

server false value expression

If not supplied, the
functional module
will determine the
server based on
the media type of
the interaction

Any value
expression that
returns a valid
string

A value expression
which returns the
name of the
msgbased server
to create this
message on. See
SCXML Legal Data
Values and Value
Expressions for
details.

interactionid false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
of the interaction
that is associated
with this request.
There is a special
value that can be
returned:

• ECMAScript
Null means
the
functional
module will
not use an
interaction
for the
request.

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 276



Name Required Type Default Value Valid Values Description

See SCXML Legal
Data Values and
Value Expressions
for details.

delivery false boolean expression false
Any boolean
expression that
returns a true or
false

A boolean
expression which
returns a boolean
which identifies if
the message being
sent should include
a request for a
return message
indicating whether
and how the
original message
was delivered.

• If one of the
SMTP
servers
involved in
the
transport of
the original
message
fails to
deliver it,
the return
message
comes into
the system
with
subtype
InboundNDR.
It contains
no
additional
information.

• If the
original
message is
successfully
delivered,
the return
message
comes into
the system
with
subtype
InboundReport.
It uses
attached
data to

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 277



Name Required Type Default Value Valid Values Description

indicate
delivery
statuses
such as
delayed,
delivered,
relayed,
and so on.

See SCXML
Conditional
Expressions for
details.

disposition false boolean expression false
Any boolean
expression that
returns a true or
false

A boolean
expression which
returns a boolean
that identifies
whether the
message should
include a request
for a return
message indicating
what happened to
the original
message after it
was delivered; for
example, whether
it was displayed,
printed, deleted
without displaying,
and so on. The
return message
comes into the
system with
subtype
InboundDisposition,
and it provides the
delivery status in
attached data. See
SCXML Conditional
Expressions for
details.

from false value expression none A valid address URI

A value expression
which returns the
address that this
message will be
from. If specified, it
will overwrite the
current "from"
address in the
message. An
example is
from="joe@cox.com"
The following are
the valid values for
this attribute:

• address

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 278



Name Required Type Default Value Valid Values Description

See SCXML Legal
Data Values and
Value Expressions

cc false value expression none

Any list of valid
addresses. This will
be a single-quoted
string with the
address URIs
separated by
either a "," or ";".

A value expression
which returns a list
of additional
addresses to send
a copy of this
message to. These
addresses are
added to the
current list of
carbon copy
addresses in the
message being
sent. An example
is
cc='joe@cox.com;joe@coy.com'.
The following are
the valid values for
this attribute:

• List of
addresses

See SCXML Legal
Data Values and
Value Expressions

exclude false value expression none

Any list of valid
addresses. This will
be a single-quoted
string with the
address URIs
separated by
either a "," or ";".

A value expression
which returns a list
of additional
addresses to
exclude from the
"to" or "cc" list of
addresses. An
example is
exclude='joe@cox.com;joe@coy.com'
The following are
the valid values for
this attribute:

• List of
addresses

See SCXML Legal
Data Values and
Value Expressions

subject false value expression none Any valid string

A value expression
which returns the
subject of the
message that is to
be sent. This will
overwrite the
subject currently
assigned to the
message. See
SCXML Legal Data

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 279



Name Required Type Default Value Valid Values Description

Values and Value
Expressions for
details.

headerfields false ECMAScript object none
Any valid
ECMAScript object
with a set of key/
value properties.

An ECMAScript
Object which
contains the list of
key/value pairs
which should be
used to add
headers to the
message when it is
sent. See SCXML
Legal Data Values
and Value
Expressions for
details.

The following is an example:

<state id="do_send">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<ixn:sendmessage requestid="_data.reqid" server="'JEmailServer1'"
delivery="true"/>

</onentry>
<transition event="msgbased.sendmessage.done" target="statex"/>
<transition event="error.msgbased.sendmessage" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• msgbased.sendmessage.done - This event is sent when the request has been accepted by the system
and the msgbased message is being sent.

• error.msgbased.sendmessage - This event is sent when the request has failed for some reason.

<getcontent >
This action gets the latest version of the message and updates the
_genesys.ixn.interactions[].msgbased.content property

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 280



Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

interactionid false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
of the interaction
that is associated
with this request.
There is a special
value that can be
returned:

• ECMAScript
Null means
the
functional
module will
not use an
interaction
for the

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 281



Name Required Type Default Value Valid Values Description

request.
See SCXML Legal
Data Values and
Value Expressions
for details.

The following is an example:

<state id="do_getContent">
<datamodel>

<data id="reqid"/>
<data id="ixnid"/>
<data id="currentixn"/>

</datamodel>
<onentry>

<ixn:getcontent requestid="_data.reqid"
interactionid="'_genesys.ixn.interactions[_data.ixnid].g_uid"/>

</onentry>
<transition event="msgbased.getcontent.done" target="statex"/>
<transition event="error.msgbased.getcontent" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• msgbased.getcontent.done - This event is sent when the request has been accepted by the system and
the content has been refreshed.

• error.msgbased.getcontent - This event is sent when the request has failed for some reason.

Chat Actions

The following are the chat-specific interaction actions.

<gettranscript >
This action gets the latest version of the chat transcript and returns it in the chat.gettranscript.done
event.

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 282



Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

interactionid false value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
_genesys.ixn.interactions[x].g_uid
of the interaction
that is associated
with this request.
There is a special
value that can be
returned:

• ECMAScript
Null means
the
functional
module will
not use an
interaction
for the

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 283



Name Required Type Default Value Valid Values Description

request.
See SCXML Legal
Data Values and
Value Expressions
for details.

The following is an example:

<state id="do_getTranscript">
<datamodel>

<data id="reqid"/>
<data id="currentixn"/>

</datamodel>
<onentry>

<ixn:gettranscript requestid="_data.reqid"
interactionid="'_genesys.ixn.interactions[1].g_uid"/>

</onentry>
<transition event="chat.gettranscript.done" target="statex"/>
<transition event="error.chat.gettranscript" target="statey"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• chat.gettranscript.done - This event is sent when the request has been accepted by the system and
the transcript has been refreshed.

• error.chat.gettranscript - This event is sent when the request has failed for some reason.

Orchestration Extensions Interaction Interface Action Elements

Orchestration Server Developer's Guide 284



Interaction Interface Events

Interaction Events

The following are the common events across interactions:

Event Attributes Description

interaction.terminate.done

This event indicates the success of the
request and that the interaction is being
terminated.

requestid This is the ID associated with the request.

interactionid This is the interaction id that was
terminated.

error.interaction.terminate

This indicates that an abnormal condition
occurred while trying to perform this
request. This event will be sent as a
result of a timeout of the request as well
or due to problems with the request itself.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• unknown
• invalidstate.state (null,

ringing, hold, transferring,
treating, routed)

• remote

description This is a more detailed description of the
error.

interaction.redirect.done

This event indicates the success of the
request and that the interaction is being
redirected.

requestid This is the ID associated with the request.

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 285



Event Attributes Description

interactionid This is the interaction id associated with
the request.

error.interaction.redirect

This indicates that an abnormal condition
occurred while trying to perform this
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request itself.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• unknown
• invalidstate.state (null,

ringing, hold, transferring,
treating, routed)

• invaliddestination
• badtranslation
• remote

description This is a more detailed description of the
error.

interaction.associate.done

This event indicates the success of the
request and that the interaction is now
associated the SCXML session.

requestid This is the ID associated with the request.

interactionid This is the interaction ID associated with
the request.

error.interaction.associate

This indicates that an abnormal condition
occurred while trying to perform this
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request itself.

requestid This is the ID associated with the request.

error This is the type of error that occurred.
The following are the possible values:

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 286



Event Attributes Description

• unknown
• invalidserver
• nointeraction

description This is a more detailed description of the
error.

interaction.attach.done

This event indicates the success of the
request and that the interaction is now
associated the SCXML session.

requestid This is the ID associated with the request.

interactionid This is the interaction ID associated with
the request.

error.interaction.attach

This indicates that an abnormal condition
occurred while trying to perform this
request.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• unknown
• nointeraction

description This is a more detailed description of the
error.

interaction.detach.done

This event indicates the success of the
request and that the interaction now is
not associated with any SCXML session.

requestid This is the ID associated with the request.

interactionid This is the interaction ID associated with
the request.

error.interaction.detach
This indicates that an abnormal condition
occurred while trying to perform this
request.

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 287



Event Attributes Description

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• unknown
• nointeraction
• invalidstate

description This is a more detailed description of the
error.

interaction.accept.done

This event indicates the success of the
request and that the interaction is being
picked.

requestid This is the ID associated with the request.

error.interaction.accept

This indicates that an abnormal condition
occurred while trying to perform this
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request itself.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• unknown
• invalidstate.state (null, hold,

transferring, treating, routed)
• reject.reason (reason is the

reason why the destination
reject it.)

• remote

description This is a more detailed description of the
error.

interaction.clear.done
This event indicates the success of the
request and that the resource's
connection to the interaction is being
cleared.

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 288



Event Attributes Description

requestid This is the ID associated with the request.

interactionid This is the interaction ID where the
resource's connection is cleared.

resource
This is the resource's address ID of the
resource's connection being cleared. [This
is unclear.]

error.interaction.clear

This indicates that an abnormal condition
occurred while trying to perform this
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request itself.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• unknown
• invalidstate.state (null,

ringing, hold, transferring,
treating, routed)

• remote

description This is a more detailed description of the
error.

interaction.singlesteptransfer.done

This event indicates the success of the
request and that the interaction has been
transferred to the specified resource.

requestid This is the ID associated with the request.

interactionid This is the interaction ID which is being
transferred.

error.interaction.singlesteptransfer

This indicates that an abnormal condition
occurred while trying to perform this
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request itself.

requestid This is the ID associated with the request.

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 289



Event Attributes Description

error

This is the type of error that occurred.
The following are the possible values:

• unknown
• invalidstate.state (null,

ringing, hold, transferring,
treating, routed)

• remote

description This is a more detailed description of the
error.

interaction.singlestepconference.done

This event indicates the success of the
request and that the specified resource
has been conferenced into the
interaction.

requestid This is the ID associated with the request.

interactionid This is the interaction ID which has been
conferenced.

error.interaction.singlestepconference

This indicates that an abnormal condition
occurred while trying to perform this
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request itself.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• unknown
• invalidstate.state (null,

ringing, hold, transferring,
treating, routed)

• remote

description This is a more detailed description of the
error.

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 290



Asynchronous Events

The following are the Interaction asynchronous events:

Event Attributes Description

interaction.added

This event indicates that a new
interaction is associated with the session
(it has been added to the
_genesys.ixn.interactions[]
array).Reasons for this event can vary -
starting of session because of this
interaction, some session activity
resulted in the creation of new
interaction, <associate> action and the
target session, or <createmessage>
action, and so on.

interactionid

This is the interaction ID of the
interaction that was added. Starting from
that moment, the corresponding
interaction object can be accessed, for
example as
_genesys.ixn.interactions[_event.data.interactionid]

interaction.deleted

This event indicates that the interaction
is not associated any more with this
session (it has been removed from the
_genesys.ixn.interactions[] array).
Reasons for this event can vary -
interaction is finished or abandoned,
<associate> action and the source
session, and so on.Every time when
interaction.deleted is going to be
published, the platform will also publish
an interaction.notcontrolled (see below)
event if the last interaction.present event
(see below) was not "notcontrolled" yet.

interactionid

This is the interaction ID of the deleted
interaction.Any attempt to access the
_genesys.ixn.interactions[] array with the
interaction ID of this interaction will result
in a runtime error.

interaction.present

This event indicates that the interaction
is under session control and the session is
allowed to perform actions on the
interaction, such as routing, redirecting,
releasing, and so on. In the case of multi-
media interactions, action or function
invocations taken before getting the
interaction.present event can result in
runtime errors.In the case of voice
interactions, action or function
invocations can be taken after the
interaction.added event, but they to have
common processing for all interaction
types. You should use the

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 291



Event Attributes Description

interaction.present event for this. [?]

interactionid
This is the interaction ID of the
interaction that is available to the session
for processing.

interaction.notcontrolled

This event accompanies
interaction.present and means the
session, although still owning the
interaction, is no longer allowed to
control it. Attempts to do so after this
event will result in runtime errors.For
voice interactions, this event will be
published immediately before the
interaction.deleted event.For multimedia
interactions this event will be published
when the Interaction Server moves (for
any reason) the interaction from the
platform back into the interaction queue.

interactionid
This is the interaction ID of the
interaction that is available to the session
for processing.

resultof

Starting with ORS 8.1.400.17 a new
resultof property is added to the
interaction.notcontrolled event. Possible
values are: detaching, deletion, routing,
revoking.

• detaching - Interaction
became notcontrolled
because it was detached from
running session.

• deletion - Interaction became
notcontrolled because it was
deleted.

• routing - Interaction became
notcontrolled because of ORS
actions like delivering to
agent, placing in queue, and
so on. So an event with
resultof = routing is an
expected event in a session
because it is a result of some
actions of strategy itself.

• revoking - Interaction being
processed by ORS (pulled) is
taken away from that ORS
instance explicitly (by agent,
by media server, by
Interaction Server due to

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 292



Event Attributes Description

inactivity) or implicitly
(disconnect from Interaction
Server so all previously pulled
interactions are not
considered as such anymore).
So an event with resultof =
revoking is a kind of
unexpected event in a
session. Most probably the
session should be terminated
upon receiving such event,
but this is up to the
application developer.

Unexpected Events: The most reliable
way for an SCXML session to behave in
the case of a primary Interaction Server
failure is to terminate upon receiving an
unexpected interaction.notcontrolled
event. These unexpected
interaction.notcontrolled events are the
result of implicit revocation of all
interactions due to an Interaction Server
disconnect. This behavior is especially
actual for an ORS cluster with several
(more than one) nodes pulling
interactions (especially with default
Interaction Server configuration – delayed
Udata updates).

The first two values of resultof (detaching
and deletion) are related to voice and
multimedia. In this case,
interaction.notcontrolled event with
resultof =('detaching'|'deletion')

is followed by an interaction.deleted
event with the same resultof property.
Values routing and revoking can be seen
only in notcontrolled events for pure
multimedia interactions. They are not
related to voice or chat through SIPS.

interaction.partyadded

This event indicates that a new party has
been created in an interaction. The
interaction.partyadded event means
adding a new party to the
interaction.parties[] array. The event is
published only if the platform detects that
the party is being added to some
interaction and that interaction is already
associated with a session. So parties
acquired by the interaction before the
interaction.added event will not be
reported through the
interaction.partyadded event (added
interactions will have them from the
beginning). In the case of multimedia
interactions, parties are agents only.
Interaction queues, workbins, or the

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 293



Event Attributes Description

interaction itself are not considered as
parties and therefore the
interaction.partyadded will not be
generated when they are added to the
interaction.

interactionid This is the interaction ID

focusdeviceid This is the device ID of the party

partyid This is the party ID

partystate This is the state of the party

interaction.partydeleted

This event indicates that a party has
been deleted from an interaction. Just like
interaction.deleted means removing an
interaction from the
_genesys.ixn.interactions[] array,
interaction.paprtydeleted event means
removing some party from the
interaction.parties[] array.

interactionid This is the interaction ID

focusdeviceid This is the device ID of the party

partyid This is the party ID

partystate This is the state of the party

interaction.partystatechanged

This event indicates that state of the
party in an interaction has been changed.
The event is published only when the
interaction is associated with a session
and the platform detects a party state
change for a party associated with the
interaction.

interactionid This is the interaction ID that is being
made available to the session.

focusdeviceid This is the device ID of the party that the
interaction is being presented to.

partyid This is the party ID

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 294



Event Attributes Description

partystate This is the state of the party

hints
This is functional module implementation-
specific data that is associated with this
event.

interaction.udata.changed

This event indicates that the user data
associated with the interaction has been
changed asynchronously (that is,
changed by an outside source). Updated
user data is available for the application
in the data model, in the corresponding
interaction object.

interactionid This is the ID of the interaction which has
had the udata changed.

interaction.ondivert

This event indicates that interaction has
been diverted. Note that after this event
is signaled, events about new parties
(new destinations) will also be sent to the
SCXML application.

hints

Starting with release 8.1.400.53, in the
case of a voice interaction, the SCXML
event interaction.ondivert will contain a
hints attribute. The content of that
attribute is functional module
implementation-specific data that is
associated with this event.

interactionid This is the ID of the interaction that is
being made available to the session.

divertingpartyid This is the ID of the party that diverted
the interaction.

divertingresource This is the device ID of the party that
diverted the interaction.

divertingpartystate This is the state of the party that diverted
the interaction.

newdestination This is the destination that the interaction
has been diverted to.

interaction.onrouterequest (since
8.1.200.73)

This event indicates that the TEvent,
EventRouteRequest, has been received
for this interaction. Normally the

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 295



Event Attributes Description

interaction.onrouterequest event can be
ignored, except in the case that the
EventRouteRequest is delayed from the
EventQueued due to scripting in the
switch, for instance by an Avaya VDN
script which performs processing before
asking that the call be routed. In these
cases, the SCXML application can
suspend processing by waiting for the
interaction.onrouterequest event before
proceeding with the session processing,
or effectively, until the switch is ready for
routing.

interactionid This is the ID of the interaction that is
being made available to the session.

interaction.onsinglesteptransfer

This event indicates that a single step
transfer has been performed in the
interaction

interactionid This is the interaction ID that is being
made available to the session.

transferringpartyid This is the ID of the party that transferred
the interaction.

transferringresource This is the device ID of the party that
transferred the interaction.

transferringpartystate This is the state of the party that
transferred the interaction.

newdestination This is the transfer destination.

interaction.onsinglestepconference

This event indicates that a single step
conference has been performed in the
interaction.

interactionid This is the interaction ID that is being
made available to the session.

conferencingpartyid This is the ID of the party that initiated
the conference.

conferencingresource This is the device ID of the party that
initiated the conference.

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 296



Event Attributes Description

conferencingpartystate This is the state of the party that
transferred the interaction.

addedpartyid This is the ID of the party that has been
added to the interaction.

addedresource This is the ID of the device that has been
added to the interaction.

addedpartystate This is the state of the party that has
been added to the interaction.

interaction.onmerge

This event indicates that two interactions
were merged (indicating consult call
completion). There are two types of
merge possible: transfer completion or
conference completion. The type of
merge is provided in the hints in the Call
Control Event.

frominteractionid This is the interaction ID that is being
merged (consult).

tointeractionid This is the interaction ID that is the
merge destination (primary).

activeresource This is the ID of the active device in the
primary or consult call pair.

activepartyid This is the ID of the active party in the
primary or consult call pair.

activepartystate This is the state of the active party in the
primary or consult call pair.

heldresource This is the ID of the held device in the
primary or consult call pair.

heldpartyid This is the ID of the held party in the
primary or consult call pair.

heldpartystate This is the state of the held party in the
primary or consult call pair.

interaction.property.changed (Since
8.1.400.39)

For multimedia interactions, this event
will be published upon an

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 297



Event Attributes Description

OnCallInfoChangedEx notification.
Notifies ORS of a change in an interaction
property. It also changes the interaction
object property for the interaction
referred to by the interactionid attribute.

interactionid This is the interaction ID that is being
made available to the session.

hints Attribute Considerations The hints property of the interaction events is populated as
follows:

• hints.ccevent - Call Control Event - This gives detailed definition of the interaction events being raised.
This property is an integer and may have one of the following values:
• 0 - CallControlEvent_Bridged
• 1 - CallControlEvent_ConnectionCleared
• 2 - CallControlEvent_Delivered
• 3 - CallControlEvent_Established
• 4 - CallControlEvent_Failed
• 5 - CallControlEvent_Held
• 6 - CallControlEvent_Offered
• 7 - CallControlEvent_Originated
• 8 - CallControlEvent_Queued
• 9 - CallControlEvent_Retrieved
• 10 - CallControlEvent_ServiceInitiated
• 11 - CallControlEvent_Transfered
• 12 - CallControlEvent_Conferenced
• 13 - CallControlEvent_Diverted

• hints.cause - Call Control Event Cause - This is a detailed definition of the cause of the interaction
events being raised. This property is an integer and may have one of the following values:
• 0 - CCEventCause_unknown
• 1 - CCEventCause_busy
• 2 - CCEventCause_conference
• 3 - CCEventCause_distributed
• 4 - CCEventCause_distributionDelay
• 5 - CCEventCause_enteringDistribution
• 6 - CCEventCause_normal

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 298



• 7 - CCEventCause_redirected
• 8 - CCEventCause_singleStepConference
• 9 - CCEventCause_singleStepTransfer
• 10 - CCEventCause_transfer

• hints.callstate (since 8.1.3) - Call Control Event Call State - This is a detailed definition of the current
call state of the interaction associated with the event being raised. This optional property is an integer
and may have one of the following values:
• 0 - CallStateOk
• 1 - CallStateTransferred
• 2 - CallStateConferenced
• 3 - CallStateGeneralError
• 4 - CallStateSystemError
• 5 - CallStateRemoteRelease
• 6 - CallStateBusy
• 7 - CallStateNoAnswer
• 8 - CallStateSitDetected
• 9 - CallStateAnsweringMachineDetected
• 10 - CallStateAllTrunksBusy
• 11 - CallStateSitInvalidnum
• 12 - CallStateSitVacant
• 13 - CallStateSitIntercept
• 14 - CallStateSitUnknown
• 15 - CallStateSitNocircuit
• 16 - CallStateSitReorder
• 17 - CallStateFaxDetected
• 18 - CallStateQueueFull
• 19 - CallStateCleared
• 20 - CallStateOverflowed
• 21 - CallStateAbandoned
• 22 - CallStateRedirected
• 23 - CallStateForwarded
• 24 - CallStateConsult
• 25 - CallStatePickedup
• 26 - CallStateDropped
• 27 - CallStateDroppednoanswer

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 299



• 28 - CallStateUnknown
• 29 - CallStateCovered
• 30 - CallStateConverseOn
• 31 - CallStateBridged
• 32 - CallStateSilenceDetected
• 49 - CallStateDeafened
• 50 - CallStateHeld

Also, see genesys.ixn.callState ENUM Object.

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 300



Voice Events
The event namespace convention is voice.xxxx. The following are the Voice action result events:

Event Attributes Description

voice.createcall.done

This event indicates the success of the
request and that the interaction has been
created.

requestid This is the ID associated with the request.

interactionid This is the interaction ID associated with
the interaction that was created.

callstate This is the Call Control Event Call State.
(since 8.1.3, see below)

error.voice.createcall

This indicates that an abnormal condition
occurred while trying to perform the
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

interactionid
This is the ID associated with the
interaction that might have been created
in conjunction with this request, but has
failed.

error

This is the type of error that occurred:

• timeout
• invalidsource
• invaliddestination
• invalidserver
• unknown

description This is a more detailed description of the
error.

callstate This is the Call Control Event Call State.

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 301



Event Attributes Description

(since 8.1.3, see below)

voice.hold.done

This event indicates the success of the
request and that the specified resource's
device is going on hold for the call.

requestid This is the ID associated with the request.

interactionid This is the interaction ID associated with
the interaction that was created.

error.voice.hold

This indicates that an abnormal condition
occurred while trying to perform the
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

interactionid
This is the ID associated with the
interaction that might have been created
in conjunction with this request, but has
failed.

error

This is the type of error that occurred:

• timeout
• invalidsource
• invalidinteraction
• invalidserver
• unknown

description This is a more detailed description of the
error.

voice.retrieve.done

This event indicates the success of the
request and that the specified resource's
device is going to be retrieved from hold
for the call.

requestid This is the ID associated with the request.

interactionid This is the interaction ID associated with

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 302



Event Attributes Description

the interaction that was created.

error.voice.retrieve

This indicates that an abnormal condition
occurred while trying to perform the
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

interactionid
This is the ID associated with the
interaction that might have been created
in conjunction with this request, but has
failed.

error

This is the type of error that occurred:

• timeout
• invalidsource
• invalidinteraction
• invalidserver
• unknown

description This is a more detailed description of the
error.

voice.consultation.done

This event indicates the success of the
request and that the specified resource's
device is going to put an existing call on
hold and create a new call.

requestid This is the ID associated with the request.

interactionid This is the interaction ID associated with
the interaction that was created.

error.voice.consultation

This indicates that an abnormal condition
occurred while trying to perform the
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 303



Event Attributes Description

interactionid
This is the ID associated with the
interaction that might have been created
in conjunction with this request, but has
failed.

error

This is the type of error that occurred:

• timeout
• invalidsource
• invalidinteraction
• invaliddestination
• invalidserver
• unknown

description This is a more detailed description of the
error.

voice.alternate.done

This event indicates the success of the
request and that the specified resource's
devices are going to alternate between
calls.

requestid This is the ID associated with the request.

interactionid This is the interaction ID associated with
the interaction that was created.

error.voice.alternate

This indicates that an abnormal condition
occurred while trying to perform the
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

interactionid
This is the ID associated with the
interaction that might have been created
in conjunction with this request, but has
failed.

error

This is the type of error that occurred:

• timeout
• invalidsource

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 304



Event Attributes Description

• invalidinteraction
• invalidserver
• unknown

description This is a more detailed description of the
error.

voice.reconnect.done

This event indicates the success of the
request and that the specified resource's
devices are going to drop the active call
and retrieve the held call.

requestid This is the ID associated with the request.

interactionid This is the interaction id associated with
the interaction that was created.

error.voice.reconnect

This indicates that an abnormal condition
occurred while trying to perform the
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

interactionid
This is the ID associated with the
interaction that might have been created
in conjunction with this request, but has
failed.

error

This is the type of error that occurred:

• timeout
• invalidsource
• invalidinteraction
• invalidserver
• unknown

description This is a more detailed description of the
error.

voice.conference.done This event indicates the success of the

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 305



Event Attributes Description

request and that the specified resource's
devices are going to conference two calls.

requestid This is the ID associated with the request.

interactionid This is the interaction ID associated with
the interaction that was created.

error.voice.conference

This indicates that an abnormal condition
occurred while trying to perform the
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

interactionid
This is the ID associated with the
interaction that might have been created
in conjunction with this request, but has
failed.

error

This is the type of error that occurred:

• timeout
• invalidsource
• invalidinteraction
• invalidserver
• unknown

description This is a more detailed description of the
error.

voice.transfer.done

This event indicates the success of the
request and that the specified resource's
devices are going to transfer a call.

requestid This is the ID associated with the request.

interactionid This is the interaction ID associated with
the interaction that was created.

error.voice.transfer This indicates that an abnormal condition
occurred while trying to perform the

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 306



Event Attributes Description

request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

interactionid
This is the ID associated with the
interaction that might have been created
in conjunction with this request, but has
failed.

error

This is the type of error that occurred:

• timeout
• invalidsource
• invalidinteraction
• invalidserver
• unknown

description This is a more detailed description of the
error.

voice.privateservice.done

This event is sent when the request has
been accepted by the underlying
functional module and that it is able to
send it. It is not an indication that the T-
Server has handled or accepted the
event.

requestid This is the ID associated with the request.

interactionid
This is the ID associated with the
interaction that was passed to the
<privateservice> action.

error.voice.privateservice

This indicates that an abnormal condition
occurred while trying to perform the
request. This event may be seen as a
result of failing to send the message or
may occur after the target T-Server has
received and attempted to process the
event. In the case of failing to send the
request it will be sent as a result of a
timeout of the request as well as due to
problems with the request or interaction
itself as described in the error and the
description. If this occurs as a result of an
error in the processing of the request by

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 307



Event Attributes Description

the T-Server the error property will be set
to indicate "tserver", with a generic
description and more details available
within the properties.

requestid This is the ID associated with the request.

interactionid
This is the ID associated with the
interaction that was passed to the
<privateservice> action.

error

This is the type of error that occurred:

• timeout
• invalidsource
• invalidinteraction
• invalidserver
• unknown tserver

description This is a more detailed description of the
error.

properties

This is an ECMAScript object that
represents the various properties of the
TServer EventError structure. It will
only be present if the request has been
successfully transmitted and received by
the T-Server. If present, the error property
will be set to "tserver" to signify this was
an error generated by the T-Server
handling the request.

callstate Attribute Considerations (since 8.1.3) The callstate property of the voice events is
populated as follows:

• callstate - Call Control Event Call State - This is a detailed definition of the current call state of the
interaction associated with <createcall> action events being raised when the type attribute value is
"predictive". This property is an integer and may be undefined or have one of the following values:
• 0 - CallStateOk
• 1 - CallStateTransferred
• 2 - CallStateConferenced
• 3 - CallStateGeneralError
• 4 - CallStateSystemError
• 5 - CallStateRemoteRelease

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 308



• 6 - CallStateBusy
• 7 - CallStateNoAnswer
• 8 - CallStateSitDetected
• 9 - CallStateAnsweringMachineDetected
• 10 - CallStateAllTrunksBusy
• 11 - CallStateSitInvalidnum
• 12 - CallStateSitVacant
• 13 - CallStateSitIntercept
• 14 - CallStateSitUnknown
• 15 - CallStateSitNocircuit
• 16 - CallStateSitReorder
• 17 - CallStateFaxDetected
• 18 - CallStateQueueFull
• 19 - CallStateCleared
• 20 - CallStateOverflowed
• 21 - CallStateAbandoned
• 22 - CallStateRedirected
• 23 - CallStateForwarded
• 24 - CallStateConsult
• 25 - CallStatePickedup
• 26 - CallStateDropped
• 27 - CallStateDroppednoanswer
• 28 - CallStateUnknown
• 29 - CallStateCovered
• 30 - CallStateConverseOn
• 31 - CallStateBridged
• 32 - CallStateSilenceDetected
• 49 - CallStateDeafened
• 50 - CallStateHeld

Also, see genesys.ixn.callState ENUM Object.

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 309



Message Based Events
The event namespace convention is msgbased.xxxx. The following are the Msgbased action result
events:

Event Attributes Description

msgbased.createmessage.done

This event indicates the success of the
request and that a message and an
associated interaction has been created.

requestid This is the ID associated with the request.

interactionid This is the interaction ID associated with
the interaction that was created.

srid This is the ID of the suggested response
that was used.

error.msgbased.createmessage

This indicates that an abnormal condition
occurred while trying to perform the
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

error

This is the type of error that occurred:

• Timeout
• Request Invalid

description This is a more detailed description of the
error.

msgbased.sendmessage.done

This event indicates the success of the
request and that a message and an
associated interaction has been sent.

requestid This is the ID associated with the request.

error.msgbased.sendmessage
This indicates that an abnormal condition
occurred while trying to perform the
request. This event will be sent as a

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 310



Event Attributes Description

result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

error

This is the type of error that occurred:

• Timeout
• Request Invalid

description This is a more detailed description of the
error.

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 311



Chat Events
The event namespace convention is chat.xxxx. The following are the chat action result events:

Event Attributes Description

chat.sendchatmessage.done

This event indicates the success of the
request and that a chat message has
been sent in association with a given
party.

requestid This is the ID associated with the request.

error.chat.sendchatmessage

This indicates that an abnormal condition
occurred while trying to perform the
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

error
This is the type of error that occurred:

• Request Invalid

description This is a more detailed description of the
error.

chat.gettranscript.done

This event indicates the success of the
request and contains chat transcript.

requestid This is the ID associated with the request.

transcript

This is the ECMAScript Object (array),
which contains transcript messages as
elements. Each element has the following
properties:

• date - number of seconds
since 1 January 1970
00:00:00 UTC

• device - name of chat party
• text - chat message
• visibility - specifies the

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 312



Event Attributes Description

visibility level of this
particular transcript event
(could be: "ALL" – like
conference mode, "INT" – like
coaching mode, "VIP" – like
monitoring mode for
supervisors)

error.chat.gettranscript

This indicates that an abnormal condition
occurred while trying to perform this
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request itself.

requestid This is the ID associated with the request.

error This is the type of error that occurred.

description This is a more detailed description of the
error.

chat.getcontent.done

This event indicates the success of the
request and that the content object has
been refreshed.

requestid This is the ID associated with the request.

error.chat.getcontent

This indicates that an abnormal condition
occurred while trying to perform the
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

error
This is the type of error that occurred:

• Request Invalid

description This is a more detailed description of the
error.

Orchestration Extensions Interaction Interface Events

Orchestration Server Developer's Guide 313



Dialog Interface

Overview

The dialog interface defines the functionality that allows the orchestration logic to do the following:

• Run a particular dialog application (VXML, HTML, and so on) on a specific interaction and by a specific
resource/device.

• Collect the results of the dialog application that was run.

A dialog application represents the logic and presentation forms needed by the resources to have a
media-specific conversation with a customer (for example, voice script, agent application (CRM,
custom, and so on)). Dialog applications drive the behavior of resources in interacting with
customers. The dialog application *always* operates on resources/devices. The actual presentation
or communication (audio or visual) of the dialog application is media channel-specific. These dialog
applications are actually communicated through the associated interactions and the resource's media
device. These dialog applications drive the communication of the resources with the customer. This
communication can be done directly by the resource itself, for example, by way of an IVR or a
website. Or it can be done indirectly through a proxy, for example, the resource is the system's
representation of the agent, the dialog application is the agent application, and the proxy is the
actual agent. In this last case, the agent reads information from the agent application to the
customer, collects information from the customer, and puts it into the agent application. The
following are the types of dialog applications:

• Voice Script (VXML) - Directly - Voice interactions
• Agent Application (CRM, custom, agent script, and so on) - Indirectly - Can be used with any type of

interaction, because it is indirectly communicated to the customer via a human business resource
• Web Application - Directly - Web interactions
• Legacy voice applications - Voice interactions
• Legacy voice treatments - Voice interactions

The granularity of a dialog application depends on how much interaction is needed with the
orchestration logic layers. In some cases, the orchestration logic can actually be part of a dialog
application.

Treatments are a specific type of dialog application. They are voice interaction related dialogs that
are used to communicate with the customer while the orchestration logic is trying to find a resource
or some other processing to help the customer (that is, while the customer is queued waiting). There
will be a set of treatment-specific elements to cover this specific functionality. The treatment actions
or elements can be used in combination with elements from the Queue functional module interface

The following is a sequence diagram to show the basic call flow the <start> action element which is
generally the same for all the other treatments.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 314



Dialog sequence diagram.png

Media Resource Addressing

The media resource device addresses that are used in in the dialog action elements must be known
to the dialog functional module and must be configured in the Genesys configuration layer. These
addresses vary based on the type of media by means of which they communicate with the dialog
application. For example, voice interaction related dialog resource device addresses are directory or
phone numbers. In an orchestration application, these resource device addresses will be represented
in the following formats:

• String or Resource Object for Voice-related media dialog application with a format the same as the voice
interaction FM Action element resource attributes. See Addressing Resources for details.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 315



Extension Data

As of 8.1.2 when using the Dialog actions, extension data may be provided to influence the operation
of the action and is passed using the hints attribute with a property named extensions containing
the information that is required to be sent with the request. Also response events both error and
normal done events may optionally carry extension data if returned from the device performing the
operation. If extension data is available in such events it shall be found in the extensions property
of the returned event.

Parameter Elements

We will have parameter elements for the following action elements to be used as input attributes.

• <collect>

• <play>

• <playandcollect>

• <playandverify>

• <runtreatments>

<prompts>
This is the top-level element which defines the set of prompts which are to be used under certain
conditions associated with the treatment dialog.

Attributes

Name Required Type Default Value Valid Values Description

type false NMTOKEN ann
tts, ann, iretry,
ifailure, isuccess,
itimeout,
MSG_type

This specifies the
type of condition
that these prompts
will be used for:

• ann - This
represents
a list of
normal
announcements
to be
played to
the caller.

• tts - This
represents
a list of
TTS-based
announcements

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 316



Name Required Type Default Value Valid Values Description

to be
played to
the caller.
All
<prompt>
element
children
must have
the text
attribute.

• iretry - This
represents
a list of
announcements
to be
played
after input
verification
has failed
and the
caller is
asked to
reenter
information.

• ifailure -
This
represents
a list of
announcements
to be
played
when the
input
verification
has failed.

• isuccess -
This
represents
a list of
announcements
to be
played
when the
input
verification
is
successful.

• itimeout -
This
represents

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 317



Name Required Type Default Value Valid Values Description

a list of
announcements
to be
played
when the
time
expires for
collecting
the input
from the
caller.

• MSG_type -
This
represents
the old
MSG* user
data key/
value pairs
that could
be used for
the <play>
and
<playandcollect>
actions in
place of the
tts and ann
prompt
types.
When the
type
attribute is
set to this
value, there
can only be
one child
<prompt>
element.

Children

• <prompt> - Occurs 1 to 10 times. Each instance defines a given announcement to be played to the
caller.

<prompt>
This defines a given announcement to play to a caller.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 318



Attributes

Name Required Type Default Value Valid Values Description

intid false value expression none
Any expression
that returns a valid
integer

This represents a
string ID for the
announcement.
This is mutually
exclusive with the
following
attributes:

• number
• userAnnid
• text

See SCXML Legal
Data Values and
Value Expressions
for details.

number false value expression none
Any expression
that returns a valid
string

This represents the
number to
announce. The first
digit defines how
the number should
be announced:

• 0 - one at a
time
(example:
411 will be
pronounced
as four-one-
one)

• 1 - date
(example:
the
eleventh of
April)

• 2 - time
(four
eleven
a.m.)

• 3 - phone
number
(four-one-
one)

• 4 - money
(four
dollars and
eleven
cents)

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 319



Name Required Type Default Value Valid Values Description

• 5 - number
(four
hundred
and eleven)

This is mutually
exclusive with the
following
attributes:

• intid
• userAnnid
• text

See SCXML Legal
Data Values and
Value Expressions
for details.

userannid false value expression none
Any expression
that returns a valid
string

This represents the
user
announcement ID
as returned after a
successful
recording of a user
announcement
request. This is
mutually exclusive
with the following
attributes:

• intid
• number
• text

See SCXML Legal
Data Values and
Value Expressions
for details.

userid false value
expression none

Any expression
that returns a
valid string

Used in
conjuction with
userannid to
provide context
in which
userannid will
be interpreted.
This is often
then the tenant
name. (since
8.1.2)

text false value expression none Any expression
that returns a valid

This represents the
ASCII text to be

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 320



Name Required Type Default Value Valid Values Description

string

announced using
text-to-speech
technology (if
supported by the IP
equipment). This is
mutually exclusive
with the following
attributes:

• number
• userAnnid
• intid

See SCXML Legal
Data Values and
Value Expressions
for details.

interrupt false boolean expression true
Any expression
that returns a
boolean (true,
false)

This indicates
whether the caller
can interrupt the
announcement.
See SCXML
Conditional
Expressions for
details.

Children

None

<input>
This is the top-level element which defines the characteristics needed to collect digits from a caller in
association with the treatment dialog.

Attributes

Name Required Type Default Value Valid Values Description

max_digits false value expression none
Any expression
that returns a valid
integer

The maximum
number of digits to
be collected (up to
31). Note:
max_digits may be
equal to 0. In this
case, no time is
spent waiting for
caller input digits,
and a response is
returned indicating
0 digits were
collected. See

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 321



Name Required Type Default Value Valid Values Description

SCXML Legal Data
Values and Value
Expressions for
details.

abort_digits false value expression none
Any expression
that returns a valid
string

This sequence of
up to two keys
aborts the digit-
collection
operation. If this
sequence appears,
the intelligent
peripheral
considers this to be
a failed digit-
collection attempt.
See SCXML Legal
Data Values and
Value Expressions
for details.

ignore_digits false value expression none
Any expression
that returns a valid
string

This sequence of
up to two keys is
treated as though
the keys have not
been pressed. See
SCXML Legal Data
Values and Value
Expressions for
details.

backspace_digits false value expression none
Any expression
that returns a valid
string

This sequence of
up to two keys
causes the
previous keystroke
to be discarded.
See SCXML Legal
Data Values and
Value Expressions
for details.

term_digits false value expression none
Any expression
that returns a valid
string

This sequence of
up to two keys
causes all the
digits, not
including the
term_digits, to be
returned to the
service logic as
collected digits.
See SCXML Legal
Data Values and
Value Expressions
for details.

reset_digits false value expression none
Any expression
that returns a valid
string

This sequence of
up to two keys
causes all the
previous

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 322



Name Required Type Default Value Valid Values Description

keystrokes to be
discarded. The
digit collection
resumes. See
SCXML Legal Data
Values and Value
Expressions for
details.

clear false boolean false true, false

Indicates whether
any information
that has been
input should be
cleared before digit
collection starts.
Not supported in
GR-1129-CORE
protocol
implementation.

start_timeout false value expression none
Any expression
that returns a valid
integer

The number of
seconds the
resource should
wait for the caller
to begin DTMF
input. See SCXML
Legal Data Values
and Value
Expressions for
details.

digit_timeout false value expression none
Any expression
that returns a valid
integer

The number of
seconds the
resource should
wait between
DTMF digits. See
SCXML Legal Data
Values and Value
Expressions for
details.

total_timeout false value expression none
Any expression
that returns a valid
integer

The total number
of seconds the
resource should
wait for the caller
to provide the
requested DTMF
input See SCXML
Legal Data Values
and Value
Expressions for
details.

Children

None

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 323



<compare>
This defines what needs to be compared to the digits collected from the caller.

Attributes

Name Required Type Default Value Valid Values Description

digits false value expression none
Any expression
that returns a valid
string

This represents the
actual digits the
caller input should
be compared
against. This is
mutually exclusive
with the following
attributes:

• userid
• planid

See SCXML Legal
Data Values and
Value Expressions
for details.

userid false value expression none
Any expression
that returns a valid
string

This represents the
user ID string that
the resource
should use to index
into a local table
for verification.
This is mutually
exclusive with the
following
attributes:

• digits
• planid

See SCXML Legal
Data Values and
Value Expressions
for details.

planid false value expression none
Any expression
that returns a valid
integer

This represents an
index into a
resource's table of
dialing plans. The
input is checked
for general format
compliance with
the dialing plan
selected by this ID.
This is mutually
exclusive with the
following
attributes:

• digits

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 324



Name Required Type Default Value Valid Values Description

• userid
See SCXML Legal
Data Values and
Value Expressions
for details.

attempts false value expression 0
Any expression
that returns a valid
integer

This indicates the
number of
attempts the caller
is allowed to make
before failing the
verification. See
SCXML Legal Data
Values and Value
Expressions for
details.

timeout false value
expression 0

Any expression
that returns a
valid integer

The total number
of seconds the
resource should
wait for the
comparison to be
made before
timing out See
SCXML Legal Data
Values and Value
Expressions for
details.

Children

None

<pause>
This is the top-level element which defines the duration of a pause to be used between dialog
treatments for the <runtreatments> element.

Attributes

Name Required Type Default Value Valid Values Description

duration false value expression 0
Any expression
that returns a valid
integer

A value expression
which returns the
duration in
seconds that the
treatment
processing should
pause. See SCXML
Legal Data Values
and Value
Expressions for

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 325



Name Required Type Default Value Valid Values Description

details.

Children

None

Action Elements

<runtreatments>
This action performs a series of treatments in the order specified. This action can only be a child of
the Queue FM's <submit> action element.

Attribute Details

None

The following are action limitations:

• The <stop> action can not be used to cancel this series of treatments.
• This action can only be a child of the <queue:submit> action.
• No events will be generated for all treatment actions that are defined.

The following are examples:

<state id="Skills-Based-with-Treatments">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<queue:submit queue="'VQ1'" requestid="_data.reqid" ordertype="'min'"
orderstat="'StatExpectedWaitingTime'" timeout="100">

<queue:targets type="agentgroup" statserver="'www.genesyslab.stserver1.com'">
<queue:target name="'agtgrp2'"/>

</queue:targets>
<dialog:runtreatments>

<dialog:play language="'English(US)'">
<dialog:prompts type="ann">

<dialog:prompt interrupt="true" intid="1111"/>
<dialog:prompt interrupt="true" number="'2222'"/>

</dialog:prompts>

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 326



</dialog:play>
<dialog:collect>

<dialog:input max_digits="6" abort_digits="'1'" term_digits="'9'"
total_timeout="20"/>

</dialog:collect>
<dialog:playsound type="'music'" resource="'EMusicDN'" duration="100"/>

</dialog:runtreatments>
</queue:submit>

</onentry>
<transition event="queue.submit.done" target="next-state"/>
<transition event="error.queue.submit" target="error-state"/>

</state>

Children

• <collect> - Occurs 0 to N. This action collects digits from a caller.
• <play> - Occurs 0 to N. This action plays announcements to a caller.
• <playandcollect> - Occurs 0 to N. This action plays announcements to a caller and then collects digits

from a caller.
• <playandverify> - Occurs 0 to N. This action plays announcements to a caller, collects digits from the

caller and then verifies that the digits are appropriate.
• <playsound> - Occurs 0 to N. This action plays sounds to a caller.
• <start> - Occurs 0 to N. This action executes a dialog application with which the caller will interact.
• <pause> - Occurs 0 to N. This action executes a pause in treatment processing. This is to be used in

between the other treatments.
• <remote> - Occurs 0 to N. This action executes a dialog application with which the caller will interact by

way of a new remote resource.
• <setdialogdefaultdest> - Occurs 0 to 1. This action informs the dialog application what the default

destination of the interaction should be if a failure occurs between the orchestration platform and the
dialog application resource.

Events

Events associated with the <runtreatments> action and the child action elements will not be
generated.

<collect>
This action simply collects a set of digits from a caller. It is equivalent to the IRD function block
"Collect Digits".

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 327



Name Required Type Default Value Valid Values Description

part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. This value
will only be valid
when the
dialog.collect.requestid
event is received.
If this attribute is
not specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
action completion
event. Every
request must
receive a unique
identifier.

interactionid false value expression "0"
Any expression
that returns a valid
string

A value expression
which returns the
interaction ID from
which the digits
will be collected.
There is a special
value that can be
returned:

• "0" means
the
functional
module will
use the
_genesys.FMname.interactions[0].g_uid
for
collecting
the digits.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 328



Name Required Type Default Value Valid Values Description

See SCXML Legal
Data Values and
Value Expressions
for details.

device false value
expression none

Any expression
that returns a
valid string or
object

If specified ORS
will play
treatments itself,
otherwise,
treatment playing
is delegated to
URS. The device
should specify the
DN where the call
is currently
located. If the call
is on multiple DNs,
specify the DN for
which the
treatment will be
applied. (since
8.1.2)

hints false value expression none Any valid
ECMAScript object

A value expression
which returns the
ECMAScript object
containing
information which
may be used by
the implementing
functional module
when applying dialog
action
to interaction. This
information may
consist of protocol-
specific
parameters,
protocol selection
guidelines, and so
on. Note: The
meaning of these
hints is specific to
the implementing
functional module.
See SCXML Legal
Data Values and
Value Expressions
for details. (since
8.1.2)

Attribute hints considerations

• Property extensions of hints object allow to specify content of AttributeExtension of resulted
RequestRouteCall. Valid value for property extensions is ECMAScript object. (Since 8.1.2)

The following are action limitations:

• The <stop> action can not be used to cancel this treatment.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 329



• If this action element is a child of the <runtreatments> element then the following attributes are not
evaluated and should not be used. The similar attributes in the associated Queue FM's <submit>
and<update> action elements will be used instead.
• requestid
• interactionid

The following is an example:

<state id="Collect-Digits">
<onentry>

<dialog:collect device="'dn1001'">
<dialog:input max_digits="6" abort_digits="'1'" term_digits="'9'"

total_timeout="20"/>
</dialog:collect>

</onentry>
<transition event="dialog.collect.done" target="next-state"/>
<transition event="error.dialog.collect" target="error-state"/>

</state>

Children

• <input> - Occurs 1 time. This instance defines the characteristics needed to collect the digits.

Events

The following events can be generated as part of this action:

• dialog.collect.done - This event will be sent when the digits have been collected.
• dialog.collect.requestid - This event will be sent when the collect treatment has started.
• error.dialog.collect - This event will be sent as a result of problems with the request itself.

<play>
This action simply plays a set of announcements to a caller. It is equivalent to the IRD function block
"Play Announcement" and "Text to Speech".

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 330



Name Required Type Default Value Valid Values Description

location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. This value
will only be valid
when the
dialog.play.requestid
event is received.
If this attribute is
not specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
action completion
event. Every
request must
receive a unique
identifier.

Interactionid false value expression "0"
Any expression
that returns a valid
string

A value expression
which returns the
interaction ID on
which the
announcements
will be played.
There is a special
value that can be
returned:

• "0" means
the
functional
module will
use
_genesys.FMname.interactions[0].g_uid
for
collecting
the digits.

See SCXML Legal
Data Values and
Value Expressions
for details.

language false value expression English(US) Any expression
that returns a

A value expression
which returns a

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 331



Name Required Type Default Value Valid Values Description

string with one of
the following
values: English
(US), Spanish,
Mandarin,
Cantonese,
Vietnamese,
French, French
(Canada), German,
Italian, Japanese,
Korean, Russian

string specifying a
language in which
the
announcements
should be made.
See SCXML Legal
Data Values and
Value Expressions
for details.

device false value
expression none

Any expression
that returns a
valid string or
object

If specified ORS
will play
treatments itself,
otherwise,
treatment playing
is delegated to
URS. The device
should specify the
DN where the call
is currently
located. If the call
is on multiple DNs,
specify the DN for
which the
treatment will be
applied. (since
8.1.2)

hints false value expression none Any valid
ECMAScript object

A value expression
which returns the
ECMAScript object
containing
information which
may be used by
the implementing
functional module
when applying dialog
action
to interaction. This
information may
consist of protocol-
specific
parameters,
protocol selection
guidelines, and so
on. Note: The
meaning of these
hints is specific to
the implementing
functional module.
See SCXML Legal
Data Values and
Value Expressions
for details. (since
8.1.2)

Attribute hints considerations

• Property extensions of hints object allow to specify content of AttributeExtension of resulted
RequestRouteCall. Valid value for property extensions is ECMAScript object. (Since 8.1.2)

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 332



The following are action limitations:

• The <stop> action can not be used to cancel this treatment.
• If this action element is a child of the <runtreatments> element then the following attributes are not

evaluated and should not be used. The similar attributes in the associated Queue FM's <submit> and
<update> action elements will be used instead.
• requestid
• interactionid

The following is an example:

<state id="Play-Message">
<onentry>

<dialog:play language="'English(US)'">
<dialog:prompts type="ann">

<dialog:prompt interrupt="true" intid="1111"/>
<dialog:prompt interrupt="true" number="'2222'"/>

</dialog:prompts>
</dialog:play>

</onentry>
<transition event="dialog.play.done" target="next-state"/>
<transition event="error.dialog.play" target="error-state"/>

</state>

Children

• <prompts> - Occurs 1 time. This instance defines the set of announcements to be played to the caller.
The <prompts>'s type attribute can only be set to "ann" or "tts"

Events

The following events can be generated as part of this action:

• dialog.play.done - This event will be sent when the message has been played.
• dialog.play.requestid - This event will be sent when the play treatment has started.
• error.dialog.play - This event will be sent as a result of problems with the request itself.

<playandcollect>
This action plays a set of announcements to a caller and then collects digits. In addition, you can
specify the appropriate attributes to verify the digits collected against a defined set of digits. It is
equivalent to the IRD function blocks "Play Announcement and Collect Digits" and "Text to Speech
and Collect Digits".

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location This is the location

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 333



Name Required Type Default Value Valid Values Description

expression

for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. This value
will only be valid
when the
dialog.playandcollect.requestid
event is received.If
this attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
action completion
event. Every
request must
receive a unique
identifier.

interactionid false value expression "0"
Any expression
that returns a valid
string

A value expression
which returns the
interaction ID on
which the
announcements
will be played and
the digits
collected. There is
a special value
that can be
returned:

• "0" means
the
functional
module will
use
_genesys.FMname.interactions[0].g_uid

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 334



Name Required Type Default Value Valid Values Description

for
collecting
the digits.

See SCXML Legal
Data Values and
Value Expressions
for details.

language false value expression English (US)

Any expression
that returns a
string with one of
the following
values: English
(US), Spanish,
Mandarin,
Cantonese,
Vietnamese,
French, French
(Canada), German,
Italian, Japanese,
Korean, Russian

A value expression
which returns a
string specifying a
language in which
the
announcements
should be made.
See SCXML Legal
Data Values and
Value Expressions
for details.

device false value
expression none

Any expression
that returns
string or object

If specified ORS
will play
treatments itself,
otherwise,
treatment playing
is delegated to
URS. The device
should specify the
DN where the call
is currently
located. If the call
is on multiple DNs,
specify the DN for
which the
treatment will be
applied. (since
8.1.2)

hints false value expression none Any valid
ECMAScript object

A value expression
which returns the
ECMAScript object
containing
information which
may be used by
the implementing
functional module
when applying dialog
action
to interaction. This
information may
consist of protocol-
specific
parameters,
protocol selection
guidelines, and so
on. Note: The
meaning of these
hints is specific to

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 335



Name Required Type Default Value Valid Values Description

the implementing
functional module.
See SCXML Legal
Data Values and
Value Expressions
for details. (since
8.1.2)

Attribute hints considerations

• Property extensions of hints object allow to specify content of AttributeExtension of resulted
RequestRouteCall. Valid value for property extensions is ECMAScript object. (Since 8.1.2)

The following are action limitations:

• The <stop> action can not be used to cancel this treatment.
• If this action element is a child of the <runtreatments> element, then the following attributes are not

evaluated and should not be used. The similar attributes in the associated Queue FM's <submit>
and<update> action elements will be used instead.
• requestid
• Interactionid

The following is an example:

<state id="Play-and-Collect">
<onentry>

<dialog:playandcollect language="'English(US)'">
<dialog:prompts type="ann">

<dialog:prompt interrupt="true" intid="1111"/>
<dialog:prompt interrupt="true" number="'2222'"/>

</dialog:prompts>
<dialog:input max_digits="4" abort_digits="'1'" term_digits="'9'"

total_timeout="20"/>
</dialog:playandcollect>

</onentry>
<transition event="dialog.playandcollect.done" target="next-state"/>
<transition event="error.dialog.playandcollect" target="error-state"/>

</state>

Children

• <prompts> - Occurs 1 time. This instance defines the set of announcements to be played to the caller.
The <prompts>'s type attribute can only be set to "ann" or "tts".

• <input> - Occurs 1 time. This instance defines the characteristics needed to collect the digits.

Events

The following events can be generated as part of this action:

• dialog.playandcollect.done - This event will be sent when the messages have been played and the

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 336



associated digits have been collected.
• dialog.playandcollect.requestid - This event will be sent when the playandcollect treatment has

started.
• error.dialog.playandcollect - This event will be sent as a result of problems with the request itself.

<playandverify>
This action plays a set of announcements to a caller, collects digits, and verifies the digits against a
defined set of digits. It is equivalent to the IRD function block "Verify Digits".

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. This value
will only be valid
when the
dialog.playandverify.requestid
event is received.
If this attribute is
not specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
action completion
event. Every
request must
receive a unique
identifier.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 337



Name Required Type Default Value Valid Values Description

interactionid false value expression "0"
Any expression
that returns a valid
string

A value expression
which returns the
interaction ID on
which the
announcements
will be played and
the digits will be
collected and
verified. There is a
special value that
can be returned:

• "0" means
the
functional
module will
use
_genesys.FMname.interactions[0].g_uid
for
collecting
the digits.

See SCXML Legal
Data Values and
Value Expressions
for details.

language false value expression English (US)

Any expression
that returns a
string with one of
the following
values: English
(US), Spanish,
Mandarin,
Cantonese,
Vietnamese,
French, French
(Canada), German,
Italian, Japanese,
Korean, Russian

A value expression
which returns a
string specifying a
language in which
the
announcements
should be made.
See SCXML Legal
Data Values and
Value Expressions
for details.

device false value
expression none

Any expression
that returns
string or object

If specified ORS
will play
treatments itself,
otherwise,
treatment playing
is delegated to
URS. The device
should specify the
DN where the call
is currently
located. If the call
is on multiple DNs,
specify the DN for
which the
treatment will be
applied. (since
8.1.2)

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 338



Name Required Type Default Value Valid Values Description

hints false value expression none Any valid
ECMAScript object

A value expression
which returns the
ECMAScript object
containing
information which
may be used by
the implementing
functional module
when applying dialog
action
to interaction. This
information may
consist of protocol-
specific
parameters,
protocol selection
guidelines, and so
on. Note: The
meaning of these
hints is specific to
the implementing
functional module.
See SCXML Legal
Data Values and
Value Expressions
for details. (since
8.1.2)

Attribute hints considerations

• Property extensions of hints object allow to specify content of AttributeExtension of resulted
RequestRouteCall. Valid value for property extensions is ECMAScript object. (Since 8.1.2)

The following are action limitations:

• The <stop> action can not be used to cancel this treatment.
• With this action you cannot use a <prompts> type attribute of "tts".
• If this action element is a child of the <runtreatments> element, then the following attributes are not

evaluated and should not be used. The similar attributes in the associated Queue FM's <submit> and
<update> action elements will be used instead.
• requestid
• interactionid

The following is an example:

<state id="Play-and-Verify">
<onentry>

<dialog:playandverify language="'English(US)'">
<dialog:prompts type="ann">

<dialog:prompt interrupt="true" intid="1111"/>
<dialog:prompt interrupt="true" number="'2222'"/>

</dialog:prompts>
<dialog:prompts type="iretry">

<dialog:prompt interrupt="true" intid ="3333"/>
</dialog:prompts>

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 339



<dialog:prompts type="isuccess">
<dialog:prompt intid="4444"/>
<dialog:prompt interrupt="true" text="'hi'"/>

</dialog:prompts>
<dialog:prompts type="ifailure">

<dialog:prompt interrupt="true" intid="1111"/>
<dialog:prompt interrupt="true" userannid="10"/>

</dialog:prompts>
<dialog:prompts type="itimeout">

<dialog:prompt text="'timeout'"/>
</dialog:prompts>
<dialog:input max_digits="10" abort_digits="'1'" term_digits="'9'"

total_timeout="20"/>
<dialog:compare digits="'12426'" attempts="3"/>

</dialog:playandverify>
</onentry>
<transition event="dialog.playandverify.done" target="next-state"/>
<transition event="error.dialog.playandverify" target="error-state"/>

</state>

Children

• <prompts> - Must occur at least once and up to 5 times in total, each instance must have a unique type
attribute of either 'ann', 'iretry', 'isuccess', 'ifailure' or 'itimeout', where a prompt type attribute of 'ann'
being declared to be mandatory and MUST be provided in all <dialog:playandverify>. All other
prompt types remain optional. You may only have a maximum of one type attribute within the series
of <dialog:prompts> within <dialog:playandverify> given that they are required to be unique,
defining multiple "iretry" types for example or "ann" within the same <dialog:playandverify> is not
supported and the behavior is undetermined. These instances define the different sets of
announcements to be played to the caller based on the verification process.

• <input> - Occurs 1 time. This instance defines the characteristics needed to collect the digits.
• <compare> - Occurs 1 time. This instance defines what needs to be compared to the digits collected

from the caller.

Events

The following events can be generated as part of this action:

• dialog.playandverify.done - This event will be sent when the messages are played, the digits have
been collected and verified.

• dialog.playandverify.requestid - This event will be sent when the playandverfy treatment has
started.

• error.dialog.playandverify - This event will be sent as a result of problems with the request itself.

<playsound>
This action plays a given voice-related sound to a caller. It is a voice-specific treatment. It is
equivalent to the following IRD function blocks

• "Busy"
• "Fast Busy"
• "Music"

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 340



• "Ringback"
• "Silence"
• "RAN"

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. This value
will only be valid
when the
dialog.playsound.requestid
event is received.
If this attribute is
not specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
action completion
event. Every
request must
receive a unique
identifier.

interactionid false value expression "0"
Any expression
that returns a valid
string

A value expression
which returns the
interaction ID on
which to play the
sound. There is a
special value that
can be returned:

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 341



Name Required Type Default Value Valid Values Description

• "0" means
the
functional
module will
use
_genesys.FMname.interactions[0].g_uid
for
collecting
the digits.

See SCXML Legal
Data Values and
Value Expressions
for details.

type true value
expression none

busy, fastbusy,
music, ringback,
silence, ran

A value expression
which returns a
string specifying
the type of sound
to play to the
caller. See SCXML
Legal Data Values
and Value
Expressions for
details.

resource² false value expression none Any valid string or
Resource Object

For type equal to
"music", this will
be the source of
the music (that is,
MUSIC_DN), and is
a required attribute
unless SIP Server
has been
configured with a
default file¹. To
specify the number
of repetitions, the
parameter
repeat=<N> must
be used, where <N>
is any positive
integer. If no
repetition is
specified, the
music file loops
forever. The valid
formats are:

• <directory>/<music
file name>
- The
specified
file loops
endlessly.

• <directory>/<music
file

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 342



Name Required Type Default Value Valid Values Description

name>;repeat=
<N> -The
specified
file is
repeated
<N> times.

¹ The TServer/
default-music
option in the SIP
Server
configuration
object is used if
the resource is
not specified. For
type equal to
"ran", this will be
the source of the
recorded
announcement
(that is, ROUTE)
and is a required
attribute. See
SCXML Legal Data
Values and Value
Expressions for
details.

duration² false value expression 0
Any expression
that returns a valid
integer

A value expression
which returns the
duration in
seconds that the
sound should be
played. See SCXML
Legal Data Values
and Value
Expressions for
details.

device false value
expression none

Any expression
that returns
string or object

If specified ORS
will play
treatments itself,
otherwise,
treatment playing
is delegated to
URS. The device
should specify the
DN where the call
is currently
located. If the call
is on multiple DNs,
specify the DN for
which the
treatment will be
applied. (since
8.1.2)

hints false value expression none Any valid
ECMAScript object

A value expression
which returns the
ECMAScript object

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 343



Name Required Type Default Value Valid Values Description

containing
information which
may be used by
the implementing
functional module
when applying dialog
action
to interaction. This
information may
consist of protocol-
specific
parameters,
protocol selection
guidelines, and so
on. Note: The
meaning of these
hints is specific to
the implementing
functional module.
See SCXML Legal
Data Values and
Value Expressions
for details. (since
8.1.2)

² For playing music, if both repeat (in resource) and duration are specified, repeat takes priority.
Attribute hints considerations

• Property extensions of hints object allow to specify content of AttributeExtension of resulted
RequestRouteCall. Valid value for property extensions is ECMAScript object. (Since 8.1.2)

The following are action limitations:

• The <stop> action can not be used to cancel this treatment.
• The following types of sounds are hard coded to be not interruptible:

• busy, fastbusy, ran

• The following types of sounds are hard coded to be interruptible:
• music, ringback, silence

• If this action element is a child of the <runtreatments> element, then the following attributes are not
evaluated and should not be used. The similar attributes in the associated Queue FM's <submit> and
<update> action elements will be used instead.
• requestid
• Interactionid

The following are some examples:

<state id="Play-Sound-Busy">
<onentry>

<dialog:playsound type="'busy'" duration="100" device="'dn1001'"/>
</onentry>
<transition event="dialog.playsound.done" target="next-state"/>
<transition event="error.dialog.playsound" target="error-state"/>

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 344



</state>
<state id="Play-Sound-Music-30sec">

<onentry>
<dialog:playsound type="'music'" resource="'path_to/ElevatorMusicDN'" duration="30"/>

</onentry>
<transition event="dialog.playsound.done" target="next-state"/>
<transition event="error.dialog.playsound" target="error-state"/>

</state>
<state id="Play-Sound-Music-Once">

<onentry>
<dialog:playsound type="'music'" resource="'path_to/ElevatorMusicDN;repeat=1'"/>

</onentry>
<transition event="dialog.playsound.done" target="next-state"/>
<transition event="error.dialog.playsound" target="error-state"/>

</state>

Children

None

Events

The following events can be generated as part of this action:

• dialog.playsound.done - This event will be sent when the sound has been played.
• dialog.playsound.requestid - This event will be sent when the play sound treatment has started.
• error.dialog.playsound - This event will be sent as a result of problems with the request itself.
• error.dialog.playsound.timeout - This event is sent by URS after the number of seconds specified in

the 'duration' attribute has elapsed, and URS has not received the treatment.done event for playing the
sound from Tserver.

<createann>
This action creates and records an announcement from a user. It is equivalent to the IRD function
block "Record User Announcement". This is primarily used to collect a message from a customer.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 345



Name Required Type Default Value Valid Values Description

internally
generated unique
string identifier to
be associated with
the action being
sent. This value
will only be valid
when the
dialog.createann.requestid
event is received.
If this attribute is
not specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
action completion
event. Every
request must
receive a unique
identifier.

interactionid false value expression "0"
Any expression
that returns a valid
string

A value expression
which returns the
interaction ID on
which to create or
record the
announcement.
There is a special
value that can be
returned:

• "0" means
the
functional
module will
use
_genesys.FMname.interactions[0].g_uid
for
collecting
the digits.

See SCXML Legal
Data Values and
Value Expressions
for details.

userid true value expression none
Any expression
that returns a valid
string

A value expression
which returns a
string specifying
the user ID

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 346



Name Required Type Default Value Valid Values Description

associated with
this recording
announcement.
See SCXML Legal
Data Values and
Value Expressions
for details.

abort_digits false value expression none
Any expression
that returns a valid
string

A value expression
which returns the
sequence of up to
two keys that the
caller can enter to
abort the recording
process. The IP is
to consider this as
a failed recording
attempt. See
SCXML Legal Data
Values and Value
Expressions for
details.

term_digits false value expression none
Any expression
that returns a valid
string

A value expression
which returns the
sequence of up to
two keys that the
caller can enter to
indicate that the
caller has finished
recording the
announcement.
See SCXML Legal
Data Values and
Value Expressions
for details.

reset_digits false value expression none
Any expression
that returns a valid
string

A value expression
which returns the
sequence of up to
two keys that the
caller can enter to
restart the
recording
announcement.
Any announcement
recorded up to the
point of these
keystrokes will be
discarded. See
SCXML Legal Data
Values and Value
Expressions for
details.

start_timeout false value expression none
Any expression
that returns a valid
integer

A value expression
which returns the
number of seconds
the resource
should wait for the

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 347



Name Required Type Default Value Valid Values Description

callers to begin
recording their
announcements.
See SCXML Legal
Data Values and
Value Expressions
for details.

total_timeout false value expression 300
Any expression
that returns a valid
integer

A value expression
which returns the
total number of
seconds the
resource should
wait for the callers
to finish recording
their
announcements.
(since 8.1.200.43,
ORS will set a
default value of
300 seconds for
total_timeout) See
SCXML Legal Data
Values and Value
Expressions for
details.

device false value
expression none

Any expression
that returns
string or object

If specified ORS
will play
treatments itself,
otherwise,
treatment playing
is delegated to
URS. The device
should specify the
DN where the call
is currently
located. If the call
is on multiple DNs,
specify the DN for
which the
treatment will be
applied. (since
8.1.2)

hints false value expression none Any valid
ECMAScript object

A value expression
which returns the
ECMAScript object
containing
information which
may be used by
the implementing
functional module
when applying dialog
action
to interaction. This
information may
consist of protocol-
specific
parameters,
protocol selection
guidelines, and so

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 348



Name Required Type Default Value Valid Values Description

on. Note: The
meaning of these
hints is specific to
the implementing
functional module.
See SCXML Legal
Data Values and
Value Expressions
for details. (since
8.1.2)

Attribute hints considerations

• Property extensions of hints object allow to specify content of AttributeExtension of resulted
RequestRouteCall. Valid value for property extensions is ECMAScript object. (Since 8.1.2)

The following are action limitations:

• The <stop> action can not be used to cancel this treatment.

The following is an example:

<state id="Create-Announcement">
<onentry>

<dialog:createann userid="'12334567'" abort_digits="'1'" term_digits="'9'"
total_timeout="20" device="'dn1001'">

<dialog:prompts type="ann">
<dialog:prompt interrupt="true" intid="1111"/>
<dialog:prompt interrupt="true" number="'2222'"/>

</dialog:prompts>
</dialog:createann>

</onentry>
<transition event="dialog.createann.done" target="next-state"/>
<transition event="error.dialog.createann" target="error-state"/>

</state>

Children

• <prompts> - Occurs 1 time. This instance defines the set of announcements to be played to the caller.
The <prompts>'s type attribute can only be set to "ann".

Events

The following events can be generated as part of this action:

• dialog.createann.done - This event will be sent when the announcement has been created.
• dialog.createann.requestid - This event will be sent when the create announcement treatment has

started.
• error.dialog.createann - This event will be sent as a result of problems with the request itself.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 349



<deleteann>
This action creates and records an announcement from a user. It is equivalent to the IRD function
block "Delete User Announcement"

Attribute Details

Name Required Type Default Value Valid Values Description

requestIid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. This value
will only be valid
when the
dialog.deleteann.requestid
event is received.
If this attribute is
not specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
action completion
event. Every
request must
receive a unique
identifier.

interactionid false value expression "0"
Any expression
that returns a valid
string

A value expression
which returns the
interaction ID on
which to create or
record the
announcement.
There is a special
value that can be
returned:

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 350



Name Required Type Default Value Valid Values Description

• "0" means
the
functional
module will
use
_genesys.FMname.interactions[0].g_uid
for
collecting
the digits.

See SCXML Legal
Data Values and
Value Expressions
for details.

userid true value expression none
Any expression
that returns a valid
string

A value expression
which returns a
string specifying
the user ID
associated with the
announcement to
be deleted. See
SCXML Legal Data
Values and Value
Expressions for
details.

annid true value expression none
Any expression
that returns a valid
integer

A value expression
which returns the
user
announcement ID
as returned in the
dialog.createann.done
event. See SCXML
Legal Data Values
and Value
Expressions for
details.

device false value
expression none

Any expression
that returns
string or object

If specified ORS
will play
treatments itself,
otherwise,
treatment playing
is delegated to
URS. The device
should specify the
DN where the call
is currently
located. If the call
is on multiple DNs,
specify the DN for
which the
treatment will be
applied. (since
8.1.2)

hints false value expression none Any valid A value expression

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 351



Name Required Type Default Value Valid Values Description

ECMAScript object

which returns the
ECMAScript object
containing
information which
may be used by
the implementing
functional module
when applying dialog
action
to interaction. This
information may
consist of protocol-
specific
parameters,
protocol selection
guidelines, and so
on. Note: The
meaning of these
hints is specific to
the implementing
functional module.
See SCXML Legal
Data Values and
Value Expressions
for details. (since
8.1.2)

Attribute hints considerations

• Property extensions of hints object allow to specify content of AttributeExtension of resulted
RequestRouteCall. Valid value for property extensions is ECMAScript object. (Since 8.1.2)

The following are action limitations:

• The <stop> action can not be used to cancel this treatment.
• The action is hard coded to be not interruptible.

The following is an example:

<state id="Delete-Announcement">
<onentry>

<dialog:deleteann userid="'12334567'" annid="464646464"/>
</onentry>
<transition event="dialog.deleteann.done" target="next-state"/>
<transition event="error.dialog.deleteann" target="error-state"/>

</state>

Children

None

Events

The following events can be generated as part of this action:

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 352



• dialog.deleteann.done - This event will be sent when the announcement have been deleted.
• dialog.deleteann.requestid - This event will be sent when the delete announcement treatment has

started.
• error.dialog.deleteann - This event will be sent as a result of problems with the request itself.

<start>
This action requests that a specific dialog be started on a specific interaction and by a specific
resource. This is used for all different types of media. This action is equivalent to the IRD function
block "Play Application".

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. This value
will only be valid
when the
dialog.start.requestid
event is received.
If this attribute is
not specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
action completion
event. Every
request must
receive a unique
identifier.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 353



Name Required Type Default Value Valid Values Description

interactionid false value expression "0"
Any expression
that returns a valid
string

A value expression
which returns the
interaction ID for
which the dialog is
to be started.
There is a special
value that can be
returned:

• "0" means
the
functional
module will
use
_genesys.FMname.interactions[0].g_uid
to route the
interaction.

See SCXML Legal
Data Values and
Value Expressions
for details.

type true value expression none vxml, applid

A value expression
which returns the
type of application
that is to be
started. The
following are the
different types that
will be supported:

• vxml - This
is a VXML
document
that is to be
started on
the voice
platform
resource.

• applid -
This
indicates
that the
request is
for the
"Play
Application"
IRD
function
block.

See SCXML Legal
Data Values and
Value Expressions
for details.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 354



Name Required Type Default Value Valid Values Description

application false value expression
Any expression
that returns a valid
integer (for applid)
or string (for vxml)

A value expression
which returns the
identifier of a new
application which
is to be started by
the resource in
association with
the interaction.
The format of the
application
reference is
specific to each
dialog type:

• vxml - This
is the URL
for the
VXML
document.

• applid -
This is the
APP_ID
parameter
from the
"PlayApplication"
IRD
function
block.

If this attribute is
not specified, then
the functional
module will use the
associated
<param> elements.
See SCXML Legal
Data Values and
Value Expressions
for details.

device false value
expression none

Any expression
that returns
string or object

If specified ORS
will play
treatments itself,
otherwise,
treatment playing
is delegated to
URS. The device
should specify the
DN where the call
is currently
located. If the call
is on multiple DNs,
specify the DN for
which the
treatment will be
applied. (since
8.1.2)

hints false value expression none Any valid A value expression

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 355



Name Required Type Default Value Valid Values Description

ECMAScript object

which returns the
ECMAScript object
containing
information which
may be used by
the implementing
functional module
when applying dialog
action
to interaction. This
information may
consist of protocol-
specific
parameters,
protocol selection
guidelines, and so
on. Note: The
meaning of these
hints is specific to
the implementing
functional module.
See SCXML Legal
Data Values and
Value Expressions
for details. (since
8.1.2)

Attribute hints considerations

• Property extensions of hints object allow to specify content of AttributeExtension of resulted
RequestRouteCall. Valid value for property extensions is ECMAScript object. (Since 8.1.2)

The following are action limitations:

• This action can be cancelled using the <stop> action.
• For dialog type of "applid", the timeout attribute will be ignored.
• For dialog type of "applid" the parameters supplied in the name list can only be of simple types.
• All <param> name attribute values must match the case of the parameter name of the underlying dialog

system (for all Genesys treatments, parameters are in upper case - "LANGUAGE").
• The following is the data model for the dialog type of "appid" (that is, the "Play Application" function

block action)
• <param name="LANGUAGE"/> - The "Play Application" function block's LANGUAGE parameter
• <param name="parameterN"/> - Any custom parameter of the "Play Application" function block -

You can add any parameter you want, but this function block functionality only supports strings and
integer parameters.

Note: the application attribute will be used for the "Play Application" function block's APP_ID
parameter.

• If this action element is a child of the <runtreatments> element, then the following attributes are not
evaluated and should not be used. The similar attributes in the associated Queue FM's <submit> and
<update> action elements will be used instead.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 356



• requestid
• Interactionid

Children

• <param> Occurs 0 to N. See SCXML <param> for details. These parameters will be submitted to the
processing resource, based on the functional module's underlying protocol (for example, it will be via
key/value pairs for T-Server).

Events

The following events can be generated as part of this action:

• dialog.start.done - This event will be sent when the started dialog application is complete.
• dialog.start.requestid - This event will be sent when the dialog application has started.
• error.dialog.start - This event will be sent as a result of a timeout of the request with an error

attribute value of timeout, as well as due to problems with the request itself.

Examples

The following is an example of using the IRD Play Application function block:

<state id="Play-Application">
<onentry>

<dialog:start type="'applid'" application="464646464">
<param name="APP_URL" expr="'www.bigplanes.com\bestinworld'"/>

</dialog:start>
</onentry>
<transition event="dialog.start.done" target="next-state"/>
<transition event="error.dialog.start" target="error-state"/>

</state>

The following is an example of using VoiceXML as a treatment:

<state id="Play-Application">
<onentry>

<dialog:start type="'vxml'" >
<param name="APP_URI" expr="'http://gvphost/treatment.vxml'"/>

</dialog:start>
</onentry>
<transition event="dialog.start.done" target="next-state"/>
<transition event="error.dialog.start" target="error-state"/>

</state>

<stop>
This action will terminate call, referenced by interactionid attribute. However, it is supported by very
few TServers, so it is better to use "terminate" action from "interaction" extension for that purpose.
This action is equivalent to the IRD function block "Cancel Call".

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 357



Attribute Details

Name Required Type Default Value Valid Values Description

requestid true value expression none Any valid location
expression

A value expression
which returns the
ID of the previously
started dialog-
related action.
Legal Data Values
and Value
Expressions for
details.

interactionid false value expression "0"
Any expression
that returns a valid
string

A value expression
which returns the
interaction ID for
which the dialog is
to be started.
There is a special
value that can be
returned:

• "0" means
the
functional
module will
use
_genesys.FMname.interactions[0].g_uid
to route the
interaction.

This attribute is
only valid if the
compatible
attribute is true.
See SCXML Legal
Data Values and
Value Expressions
for details.

compatible false boolean false true, false

This value
indicates whether
the action is
compatible with
older capabilities.
If true, then this
will do the "IRD
Cancel Call"
function. If false,
then this will just
stop or terminate
the dialog and the
actual interaction.

device false value
expression none

Any expression
that returns
string or object

If specified ORS
will play
treatments itself,
otherwise,
treatment playing
is delegated to

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 358



Name Required Type Default Value Valid Values Description

URS. The device
should specify the
DN where the call
is currently
located. If the call
is on multiple DNs,
specify the DN for
which the
treatment will be
applied. (since
8.1.2)

hints false value expression none Any valid
ECMAScript object

A value expression
which returns the
ECMAScript object
containing
information which
may be used by
the implementing
functional module
when applying dialog
action
to interaction. This
information may
consist of protocol-
specific
parameters,
protocol selection
guidelines, and so
on. Note: The
meaning of these
hints is specific to
the implementing
functional module.
See SCXML Legal
Data Values and
Value Expressions
for details. (since
8.1.2)

Attribute hints considerations

• Property extensions of hints object allow to specify content of AttributeExtension of resulted
RequestRouteCall. Valid value for property extensions is ECMAScript object. (Since 8.1.2)

The following are action limitations:

• Only supports a compatible attribute value of true.

The following is an example for IRD "Cancel Call":

<state id="Stop-Application">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<dialog:stop requestid="_data.reqid" compatible="true"/>
</onentry>
<transition event="dialog.stop.done" target="next-state"/>

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 359



<transition event="error.dialog.stop" target="error-state"/>
</state>

Children

None

Events

The following events can be generated as part of this action:

• dialog.stop.done - This event will be sent when the dialog application stop action has completed.
• error.dialog.stop - This event will be sent as a result of problems with the request itself.
• error.dialog.start - This event is sent for the dialog action that was started. Note: The

error.dialog.start events will be sent before the queue.stop.done.

<remote>
This action requests that a specific dialog be started on a specific interaction and by a new remote
resource. This is used for voice media only. This action is equivalent to the IRD function block "IVR".

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. This value
will only be valid
when the
dialog.remote.requestid
event is received.
If this attribute is
not specified, the
event identifier is
dropped. This
identifier can be
tested by the

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 360



Name Required Type Default Value Valid Values Description

completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
action completion
event. Every
request must
receive a unique
identifier.

interactionid false value expression "0"
Any expression
that returns a valid
string

A value expression
that returns the
interaction ID for
which the dialog is
to be started.
There is a special
value that can be
returned:

• "0" means
the
functional
module will
use
_genesys.FMname.interactions[0].g_uid
to route the
interaction.

See SCXML Legal
Data Values and
Value Expressions
for details.

application false value expression none
Any expression
that returns a valid
string

A value expression
which returns the
identifier of a new
application that is
to be started by
the new resource
in association with
the interaction.
See SCXML Legal
Data Values and
Value Expressions
for details.

duration false value expression 0
A value expression
which returns an
integer

A value expression
which returns an
integer that
represents the
number of seconds
to wait. See SCXML
Legal Data Values

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 361



Name Required Type Default Value Valid Values Description

and Value
Expressions for
details. The
character string
returned must be
interpreted as a
time interval. This
interval begins
when <remote> is
executed. A failed
and timed out
submit must return
the
error.remote.start
event.

destination true value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
address name of a
new remote
resource which will
be added to
provide the
treatment on the
interaction. See
SCXML Legal Data
Values and Value
Expressions for
details.

default false value expression
Any value
expression that
returns a valid
string

A value expression
which returns the
destination that
should be used if
there are problems
transferring the
interaction to the
destination for
treatment. See
SCXML Legal Data
Values and Value
Expressions for
details.

compatible false boolean false false, true

This value
indicates whether
the action is
compatible with an
attribute signature.
If true, the
following are the
valid attributes:

• application -
SCRIPT

• destination
- TARGET

• timeout -

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 362



Name Required Type Default Value Valid Values Description

DURATION
If false, the
following are the
valid attributes:

• destination
- LABEL

• default -
DNIS

device false value
expression none

Any expression
that returns
string or object

If specified ORS
will play
treatments itself,
otherwise,
treatment playing
is delegated to
URS. The device
should specify the
DN where the call
is currently
located. If the call
is on multiple DNs,
specify the DN for
which the
treatment will be
applied. Will be
ignored if
compatible is set
to true. (since
8.1.2)

hints false value expression none Any valid
ECMAScript object

A value expression
which returns the
ECMAScript object
containing
information which
may be used by
the implementing
functional module
when applying dialog
action
to interaction. This
information may
consist of protocol-
specific
parameters,
protocol selection
guidelines, and so
on. Note: The
meaning of these
hints is specific to
the implementing
functional module.
See SCXML Legal
Data Values and
Value Expressions
for details. (since
8.1.2)

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 363



Attribute hints considerations

• Property extensions of hints object allow to specify content of AttributeExtension of resulted
RequestRouteCall. Valid value for property extensions is ECMAScript object. Applicable only if
compatible is false. (Since 8.1.2)

The following are action limitations:

• The <stop> action can not be used to cancel this treatment.
• If the compatible attribute is true, the following are the valid attributes:

• application - SCRIPT
• destination - TARGET
• duration - DURATION

• If the compatible attribute is false, the following are the valid attributes:
• destination - LABEL
• default - DNIS

• If this action element is a child of the <runtreatments> element then the following attributes are not
evaluated and should not be used. The similar attributes in the associated Queue FM's <submit>
and<update> action elements will be used instead.
• requestid
• interactionid

The following is an example for compatible = false:

<state id="Remote-compatible-false">
<onentry>

<dialog:remote destination="'123456'" default="'2334'"/>
</onentry>
<transition event="dialog.remote.done" target="next-state"/>
<transition event="error.dialog.remote" target="error-state"/>

</state>

The following is an example for compatible = true:

<state id="Remote-compatible-true">
<onentry>

<dialog:remote compatible="true"
destination="'2323@www.genesys.com\server1.AG'"
application="'mortgage'"/>

</onentry>
<transition event="dialog.remote.done" target="next-state"/>
<transition event="error.dialog.remote" target="error-state"/>

</state>

Children

None

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 364



Events

The following events can be generated as part of this action:

• dialog.remote.done - This event will be sent when the remote dialog application is complete.
• dialog.remote.requestid - This event will be sent when the remote dialog treatment has started.
• error.dialog.remote - This event will be sent as a result of a timeout of the request with an error

attribute value of timeout, as well as due to problems with the request itself.

<setdialogdefaultdest>
This action requests a Genesys-specific treatment action. This action is equivalent to the IRD function
block ""Set Default Destination".

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. This value
will only be valid
when the
dialog.setdialogdefaultdest.requestid
event is received.
If this attribute is
not specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
action completion
event. Every

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 365



Name Required Type Default Value Valid Values Description

request must
receive a unique
identifier.

interactionid false value expression "0"
Any expression
that returns a valid
string

A value expression
which returns the
interaction ID for
which the action is
to be done. There
is a special value
that can be
returned:

• "0" means
the
functional
module will
use
_genesys.FMname.interactions[0].g_uid
to route the
interaction.

See SCXML Legal
Data Values and
Value Expressions
for details.

destination true value expression none
Any value
expression that
returns a valid
string

A value expression
which returns the
address name of
the new remote
resource that will
be added to
provide the
treatment on the
interaction. See
SCXML Legal Data
Values and Value
Expressions for
details.

device false value
expression none

Any expression
that returns
string or object

If specified ORS
will play
treatments itself,
otherwise,
treatment playing
is delegated to
URS. The device
should specify the
DN where the call
is currently
located. If the call
is on multiple DNs,
specify the DN for
which the
treatment will be
applied. (since
8.1.2)

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 366



Name Required Type Default Value Valid Values Description

hints false value expression none Any valid
ECMAScript object

A value expression
which returns the
ECMAScript object
containing
information which
may be used by
the implementing
functional module
when applying dialog
action
to interaction. This
information may
consist of protocol-
specific
parameters,
protocol selection
guidelines, and so
on. Note: The
meaning of these
hints is specific to
the implementing
functional module.
See SCXML Legal
Data Values and
Value Expressions
for details. (since
8.1.2)

Attribute hints considerations

• Property extensions of hints object allow to specify content of AttributeExtension of resulted
RequestRouteCall. Valid value for property extensions is ECMAScript object. (Since 8.1.2)

The following are action limitations:

• The <setdialogdefaultdest> action can not be used to cancel this treatment.
• If this action element is a child of the <runtreatments> element then the following attributes are not

evaluated and should not be used. The similar attributes in the associated Queue FM's <submit>
and<update> action elements will be used instead.
• requestid
• interactionid

The following is an example:

<state id="Set-Default-Destination">
<onentry>

<dialog:setdialogdefaultdest destination="'12345'"/>
</onentry>
<transition event="dialog.setdialogdefaultdest.done" target="next-state"/>
<transition event="error.dialog.setdialogdefaultdest" target="error-state"/>

</state>

Children

None

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 367



Events

The following events can be generated as part of this action:

• dialog.setdialogdefaultdest.done - This event will be sent when the default destination is set.
• dialog.setdialogdefaultdest.requestid - This event will be sent when the set default destination

treatment has started.
• error.dialog.setdialogdefaultdest - This event will be sent as a result of a timeout of the request

with an error attribute value of timeout, as well as due to problems with the request itself.

Events

The following are the dialog action result events.

Event Attributes Description

dialog.start.done

This event indicates the successful
completion of the starting of an
application. This can be sent in
conjunction with the <start> action or
asynchronously to indicate the
completion of an application started at
the resource.

requestid
This is the ID associated with the request
from the orchestration application or the
resource.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.start.requestid

This event provides the application with
request ID for the given request that was
invoked.

requestid
This is the ID associated with the request
from the orchestration application or the
resource.

error.dialog.start

This indicates that an abnormal condition
occurred while trying to perform the start
request. This event will be sent as a
result of a timeout of the request as well
as problems with the request itself.

requestid This is the ID associated with the request.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 368



Event Attributes Description

error

This is the type of error that occurred.
The following are the possible values:

• invalidattribute - The attribute
yyy:xxx has an invalid value
(zzz) or is not allowed under
the conditions of the request.
yyy is the name of the
element associated with the
attribute. xxx is the name of
the attribute. zzz is the value
of the attribute.

• unknown - The cause of the
failure is unknown.

• invalidstate.state (null, hold,
treating, routed) - The
interaction is in an invalid
state and cannot finish the
dialog action.

• remote - There was an error in
the media server while trying
to process this dialog action.

• cancelled - This dialog action
has been cancelled.

• timeout - A target has not
been found within the
requested time period xxxx.
xxxx is the value of the
timeout attribute.

description This is a more detailed description of the
error.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.stop.done

This event indicates the success of the
stop request and that the request has
stopped the dialog application.

requestid This is the ID of the <stop> request.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 369



Event Attributes Description

error.dialog.stop

This indicates that an error occurred while
trying to perform the <stop> request.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• invalidrequestid - The request
ID xxxx does not match any
outstanding dialog action
requests. xxxx is the value of
the requestid attribute.

description This is a more detailed description of the
error.

requestid This is the ID of the <continue> request.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.collect.done

This event indicates the success of the
collect request and collects the digits.

requestid This is the ID of the <collect> request.

digits These are the digits that were collected.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.collect.requestid

This event provides the application with
request ID for the given request that was
invoked.

requestid
This is the ID associated with the request
from the orchestration application or the
resource.

error.dialog.collect This indicates that an error occurred while
trying to perform the <collect> request.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 370



Event Attributes Description

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• invalidattribute - The attribute
yyy:xxx has an invalid value
(zzz) or is not allowed under
the conditions of the request.
yyy is the name of the
element associated with the
attribute. xxx is the name of
the attribute. zzz is the value
of the attribute.

• unknown - The cause of the
failure is unknown.

• invalidstate.state (null, hold,
treating, routed) - The
interaction is in an invalid
state and cannot finish the
dialog action.

• remote - There was an error in
the media server while trying
to process this dialog action.

• cancelled - This dialog action
has been cancelled.

description This is a more detailed description of the
error.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.play.done

This event indicates the success of the
play request and that the announcements
were played.

requestid This is the ID of the <play> request.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.play.requestid This event provides the application with
request ID for the given request that was

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 371



Event Attributes Description

invoked.

requestid
This is the ID associated with the request
from the orchestration application or the
resource.

error.dialog.play

This indicates that an error occurred while
trying to perform the <play> request.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• invalidattribute - The attribute
yyy:xxx has an invalid value
(zzz) or is not allowed under
the conditions of the request.
yyy is the name of the
element associated with the
attribute. xxx is the name of
the attribute. zzz is the value
of the attribute.

• unknown - The cause of the
failure is unknown.

• invalidstate.state (null, hold,
treating, routed) - The
interaction is in an invalid
state and cannot finish the
dialog action.

• remote - There was an error in
the media server while trying
to process this dialog action.

• cancelled - This dialog action
has been cancelled.

description This is a more detailed description of the
error.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.playandcollect.done
This event indicates the success of the
playandcollect request and that the
announcements were played and the

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 372



Event Attributes Description

digits collected.

requestid This is the ID of the <playandcollect>
request.

digits These are the digits that were collected.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.playandcollect.requestid

This event provides the application with
request ID for the given request that was
invoked.

requestid
This is the ID associated with the request
from the orchestration application or the
resource.

error.dialog.playandcollect

This indicates that an error occurred while
trying to perform the <playandcollect>
request.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• invalidattribute - The attribute
yyy:xxx has an invalid value
(zzz) or is not allowed under
the conditions of the request.
yyy is the name of the
element associated with the
attribute. xxx is the name of
the attribute. zzz is the value
of the attribute.

• unknown - The cause of the
failure is unknown.

• invalidstate.state (null, hold,
treating, routed) - The
interaction is in an invalid
state and cannot finish the
dialog action.

• remote - There was an error in
the media server while trying

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 373



Event Attributes Description

to process this dialog action.
• cancelled - This dialog action

has been cancelled.

description This is a more detailed description of the
error.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.playandverify.done

This event indicates the success of the
playandverify request and that the
announcements were played and the
digits were collected and verified.

requestid This is the ID of the <playandverify>
request.

digits These are the digits that were collected.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.playandverify.requestid

This event provides the application with
request ID for the given request that was
invoked.

requestid
This is the ID associated with the request
from the orchestration application or the
resource.

error.dialog.playandverify

This indicates that an error occurred while
trying to perform the <playandverify>
request.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• invalidattribute - The attribute
yyy:xxx has an invalid value
(zzz) or is not allowed under
the conditions of the request.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 374



Event Attributes Description

yyy is the name of the
element associated with the
attribute. xxx is the name of
the attribute. zzz is the value
of the attribute.

• unknown - The cause of the
failure is unknown.

• invalidstate.state (null, hold,
treating, routed) - The
interaction is in an invalid
state and cannot finish the
dialog action.

• remote - There was an error in
the media server while trying
to process this dialog action.

• cancelled - This dialog action
has been cancelled.

description This is a more detailed description of the
error.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.playsound.done

This event indicates the success of the
playsound request and that the sound
was played.

requestid This is the ID of the <playsound> request.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.playsound.requestid

This event provides the application with
request ID for the given request that was
invoked.

requestid
This is the ID associated with the request
from the orchestration application or the
resource.

error.dialog.playsound
This indicates that an error occurred while
trying to perform the <playsound>
request.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 375



Event Attributes Description

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• invalidattribute - The attribute
yyy:xxx has an invalid value
(zzz) or is not allowed under
the conditions of the request.
yyy is the name of the
element associated with the
attribute. xxx is the name of
the attribute. zzz is the value
of the attribute.

• unknown - The cause of the
failure is unknown.

• invalidstate.state (null, hold,
treating, routed) - The
interaction is in an invalid
state and cannot finish the
dialog action.

• remote - There was an error in
the media server while trying
to process this dialog action.

• cancelled - This dialog action
has been cancelled.

description This is a more detailed description of the
error.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.createann.done

This event indicates the success of the
createann request and that the
announcement for the user was recorded.

requestid This is the ID of the <createann> request.

userannid This is the ID of the announcement that
was recorded for the user.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 376



Event Attributes Description

dialog.createann.requestid

This event provides the application with
request ID for the given request that was
invoked.

requestid
This is the ID associated with the request
from the orchestration application or the
resource.

error.dialog.createann

This indicates that an error occurred while
trying to perform the <createann>
request.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• invalidattribute - The attribute
yyy:xxx has an invalid value
(zzz) or is not allowed under
the conditions of the request.
yyy is the name of the
element associated with the
attribute. xxx is the name of
the attribute. zzz is the value
of the attribute.

• unknown - The cause of the
failure is unknown.

• invalidstate.state (null, hold,
treating, routed) - The
interaction is in an invalid
state and cannot finish the
dialog action.

• remote - There was an error in
the media server while trying
to process this dialog action.

• cancelled - This dialog action
has been cancelled.

description This is a more detailed description of the
error.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 377



Event Attributes Description

dialog.deleteann.done

This event indicates the success of the
deleteann request and that the
announcement was deleted.

requestid This is the ID of the <deleteann> request.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.deleteann.requestid

This event provides the application with
request ID for the given request that was
invoked.

requestid
This is the ID associated with the request
from the orchestration application or the
resource.

error.dialog.deleteann

This indicates that an error occurred while
trying to perform the <deleteann>
request.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• invalidattribute - The attribute
yyy:xxx has an invalid value
(zzz) or is not allowed under
the conditions of the request.
yyy is the name of the
element associated with the
attribute. xxx is the name of
the attribute. zzz is the value
of the attribute.

• unknown - The cause of the
failure is unknown.

• invalidstate.state (null, hold,
treating, routed) - The
interaction is in an invalid
state and cannot finish the
dialog action.

• remote - There was an error in
the media server while trying
to process this dialog action.

• cancelled - This dialog action

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 378



Event Attributes Description

has been cancelled.

description This is a more detailed description of the
error.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.remote.done

This event indicates the success of the
remote request and that the remote
resource has executed the dialog
application.

requestid This is the ID of the <remote> request.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.remote.requestid

This event provides the application with
request ID for the given request that was
invoked.

requestid
This is the ID associated with the request
from the orchestration application or the
resource.

error.dialog.remote

This indicates that an error occurred while
trying to perform the <remote> request.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following are the possible values:

• invalidattribute - The attribute
yyy:xxx has an invalid value
(zzz) or is not allowed under
the conditions of the request.
yyy is the name of the
element associated with the
attribute. xxx is the name of
the attribute. zzz is the value
of the attribute.

• unknown - The cause of the

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 379



Event Attributes Description

failure is unknown.
• invalidstate.state (null, hold,

treating, routed) - The
interaction is in an invalid
state and cannot finish the
dialog action.

• remote - There was an error in
the media server while trying
to process this dialog action.

• cancelled - This dialog action
has been cancelled.

description This is a more detailed description of the
error.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.setdialogdefaultdest.done

This event indicates the success of the
setdialogdefaultdest request and that the
resource has accepted the default
destination.

requestid This is the ID of the
<setdialogdefaultdest> request.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

dialog.setdialogdefaultdest.requestid

This event provides the application with
request ID for the given request that was
invoked.

requestid
This is the ID associated with the request
from the orchestration application or the
resource.

error.dialog.setdialogdefaultdest

This indicates that an error occurred while
trying to perform the
<setdialogdefaultdest> request.

requestid This is the ID associated with the request.

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 380



Event Attributes Description

error

This is the type of error that occurred.
The following are the possible values:

• invalidattribute - The attribute
yyy:xxx has an invalid value
(zzz) or is not allowed under
the conditions of the request.
yyy is the name of the
element associated with the
attribute. xxx is the name of
the attribute. zzz is the value
of the attribute.

• unknown - The cause of the
failure is unknown.

• invalidstate.state (null, hold,
treating, routed) - The
interaction is in an invalid
state and cannot finish the
dialog action.

• remote - There was an error in
the media server while trying
to process this dialog action.

• cancelled - This dialog action
has been cancelled.

description This is a more detailed description of the
error.

extensions
If present may provide addition
information sent as extension
data from the source performing
the dialog operation(Since 8.1.2)

Orchestration Extensions Dialog Interface

Orchestration Server Developer's Guide 381



Statistic Interface
This interface provides statistical information to the Orchestration logic.

Functions

_genesys.statistic.sData

This function returns the value of a statistic for a specified object. For example, this function can be
used to get the number of interactions waiting in a queue (that is, number of callers ahead of this
caller), so that it can be announced to the caller via an IVR application while waiting for a target.

value _genesys.statistic.sData(object, statistic)

Before you can query a statistic using _genesys.statistic.sData within your SCXML file, you should
subscribe to the statistic. Please see subscribe for more details.

However, the following list of predefined statistics can be used without subscribing to it within your
SCXML file:

• StatTimeInReadyState
• StatAgentsAvailable
• StatAgentsTotal
• StatAgentsBusy
• StatCallsAnswered
• StatCallsCompleted
• StatExpectedWaitingTime
• StatLoadBalance
• StatAgentsInQueueLogin
• StatAgentsInQueueReady

Parameters:

• JavaScript object. Starting with ORS 8.1.400.45, the _genesys.statistic.sData function allows you to
directly define statistic parameters in the SCXML routing strategy code via a JavaScript object passed
as an input parameter. For information on this enhancement, see Direct Statistic Definition in the
Orchestration 8.1.4 Deployment Guide.

• object: STRING which can be a variable or a constant - This is the name of the object for which the
statistic value is requested. The format of this parameter value must use the target formats (for details
see the Queue Interface Target Formats section), but there are some exceptions based on the type of
statistic (that is, the value of the statistic parameter) being requested. The following describes those
exceptions:

Orchestration Extensions Statistic Interface

Orchestration Server Developer's Guide 382

https://docs.genesys.com/Documentation/OS/8.1.4/Deployment/sData


• If the statistic parameter value is CallsDistributed, CallsAnswered, DistributedPercentage,
DistributedWaitingTime, NotDistributedPercentage, or NotDistributedWaitingTime, then the object
parameter value can only be one of the following:
• "R" - This represents the Queue functional module system as a whole (router).
• "RP" - This is the route point associated with this session (that is for example,

_genesys.ixn.interactions[ixnid].voice.dnis)
• In all other cases, it is the name of a virtual queue.

• statistic: STRING which can be a variable or a constant - This is the name of the statistic being
requested. A value of zero (0) will returned if:
• The connection to the functional module's statistical system (Stat Server) is not available.
• If the specified statistic is neither on the list of predefined statistics nor defined in the strategy.
• If the string defining the object is not of a valid format or the type of object does not support that

requested statistic.

Returns: value: NUMBER (FLOAT) - This is the current value of the statistic.

The following is an example of using a predefined statistic without subscribing:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:statistic="http://www.genesyslab.com/modules/statistic"
initial="initial" _persist="false">

<datamodel>
<data ID="reqid"/>

</datamodel>
<state id="initial" >

<transition event="interaction.added" target="check" />
</state>
<state id="check">

<transition
cond="_genesys.statistic.sData('SipGr_1@StatServer.GA','StatAgentsAvailable')==1"
target="routing"/>

</state>

<state id="routing">
<onentry>

<queue:submit requestid="_data.reqid" queue="'802_SipSwitch@.Q'" priority="5"
timeout="20">

<queue:targets type="dn">
<queue:target name="'702'" />

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'Queue Submit DONE'"/>
<log expr="'SDATA for SipGr_1 =

'+_genesys.statistic.sData('SipGr_1@StatServer.GA','StatAgentsAvailable')"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error">

<log expr="uneval( _event )" />
</transition>

</state>
<final id="exit" />
<final id="error" />

Orchestration Extensions Statistic Interface

Orchestration Server Developer's Guide 383



</scxml>

This is an example of a custom statistic which requires subscription:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
xmlns:statistic="http://www.genesyslab.com/modules/statistic"
initial="initial" _persist="false">

<datamodel>
<data ID="reqid"/>
<data ID="ixnid"/>
<data ID="q1"/>
<data ID="q2"/>
<data ID="q3"/>
<data ID="time_delay" expr="'3s'" />

</datamodel>
<state id="initial" >

<transition event="interaction.added" target="subscribe" />
</state>

<state id="subscribe">
<onentry>

<log expr="'======== Inside Subscribe ========'"/>
<statistic:subscribe object="'801_SipSwitch@StatServer.Q'" statistic="'AvgWaitingTime'"

interval="0"/>
<statistic:subscribe object="'802_SipSwitch@StatServer.Q'" statistic="'AvgWaitingTime'"

interval="0"/>
<statistic:subscribe object="'803_SipSwitch@StatServer.Q'" statistic="'AvgWaitingTime'"

interval="0"/>
</onentry>

<transition event="statistic.subscribe.done" target="delay"/>
<transition event="error.statistic.subscribe" target="error"/>

</state>

<state id="delay">
<onentry>

<log expr="'======== Inside Delay ========'"/>
<send event="'SynchroEvent'" delay="_data.time_delay"/>

</onentry>
<transition event="SynchroEvent" target="check" />

</state>

<state id="check">
<onentry>

<log expr="'Script Start========================================'"/>
<script>

_data.q1 = _genesys.statistic.sData('801_SipSwitch@StatServer.Q','AvgWaitingTime');
_data.q2 = _genesys.statistic.sData('802_SipSwitch@StatServer.Q','AvgWaitingTime');
_data.q3 = _genesys.statistic.sData('803_SipSwitch@StatServer.Q','AvgWaitingTime');
__Log('AvgWaitingTime for q1 = '+_data.q1);
__Log('AvgWaitingTime for q2 = '+_data.q2);
__Log('AvgWaitingTime for q3 = '+_data.q3);

</script>
<log expr="'Script End========================================'"/>

</onentry>
<transition

cond="_genesys.statistic.sData('803_SipSwitch@StatServer.Q','AvgWaitingTime') == 0"
target="routing" />

</state>

<state id="routing">

Orchestration Extensions Statistic Interface

Orchestration Server Developer's Guide 384



<onentry>
<queue:submit requestid="_data.reqid" queue="'802_SipSwitch@.Q'" priority="5"

timeout="20">
<queue:targets type="dn">

<queue:target name="'702'" />
</queue:targets>

</queue:submit>
</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'Queue Submit DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error">

<log expr="uneval( _event )" />
</transition>

</state>
<final id="exit" />
<final id="error" />

</scxml>

_genesys.statistic.getAvgData

This function calculates the specified statistic for all listed targets and returns the average value of
this statistic.

value _genesys.FMname.getAvgData(objects, statistic)

Parameters:

• objects: STRING which can be a variable or a constant - This parameter is the list of comma-separated
objects (targets, in the case of target selection functionality) which this calculation is to be done
against.

• statistic: STRING which can be a variable or a constant - This parameter defines the statistic that is to
be used in this calculation.

Returns: value: NUMBER (FLOAT) - The result of the function is the average value for the requested
statistic, based on the list of objects and their statistical values.

_genesys.statistic.getMinData

This function calculates the specified statistic for all listed targets and returns the minimum value of
this statistic.

value _genesys.FMname.getMinData(objects, statistic)

Parameters:

• objects: STRING which can be a variable or a constant - This parameter is the list of comma-separated
objects (targets, in the case of target selection functionality) which this calculation is to be done
against.

• statistic: STRING which can be a variable or a constant - This parameter defines the statistic that is to
be used in this calculation.

Returns: value: NUMBER (FLOAT) - The result of the function is the minimum value for the requested

Orchestration Extensions Statistic Interface

Orchestration Server Developer's Guide 385



statistic, based on the list of objects and their statistical values.

_genesys.statistic.getMaxData

This function calculates the specified statistic for all listed targets and returns the maximum value of
this statistic.

value _genesys.FMname.getMaxData(objects, statistic)

Parameters:

• objects: STRING which can be a variable or a constant - This parameter is the list of comma-separated
objects (targets, in the case of target selection functionality) which this calculation is to be done
against.

• statistic: STRING which can be a variable or a constant - This parameter defines the statistic that is to
be used in this calculation.

Returns: value: NUMBER (FLOAT) - The result of the function is the maximum value for the requested
statistic, based on the list of objects and their statistical values.

Action Elements

The following are the statistic-specific actions.

<subscribe>

This action allows an application to dynamically subscribe to a particular statistic and object pair for
this session.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to

Orchestration Extensions Statistic Interface

Orchestration Server Developer's Guide 386



Name Required Type Default Value Valid Values Description

be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

object true value expression none

Any value
expression that
returns a valid
string that follows
the target formats
(for details see the
Queue interface
Target Formats
section)

A value expression
which returns the
name of the object
name associated
with this
subscription
request. The
following is the set
of valid object
types:

• Agent
• Agent

Group
(virtual or
real)

• Campaign
• Campaign

Group
• Destination

Label
• Interaction

Queue
• Place
• Place Group
• Queue

(virtual or
real)

Orchestration Extensions Statistic Interface

Orchestration Server Developer's Guide 387



Name Required Type Default Value Valid Values Description

• Queue
Group

• Routing
Point
(virtual and
real)

See SCXML Legal
Data Values and
Value Expressions
for details.

statistic true value expression none

Any value
expression that
returns a valid
string that
represents a valid
statistic

A value expression
which returns the
name of the
statistic associated
with this
subscription
request. Any
statistic name can
be specified except
for the following:

• CallsDistributed
• CallsAnswered
• DistributedPercentage
• DistributedWaitingTime
• NotDistributedPercentage
• NotDistributedWaitingTime

See SCXML Legal
Data Values and
Value Expressions
for details.

interval false value expression 30
A value expression
which returns an
integer that is
greater than 5

A value expression
which returns an
integer that
represents the
number of seconds
to wait for the
interval. See
SCXML Legal Data
Values and Value
Expressions for
details. The integer
returned must be
interpreted as a
time interval when
an updated value
of the statistic is
sent.

Note: There can only be one active subscription for a given object and statistic pair and the session.

Orchestration Extensions Statistic Interface

Orchestration Server Developer's Guide 388



If there is an active subscription for an object and statistic pair and another <subscribe> action is
invoked, the new request will be rejected with an error event. If the developer wants to change the
interval of a given subscription, they will have to <unsubscribe> and <subscribe> again with the
new value.

The following is an example:

<state id="do_subscribe">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<statistic:subscribe requestid="_data.reqid" object="'1234.Q'"
statistic="'InVQWaitTime'"/>

</onentry>
<transition event="statistic.subscribe.done" target="statex"/>
<transition event="error.statistic.subscribe" target="statey"/>

</state>

Children

None

Events

The following events can be generated as part of this action:

• statistic.subscribe.done - This event is sent when the request has been accepted by the system
and the statistic subscription has started for this session.

• error.statistic.subscribe - This event is sent when the request has failed for some reason.
• statistic.update - This event is sent at the end of each time interval while the subscription is active.

<unsubscribe>

This action allows an application to unsubscribe from a particular statistic and object pair for this
session.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid false location expression none Any valid location
expression

This is the location
for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model

Orchestration Extensions Statistic Interface

Orchestration Server Developer's Guide 389



Name Required Type Default Value Valid Values Description

location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

object true value expression none

Any value
expression that
returns a valid
string that follows
the target formats
(for details see the
[[Queue_Interface#Target_Formats]]
section)

A value expression
which returns the
name of the object
name associated
with this
subscription
request. The
following is the set
of valid object
types:

• Agent
• Agent

Group
(virtual or
real)

• Campaign
• Campaign

Group
• Destination

Label
• Interaction

Queue

Orchestration Extensions Statistic Interface

Orchestration Server Developer's Guide 390



Name Required Type Default Value Valid Values Description

• Place
• Place Group
• Queue

(virtual or
real)

• Queue
Group

• Routing
Point
(virtual and
real)

See SCXML Legal
Data Values and
Value Expressions
for details.

statistic true value expression none

Any value
expression that
returns a valid
string that
represents a valid
statistic

A value expression
which returns the
name of the
statistic associated
with this
subscription
request. Any
statistic name can
be specified except
for the following:

• CallsDistributed
• CallsAnswered
• DistributedPercentage
• DistributedWaitingTime
• NotDistributedPercentage
• NotDistributedWaitingTime

See SCXML Legal
Data Values and
Value Expressions
for details.

The following is an example:

<state id="do_unsubscribe">
<datamodel>

<data id="reqid"/>
</datamodel>
<onentry>

<statistic:unsubscribe requestid="_data.reqid" object="'1234.Q'"
statistic="'InVQWaitTime'"/>

</onentry>

Orchestration Extensions Statistic Interface

Orchestration Server Developer's Guide 391



<transition event="statistic.unsubscribe.done" target="statex"/>
<transition event="error.statistic.unsubscribe" target="statey"/>

</state>

Children

None

Events

The following events can be generated as part of this action:

• statistic.unsubscribe.done - This event is sent when the request has been accepted by the system
and the statistic subscription has been terminated for this session.

• error.statistic.unsubscribe - This event is sent when the request has failed for some reason.

Events

The following are the statistic action result events:

Event Attributes Description

statistic.subscribe.done

This event indicates the success of the
request and that the subscription has
been activated for this session.

requestid This is the ID associated with the request.

error.statistic.subscribe

This indicates that an abnormal condition
occurred while trying to perform the
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

error

This is the type of error that occurred:

• Request Invalid
• Subscription Already Active

description This is a more detailed description of the
error.

Orchestration Extensions Statistic Interface

Orchestration Server Developer's Guide 392



Event Attributes Description

statistic.unsubscribe.done

This event indicates the success of the
request and that the subscription has
been terminated for this session.

requestid This is the ID associated with the request.

error.statistic.unsubscribe

This indicates that an abnormal condition
occurred while trying to perform the
request. This event will be sent as a
result of a timeout of the request as well
as due to problems with the request or
interaction itself.

requestid This is the ID associated with the request.

error
This is the type of error that occurred:

• Request Invalid

description This is a more detailed description of the
error.

The following are the stat asynchronous events:

Event Attributes Description

statistic.update

This provides the update value of the
statistic.

object This is the name of the object that the
statistic is associated with. (string)

statistic This is the name of statistic. (string)

value
This is a floating point number which
represent the updated value of the
statistic that was subscribed to.

Orchestration Extensions Statistic Interface

Orchestration Server Developer's Guide 393



Resource Interface
This functional module contains enumeration objects that can be used in other functional
modules.  There are currently no events or actions generated by this functional module.

Orchestration Extensions Resource Interface

Orchestration Server Developer's Guide 394



Resource Interface
A common entity that used across functional module interfaces is called a resource. A resource is an
entity in a business which is involved in helping customers with the services they need. This resource
can either be directly involved with the customer through an actual interaction (an IVR, website,
knowledge management system, and so on) or be indirectly involved with the customer by doing the
processing on behalf of the customer (for example, an agent). A resource can be either a human (for
example, an agent) or a device (for example, an IVR). Each resource has a device associated with it
to allow it to control the media interactions it is going to help process.

Object Model

_genesys.resource Object

This is the global root object for the Resource functional module interface. This object is maintained
by the Resource functional module that implements this interface. The name of the object will be
"_genesys.resource". There are currently no data properties associated with this object.

_genesys.resource.resourceType ENUM Object

This represents the resource type enumeration. This enumeration is maintained by the orchestration
platform. This is the set of properties for the object:

Name Access Type Default Value Valid Values Description

CFGNoDN read only integer none 0
This indicates
that no DN
type should be
used.

CFGExtension read only integer none 1

This indicates
that the
extension DN
type should be
used.

CFGACDPosition read only integer none 2

This indicates
that the ACD
position DN
type should be
used.

CFGACDQueue read only integer none 3

This indicates
that the ACD
queue DN type
should be
used.

CFGRoutingPoint read only integer none 4 This indicates
that the

Orchestration Extensions Resource Interface

Orchestration Server Developer's Guide 395



Name Access Type Default Value Valid Values Description

routing point
DN type should
be used.

CFGVirtACDQueueread only integer none 5

This indicates
that the vitural
ACD queue DN
type should be
used.

CFGVirtRoutingPointread only integer none 6

This indicates
that the virtual
routing point
DN type should
be used.

CFGEAPort read only integer none 7

This indicates
that the EA
port DN type
should be
used.

CFGVoiceMail read only integer none 8
This indicates
that the voice
mail DN type
should be used

CFGCellular read only integer none 9

This indicates
that the
cellular DN
type should be
used.

CFGCP read only integer none 10
This indicates
that the CP DN
type should be
used.

CFGFAX read only integer none 11
This indicates
that the FAX
DN type should
be used.

CFGData read only integer none 12
This indicates
that the data
DN type should
be used.

CFGMusic read only integer none 13
This indicates
that the music
DN type should
be used.

CFGTrunk read only integer none 14
This indicates
that the trunk
DN type should
be used

CFGTrunkGroup read only integer none 15 This indicates
that the trunk

Orchestration Extensions Resource Interface

Orchestration Server Developer's Guide 396



Name Access Type Default Value Valid Values Description

group DN type
should be
used.

CFGTieLine read only integer none 16
This indicates
that the tie line
DN type should
be used.

CFGTieLineGroup read only integer none 17

This indicates
that the tie line
group DN type
should be
used.

CFGMixed read only integer none 18
This indicates
that the mixed
DN type should
be used.

CFGExtRoutingPointread only integer none 19

This indicates
that the
external
routing point
DN type should
be used.

CFGDestinationLabelread only integer none 20

This indicates
that the
destination
label DN type
should be
used.

CFGServiceNumberread only integer none 21

This indicates
that the
service number
DN type should
be used.

CFGRoutingQueueread only integer none 22

This indicates
that the
routing queue
DN type should
be used.

CFGCommunicationDNread only integer none 23

This indicates
that the
communication
DN type should
be used.

CFGEmail read only integer none 24
This indicates
that the email
DN type should
be used.

CFGVoIP read only integer none 25 This indicates
that the voip

Orchestration Extensions Resource Interface

Orchestration Server Developer's Guide 397



Name Access Type Default Value Valid Values Description

DN type should
be used.

CFGVideo read only integer none 26
This indicates
that the video
DN type should
be used.

CFGChat read only integer none 27
This indicates
that the chat
DN type should
be used.

CFGCoBrowse read only integer none 28

This indicates
that the
cobrowse DN
type should be
used.

CFGVoIPService read only integer none 29

This indicates
that the
VoIPService DN
type should be
used.

CFGWorkflow read only integer none 30

This indicates
that the
workflow DN
type should be
used.

any read only integer none 1000
This indicates
that any DN
type should be
used.

_event.data.resource Object

The _event.data.resource object in the queue.submit.done event will contain the resource in the
format described here (ready to be used as the value of "to" in action items like redirect,
singlesteptransfer, and so on). This is the set of properties for the object:

Name Access Type Default Value Valid Values Description

type r/w string none A, AP, GA, GP, WB,
IQ, Q, RP, DN

This is the type of
resource being
represented.

• A - Agent ID
• AP - Agent

Place ID
• GA - Agent

Group ID

Orchestration Extensions Resource Interface

Orchestration Server Developer's Guide 398



Name Access Type Default Value Valid Values Description

• GP - Place
Group ID

• WB -
Workbin ID

• IQ -
Interaction
Queue

• Q - Queue
• RP - Route

Point
• DN -

Directory
number

dn r/w string none

This is for voice-
related resources
and is the DN for
the resource. This
can be a Queue,
Route Point, or
Directory Number.

agent r/w string none

This is for voice-
related or non-
voice-related
resources and can
be either of the
following:

• Voice -
Agent (A)
or Agent
Group (GA)

• Non-Voice -
Agent (A)

place r/w string none

This is for voice-
related or non-
voice-related
resources and can
be either of the
following:

• Voice -
Place (AP)
or Place
Group (GP)

• Non-Voice -

Orchestration Extensions Resource Interface

Orchestration Server Developer's Guide 399



Name Access Type Default Value Valid Values Description

Place (AP)

id r/w string none

This is for non-
voice-related
resources and can
be either of the
following:

• Interaction
Queue (IQ)

• Workbin
(WB)

switch r/w string none

This is for voice-
related resources
and is associated
with the dn
property.

vq r/w string none

This is for voice-
related or non-
voice-related
resources and is
the virtual queue
associated with the
resource.

wb_type r/w string none

This is for non-
voice-related
workbin resources
and can be one of
the following:

• Agent (A) or
Agent
Group (GA)
or Place
(AP) or
Place Group
(GP)

wb_owner r/w string none

This is for non-
voice-related
workbin resources
and is the name of
the workbin owner,
with the string
presenting the
name of the
configuration layer
object that is the
owner of the
workbin.

Orchestration Extensions Resource Interface

Orchestration Server Developer's Guide 400



General rules for specifying target resources:

• For voice interactions, the dn property is mandatory. If the switch property is not used, the specified
dn property will be considered as local (with the same T-Server). All other keys except multimedia-
specific ones can provide information about the target the interaction is routed to. This information can
be attached to the interaction.

• For multimedia interactions, the dn property and the switch are ignored. The required information
depends on the type of target - if it is an agent, then key agent is mandatory. If it is a place, then key
place is mandatory. If it is an interaction queue or a workbin, then key id is mandatory. For workbin,
wb_type and wb_owner keys are also mandatory.

Samples: To route a voice call to some DN on another switch:

<onentry>
<script>

var dest = {type:"DN"
dn:"702",
id:"702_sip",
place:"702",
'switch':"another_switch"};

</script>
<ixn:redirect interactionid="_data.ixnid" from="'RP_sip1'" to="dest"  />

</onentry>

To route a multimedia call to an agent :

<onentry>
<script>

var dest = {type:"A"
agent:"702_sip"};

</script>
<ixn:redirect interactionid="_data.ixnid" from="'RP_sip1'" to="dest"  />

</onentry>

To route a call to a workbin:

<onentry>
<script>

var dest = {type:"WB",
id:"WorkbinTypeName",
wb_type:"GA",
wb_owner:"SomeAgentGroup"};

</script>
<ixn:redirect interactionid="_data.ixnid" from="'RP_sip1'" to="dest"  />

</onentry>

To route a call to a persistent queue:

<onentry>
<script>

var dest = {type:"IQ",
id:"InteractionQueueName"};

</script>
<ixn:redirect interactionid="_data.ixnid" from="'RP_sip1'" to="dest"  />

</onentry>
<script> dest= {"type"="IQ", "id"="InteractionQueueName"}; </script>
<redirect ...from="12345" to="dest"/>

When making a redirect, transfer, and so on, if the target contains additional information (vq, agent,

Orchestration Extensions Resource Interface

Orchestration Server Developer's Guide 401



place, sometimes id) before routing, the corresponding data should be attached to the interaction (in
the same way URS currently does).

Orchestration Extensions Resource Interface

Orchestration Server Developer's Guide 402



Functions
There are none at this time.

Orchestration Extensions Resource Interface

Orchestration Server Developer's Guide 403



Action Elements
There are none at this time.

Orchestration Extensions Resource Interface

Orchestration Server Developer's Guide 404



Events
There are none at this time.

Orchestration Extensions Resource Interface

Orchestration Server Developer's Guide 405



Elasticsearch Connector
Starting with 8.1.400.58, ORS enhances its Elasticsearch real-time reporting capabilities.
Enhancments include a new Orchestration SCXML extension, elasticconnector. The purpose of
elasticconnector SCXML extension is to:

• Remove management of connectivity to Elasticsearch cluster from the SCXML strategy.
• Provide simplified access to Elasticsearch APIs.

elasticconnector Action Elements

ORS supports the following new Action elements that can be used with Composer's SCXML State
block:

<createindextemplate>

• Execution of this Action results in a request to Elasticsearch only if the current ORS did not execute such
action with the same template name and the same or higher order.

• If the pattern in the “index” attribute matches the “performance” daily index (like “perf*”,
“performance-*”, and so on), the action will fail with the appropriate error and error description.

• If the pattern in the “index” attribute matches the “session” daily index and “order” is defined as 0,
action will fail with the appropriate error and error description. As a general rule – the template always
has order=0 and only one template is created per “session” and “performance” indexes; custom
templates always have to have order>0.

[+] createindextemplate

Name Required Type Def. value Valid values Description

requestid False Location expression none Any valid location
expression, which
represents a string.

This is the location for the request
ID that is returned as part of this
request. Standard attribute of all
Orchestration actions.

name True Value expression none Any value
expression that
returns a valid
string.

template name

index True Value expression none Any value
expression that
returns a valid
string.

Elasticsearch index name
(pattern).

Orchestration Extensions Elasticsearch Connector

Orchestration Server Developer's Guide 406

https://docs.genesys.com/Documentation/OS/draft8.1.4/Deployment/Elastic
https://docs.genesys.com/Documentation/OS/draft8.1.4/Deployment/Elastic#Elasticsearch_Connector_Enhancements
https://docs.genesys.com/Documentation/OS/draft8.1.4/Deployment/Elastic#New_SCXML_Extension
https://docs.genesys.com/Documentation/Composer/latest/Help/SCXMLStateBlock
https://docs.genesys.com/Documentation/Composer/latest/Help/SCXMLStateBlock


order False Value expression 0 Any value
expression that
returns a valid
integer.

Elasticsearch template order.

type True Value expression none Any value
expression that
returns a valid
string.

Elasticsearch type name.

mapping True Value expression none Any valid
ECMAScript object.

Object that represents the whole
body of Elasticsearch property of
mappings.type in the mapping
request.

timeout False Value expression 0 Any value
expression that
returns a valid
integer.

The integer returned must be
interpreted as a time interval in
milliseconds. This interval begins
when action is executed. A failed
and timed out fetch returns the
error.elasticconnector.createindex
event.

<createdoc>
Execution of this Action results in an add document request from ORS to Elasticsearch (via the index
API).

[+] createdoc

Name Required Type Def. value Valid values Description

requestid false Location expression none Any valid location
expression which
represents a string.

This is the location for the request
ID that is returned as part of this
request. Standard attribute of all
Orchestration actions.

id false Value expression none Any value
expression that
returns a valid string

Elasticsearch document within an
index. If not specified, an ID will
be automatically generated.
Explicit ID assignment and
automatic ID generation cannot
be mixed within same index.

index true Value expression none Any value
expression that
returns a valid
string.

Elasticsearch index name

Orchestration Extensions Elasticsearch Connector

Orchestration Server Developer's Guide 407



type true Value expression none Any value
expression that
returns a valid
string.

Elasticsearch type name

request true Value expression none Any valid
ECMAScript object

Object that represents the whole
body of an Elasticsearch create
document API request.

bulk false Boolean expression false true,false If true, Elasticsearch request will
be just added to the ORS bulk
request buffer and the
elasticconnector.createdoc.done
event will be raised immediately.
If false, a request to create
document will be sent to
Elasticsearch and the
corresponding event and
elasticconnector.createdoc.done
or
error.elasticconnector.createdoc
will be raised after a response
from Elasticsearch.

timeout false Value expression 0 Any value
expression that
returns a valid
integer.

The integer returned must be
interpreted as a time interval in
milliseconds. This interval begins
when action is executed. A failed
and timed out fetch returns the
error.elasticconnector.createdoc
event.

settings false Value expression none Any valid ECMA
script object.

Object that represents the body
of the Elasticsearch /_settings
index API request.

The settings attribute has been introduced in version 8.1.400.64. For more information, see ORS
Options for Elasticsearch 5.3, Index Settings for Custom Indexes section.

<updatedoc>
Execution of this Action results in an update document request from ORS to Elasticsearch (via update
API).

[+] updatedoc

Name Required Type Def. value Valid values Description

requestid false Location expression none Any valid location
expression which
represents a string.

This is the location for the request
ID that is returned as part of this
request. Standard attribute of all
Orchestration actions.

Orchestration Extensions Elasticsearch Connector

Orchestration Server Developer's Guide 408

https://docs.genesys.com/Documentation/OS/draft8.1.4/Deployment/Elastic#Configuring_ORS_Options_for_Elasticsearch_5.3%7CConfiguring
https://docs.genesys.com/Documentation/OS/draft8.1.4/Deployment/Elastic#Configuring_ORS_Options_for_Elasticsearch_5.3%7CConfiguring


id true Value expression none Any value
expression that
returns a valid
string.

Elasticsearch document ID within
an index.

index false Value expression Current session
daily index.

Any value
expression that
returns a valid
string.

Elasticsearch index name. If not
specified, current session daily
index will be used. Also, in this
case, the type attribute must be
not specified, or the action will
fail.

type false Value expression “session” Any value
expression that
returns a valid
string.

Elasticsearch type name. If not
specified, the “index” attribute
should be not specified as well
and “session” type will be used.

request true Value expression none Any valid
ECMAScript object

Object that represents the whole
body of an Elasticsearch update
document API request.

bulk false Boolean expression true true,false If true, Elasticsearch request will
be just added to the ORS bulk
request buffer and
elasticconnector.updatedoc.done
event will be raised immediately.
If false, a request to update
document will be sent to
Elasticsearch and corresponding
event
elasticconnector.updatedoc.done
or
error.elasticconnector.updatedoc
will be raised after response from
Elasticsearch.

timeout false Value expression 0 Any value
expression that
returns a valid
integer.

The integer returned is
interpreted as a time interval in
milliseconds. This interval begins
when the action is executed. A
failed and timed out fetch returns
the
error.elasticconnector.updatedoc
event.

settings false Value expression none Any valid ECMA
script object.

Object that represents the body
of the Elasticsearch /_settings
index API request.

The settings attribute has been introduced in version 8.1.400.64. For more information, see ORS
Options for Elasticsearch 5.3, Index Settings for Custom Indexes section.

Orchestration Extensions Elasticsearch Connector

Orchestration Server Developer's Guide 409

https://docs.genesys.com/Documentation/OS/draft8.1.4/Deployment/Elastic#Configuring_ORS_Options_for_Elasticsearch_5.3%7CConfiguring
https://docs.genesys.com/Documentation/OS/draft8.1.4/Deployment/Elastic#Configuring_ORS_Options_for_Elasticsearch_5.3%7CConfiguring


<deletedoc>
Execution of this Action results in a delete document request from ORS to Elasticsearch (via delete
API).

[+] deletedoc

Name Required Type Def. value Valid values Description

requestid false Location expression none Any valid location
expression which
represents a string.

This is the location for the request
ID that is returned as part of this
request. Standard attribute of all
Orchestration actions.

id true Value expression none Any value
expression that
returns a valid
string.

Elasticsearch document ID within
an index.

index true Value expression none Any value
expression that
returns a valid
string.

Elasticsearch index name

type true Value expression none Any value
expression that
returns a valid
string.

Elasticsearch type name

bulk true Boolean expression true true,false If true, Elasticsearch request will
be added to ORS bulk request
buffer and
elasticconnector.deletedoc.done
will be raised immediately. If
false, request to delete document
will be sent to Elasticsearch and
corresponding
elasticconnector.deletedoc.done
or
error.elasticconnector.deletedoc
event will be raised after a
response from Elasticsearch.

timeout false Value expression 0 Any value
expression that
returns a valid
integer.

The integer returned is
interpreted as a time interval in
milliseconds. This interval begins
when the action is executed. A
failed and timed out fetch returns
the
error.elasticconnector.deletedoc
event.

Orchestration Extensions Elasticsearch Connector

Orchestration Server Developer's Guide 410



Events
The following Events are supported:

[+] Events
}

Name Attributes Description

elasticconnector.createindextemplate.done This event indicates the success of the request.

requestid This is the ID of the request.

error.elasticconnector. createindextemplate This indicates that an error occurred while trying to perform
the createindextemplate request.

requestid This is the ID associated with the request.

error This is the type of error that occurred. The following is a
specific error code:

protocol.errorcode - This represents the protocol-specific errors
that occur when the attempting the request.

description This is a more detailed description of the error

elasticconnector.createdoc.done This event indicates the success of the request.

id This is ID of created document.

requestid This is the ID of the request.

error.elasticconnector.createdoc This indicates that an error occurred while trying to perform
the createdoc request.

requestid This is the ID associated with the request.

error This is the type of error that occurred. The following is a
specific error code:

protocol.errorcode - This represents the protocol-specific errors
that occur when the attempting the request.

description This is a more detailed description of the error

Orchestration Extensions Elasticsearch Connector

Orchestration Server Developer's Guide 411



elasticconnector.updatedoc.done This event indicates the success of the request.

Requestid This is the ID of the request.

error.elasticconnector.updatedoc This indicates that an error occurred while trying to perform
the updatedoc request.

Requestid This is the ID associated with the request.

Error This is the type of error that occurred. The following is a
specific error code:

protocol.errorcode - This represents the protocol-specific errors
that occur when the attempting the request.

Description This is a more detailed description of the error

elasticconnector.deletedoc.done This event indicates the success of the request.

Requestid This is the ID of the request.

error.elasticconnector.deletedoc This indicates that an error occurred while trying to perform
the deletedoc request.

Requestid This is the ID associated with the request.

Error This is the type of error that occurred. The following is a
specific error code:

protocol.errorcode - This represents the protocol-specific errors
that occur when the attempting the request.

Description This is a more detailed description of the error

Orchestration Extensions Elasticsearch Connector

Orchestration Server Developer's Guide 412



Agent Extension
Beginning with release 8.1.400.81, ORS introduces a new SCXML extension, Agent, which can be
used for implementing agent management features like logout, DND, and ability to change agent
state for voice media.

Important
Currently, only voice interactions are supported. The only allowed value for the media
property is _genesys.ixn.mediaType.TMediaVoice.

All actions of the Agent functional module are finalized as soon as T-Library accepts a request, that is,
the action done-event is sent to the SCXML session as soon as the request is successfully sent to T-
Server.

agent Action Elements

ORS supports the following new Action elements that can be used with Composer's SCXML State
block:

Important
To use these agent actions, you must manually configure the corresponding
namespace in Composer.

<logout>
This action logs out the agent from the ACD group. This is equivalent to the TAgentLogout request in
T-Server.

Name Required Type Def. value Valid values Description

requestid False Location
expression None

Any valid
location
expression,
which
represents a
string.

This is the
location for the
request ID that
is returned as
part of this
request.
Standard
attribute of all
Orchestration
actions.

Orchestration Extensions Agent Extension

Orchestration Server Developer's Guide 413

https://docs.genesys.com/Documentation/Composer/latest/Help/SCXMLStateBlock
https://docs.genesys.com/Documentation/Composer/latest/Help/SCXMLStateBlock


Name Required Type Def. value Valid values Description

agent False Value
expression None

Any valid
expression,
which
represents a
string.

Agent ID

for True Value
expression None

Any valid
expression,
which
represents an
object.

The object
structure must
be as follows:
{

“dn”:<DN
number>,“switch”:<Switch
name><br>
}

Note: The dn
property is
mandatory.

hints False Value
expression None Any valid ECMA

script object.

The object
structure must
be as follows:
{

“extensions”:<object>,“reasons”:<object><br>
}

<setmediastate>
This action sets the state of the agent as ready or not ready to receive the call. This is equivalent to
the TAgentSetReady or TAgentSetNotReady requests in T-Server.

Name Required Type Def. value Valid values Description

requestid False Location
expression None

Any valid
location
expression,
which
represents a
string.

This is the
location for the
request ID that
is returned as
part of this
request.
Standard
attribute of all
Orchestration
actions.

agent False Value
expression None

Any valid
expression,
which
represents a
string.

Agent ID

media True Value None _genesys.ixn.mediaType.TMediaVoiceThe array must

Orchestration Extensions Agent Extension

Orchestration Server Developer's Guide 414



Name Required Type Def. value Valid values Description

expression

contain objects
of the following
structure:
{

“media”:_genesys.ixn.mediaType.TMediaVoice,

“state”:<”ready”
or
“notready”>
}

for True Value
expression None

Any valid
expression,
which
represents an
object.

The object
structure must
be as follows:
{

“dn”:<DN
number>,“switch”:<Switch
name><br>
}

Note: The dn
property is
mandatory.

hints False Value
expression None Any valid ECMA

script object.

The object
structure must
be as follows:
{

“extensions”:<object>,“reasons”:<object><br>
}

<setdnd>
This action sets the Do-Not-Disturb (DND) feature to On or Off for the telephony object. This is
equivalent to the TSetDNDOn or TSetDNDOff requests in T-Server.

Name Required Type Def. value Valid values Description

requestid False Location
expression None

Any valid
location
expression,
which
represents a
string.

This is the
location for the
request ID that
is returned as
part of this
request.
Standard
attribute of all
Orchestration
actions.

Orchestration Extensions Agent Extension

Orchestration Server Developer's Guide 415



Name Required Type Def. value Valid values Description

agent False Value
expression None

Any valid
expression,
which
represents a
string.

Agent ID

set True Boolean value
expression None

Any boolean
expression that
returns a true
or false.

Sets the
desired DND
state. If true,
DNDOn, else,
DNDOff.

for True Value
expression None

Any valid
expression,
which
represents an
object.

The object
structure must
be as follows:
{

“dn”:<DN
number>,“switch”:<Switch
name>
}

Note: The dn
property is
mandatory.

hints False Value
expression None Any valid ECMA

script object.

The object
structure must
be as follows:
{

“extensions”:<object>,“reasons”:<object>
}

Events

The following events are supported by the Agent extension:

Event Name Attributes Description
agent.logout.done This event indicates the success

of the request.
requestid This is the ID of the request.

error.agent.logout This event indicates that an
abnormal condition occurred
while trying to perform the
request.

requestid This is the ID of the request.

Orchestration Extensions Agent Extension

Orchestration Server Developer's Guide 416



Event Name Attributes Description

error

This is the type of error that
occurred. The following are the
possible values:

• unknown
• invalidresource
• servererror

description This is a more detailed
description of the error.

agent.setmediastate.done This event indicates the success
of the request.

requestid This is the ID of the request.
error.agent.setmediastate This error indicates that an

abnormal condition occurred
while trying to perform this
request.

requestid This is the ID of the request.

error

This is the type of error that
occurred. The following are the
possible values:

• unknown
• invalidresource
• servererror

description This is a more detailed
description of the error.

agent.setdnd.done This event indicates the success
of the request.

requestid This is the ID of the request.
error.agent.setdnd This error indicates that an

abnormal condition occurred
while trying to perform this
request.

requestid This is the ID of the request.

error

This is the type of error that
occurred. The following are the
possible values:

• unknown
• invalidresource
• servererror

description This is a more detailed
description of the error.

Orchestration Extensions Agent Extension

Orchestration Server Developer's Guide 417



Migration from IRD
The following table documents the mapping from URS/IRD function block functionality to SCXML and
Functional Modules functionality for use in Orchestration. This mapping will result in the creation of
an SCXML snippet or a specific <state> element definition which represents the functionality of the
function block. The following is a <state> element template that could be used:

<state id="function_block_name">
<datamodel>

<! - This defines the data needed for processing this function block -->
</datamodel>
<onentry>

<! - Do the necessary function block action set up and action execution -->
<xxxx:yyyy requestid="_data.reqid" .../>

</onentry>
<transition event="xxxx.yyyy.done" cond="..." target="...">

<! - transition based on results (equal to function block output port) -->
</transition>
<transition event="xxxx.zzzz" cond="..." target="...">

<! - additional actions if necessary and transitions based on it. (equal to
function block output port ) -->

</transition>
<transition event="error.xxxx.yyyy">

<! - transition based on results - (equal to function block error port) -->
</transition>

</state>

Function Block SCXML and Functional Module equivalent

Acknowledgement <msgbased:createmessage> for appropriate media

Add Record <session:fetch..." method = "'post'"
srcexpr="'http://server.com...req=AddRecord'">

ANI <script> if done in orchestration, <session:fetch> with
application server code, if done outside.

Assign <assign> using ECMAScript object properties and functions

Attach Categories Use _genesys.ixn.interactions[].udata with category information
(Business Attribute CME objects) from configuration server

Autoresponse <msgbased:createmessage> for appropriate media

Business <script> if done in orchestration, <session:fetch> with
application server code, if done outside.

Busy <dialog:playsound>

Migration from IRD Agent Extension

Orchestration Server Developer's Guide 418



Function Block SCXML and Functional Module equivalent

Call Subroutine <include> or <invoke>

Cancel Call <dialog:stop>

Chat Transcript <msgbased:createmessage ... chattranscript="'xxx'"> for
appropriate media

Classify <classification:classify>

Classify (segmentation)
<classification:classify>, <script> if done in
orchestration, <session:fetch> with application server code, if
done outside.

Collect Digits <dialog:collect>

Comment <log> NOTE: As of Orchestration verion 8.1.200.46 -
the URS messages 22001 to 22020 are supported.

Create Interaction
<session:fetch
srcexpr="'http://server1.com/.../customers/${customer_id}/interactions'"
method="'post'" ...>

Create Email Out <msgbased:createmessage> for appropriate media

Create Notification <msgbased:createmessage> for appropriate media

Create SMS <msgbased:createmessage> for appropriate media

Database Wizard <session:fetch>, specialized application server code

Date
<script> if done in orchestration (use ECMAScript standard
date functions/objects or Session functional module ECMAScript
date and time functions), <session:fetch> with application
server code, if done outside.

Day of Week
<script> if done in orchestration (use ECMAScript standard
date functions/objects or Session functional module ECMAScript
date and time functions), <session:fetch> with application
server code, if done outside.

Default <queue:default>

Delete User Announcement <dialog:deleteann>

Migration from IRD Agent Extension

Orchestration Server Developer's Guide 419



Function Block SCXML and Functional Module equivalent

DNIS <script> if done in orchestration, <session:fetch> with
application server code,

Do Not Call <session:fetch..." method = "'post'"
srcexpr="'http://server.com...req=DoNotCall'" />

Entry <initial> or <scxml initial attribute>

Error Segmentation <script> if done in orchestration, <session:fetch> with
application server code, if done outside.

Exit <final>

External Service <session:fetch>, specialized application server code

Fast Busy <dialog:playsound>

Force Routing <ixn:redirect>

Forward E-Mail <msgbased:createmessage> for appropriate media

Function <script> any functional module interface action or ECMAScript
function.

Generic <script> if done in orchestration, <session:fetch> with
application server code, if done outside.

Identify Contact <session:fetch srcexpr="'http://server1.com/cv/
profiles'" method="get" ... >

If <if>

IVR <dialog:remote>

Load Balancing <queue:submit>

Macro <include>

MultiAssign <assign using ECMAScript object properties and
functions>

Migration from IRD Agent Extension

Orchestration Server Developer's Guide 420



Function Block SCXML and Functional Module equivalent

MultiAttach <script> or <assign> using
_genesys.FMname.interactions[x].udata object properties

MultiScreen <classification:screen>

Music <dialog:playsound>

Pause <runttreatments> and <pause>

Percentage <queue:submit>

Play Announcement <dialog:play> and <prompts type="tts">

Play Announcement and collect digits <dialog:playandcollect>

Play Application <dialog:start>

Processed <session:fetch..." method = "'post'"
srcexpr="'http://server.com...req=RecordProcessed'" />

Queue Interaction <ixn:redirect>

RAN <dialog:playsound>

Record User Announcement <dialog:recordann>

Redirect E-Mail <msgbased:createmessage> for appropriate media

Reply E-Mail From External Resource <msgbased:createmessage> for appropriate media

Reschedule
<session:fetch..." method = "'post'"
srcexpr="'http://server.com...req=RecordReschedule'"
/>

Ringback <dialog:playsound>

Route Interaction <queue:submit>

Screen <classification:screen>

Migration from IRD Agent Extension

Orchestration Server Developer's Guide 421



Function Block SCXML and Functional Module equivalent

Screen (segmentation) <classification:screen>, <script> if done in orchestration,
<session:fetch> with application server code, if done outside.

Selection (target selection) <queue:submit>, <dialog:runtreatments>

Send E-Mail <msgbased:sendmessage>

Service level <queue:submit>, <dialog:runtreatments>

Set Default Destination <dialog:setdialogdefaultdest>

Silence <dialog:playsound>

Statistics <queue:submit>, <dialog:runtreatments>

Stop Interaction <ixn:terminate>

Switch to Strategy <include> or <invoke>

Text to Speech <dialog:play><prompts type="tts">

Text to Speech and Collect Digits <dialog:playandcollect><prompts type="tts">

Time
<script> if done in orchestration (use ECMAScript standard
date functions/objects or Session functional module ECMAScript
date and time functions), <session:fetch> with application
server code, if done outside.

Update Contact <session:fetch srcexpr="'http://server1.com/cv/
profiles'" method="put"... >

Update Record
<session:fetch..." method = "'post'"
srcexpr="'http://server.com...req=UpdateCallCompletionStats'"
/>

Verify Digits <dialog:playandverify>

Web Service <session:fetch> with application server code

Workbin <ixn:redirect>

Migration from IRD Agent Extension

Orchestration Server Developer's Guide 422



Function Block SCXML and Functional Module equivalent

Workforce <queue:submit>, <dialog:runtreatments>

Migration from IRD Agent Extension

Orchestration Server Developer's Guide 423



Orchestration Server Integration

Orchestration Server Integration Agent Extension

Orchestration Server Developer's Guide 424



Introduction
Orchestrations server integration allows SCXML applications to reach out and interact with other
systems within your enterprise and may not only be used for customer specific related integrations
but is also leveraged to support integrations to other Genesys products and components that may
not as yet have native actions support, such as Context Services and Outbound Contact Server. Such
integrations with Genesys components are briefly described in the Genesys Servers section below.
Outward integrations from Orchestration are facilitated by the Orchestration Core Extension <fetch>
which is defined in more detail in Core Extensions <fetch> which can be consulted to aid in your
custom integration.

Orchestration Server Integration Agent Extension

Orchestration Server Developer's Guide 425



Genesys Servers
To facilitate easier use of these Genesys-related Servers, Composer supports specific blocks that may
remove the need for custom integration code. Because of this, we recommend that you refer to the
Composer Routing Applications User's Guide for the latest available blocks. This document can be
obtained from the Composer page on this wiki.

Context Services

Context Services is a data repository that provides real-time and historic customer-centric data to
SCXML applications through an interface that allows the application users to make important
business decisions. For example, it allows you to determine whether a customer should be offered a
given service or that the customer is a high value client, or if there are existing SCXML application
sessions are already running for this customer. Context Services exposes a set of RESTful APIs to
access the customer context data. Refer to Context Services for more information about the RESTFul
interface and Context Services. The following is an example of how you would use this REST APIs
from and SCXML application - details on CS REST API . <!-- This is the IdentifyByPhoneNumber
CS API request. -->

<state id="IdentifyByPhoneNumber">
<onentry>

<if cond="_data.context_management_services_url == undefined ||
_data.context_management_services_url == ">

<raise event="servererror">
<param name="description"

expr="'context_management_services_url property not configured'" />
</raise>

<else/>
<script>

_data.CustomerCount = 0;
var includeProfile = "no";
var includeExtension = "unique";
includeProfile="no";
includeExtension="unique";

</script>
<session:fetch requestid="_data.requestid"

srcexpr="_data.context_management_services_url +
'/profiles'"

method="'get'" type="'application/json'">
<param name="include_profile" expr="includeProfile"/>
<param name="include_extensions"

expr="includeExtension"/>
<param name="PhoneNumber" expr="ANI"/>

</session:fetch>
</if>

</onentry>

<transition event="error.session.fetch" target="Exit_Error">
<log expr="'Error ' + _event.data.error + ':' +

Orchestration Server Integration Agent Extension

Orchestration Server Developer's Guide 426



_event.data.description" />
</transition>

<transition event="session.fetch.done" cond="_event.data.content =="
target="Exit_Error">

<assign location="CustomerCount" expr="0" />
<log expr="'Error No customer found'" />

</transition>

<transition event="session.fetch.done" target="Exit_final">
<script>

var _data.CustomerData = _event.data.content != ? eval('(' +
_event.data.content + ')') : new Array();

if (_data.CustomerData.length == 1) {
if (App_IdentifyByPhoneNumber_IncludeExtension=="unique") {

_data.CustomerData = [{'customer_id' :
_data.CustomerData[0].customer_id}];

}
}

</script>
<log expr="'IdentifyByPhoneNumber: ' + CustomerData.length + '

Customer record(s) found'"/>
</transition>

</state>

Outbound Contact Campaigns

The campaign calling list record control actions will be handled through the <fetch> action. The
Outbound Contact Server campaign-related HTTP APIs will be mapped to the <fetch> attributes and
child elements. See OCS Support for HTTP Protocol in the Outbound Contact Reference Manual.

Important <fetch>-related usage notes with the Outbound Web 2.0 APIs:

• The method attribute value is always "post".
• The enctype attribute value is always "application/json".
• The type attribute value is always "application/json".
• The <param> name attribute is always "record".

The following is the general mapping to <fetch>, while the sub-sections are detailed mappings and
examples for the functions that will be supported.

<session:fetch requestid="_data.reqid"
srcexpr="'http://cvserver1.com/<resource>/<id>?req=actionx'"
method="post" type="application/json" enctype="application/json">

<param name="record" expr="_data.rmyrecord"/>
</session:fetch>

<resource> can be:

Orchestration Server Integration Agent Extension

Orchestration Server Developer's Guide 427

https://docs.genesys.com/Documentation/OU/latest/Ref/OCSSupportHTTP


• records - This contains the campaign records:
• <id> - This will be the ID of the record.

• phones - This is the phone number associated with a record or set of records:
• <id> - This will be the phone number.

• customer_ids - This is the customer ID associated with a record or set of records:
• <id> - This will be the customer ID.

Adding a New Record

This action adds a new record to an existing campaign's call list. This action covers the "Add_Record"
IRD function block. Elements:

• Req = AddRecord

• <resource> = records

• <id> = recordid

The following is an example of how to use the <fetch> element to add a new outbound record.

<onentry>
<script>

Record = new Object();
Record.GSW_PHONE = "567567567545656";
Record.GSW_TZ_NAME = "'PST";
Record.GSW_CALL_RESULT = 28;
Record.STATUS_CODE = "New";
Record.CUSTOMER_STATUS = 5;
Record.GSW_CAMPAIGN = "New Productx";

</script>

<session:fetch
srcexpr="http://server1.genesyslab.com:8080/records/?req=AddRecord"
method="post" enctype=" application/json" type=" application/json">

<param name="record" expr="local.Record"/>
</session:fetch>

</onentry>

Updating an Existing Record

This action updates an existing record in an existing campaign's call list. This action covers the
"Update_Record" and "Reschedule" IRD function blocks. Elements:

• req = RecordReschedule or UpdateCallCompletionStats or RecordReject or RequestRecordCancel
• <resource> = records

• <id> = recordid

The following is an example of how to use the <fetch> element to reschedule a record.

<onentry>
<script>

Record = new Object();
Record.GSW_DATE_TIME = "10/12/2009";

Orchestration Server Integration Agent Extension

Orchestration Server Developer's Guide 428



Record.GSW_CAMPAIGN = "New Productx";
</script>

<session:fetch
srcexpr="http://server1.genesyslab.com:8080/records/

123456?req=RecordReschedule"
method="post" enctype=" application/json" type=" application/json">

<param name="record" expr="local.Record"/>
</session:fetch>

</onentry>

The following is an example of how to use the <fetch> element to UpdateCallCompletionStats for a
record.

<onentry>
<script>

Record = new Object();
Record.GSW_CAMPAIGN = "New Productx";

</script>

<session:fetch
srcexpr="http://server1.genesyslab.com:8080/records/

123456?req=UpdateCallCompletionStats"
method="post" enctype=" application/json" type=" application/json">

<param name="record" expr="local.Record"/>
</session:fetch>

</onentry>

The following is an example of how to use the <fetch> element to RecordReject a record.

<onentry>
<script>

Record = new Object();
Record.GSW_CALLING_LIST = "First List";
Record.GSW_CAMPAIGN = "New Productx";

</script>

<session:fetch
srcexpr="http://server1.genesyslab.com:8080/records/

123456?req=RecordReject"
method="post" enctype=" application/json" type=" application/json">

<param name="record" expr="local.Record"/>
</session:fetch>

</onentry>

Reschedule an Existing Record

This action reschedules an existing record in an existing campaign's call list. This action covers the
"Reschedule" IRD function blocks. Elements:

• req = RecordReschedule

• <resource> = records

• <id> = recordid

The following is an example of how to use the <fetch> element to reschedule a record.

<onentry>
<script>

Orchestration Server Integration Agent Extension

Orchestration Server Developer's Guide 429



Record = new Object();
Record.GSW_DATE_TIME = "10/12/2009";
Record.GSW_CAMPAIGN = "New Productx";

</script>
<session:fetch

srcexpr="http://server1.genesyslab.com:8080/records/
123456?req=RecordReschedule"

method="post" enctype=" application/json" type=" application/json">
<param name="record" expr="local.Record"/>

</session:fetch>
</onentry>

Reject an Existing Record

This action rejects an existing record in an existing campaign's call list. Elements:

• req = RecordReject

• <resource> = records

• <id> = recordid

The following is an example of how to use the <fetch> element to RecordReject a record.

<onentry>
<script>

Record = new Object();
Record.GSW_CALLING_LIST = "First List";
Record.GSW_CAMPAIGN = "New Productx";

</script>
<session:fetch srcexpr="http://server1.genesyslab.com:8080/records/

123456?req=RecordReject"
method="post" enctype=" application/json" type=" application/json">

<param name="record" expr="local.Record"/v
</session:fetch>

</onentry>

Complete an Existing Record

This action completes an existing record in an existing campaign's call list. It covers the "Processed"
IRD function block. Elements:

• req = RecordProcessed

• <resource> = records

• <id> = recorded

The following is an example of how to use the <fetch> element to RequestRecordCancel a record.

<onentry>
<session:fetch
srcexpr="http://server1.genesyslab.com:8080/records/123456?req=RequestRecordCancel"

method="post" enctype=" application/json" type=" application/json"/>
</onentry>

Add the Customer to Do Not Contact List

This action completes an existing record in an existing campaign's call list and adds it to the do not

Orchestration Server Integration Agent Extension

Orchestration Server Developer's Guide 430



contact list. This action covers the "Do Not Call" IRD function block. Elements:

• <code>req = DoNotCall</code>
• <resource> = records

• <id> = recordid

The following is an example of how to use the <fetch> element to RecordProcessed a record.

<onentry>
<session:fetch

srcexpr="http://server1.genesyslab.com:8080/records/123456?req=DoNotcall"
method="post" enctype=" application/json" type=" application/json"/>

</onentry>

Orchestration Server Integration Agent Extension

Orchestration Server Developer's Guide 431



Orchestration Getting Started Guide

Orchestration Getting Started Guide Agent Extension

Orchestration Server Developer's Guide 432



Introduction
The aim of the guide is to help you build your SCXML applications. It is assumed at this point that you
have installed Orchestration and have it working with other Genesys products. You may also want to
install RestClient to test your applications. It is also assumed that you have a general understanding
of the Genesys Product Suite, SCXML, as well as Internet technologies such as HTTP, XML, and JSON.
If you want to review basic SCXML concepts before continuing, you may find them here.

Orchestration Getting Started Guide Agent Extension

Orchestration Server Developer's Guide 433

https://docs.genesys.com/Documentation/OS/latest/Developer/SCXMLRef


Writing your first application
Now that you have familiarized yourself with states and transitions, you are ready to write your first
application. Let's begin with a simple application that plays music when we receive a voice call:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="begin">

<datamodel>
<data id="ixnid" expr="''" />
<data id="reqid" expr="''" />

</datamodel>
<state id="begin">

<transition event="interaction.added" target="play_music">
<script>

_data.ixnid = _event.data.interactionid;
</script>

</transition>
</state>
<state id="play_music">

<onentry>
<dialog:playsound interactionid="_data.ixnid"

requestid="_data.reqid"
type="'music'"
resource="'music/on_hold'"
duration="'10 '"/>

</onentry>
<transition event="dialog.playsound.done" target="exit"/>
<transition event="error.dialog.playsound" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Let's look at how this SCXML file works:

• At the top of the file you have included one of the custom ORS extensions, the dialog FM with
xmlns:dialog="www.genesyslab.com/modules/dialog".

• The document declares an initial state of begin, which is the entry point into the state machine.
• Before we enter the state machine, there is a <datamodel> element which encapsulates any number of

<data> elements. This is the single globally visible data model for the entire state machine.
• Each <data> element defines a named data element and is created when the document is loaded.
• While inside the begin state, it waits for the interaction.added event to trigger a transition.
• The interaction.added event is generated when a new interaction is associated with the session. In

this case, a voice call will trigger the interation.added event which will cause the state machine to
transition to the play_music state.

• When the transition is triggered, the executable content contained in the <script> is executed and
the variable _data.ixnid within the data model is updated with the interaction id that was returned as
part of the _event.data object.

• Once the state play_music is entered, the executable content contained in the <onentry> is

Orchestration Getting Started Guide Agent Extension

Orchestration Server Developer's Guide 434



immediately executed which plays the music file found at music/on_hold for a during of 10 seconds.
• <dialog:playsound> is a custom action whose local name is playsound and is bound to the namespace

www.genesyslab.com/modules/dialog.
• The custom action playsound has been defined within ORS as an extension. For details, see the section

on the dialog interface.
• If 10 seconds of music was played successfully, the dialog.playsound.done event is received.

Otherwise, we get the error.dialog.playsound event. One of these two events will trigger a
transition to a final state.

• The final state indicates that the state machine has run to completion.

Now we will add to the scenario by routing the call to an agent after playing music for 10 seconds:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="begin">

<datamodel>
<data id="ixnid" expr="''" />
<data id="reqid" expr="''" />

</datamodel>
<state id="begin">

<transition event="interaction.added" target="play_music">
<script>

_data.ixnid = _event.data.interactionid;
</script>

</transition>
</state>
<state id="play_music">

<onentry>
<dialog:playsound interactionid="_data.ixnid"

requestid="_data.reqid"
type="'music'"
resource="'music/on_hold'"
duration="'10 '"/>

</onentry>
<transition event="dialog.playsound.done" target="route_to_agent"/>
<transition event="error.dialog.playsound" target="error"/>

</state>
<state id="route_to_agent">

<onentry>
<queue:submit requestid="_data.reqid" interactionid="_data.ixnid"

priority="5" timeout="20">
<queue:targets type="agent">

<queue:target name="'702_sip'"/>
</queue:targets>

</queue:submit>
</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error">

<log expr="'ERROR'"/>
</transition>

</state>

<final id="exit"/>
<final id="error"/>

Orchestration Getting Started Guide Agent Extension

Orchestration Server Developer's Guide 435



</scxml>

• First, we added the queue FM at the beginning of the file with xmlns:queue="www.genesyslab.com/
modules/queue".

• After playing music for 10 seconds, the dialog.playsound.done is received and will trigger a transition
to the state route_to_agent.

• Once the state route_to_agent is entered, the executable content contained in the <onentry> is
immediately executed which tries to route the call to agent 702_sip.

• <queue:submit> is a custom action whose local name is submit and is bound to the namespace
www.genesyslab.com/modules/queue.

• The custom action submit has been defined within ORS as an extension. For details, see the section on
the queue submit.

• If the interaction has been routed successfully to agent 702_sip, the queue.submit.done event is
received. Otherwise, we get the error.queue.submit event if the interaction was not routed within the
20 seconds timeout period. One of these two events will trigger a transition to a final state.

• Before transitioning to the final exit state, the standard action of <log> is called which outputs a string
containing information about the <queue:submit> request.

So far, our example has been fairly simple, where a voice call comes in, we play music to it for 10
seconds, then try for 20 seconds to route the call to an agent. But what if the agent is on a call and is
unavailable? A more realistic scenario is to wait for the agent to become available and play music to
the caller while they are waiting. Of course we don't want to wait indefinitely so let's try for 5 minutes
and if the agent doesn't become available, we exit the state machine, as follows:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="begin">

<datamodel>
<data id="reqid" expr="''" />
<data id="ixnid" expr="''" />

</datamodel>

<state id="begin">
<transition event="interaction.added" target="routingwithdialog">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>

<parallel id="routingwithdialog">

<state id="play_music">
<onentry>

<dialog:playsound type="'music'" resource="'music/on_hold'"
duration="'300'"/>

</onentry>
<transition event="dialog.playsound.done" target="exit"/>
<transition event="error.dialog.playsound" target="error"/>

</state>
<state id="route_to_agent">

<onentry>
<queue:submit requestid="_data.reqid" interactionid="_data.ixnid"

priority="5" timeout="300">
<queue:targets>

Orchestration Getting Started Guide Agent Extension

Orchestration Server Developer's Guide 436



<queue:target type="agent" name="'702_sip'"/>
</queue:targets>

</queue:submit>
</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'Queue Submit DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>

<transition event="error.queue.submit" target="error" >
<log expr="'ERROR'"/>

</transition>
</state>

</parallel>

<final id="exit"/>
<final id="error"/>

</scxml>

• From the begin state, we now transition to a set of parallel states. When we enter the parallel state
routingwithdialog, we simultaneously enter the child states play_music and route_to_agent.

• The play_music state is the same as before, except the duration of the music has been increased to
300 seconds (5 minutes). Once the music has been playing for 300 seconds, we will receive the
dialog.playsound.done event, at which point we will exit the play_music state, as well as the
routingwithdialog state, and enter the final state exit.

• The route_to_agent is the same as before, and will try to route the interaction to agent 702_sip.
• If the interaction is successfully routed to agent 702_sip, we get the queue.submit.done event and

transition to the final state exit.
• If the interaction was not routed within 300 seconds, we get the error.queue.submit event, which

triggers a transition to final state error.

This SCXML file will work well as long as agent 702_sip becomes available within 300 seconds (5
minutes). Of course, we can modify this value and wait longer than 5 minutes, but what happens if
agent 702_sip never becomes available? If there are other agents, we may want to expand our agent
selection to include those. A better approach is to first try to route to a particular agent, if
unsuccessful, try to route to an agent group, if unsuccessful, try to route to a place, if unsuccessful,
try to route to a place group, and if all those options could not successfully route the call, then give
up. It would also be nice to let the caller know what the estimated wait time is. Here is what the
SCXML file will look like:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<datamodel>
<data id="reqid" expr="''" />
<data id="ixnid" expr="''" />

</datamodel>

<state id="initial">
<transition event="interaction.added" target="routingwithdialog">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

Orchestration Getting Started Guide Agent Extension

Orchestration Server Developer's Guide 437



</state>

<parallel id="routingwithdialog">

<state id="dialog" initial="play_estimated_wait_time">
<state id="play_estimated_wait_time">

<onentry>
<dialog:play language="'English(US)'">

<dialog:prompts type="ann">
<dialog:prompt interrupt="true" intid="1"/>

</dialog:prompts>
</dialog:play>

</onentry>
<transition event="dialog.play.done" target="play_music"/>
<transition event="error.dialog.play" target="error"/>

</state>
<state id="play_music">

<onentry>
<dialog:playsound type="'music'" resource="'music/on_hold'"

duration="'60'"/>
</onentry>
<transition event="dialog.playsound.done"

target="play_estimated_wait_time"/>
<transition event="error.dialog.playsound" target="error"/>

</state>
</state>
<state id="routing" initial="route_to_agent">

<state id="route_to_agent">
<onentry>

<queue:submit requestid="_data.reqid"
interactionid="_data.ixnid" priority="5" timeout="60">

<queue:targets>
<queue:target type="agent" name="'702_sip'"/>

</queue:targets>
</queue:submit>

</onentry>
<transition event="error.queue.submit" target="route_to_agent_group">

<log expr="'Queue Submit to Agent Group'"/>
</transition>

</state>

<state id="route_to_agent_group">
<onentry>

<queue:submit requestid="_data.reqid"
interactionid="_data.ixnid" priority="5" timeout="60">

<queue:targets>
<queue:target type="agentgroup"

name="'SipGr_2'"/>
</queue:targets>

</queue:submit>
</onentry>
<transition event="error.queue.submit" target="route_to_place">

<log expr="'Queue Submit to Place'"/>
</transition>

</state>

<state id="route_to_place">
<onentry>

<queue:submit requestid="_data.reqid"
interactionid="_data.ixnid" priority="5" timeout="60">

<queue:targets>
<queue:target type="place" name="'702'"/>

Orchestration Getting Started Guide Agent Extension

Orchestration Server Developer's Guide 438



</queue:targets>
</queue:submit>

</onentry>
<transition event="error.queue.submit" target="route_to_place_group">

<log expr="'Queue Submit to Place Group'"/>
</transition>

</state>

<state id="route_to_place_group">
<onentry>

<queue:submit requestid="_data.reqid"
interactionid="_data.ixnid" priority="5" timeout="60">

<queue:targets>
<queue:target type="placegroup"

name="'SIP_PlGr2'"/>
</queue:targets>

</queue:submit>
</onentry>
<transition event="error.queue.submit" target="error">

<log expr="'ERROR'"/>
</transition>

</state>

<transition event="queue.submit.done" target="exit">
<log expr="'Queue Submit DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
</state>

</parallel>

<final id="exit"/>
<final id="error"/>

</scxml>

• This time, we enter the two child states dialog and routing simultaneously as soon as we enter the
routingwithdialog parallel state.

• The dialog state now has two child states, play_estimated_wait_time and play_music. As soon as
the dialog state is entered, the play_estimated_wait_time state becomes the active state because it
has been declared as the initial state.

• The play_estimated_wait_time will play a prompt announcing the estimated wait time before the call
will get routed to an agent. When the announcement is finished, we will get the dialog.play.done
event to trigger a transition to the play_music state.

• The play_music state is the same as before and will play music for 60 seconds, then fire the
dialog.playsound.done event, which will trigger a transition to the play_estimated_wait_time state.

• The routing state has four child states, all trying to route the call to an agent. As soon as the routing
state is entered, the route_to_agent state becomes the active state. While the state machine is in any
of the four child states, the queue.submit.done event could be fired. Since this event has no matches
in the currently active child state, it will look at the parent state routing and look for a transition with
the event name queue.submit.done. This will cause a transition to the final state exit.

• The route_to_agent state will try to route the call to agent 702_sip for 60 seconds before it fires the
error.queue.submit event which will trigger a transition to the route_to_agent_group state.

• The route_to_agent_group state will try to route the call to agent group SipGr_2 for 60 seconds
before it fires the error.queue.submit event which will trigger a transition to the route_to_place
state.

• The route_to_place state will try to route the call to place 702 for 60 seconds before it fires the

Orchestration Getting Started Guide Agent Extension

Orchestration Server Developer's Guide 439



error.queue.submit event which will trigger a transition to the route_to_place_group state.
• The route_to_place_group state will try to route the call to place group SIP_PlGr2 for 60 seconds

before it fires the error.queue.submit event which will trigger a transition to the final state error.

Next, we have a situation where we are trying to detect whether the call was created from a consult
call. The following SCXML file was configured on a Routing Point, and was triggered when a primary
call initiated a consult call to the Routing Point:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
initial="global">

<script>
var reqid;
var consult_ixn_id;
var primary_ixn_id;
var effective_ixn_id;
var sessionStarted = false;

</script>
<!--**********************************************************************-->
<state id="global" initial="initial">

<!--**********************************************************************-->
<state id="initial">

<!--This ensures the session terminates after 10 minutes-->
<onentry>

<send event="'toExit'" delay="'600s'" />
</onentry>
<transition event="interaction.added" cond="sessionStarted == false" >

<script>
/*
To avoid catching another 'interaction.added' event

(caused by 'attach') in the same state again,
set sessionStarted to true. 'Attach' action could be

done in a separate state, but for the sake of
simplicity and to minimize number of states it is

done here in initial state...
*/
sessionStarted = true;
/* Assign interaction IDs that will be needed later

on ... */
if(

_genesys.ixn.interactions[_event.data.interactionid].voice.type == 'consult' )
{

consult_ixn_id = _event.data.interactionid;
primary_ixn_id =

_genesys.ixn.interactions[consult_ixn_id].parentid;
effective_ixn_id = consult_ixn_id;

}
else
{

consult_ixn_id = undefined;
primary_ixn_id = _event.data.interactionid;
effective_ixn_id = primary_ixn_id;

}
</script>
<log expr="'CONSULT_EXAMPLE: consult_ixn_id = ' +

consult_ixn_id" />
<log expr="'CONSULT_EXAMPLE: primary_ixn_id = ' +

primary_ixn_id" />
<log expr="'CONSULT_EXAMPLE: effective_ixn_id = ' +

Orchestration Getting Started Guide Agent Extension

Orchestration Server Developer's Guide 440



effective_ixn_id" />
<if cond="consult_ixn_id != undefined">

<log expr="'CONSULT_EXAMPLE: Consult call started
strategy. Attaching primary call...'"/>

<ixn:attach requestid="reqid"
interactionid="primary_ixn_id" />

<else/>
<log expr="'CONSULT_EXAMPLE: Normal call started

strategy. Proceeding with session ...'"/>
<send event="'toProceed'" />

</if>
</transition>
<transition event="interaction.attach.done"

cond="_event.data.requestid == reqid" target="prewaiting_state" />
<!-- error.interaction.attach event (if happened) will be caught in

global state -->
<transition event="toProceed" target="CUSTOM_WORKING_STATE" />

</state>
<!--**********************************************************************-->
<state id="prewaiting_state">

<onentry>
<!-- This illustrates the case when the session is started by

a consult call (and that
call is still alive here), sometimes it makes sense to wait

for some short amount of time.
This time could depend on how fast TServer completes

transfer, or
could be done to avoid routing consult call during mute

transfer, etc. -->
<log expr="'CONSULT_EXAMPLE: Continuing session with some

short delay...'"/>
<send event="'toProceed'" delay="'1s'"

/>
</onentry>
<transition event="toProceed" target="CUSTOM_WORKING_STATE"

/>
</state>
<!--**********************************************************************-->
<!--************  This is where your main logic goes *********************-->
<!--**********************************************************************-->
<state id="CUSTOM_WORKING_STATE" initial="route_to_agent">

<!-- This will try to route the call to agent 703_sip.
If it is not successful within 3 seconds, it will transition to

state "dialog" and play music.
The attribute "clearontimeout" is set to false so router will

continue trying to route to the
agent while the music is playing. -->

<state id="route_to_agent">
<onentry>

<queue:submit requestid="reqid"
interactionid="effective_ixn_id" priority="5" timeout="3" clearontimeout="false" >

<queue:targets>
<queue:target type="agent"

name="'703_sip'"/>
</queue:targets>

</queue:submit>
</onentry>
<transition event="error.queue.submit" target="dialog" >

<log expr="'ERROR WITH QUEUE SUBMIT: ' + uneval(
_event )"/>

</transition>
</state>

Orchestration Getting Started Guide Agent Extension

Orchestration Server Developer's Guide 441



<!-- This plays music for 60 seconds. -->
<state id="dialog" >

<onentry>
<dialog:playsound requestid="reqid"

interactionid="effective_ixn_id" type="'music'" resource="'music/on_hold'" duration="60" />
</onentry>
<transition event="dialog.playsound.done.timeout" />
<transition event="dialog.playsound.done" target="exit"/>
<transition event="error.dialog.playsound" target="error">

<log expr="'ERROR PLAYING MUSIC: ' + uneval(_event)"
/>

</transition>
</state>

<transition event="queue.submit.done" target="exit">
<log expr="'QUEUE SUBMIT DONE.  Ending Session.'"/>

</transition>
<transition event="interaction.partystatechanged"

cond="effective_ixn_id == _event.data.interactionid">
<log expr="'CONSULT_EXAMPLE: Got partystatechanged event: ' +

uneval(_event.data)" />
</transition>

</state>

<!--**********************************************************************-->
<!--**********************************************************************-->
<!--**********************************************************************-->
<transition event="interaction.onmerge" cond="_event.data.frominteractionid

== consult_ixn_id && _event.data.tointeractionid == primary_ixn_id" >
<script>

consult_ixn_id = undefined;
effective_ixn_id = primary_ixn_id;

</script>
<log expr="'CONSULT_EXAMPLE: Effective call ID changed because of

transfer completion: ' + uneval(_event)"/>
<log expr="'CONSULT_EXAMPLE: consult_ixn_id = ' + consult_ixn_id" />
<log expr="'CONSULT_EXAMPLE: primary_ixn_id = ' + primary_ixn_id" />
<log expr="'CONSULT_EXAMPLE: effective_ixn_id = ' + effective_ixn_id"

/>
</transition>
<transition event="interaction.deleted" cond="_event.data.interactionid ==

effective_ixn_id" target="exit" >
<log expr="'CONSULT_EXAMPLE: Effective call is dead. Exiting...: ' +

uneval(_event)"/>
</transition>
<transition event="interaction.deleted" cond="_event.data.interactionid ==

primary_ixn_id && consult_ixn_id != undefined" target="exit" >
<log expr="'CONSULT_EXAMPLE: Primary call is dead, consult call is

alive and useless. Exiting...: ' + uneval(_event)"/>
</transition>
<!--In case none of the other events are triggered, this will end the session

after number of minutes specified at the strategy beginning-->
<transition event="toExit" target="exit">

<log expr="'CONSULT_EXAMPLE: Possibly stuck session is self-
destructing. Exiting...: ' + uneval(_event)"/>

</transition>
<!--This will catch all the errors that are not processed elsewhere-->
<transition event="error.*" target="error" >

<log expr="'CONSULT_EXAMPLE: ERROR AT GLOBAL LEVEL'"/>
<log expr="'CONSULT_EXAMPLE: Got error event: ' + uneval( _event )" />

</transition>
</state>

Orchestration Getting Started Guide Agent Extension

Orchestration Server Developer's Guide 442



<final id="exit"/>
<final id="error"/>

</scxml>

• When an agent that is part of the primary call initiates a transfer or consult to the Routing Point, it will
trigger a SCXML session to be created and will wait for the interaction.added event.

• After the interaction.added event is received, it will set the consult_ixn_id, primary_ixn_id, and
effective_ixn_id depending on whether the session was started by a regular call, or a consult call to
the Route Point.

• If the call that started the session is a consult call, we attach the parent interaction (the primary call
which is ownerless) to the current session (see interaction attach for more details about ownership).

• The interaction.attach.done event will trigger a transition to the prewaiting_state, where we put
in a delay. This delay is needed depending on how fast TServer completes the transfer, or is sometimes
done to avoid routing a consult call during a mute transfer.

• The CUSTOM_WORKING_STATE is where you would put your main logic. In this example, we first try to
route the call to agent 703_sip. If this is not successful within 3 seconds, we transition to the dialog
state and play music for 60 seconds.

• At any time during the session, if the transfer or consult is completed, the interaction.onmerge event
will be triggered and various interaction IDs will be updated. This is needed to because the consult call
is deleted during the merge. The consult_ixn_id will no longer be valid and is set to undefined. The
effective_ixn_id is updated and should be used from this point forward for all functions and actions
that require an interaction ID.

• Exiting the session is triggered by any of the following situations:
• The call is successfully routed to agent 703_sip.
• Music has been played for 60 seconds.
• There was a problem playing the file music/on_hold.
• The effective call is deleted (effective call is the consult call until the consult or transfer is complete,

at which time, it is the only call left).
• The primary call is deleted before the consult or transfer is complete (the consult call can still be

alive but is useless at this point).
• Any error.* events that are raised during the session.
• The session may be stuck and self-destucts 10 minutes after it was created.

Orchestration Getting Started Guide Agent Extension

Orchestration Server Developer's Guide 443



Orchestration Server How-To

Orchestration Server How-To Agent Extension

Orchestration Server Developer's Guide 444



Timers and Wait Functions
In SCXML, orchestration logic can implement timers and wait functions using the <send> element and
the delay attribute. A state can send a delayed event to itself and then when the time expires the
event will be processed by the <transition> element defined in the state to process it.

Orchestration Server How-To Agent Extension

Orchestration Server Developer's Guide 445



Modularity
There are several ways to support modularity and reusability with SCXML:

• xinclude <xi:include /> - This is an XML standard for including other documents into another XML
document, by providing a macro-like functionality. Note: For details on how the orchestration platform
will support this, see <xi:include>.

• <invoke> - This creates a stand-alone sub-state machine that communicates asynchronously with its
parent. See SCXML <invoke> for details.

• Targetless transitions within a state can provide subroutine-like functionality for the state and all its
contained states. What is needed are two events:
• The input event - This defines the name of the subroutine and the input parameters to the

subroutine.
• The output event - This defines the event that the invoking state should wait for to get the results of

the subroutine.

The subroutine is implemented as follows:

• • Either in <onentry> or within one or more child <states>, generate the input event. This can be
done using <raise>/<event>.

• Define a targetless transition in the parent state that will handle the input event. This will provide
the body of the subroutine. The body of the subroutine should generate the output event. This can
be done using <raise>/<event> or by calling an action that will generate the output event.

• Define a transition that will handle the output event. This transition can access the information in
the output event to determine the results of the subroutine. This transition can be targetless. If
targetless, it can act as another step in a more complex subroutine. If it is not targetless, it should
be defined at the same level where the subroutine's input event was generated.

The following is an example of a targetless transition style subroutine. The input event is "inputsub1"
and the output event is "outputsub1". Several steps are chained together to provide a moderately
complex subroutine. This mechanism should only be used with events generated by the steps of the
subroutine; otherwise asynchronous events generated by actions could result in steps not being
executed properly.

<state id="ParentState">
<transition event="inputsub1">

<script>
local.eMailID =

_genesys.getValue(_event.data.i_ixn,"'InteractionId'");
</script>
<log expr="_event.data.i_message" level="3"/>
<session:fetch requestid="_data.reqid" srcexpr="'someURL/AUDIT_PROC'"

timeout="10">
<param name="audit_info" expr="_event.data.i_message"/>
<param name="message_id" expr="local.eMailID"/>

</session:fetch>
</transition>

<!-- This an example of branching within a targetless transition subroutine --
>

<!-- It examines the event generated by the session:fetch action -->

Orchestration Server How-To Agent Extension

Orchestration Server Developer's Guide 446



<!-- If value1 is less than or equal to 10 go to step 2. -->
<transition event="session.fetch.done" cond="(_event.requestid == _data.reqid) &&

(_event.data.content.value1 <= "10")">
<raise event="sub1step2">

< param name ="s1v1" expr ="_event.data.value1"/>
</raise>

</transition>
<!-- If value1 is greater than to 10 go to step 3. -->

<transition event="session.fetch.done" cond="(_event.requestid == _data.reqid) &&
(_event.data.content.value1 > 10)">

<raise event="sub1step3">
< param name ="s1v1" expr ="_event.data.value1"/>

</raise >
</transition>
<!-- This is the processing for step 2 of the subroutine sub1 -->
<transition event="sub1step2" >

<script>
<! - do some extra processing -->

</script>
<!-- Return to the involving state -->
<raise event="outputsub1">

<param name ="sub1op1" expr ="variablex"/>
<param name ="rc" expr ="success"/>

</raise>
</transition>
<!-- This is the processing for step 3 of the subroutine sub1 -->
<transition event="sub1step3" >

<script>
<!-- do some extra processing -->

</script>
<if conn="variable >=100">

<!-- Return to the involving state -->
<raise event="outputsub1">

<param name ="sub1op1" expr ="variablex"/>
<param name ="rc" expr ="success"/>

</raise>
</else >

<!-- go to step 4 -->
<raise event="sub1step4">

<param name ="sub1op1" expr ="variablex"/>
<param name ="sub1op1" expr ="variabley"/>

</raise>
</if>

</transition>
<!-- This is the processing for step 4 of the subroutine sub1 -->
<transition event="sub1step4" >

<script>
<!-- do some extra processing -->

</script>
<!-- Return to the involving state -->
<raise event="outputsub1">

<param name ="sub1op1" expr ="variablex"/>
<param name ="rc" expr ="success"/>

</raise>
</transition>
<!-- General error processing for this sub1 -->
<!-- Note that this will treat all error events as a failure of this subroutine -->
<!-- Care should be taken to ensure that this is only called as part of the

subroutine -->
<transition event="error.*" cond="_event.requestid == _data.reqid">

<log expr="had an error with the fetch" level="3"/>
<raise event="outputsub1">

< param name ="rc" expr ="fetchfailed"/>

Orchestration Server How-To Agent Extension

Orchestration Server Developer's Guide 447



</raise >
</transition>
<!-- This is the state that invokes the subroutine -->
<state id="stepwhichinvokessub1">

<onentry>
<raise name ="inputsub1">

<param name ="i_message" expr ="'here is the message'">
<param name ="i_ixn" expr ="_data.interaction"">

</raise">
</onentry>
<transition event="outputsub1">

<if cond = (_event.data.rc == "success")>
<!-- do the processing to continue based on sub1 completing --

>
</else >

<!-- do the processing to continue based on sub1 failing -->
</if>

</transition>
</state>

</state>

Using <invoke>
In addition to what the SCXML specification defines, the following guidelines can be followed when
developing an asynchronous subroutine with this functionality:

• Invoked document/session:
• Should use <datamodel> and <data> for mapping of the invoking session's <param>s to the invoked

session's data model. This is the primary means of passing data to the invoked session.
• Must use the <donedata> element as a child of the top-level <final> state(s). This will allow the

invoked state machine to return the appropriate output parameters in the done.invoke event. This
event is sent to the invoking session.

• Must not send explicit events to the including document/session.
• Should not rely on events from the including document/session, however, the subroutine can use

cancel.invoke to perform any cleanup necessary if the subroutine is interrupted. This can happen if
the parent session transitions out of the invoking state.

• Invoking document/session:
• Should use <param> to provide argument information to the invoked session. Since the sessions do

not share a <datamodel>, this is the primary means for passing data to the invoked session.
• Must have a <transition> for the done.invoke event that will be generated by the invoked session.

This allows the invoked session to communicate the subroutine results back to the invoking
document/session and transition to the next state based on the results.

Handling Assembly and Compilation Problems

When using xinclude, developers should ensure that valid documents and fragments are used. This
will avoid many XML parsing problems. However, since large SCXML documents can be very
complicated, it is still possible to have document errors that prevent the final application from being
assembled, parsed, and compiled. When dealing with such a situation, a developer can place the
following in the main application document:

Orchestration Server How-To Agent Extension

Orchestration Server Developer's Guide 448



<!-- $$_GENESYS_DEBUGGING_$$ -->

If the application document cannot be parsed and compiled, and this element is present in the
document, the entire application document will be written to a file in the current working directory.
The filename will be sessionid.scxml, where sessionid is the ID of the session that was being created.
The information contained in this file should be sufficient to allow the developer to determine why the
failure occurred. These files need to be removed manually by the developer after the problems have
been resolved.

Orchestration Server How-To Agent Extension

Orchestration Server Developer's Guide 449



External Interfaces
The orchestration platform has a set of RESTFul Web 2.0 Web Services APIs. These APIs allow the
following interaction with SCXML sessions:

• Start SCXML Session - This action starts a new orchestration application instance (session).
• Stop SCXML Session - This action terminates a given orchestration application instance (session).
• Publish Event to SCXML Session - This action allows an external system to send an event to a given

orchestration session.
• Send a Request to SCXML Session - This action allows an external system to send a request to a

given session to be processd. The session will respond to this request with the <response> element.
• Query SCXML Session - This action gets the requested orchestration session data. This can be used to

get current session data on any session.

Tip
(Starting with 8.1.400.55), the /ors/help method provides help for ORS REST APIs.

These external interfaces may have equivalent functionality in SCXML or Orchestration extensions.
The following table reflects the mapping between the two.

External RESTful APIs SCXML or Functional Module Function

http://<server:port>/scxml/session/start <session:start>

http://<server:port>/scxml/session/<session
id>/terminate <session:terminate>

http://<server:port>/scxml/session/<session
id>/event/<name>[?<parameters>] <scxml:send>

http://<server:port>/scxml/session/<session
id>/request/<name>[?<parameters>] <session:fetch>

http://<server:port>/scxml/session/<session
id>/query none

External Interfaces Agent Extension

Orchestration Server Developer's Guide 450



Start SCXML Session

This API starts a new SCXML session for a specific application. The "src" parameter is mandatory. All
of the other parameters are optional.

http://<server:port>/scxml/session/start

HTTP Verbs

PUT Not used

POST
Used to start a given session.
(supported Content-Type -
application/x-www-form-
urlencoded)

DELETE Not used
GET Not used

URI-Variable Elements none
Request-URI Parameters none

Document Body - using
application/x-www-form-urlencoded

src

URL of the SCXML document to
use for the new session.
Starting with 8.1.400.09, Orchestration
Server provides the ability to use the
Enhanced Routing Script object when
starting a new session by web request.
The script name in the
script:ScriptName format can be
defined as a value of the src parameter
of the /scxml/session/start web
request. Example:

http://localhost:7031/scxml/
session/start?src=script:Script1

Note: If you are using an Enhanced
Routing Script object that exists under a
Tenant other than Environment, the
Tenant must be explicitly specified as a
URL attribute. For example:

http://<host>:<port>/scxml/
session/
start?src=script:<scriptname>&tenant=<TenantName>)

idealtime

A dateTime value which will
represent the date and time that
this session is to be started. This
value should be the time as
returned by the ECMAScript
Date(...).getTime() function,
which is given in the number of
milliseconds since 00:00:00 UTC
on January 1, 1970.

request-specific
These are request-specific
parameters.
These parameters will be put in the

External Interfaces Agent Extension

Orchestration Server Developer's Guide 451



http://<server:port>/scxml/session/start

appropriate session data items (<data>)
when the session is initiated if the name
of the parameter matches the ID attribute
of the <data> element. For example, if
you have the following parameters,
p1=12355, p2=abcd, then <data
id="p1> and <data id="p2"> will be set
to the corresponding values. If a
parameter value does not match the ID of
a data item, it will be thrown away. In
addition, there will be a parameter which
specifies the content type for the
parameters and it will be set to
"application/x-www-form-urlencoded".

results

A body parameter value which
will represent a callback URL that
accepts the results of a
scheduled session start, whether
it has positive or negative
results. This URL will be invoked
with the HTTP POST method. The
content of the document body
will be the following:

• Type - This is the type of
response - positive or
negative.

• Reason - This is the reason
why the response was
generated.

• sessionid - This is the ID of
the session that is being
started.

• server - This is the URL of the
server that can be used to
invoke other requests on the
same session. (Question:
Should this be merged with
the sessionid?)

sid

ID of the session that will be
created. If this parameter is
missing, the session will have a
standard ID that will be
generated by ORS.

prewindow
Duration in milliseconds
representing the time window
prior to the ideal time in which
the session could be started.

postwindow
Duration in milliseconds
representing the time window
after the ideal time in which the

External Interfaces Agent Extension

Orchestration Server Developer's Guide 452



http://<server:port>/scxml/session/start

session could be started.
Positive Response
(200 Response) ID The identifier of the newly

created session.

Negative Response HTTP Error Code HTTP 4xx

Example

POST http://<server:port>/scxml/session/start
. . .
Content-type: application/x-www-form-urlencoded
. . .
src=http://appserver/appname.scxml

Stop SCXML Session

This API terminates a SCXML session.

http://<server:port>/scxml/session/<session id>/terminate

HTTP Verbs

PUT Not used
POST Stops an existing session.
DELETE Not used
GET Not used

URI-Variable Elements session id This identifies the session which
is to be stopped.

Document Body none none
Positive Response
(200 Response) OK OK

Negative Response HTTP error code HTTP 4xx

Example POST http://<server:port>/scxml/session/1234567/terminate

Query SCXML Session

This API queries a given SCXML session's data.

External Interfaces Agent Extension

Orchestration Server Developer's Guide 453



http://<server:port>/scxml/session/<session ids>/query

HTTP Verbs

PUT Not used
POST Not used
DELETE Not used
GET Query a set of existing sessions.

URI-Variable Elements session ids

This identifies the set of sessions
which are to be queried. The
session ids are separated by a ","
For example,
[http://<server:port>/scxml/
session/
123456,345677,66778898].
Currently, we only support a list
of one session id.

Request-URI Parameters none
Document Body none none

Positive Response
(200 Response) sessionData

This is a list of sessions and their
associated data. The following is
the JSON-formatted set of session
data which will be returned for
each session in the list:

• Session ID
• URL of the application
• Name - _name attribute
• Type - _type attribute
• Current states
• Current events
• _data properties (application-

related data)
• _genesys properties

(functional module-related
data)

Negative Response HTTP error code 404 Not found

Example GET http://<server:port>/scxml/session/1234567/query

Send Request to SCXML Session

This API sends a request to the SCXML session to process.

External Interfaces Agent Extension

Orchestration Server Developer's Guide 454



http://<server:port>/scxml/session/<session id>/request/<name>

HTTP Verbs

PUT Not used

POST Send a request to an existing
session.

DELETE Not used
GET Not used

URI-Variable Elements

session id This is the session which the
request is targeted for.

name

This is the name of the request
which is to be performed by the
SCXML session when it receives
the corresponding request event.
This value will be the name of
the SCXML event which the
SCXML session will process.

Request-URI Parameters none

Document Body - can be in any
of the following encodings

• application/x-www-form-
urlencoded

• application/json
• text/xml

request-specific

These are request-specific
parameters.
These parameters will be put into the
SCXML event at the following location:
_event.data.param.xxx. For example, if
you have the following body parameters,
p1=12355, p2=abcd, then the following
will be the structure in the event:
_event.data.param.p1 and
_event.data.param.p2. In addition, there
will be a parameter which specifies the
content type for the parameters and it
will be set based HTTP Content-Type
element value. For details see the [[|API
Parameter passing]] section.

request identifier

This API-related parameter is
generated by the orchestration
platform when it gets the HTTP
request. It is used to correlate
the requests and the
corresponding responses for a
given session. This identifier is
put in the sendid property of the
request's SCXML event (that is,
_event.sendid) when sent to the
application. This identifier must
be used in the corresponding
<response> element.

Positive Response
(200 Response)

results

This is a set of data, based on
the results of the request. It is
request-specific in its content.
The SCXML session sends this
data via the [[|<response>]]
element.

headers This is a collection of key-value

External Interfaces Agent Extension

Orchestration Server Developer's Guide 455



http://<server:port>/scxml/session/<session id>/request/<name>

pairs, representing a select group
of request headers obtained from
the HTTP request. It is request-
specific in its content. This data
can be accessed in the SCXML
event at the following location:
_event.data.headers

The list of retrievable headers are as
follows:

• HTTP_METHOD,
HTTP_VERSION,
HTTP_REQUEST_URI, ACCEPT,
DATE, USER-AGENT,
CONNECTION, ACCEPT-
LANGUAGE, REFERER, IF-
MODIFIED-SINCE, FROM,
MIME-VERSION, PRAGMA,
AUTHORIZATION, CONTENT-
LENGTH, CONTENT-TYPE,
CONTENT-ENCODING

Negative Response HTTP error code HTTP 4xx

Example

POST http://<server:port>/scxml/session/1234567/request/
getxData
. . .
Content-type: application/x-www-form-urlencoded
. . .
parm1=john

The SCXML session must have the following SCXML snippet somewhere in its
definition. This type of request processing SCXML snippet is probably best placed as a
global document event handler.

<transition event="getxData" cond="_event.data.param.parm1
= ''" >

<ws:response requestid="_event.sendid"
type="negative"

resultcode="invalidparameter"/>
</transition>
<transition event="getxData"
cond="_event.data.param.parm1 != ''" >

<script>
var rdata =

_getdata(_event.data.param.parm1);
</script>
<ws:response requestid="_event.sendid" >

<param name="results" expr="rdata"/>
</ws:response>

</transition>

Special Considerations
It is recommended that the orchestration logic for processing this
event should be processed within the executable content of the
<transition> element that receives the request event. This includes

External Interfaces Agent Extension

Orchestration Server Developer's Guide 456



http://<server:port>/scxml/session/<session id>/request/<name>

using the <response> element to respond to the request. If the
processing of the request requires more complicated processing (for
example, it must transition to a sub-state model for processing), then
the application must copy all the necessary request data (for
example, _event.sendid) from the event and put it into the
appropriate global variables so that the sub-state model can use it to
process the request. This is because the event data becomes invalid
after the transition element has been processed.

Publish Event to SCXML Session

This API sends an event to an existing session.

http://<server:port>/scxml/session/<session id>/event/<name>

HTTP Verbs

PUT Not used

POST Send an event to an existing
session.

DELETE Not used
GET Not used

URI-Variable Elements

session id This is the session which the
event is targeted for.

name

This is the name of the event
which is to be sent to the SCXML
session. This value will be the
name of the SCXML event which
the SCXML session will process.

Request-URI Parameters none

Document Body - can be in any
of the following encodings

• application/x-www-form-
urlencoded

• application/json
• text/xml

request-specific

These are event-specific
parameters.
These parameters will be put into the
SCXML event at the following location:
_event.data.param.xxx. For example, if
you have the following body parameters,
p1=12355, p2=abcd, then the following
will be the structure in the event:
_event.data.param.p1 and
_event.data.param.p2. In addition, there
will be a parameter which specifies the
content type for the parameters and it
will be set based HTTP Content-Type
element value. For details see API
Parameter Passing.

Positive Response
(200 Response) none

Note: (Since 8.1.200.45)
Behaviour depends on
configuration option

External Interfaces Agent Extension

Orchestration Server Developer's Guide 457



http://<server:port>/scxml/session/<session id>/event/<name>

[Orchestration/
webfm_event_hold_response]
(default: true)
When [Orchestration/
webfm_event_hold_response] is true, no
response is given until the event is
processed. The response status code
depends on how the event is processed:

• Event is processed and
transition is taken - OK 200
Response

• Event is processed and no
transition is taken - No
Content 204 Response

When [Orchestration/
webfm_event_hold_response] is false,
200 Response is provided immediately.

Prior to 8.1.200.45, 200 Response is
provided immediately.

headers

This is a collection of key-value
pairs, representing a select group
of request headers obtained from
the HTTP request. It is request-
specific in its content. This data
can be accessed in the SCXML
event at the following location:
_event.data.headers
The list of retrievable headers are as
follows:

• HTTP_METHOD,
HTTP_VERSION,
HTTP_REQUEST_URI, ACCEPT,
DATE, USER-AGENT,
CONNECTION, ACCEPT-
LANGUAGE, REFERER, IF-
MODIFIED-SINCE, FROM,
MIME-VERSION, PRAGMA,
AUTHORIZATION, CONTENT-
LENGTH, CONTENT-TYPE,
CONTENT-ENCODING

Negative Response HTTP error code HTTP 4xx

Example

POST http://<server:port>/scxml/session/1234567/event/
xisDone
. . .
Content-type: application/x-www-form-urlencoded
. . .

External Interfaces Agent Extension

Orchestration Server Developer's Guide 458



http://<server:port>/scxml/session/<session id>/event/<name>

parm1=john

The SCXML session must have the following SCXML snippet somewhere in its
definition. This type of request-processing SCXML snippet is probably best placed as a
global document event handler.

<transition event="xisDone" target="continuewithY" >
<! - Do some processing here ..../>

</transition>

Orchestration Platform Status

The status of the orchestration platform can be obtained simply by using a GET HTTP request. The
following are the URLs for different types of platform status. The results from the request are in XML.

URL Type Results

<Orch platform server>:<port> Basic data
• Version
• Start time
• Running time

<Orch platform
server>:<port>/server?cfgStatisticsConfiguration data

<Orch platform
server>:<port>/server?activeCallsInteraction data

<Orch platform
server>:<port>/server?scxmlStat SCXML engine data

<Orch platform
server>:<port>/serverx?activeApplicationsSCXML Application data

For each active application, the
following information is provided:

• URL
• Name
• startedSessions
• endedSessions
• abortedSessions

External Interfaces Agent Extension

Orchestration Server Developer's Guide 459



API Parameter Passing

Parameters are passed from the Web 2.0 APIs to the SCXML session using two basic mechanisms.
These mechanisms are mutually exclusive:

URL-Encoded Parameters
URL-encoded parameters can be specified in a request. Parameters may be specified either in the
URL for GET based APIs:

GET http://<server:port>/scxml/session/<session id>/event/<name>?param1=1¶m2=2

Or in the document body for POST and PUT based APIs:

POST http://<server:port>/scxml/session/<session id>/event/<name>
.. . .
Content-type: application/x-www-form-urlencoded
. . .
param1=1¶m2=2

In both cases, URL encoded parameters will be translated to properties of the SCXML event:

_event.data.param.param1 = 1
_event.data.param.param2 = 2

The _event.data.paramtype will be set to application/x-www-form-urlencoded.

In the case of the [http:// http://]<server:port>/scxml/session/start API (Start Session), the
following processing will be done:

• If the name of the parameter matches the 'id' of a <data> element in the data model of the started
session, then the value of the parameter will replace the value of the corresponding <data> element.

• If the names do not match, the value of the parameter will not be added to the started session's data
model.

Document Body-Encoded Parameters
These parameters are specified in the document body using the following supported content types:

• application/json - In this case, the body of the request contains JSON-encoded data. The whole body of
the request is passed to the SXCML session as a value of the "_event.data.param" event property. In
addition, the "_event.data.paramtype" property will be set to "application/json", based on the HTTP
Content-Type element. For example:

POST http://<server:port>/scxml/session/<session id>/event/<name>
...
Content-Type=application/json
Content-Length=xx
...
param="{

"firstName": "John",
"lastName": "Smith",
"address": {

"streetAddress": "21 2nd Street",

External Interfaces Agent Extension

Orchestration Server Developer's Guide 460



"city": "New York",
"state": "NY",
"postalCode": 10021

},
"phoneNumbers": [

"212 555-1234",
"646 555-4567"

]}"

An SCXML application may process these parameters by evaluating JSON text to ECMAScript objects.
In the case of the [http:// http://]<server:port>/scxml/session/start API (Start Session), the following
processing will be done:

• If the name of the parameter matches the 'id' of a <data> element in the data model of the started
session, then the value of the parameter will replace the value of the corresponding <data> element.

• If the names do not match, the value of the parameter will not be added to the started session's data
model.

text/xml - In this case, the body of the request contains XML-encoded data. The whole body of the
request is passed to the SXCML session as a value of the "_event.data.param" event property. In
addition, the "_event.data.paramtype" property will be set to "text/xml". For example:

POST http://<server:port>/scxml/session/<session id>/request/<name>
...
Content-Type=text/xml
Content-Length=xx
...
param="
<findCar>

<make>Dodge</make>
<model>Daytona</model>

</findCar>
"

An SCXML application may process this parameter using ECMAScript XML capabilities. In the case of
the http://server:port/scxml/session/start API (Start Session), the following processing will be done:

• If the name of the parameter matches the 'id' of a <data> element in the data model of the started
session, then the value of the parameter will replace the value of the corresponding <data> element.

• If the names do not match, the value of the parameter will not be added to the started session's data
model.

External Interfaces Agent Extension

Orchestration Server Developer's Guide 461



Orchestration Server Sample Applications

Orchestration Server Sample Applications Agent Extension

Orchestration Server Developer's Guide 462



Using The Queue Module
• Route to DN
• Route to DN Using Target ID
• Handle Routing Failure
• Route to DN and Put to Virtual Queue
• Route to Agent
• Route to Agent Using Target ID
• Route to Agent Without Checking Ready State
• Route to Agent on Specific DN Type
• Route to Agent and Run Treatments in Parallel
• Route to Place
• Route to Place Using Target ID
• Route to Place Without Checking Ready State
• Route to Agent Group
• Route to Agent Group Using Target ID
• Route to Agent Group Without Checking Ready State
• Route to Agent Group With Threshold
• Route to Place Group
• Route to Place Group Using Target ID
• Route to Place Group Without Checking Ready State
• Route to Queue
• Route to Queue Using Target ID
• Route to Agent by Skills
• Route to Agent by Skills Using Target ID
• Route to Routing Point
• Route to Routing Point Using Target ID
• Route to Multiple Agents
• Route to Multiple Agents Using Target ID
• Route to Agent Using Statistic
• Set Default Destination

Orchestration Server Sample Applications Agent Extension

Orchestration Server Developer's Guide 463



Using ECMAScript
• ECMAScriptTopLevel
• ECMA Script on Entry Into State
• ECMA Script on Exit From State
• ECMA Script During Transition
• ECMA Script After Invoke
• ECMA Script Function
• ECMA Script and Data Model

Orchestration Server Sample Applications Agent Extension

Orchestration Server Developer's Guide 464



Fetching Data
• Fetch Data
• Fetch Data in JSON Format
• Fetch Data With Parameters
• Fetch Data Using POST Method
• Handle Fetch Failure

Orchestration Server Sample Applications Agent Extension

Orchestration Server Developer's Guide 465



Invoking SCXML Sessions
• Invoke Session
• Invoke Session With Parameters
• Receive Event From Invoked Session
• Receive Event From Invoked Session and Extract Event Data
• Cancel Invoked Session
• Handle Invoke Failure

Orchestration Server Sample Applications Agent Extension

Orchestration Server Developer's Guide 466



Using The Interaction Interface
• Access Interaction Properties
• Set User Data
• Delete User Data
• Delete All User Data

Orchestration Server Sample Applications Agent Extension

Orchestration Server Developer's Guide 467



Using The Voice Interaction Interface
• Access Voice Interaction Properties
• Create Call

Orchestration Server Sample Applications Agent Extension

Orchestration Server Developer's Guide 468



Using The Dialog Interface
• Collect Digits
• Play Announcement With One Prompt
• Play Announcement With Two Prompts
• Play Announcement and Collect Digits
• Play Sound
• Record User Announcement
• Delete User Announcement
• Play Application
• Cancel Call
• Start on Remote Resource
• Run Series of Treatments

Orchestration Server Sample Applications Agent Extension

Orchestration Server Developer's Guide 469



Using The Statistics Interface
• Get Statistic Value
• Get Average Statistic Value
• Get Minimum Statistic Value
• Get Maximum Statistic Value

Orchestration Server Sample Applications Agent Extension

Orchestration Server Developer's Guide 470



Using The Session Interface
• Get Configuration Option Name
• Check If Special Day
• Get List Item Value
• Lookup Value
• Get Time in Time Zone
• Get Date in Time Zone
• Get Day in Time Zone

Orchestration Server Sample Applications Agent Extension

Orchestration Server Developer's Guide 471



Using Multimedia
• Work With E-Mail Or SMS
• Work With Chat

Orchestration Server Sample Applications Agent Extension

Orchestration Server Developer's Guide 472



Route to DN
The following SCXML strategy routes an interaction to a DN. When routing is completed, the strategy
outputs information to the Orchestration Server (ORS) log.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_event.data.targetobjectselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to DN

Orchestration Server Developer's Guide 473



Route to DN Using Target ID
The following SCXML strategy routes an interaction to a DN, using the target id format.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:targetid expr="'7102@.DN'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to DN Using Target ID

Orchestration Server Developer's Guide 474



Handle Routing Failure
This SCXML strategy demonstrates how to handle a situation when routing fails.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="5">

<queue:targets type="dn">
<queue:target name="'7400'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="routing2"/>

</state>

<state id="routing2">
<onentry>

<queue:submit priority="5" timeout="20">
<queue:targets type="dn">

<queue:target name="'7102'"/>
</queue:targets>

</queue:submit>
</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Handle Routing Failure

Orchestration Server Developer's Guide 475



Route to DN and Put to Virtual Queue
The following SCXML strategy routes an interaction to a DN and puts the interaction into a virtual
queue.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit queue="'VQ_10001_URS_UT_SIPSWITCH_HOME'" priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to DN and Put to Virtual Queue

Orchestration Server Developer's Guide 476



Route to Agent
The following SCXML strategy routes an interaction to an agent.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:target type="agent" name="'az'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Agent

Orchestration Server Developer's Guide 477



Route to Agent Using Target ID
The following SCXML strategy routes an interaction to an agent, using the target id format.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:targetid expr="'az@.A'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Agent Using Target ID

Orchestration Server Developer's Guide 478



Route to Agent Without Checking Ready
State
The following SCXML strategy routes an interaction to an agent with free DNs, even if Stat Server
reports the agent as not ready.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>
<state id="routing">

<onentry>
<script>_genesys.queue.checkAgentState(_data.ixnid, false);</script>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:target type="agent" name="'az'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Agent Without Checking Ready State

Orchestration Server Developer's Guide 479



Route to Agent on Specific DN Type
The following SCXML strategy routes an interaction to an agent only if the agent has free DNs of a
specified type.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>
<state id="routing">

<onentry>
<script>_genesys.queue.useDNType(_genesys.ixn.interactions[_data.ixnid].g_uid,

_genesys.resource.resourceType.CFGACDPosition);</script>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:target type="agent" name="'az'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Agent on Specific DN Type

Orchestration Server Developer's Guide 480



Route to Agent and Run Treatments in
Parallel
The SCXML strategy below demonstrates how to use parallel states. It applies a series of treatments
while routing the interaction to an agent.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routingwithdialog"/>

</state>
<parallel id="routingwithdialog">

<state id="dialog" initial="prompt">
<state id="prompt">

<onentry>
<dialog:play language="'English_US'">

<dialog:prompts type="ann">
<dialog:prompt interrupt="true" text="'You reached Genesys'"/>

</dialog:prompts>
</dialog:play>

</onentry>
<transition event="dialog.play.done" target="music"/>
<transition event="error.dialog.play" target="error"/>

</state>
<state id="music">

<onentry>
<dialog:playsound type="'music'" resource="'MusicDN'"/>

</onentry>
<transition event="error.dialog.playsound" target="error"/>

</state>
</state>

<state id="routing">
<onentry>

<queue:submit priority="5" timeout="80">
<queue:targets>

<queue:target type="agent" name="'az'"/>
</queue:targets>

</queue:submit>
</onentry>
<transition event="queue.submit.done" target="exit">

<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

</parallel>
<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Agent and Run Treatments in Parallel

Orchestration Server Developer's Guide 481



Route to Place
The following SCXML strategy routes an interaction to a place.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:target type="place" name="'pl_0002'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Place

Orchestration Server Developer's Guide 482



Route to Place Using Target ID
The following SCXML strategy routes an interaction to a place, using the target id format.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial" >
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:targetid expr="'pl_0002@.AP'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Place Using Target ID

Orchestration Server Developer's Guide 483



Route to Place Without Checking Ready
State
The following SCXML strategy routes an interaction to a place that has free DNs, even if Stat Server
reports it as not ready.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>
<state id="routing">

<onentry>
<script>_genesys.queue.checkAgentState(_data.ixnid, false);</script>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:target type="place" name="'pl_0002'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Place Without Checking Ready State

Orchestration Server Developer's Guide 484



Route to Agent Group
The following SCXML strategy routes an interaction to an agent group.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:target type="agentgroup" name="'ag_0002'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Agent Group

Orchestration Server Developer's Guide 485



Route to Agent Group Using Target ID
The following SCXML strategy routes an interaction to an agent group, using the target id format.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:targetid expr="'ag_0002@.GA'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Agent Group Using Target ID

Orchestration Server Developer's Guide 486



Route to Agent Group Without Checking
Ready State
The following SCXML strategy routes an interaction to an agent group that has free DNs, even if Stat
Server reports it as not ready.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>
<state id="routing">

<onentry>
<script>_genesys.queue.checkAgentState(_data.ixnid, false);</script>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:target type="agentgroup" name="'ag_0002'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Agent Group Without Checking Ready State

Orchestration Server Developer's Guide 487



Route to Agent Group With Threshold
The following SCXML demonstrates the use of a statistic as a threshold for routing. It routes an
interaction to an agent group only if it has exactly one available agent.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:target type="agentgroup" name="'ag_0002'" threshold= "'sdata(ag_0002.GA,

StatAgentsAvailable)=1'"/>
</queue:targets>

</queue:submit>
</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Agent Group With Threshold

Orchestration Server Developer's Guide 488



Route to Place Group
The following SCXML strategy routes an interaction to a place group.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial" >
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="placegroup">
<queue:target name="'pg_0002'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Place Group

Orchestration Server Developer's Guide 489



Route to Place Group Using Target ID
The following SCXML strategy routes an interaction to a place group, using the target id format.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial" >
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:targetid expr="'pg_0002@.GP'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Place Group Using Target ID

Orchestration Server Developer's Guide 490



Route to Place Group Without Checking
Ready State
The following SCXML strategy routes an interaction to a place group that has free DNs, even if Stat
Server reports it as not ready.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>
<state id="routing">

<onentry>
<script>_genesys.queue.checkAgentState(_data.ixnid, false);</script>
<queue:submit priority="5" timeout="20">

<queue:targets type="placegroup">
<queue:target name="'pg_0002'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Place Group Without Checking Ready State

Orchestration Server Developer's Guide 491



Route to Queue
The following SCXML strategy routes an interaction to a queue.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="queue">
<queue:target name="'8002_URS_UT_SIPSWITCH_HOME'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Queue

Orchestration Server Developer's Guide 492



Route to Queue Using Target ID
The following SCXML strategy routes an interaction to a queue, using the target id format.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:targetid expr="'8002_URS_UT_SIPSWITCH_HOME@.Q'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Queue Using Target ID

Orchestration Server Developer's Guide 493



Route to Agent by Skills
The following SCXML strategy routes an interaction to an agent with a particular set of skills.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:target skillexpr="'Checking > 5 & English > 8'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Agent by Skills

Orchestration Server Developer's Guide 494



Route to Agent by Skills Using Target ID
The following SCXML strategy uses the target id format to route an interaction to an agent with a
particular set of skills.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:targetid expr="'?:Checking > 5 & English > 8@.GA'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Agent by Skills Using Target ID

Orchestration Server Developer's Guide 495



Route to Routing Point
The following SCXML strategy routes an interaction to a routing point.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="routepoint">
<queue:target name="'5002_URS_UT_SIPSWITCH_HOME'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Routing Point

Orchestration Server Developer's Guide 496



Route to Routing Point Using Target ID
The following SCXML strategy routes an interaction to a routing point, using the target id format.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:targetid expr="'5002_URS_UT_SIPSWITCH_HOME@.RP'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Routing Point Using Target ID

Orchestration Server Developer's Guide 497



Route to Multiple Agents
The following SCXML strategy routes an interaction to more than one agent.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="agent">
<queue:target name="'bz'"/>
<queue:target name="'az'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Multiple Agents

Orchestration Server Developer's Guide 498



Route to Multiple Agents Using Target ID
The following SCXML strategy routes an interaction to more than one agent using the target id
format.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:targetid expr="'bz@.A,az@.A'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Multiple Agents Using Target ID

Orchestration Server Developer's Guide 499



Route to Agent Using Statistic
The following SCXML strategy routes an interaction to one of two agents based on a statistic. It
requests the statistic value first, waits for this value to become available using a special state called
delay, and then uses this value for routing.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:statistic="www.genesyslab.com/modules/statistic"
initial="initial">

<state id="initial">
<!--

<transition event="interaction.added" target="statistics"/>
-->

<transition event="interaction.added" target="subscribe"/>
</state>

<!--
<state id="routing">

<onentry>
<queue:submit orderstat="'StatTimeInReadyState'" ordertype="'max'" priority="5"

clearontimeout="true" timeout="0">
<queue:targets type="agent">

<queue:target name="'az'"/>
<queue:target name="'bz'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="error"/>
<transition event="error.queue.submit" target="delay"/>

</state>
-->
<!--

<state id="statistics">
<onentry>

<script>
var t1 = _genesys.statistic.sData('az@.A', 'StatTimeInReadyState');
var t2 = _genesys.statistic.sData('bz@.A', 'StatTimeInReadyState');

</script>
</onentry>

<transition target="delay"/>
</state>

<state id="delay">
<onentry>

<send event="'delay'" target="_sessionid" targettype="'scxml'" delay="'2s'"/>
</onentry>
<transition event="delay" target="routing"/>

</state>
-->

<state id="subscribe">
<onentry>

<statistic:subscribe object="'az@.A'" statistic="'StatTimeInReadyState'" interval="0"/>
<statistic:subscribe object="'bz@.A'" statistic="'StatTimeInReadyState'" interval="0"/>

</onentry>

Orchestration Server Sample Applications Route to Agent Using Statistic

Orchestration Server Developer's Guide 500



<transition event="statistic.subscribe.done" target="delay"/>
<transition event="error.statistic.subscribe" target="error"/>

</state>
<state id="delay">

<onentry>
<send event="'delay'" target="_sessionid" targettype="'scxml'" delay="'2s'"/>

</onentry>
<transition event="delay" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit orderstat="'StatTimeInReadyState'" ordertype="'max'" priority="5"

timeout="20">
<queue:targets type="agent">

<queue:target name="'az'"/>
<queue:target name="'bz'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Route to Agent Using Statistic

Orchestration Server Developer's Guide 501



Set Default Destination
The sample below sets the default destination for calls.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>
<state id="routing">

<onentry>
<script>_genesys.session.setOptions(_data.ixnid,

'default_destination', '7102');</script>
<queue:default/>

</onentry>

<transition event="queue.default.done" target="exit">
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.default" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Set Default Destination

Orchestration Server Developer's Guide 502



ECMA Script on Top Level
The following SCXML strategy uses an ECMA script fragment on the top level.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<script>

var DN = "";
var DNPreffix = "710";
for (var i = 0; i < 3; i++)

DN = DNPreffix + i;
</script>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="DN"/>

</queue:targets>
</queue:submit>

</onentry>
<transition event="queue.submit.done" target="exit">

<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>
<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications ECMA Script on Top Level

Orchestration Server Developer's Guide 503



ECMA Script on Entry Into State
The following SCXML strategy uses an ECMA script fragment on entry into a state.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<state id="routing">

<onentry>
<script>

var DN = "";
var DNPreffix = "710";
for (var i = 0; i < 3; i++)

DN = DNPreffix + i;
</script>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="DN"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications ECMA Script on Entry Into State

Orchestration Server Developer's Guide 504



ECMA Script on Exit From State
The following SCXML strategy uses an ECMA script fragment on exiting from a state.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<script>
var DN = "";
var DNPreffix = "710";

</script>
<state id="initial">

<transition event="interaction.added" target="routing"/>
<onexit>

<script>
for (var i = 0; i < 3; i++)

DN = DNPreffix + i;
</script>

</onexit>
</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="DN"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications ECMA Script on Exit From State

Orchestration Server Developer's Guide 505



ECMA Script During Transition
The following SCXML strategy uses an ECMA script fragment in transitioning from one state to
another.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<script>
var DN = "";
var DNPreffix = "710";

</script>
<state id="initial">

<transition event="interaction.added" target="routing">
<script>

for (var i = 0; i < 3; i++)
DN = DNPreffix + i;

</script>
</transition>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="DN"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications ECMA Script During Transition

Orchestration Server Developer's Guide 506



ECMA Script After Invoke
The following SCXML strategy uses an ECMA script fragment in the <finalize> clause after invoking
another strategy.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="invocation"/>

</state>
<script>

var DN = "";
var DNPreffix = "710";

</script>
<state id="invocation">

<invoke src="'http://localhost:9090/strategies/01_BASIC/_aux/DoNothing.xml'"
type="scxml">

<finalize>
<script>

for (var i = 0; i < 3; i++)
DN = DNPreffix + i;

</script>
</finalize>

</invoke>
<transition event="done.invoke.invocation.*" target="routing"/>
<transition event="error.invoke.invocation.*" target="error"/>

</state>

<state id="routing">
<onentry>

<queue:submit priority="5" timeout="20">
<queue:targets type="dn">

<queue:target name="DN"/>
</queue:targets>

</queue:submit>
</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications ECMA Script After Invoke

Orchestration Server Developer's Guide 507



ECMA Script Function
The following SCXML strategy illustrates an example of an ECMA script function.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<script>

function getDN()
{

var DN = "";
var DNPreffix = "710";
for (var i = 0; i < 3; i++)

DN = DNPreffix + i;
return DN;

}
</script>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="getDN()"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications ECMA Script Function

Orchestration Server Developer's Guide 508



ECMA Script and Data Model
The following SCXML strategy uses an ECMA script to access the strategy's data model.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="routing"/>

</state>
<datamodel>

<data ID="DN"/>
</datamodel>
<script>_data.DN="7102";</script>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="_data.DN"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications ECMA Script and Data Model

Orchestration Server Developer's Guide 509



Fetch Data
The following sample shows how to fetch a .jsp resource from a Web Server. The fetched resource
returns a DN that can be used for routing purposes. The logic of calculating the target DN is
implemented on the Web Server side and it is the .jsp page creator who determines how the DN is
calculated.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:session="www.genesyslab.com/modules/session"
initial="initial">

<script>var DN = "";</script>
<state id="initial">

<onentry>
<script>var URI="http://localhost:9090/strategies/01_BASIC/_aux/GetDN.jsp";</script>
<session:fetch srcexpr="URI"/>

</onentry>
<transition event="session.fetch.done" target="check">

<script>DN = _event.data.content;</script>
</transition>
<transition event="error.session.fetch" target="error"/>

</state>
<state id="check">

<transition cond="DN=='7102'" target="routing"/>
<transition target="error"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Fetch Data

Orchestration Server Developer's Guide 510



Fetch Data in JSON Format
As the following sample demonstrates, the fetched resource can return data in JSON format. The data
can then be parsed by an SCXML session. Note that in this example the result of the parsing is stored
in the Target global variable.

Fetched file content: File http://localhost:9090/strategies/01_BASIC/_aux/
GetDate.jsp
<%="{\"year\":2008, \"month\":\"December\", \"date\":25}"%>

Root strategy
<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"

xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:session="www.genesyslab.com/modules/session"
initial="initial">

<script>var date = ""</script>
<state id="initial">

<transition event="interaction.added" target="fetch"/>
</state>
<state id="fetch">

<onentry>
<script>var URI="http://localhost:9090/strategies/01_BASIC/_aux/GetDate.jsp";</script>
<session:fetch srcexpr="URI" type="'application/json'"/>

</onentry>
<transition event="session.fetch.done" target="check">

<script>date = JSON.parse(_event.data.content);</script>
</transition>
<transition event="error.session.fetch" target="error"/>

</state>
<state id="check" >

<transition cond="date.month=='December' && date.date==25" target="routing"/>
<transition target="error"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>
<transition event="queue.submit.done" target="exit">

<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>
<final id="exit"/>
<final id="error"/>

Orchestration Server Sample Applications Fetch Data in JSON Format

Orchestration Server Developer's Guide 511



</scxml>

Orchestration Server Sample Applications Fetch Data in JSON Format

Orchestration Server Developer's Guide 512



Fetch Data With Parameters
The following sample uses the TargetType parameter when fetching data, providing additional
information that is used on the Web Server side to calculate the target.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:session="www.genesyslab.com/modules/session"
initial="initial">

<script>var DN = "";</script>

<state id="initial">
<transition event="interaction.added" target="fetch"/>

</state>
<state id="fetch">

<onentry>
<script>var URI="http://localhost:9090/strategies/01_BASIC/_aux/

GetDNWithParam.jsp";</script>
<session:fetch srcexpr="URI">

<param name="DN" expr="'7102'"/>
</session:fetch>

</onentry>
<transition event="session.fetch.done" target="check">

<script>DN = _event.data.content;</script>
</transition>
<transition event="error.session.fetch" target="error"/>

</state>
<state id="check" >

<transition cond="DN=='7102'" target="routing"/>
<transition target="error"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Fetch Data With Parameters

Orchestration Server Developer's Guide 513



Fetch Data Using POST Method
The SCXML session can use the POST HTTP request to fetch data from a Web Server, as opposed to
the GET request that is used by default. The following sample shows how this can be achieved.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:session="www.genesyslab.com/modules/session"
initial="initial">

<script>var DN = "";</script>
<state id="initial">

<transition event="interaction.added" target="fetch"/>
</state>
<state id="fetch">

<onentry>
<script>var URI="http://localhost:9090/strategies/01_BASIC/_aux/

GetDNOnPOST.jsp";</script>
<session:fetch srcexpr="URI" method="'post'"/>

</onentry>
<transition event="session.fetch.done" target="check">

<script>DN = _event.data.content;</script>
</transition>
<transition event="error.session.fetch" target="error"/>

</state>
<state id="check" >

<transition cond="DN=='7102'" target="routing"/>
<transition target="error"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Fetch Data Using POST Method

Orchestration Server Developer's Guide 514



Handle Fetch Failure
The following sample demonstrates how to route to the default DN when the fetch request fails.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:session="www.genesyslab.com/modules/session"
initial="initial">

<state id="initial">
<onentry>

<session:fetch srcexpr="'http://localhost:9090/strategies/DN2.jsp'"/>
</onentry>
<transition event="session.fetch.done" target="error"/>
<transition event="error.session.fetch" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Handle Fetch Failure

Orchestration Server Developer's Guide 515



Invoke Session
An SCXML strategy can invoke another SCXML strategy, as the following sample demonstrates.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="invocation"/>

</state>
<script>

var URI = "http://localhost:9090/strategies/01_BASIC/_aux/RouteToDN.xml";
</script>
<state id="invocation">

<invoke src="URI" type="scxml">
<param name="ixnid" expr="_genesys.ixn.firstixnid"/>

</invoke>
<transition event="done.invoke.invocation.*" target="exit">

<log expr="'DONE'"/>
</transition>
<transition event="error.invoke.invocation.*" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

The invoked RouteToDN.xml strategy is similar to the one presented here:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<datamodel>
<data ID="ixnid"/>

</datamodel>
<state id="initial">

<transition target="routing"/>
</state>
<state id="routing">

<onentry>
<queue:submit interactionid="_data.ixnid" priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetobjectselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

Orchestration Server Sample Applications Invoke Session

Orchestration Server Developer's Guide 516



<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Invoke Session

Orchestration Server Developer's Guide 517



Invoke Session With Parameters
An SCXML session can use parameters to pass additional information to the SCXML session being
invoked, as shown in the following example.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="invocation"/>

</state>
<state id="invocation">

<invoke src="'http://localhost:9090/strategies/01_BASIC/_aux/RouteToDNWithParam.xml'"
type="scxml">

<param name="DN" expr="'7102'"/>
<param name="ixnid" expr="_genesys.ixn.firstixnid"/>

</invoke>
<transition event="done.invoke.invocation.*" target="exit">

<log expr="'DONE'"/>
</transition>
<transition event="error.invoke.invocation.*" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

RouteToDNWithParam.xml makes use of the parameter in the following way:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<datamodel>
<data id="DN"/>
<data ID="ixnid"/>

</datamodel>

<state id="initial">
<transition target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit interactionid="_data.ixnid" priority="5" timeout="20">

<queue:targets>
<queue:target type="dn" name="_data.DN"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

Orchestration Server Sample Applications Invoke Session With Parameters

Orchestration Server Developer's Guide 518



</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Invoke Session With Parameters

Orchestration Server Developer's Guide 519



Receive Event From Invoked Session
The invoked SCXML session can communicate with the invoking session by sending an event back to
the parent session and passing additional information in the event.

The following sample stores the information passed from the invoked session using an empty finalize
element.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="invocation"/>

</state>
<datamodel>

<data ID="DN" expr="''" />
</datamodel>
<state id="invocation">

<invoke src="'http://localhost:9090/strategies/01_BASIC/_aux/ReturnDN.xml'" type="scxml">
<finalize/>

</invoke>
<transition event="done.invoke.invocation.*" target="routing"/>
<transition event="error.invoke.invocation.*" target="error"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">
<queue:targets type="dn">

<queue:target name="_data.DN"/>
</queue:targets>

</queue:submit>
</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Here is a sample for ReturnDN.xml, which is invoked above:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition target="event"/>

</state>
<datamodel>

<data ID="DN" expr="'7102'"/>

Orchestration Server Sample Applications Receive Event From Invoked Session

Orchestration Server Developer's Guide 520



</datamodel>
<state id="event">

<onentry>
<send event="'DN'" target="'_parent'" type="'scxml'" >

<param name="DN" expr="_data.DN" />
</send>

</onentry>

<transition target="exit"/>
</state>

<final id="exit"/>
</scxml>

Orchestration Server Sample Applications Receive Event From Invoked Session

Orchestration Server Developer's Guide 521



Receive Event From Invoked Session and
Extract Event Data
The invoking session can extract data from the event sent by the invoked session using the
<finalize> clause, as shown in the following sample.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<datamodel>
<data id="DN"/>

</datamodel>
<state id="initial">

<transition event="interaction.added" target="invocation"/>
</state>
<state id="invocation">

<invoke
src="'http://localhost:9090/strategies/01_BASIC/_aux/ReturnDN.xml'" type="scxml">

<finalize>
<script>if ( _event.name == 'DN' ) _data.DN=_event.data.DN; </script>

</finalize>
</invoke>
<transition event="done.invoke.invocation.*" target="routing"/>
<transition event="error.invoke.invocation.*" target="error"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="_data.DN"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample ApplicationsReceive Event From Invoked Session and Extract Event Data

Orchestration Server Developer's Guide 522



Cancel Invoked Session
The invoked SCXML session is cancelled if the invoking session exits the state where the invocation is
made without waiting for an invocation-completion event, as shown in the sample below.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="invocation"/>

</state>
<state id="invocation">

<invoke
src="'http://localhost:9090/strategies/01_BASIC/_aux/CheckInvokeCancel.xml'"
type="scxml"/>
<transition event="invoked" target="routing"/>
<transition event="error.invoke.invocation.*" target="error"/>

</state>

<state id="routing">
<onentry>

<queue:submit priority="5" timeout="20">
<queue:targets type="dn">

<queue:target name="'7102'"/>
</queue:targets>

</queue:submit>
</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Cancel Invoked Session

Orchestration Server Developer's Guide 523



Handle Invoke Failure
The following sample demonstrates how to route to the default DN when the invoke request fails.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="invocation"/>

</state>
<state id="invocation">

<invoke
src="'http://localhost:9090/strategies/01_BASIC/_aux/ReturnDN.xml'"
type="scxml">

<finalize/>
</invoke>
<transition event="done.invoke.invocation.*" target="routing"/>
<transition event="error.invoke.invocation.*" target="default"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">
<queue:targets type="dn">

<queue:target name="_data.DN"/>
</queue:targets>

</queue:submit>
</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<state id="default">
<onentry>

<queue:submit priority="5" timeout="20">
<queue:targets type="dn">

<queue:target name="'1100'"/>
</queue:targets>

</queue:submit>
</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="default'"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>
<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Handle Invoke Failure

Orchestration Server Developer's Guide 524



Access Interaction Properties
The following SCXML strategy shows how to access the properties of an interaction object.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
initial="initial">

<script>
var ixnid;

</script>

<state id="initial">
<transition event="interaction.added" target="get_ixn_properties">

<script>
ixnid = _event.data.interactionid;

</script>
</transition>

</state>
<state id="get_ixn_properties">

<onentry>
<script>

var g_uid = _genesys.ixn.interactions[ixnid].g_uid;
var category = _genesys.ixn.interactions[ixnid].category;
var tenantid = _genesys.ixn.interactions[ixnid].tenantid;
var parentid = _genesys.ixn.interactions[ixnid].parentid;
var contactedaddr = _genesys.ixn.interactions[ixnid].contactedaddr;
var parties = _genesys.ixn.interactions[ixnid].parties;
var udata = _genesys.ixn.interactions[ixnid].udata;
var voice = _genesys.ixn.interactions[ixnid].voice;
var xdata = _genesys.ixn.interactions[ixnid].xdata;
var location = _genesys.ixn.interactions[ixnid].location;

</script>
</onentry>

<transition cond="category=='voice'" target="exit">
<log expr="'g_uid: ' + g_uid" />
<log expr="'category: ' + category" />
<log expr="'tenantid: ' + tenantid" />
<log expr="'parentid: ' + parentid" />
<log expr="'contactedaddr: ' + contactedaddr" />
<log expr="'parties: ' + uneval(parties)" />
<log expr="'udata: ' + uneval(udata)" />
<log expr="'voice: ' + uneval(voice)" />
<log expr="'xdata: ' + uneval(xdata)" />
<log expr="'location: ' + uneval(location)" />

</transition>

<transition target="error" />
</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Access Interaction Properties

Orchestration Server Developer's Guide 525



Set User Data
The following SCXML strategy shows how to set and update user data for an interaction.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="setudata" >

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>
<state id="setudata">

<onentry>
<script>

var data = { details : { name : "Smith, John", age : 45 } };
_genesys.ixn.setuData( data );
_genesys.ixn.setuData( { category : 1 } );

</script>
</onentry>
<transition target="update"/>

</state>
<state id="update">

<onentry>
<script>

_genesys.ixn.setuData( { category : 2 }, _data.ixnid );
</script>

</onentry>
<transition target="check"/>

</state>

<state id="check">
<transition event="interaction.udata.changed"

cond="_genesys.ixn.interactions[_data.ixnid].udata.category==2 &&
_genesys.ixn.interactions[_data.ixnid].udata.details.name=='Smith, John' &&
_genesys.ixn.interactions[_data.ixnid].udata.details.age==45"
target="exit" />

<transition target="error" />
</state>
<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Set User Data

Orchestration Server Developer's Guide 526



Delete User Data
The following SCXML strategy shows how to delete a property from the user data of an interaction.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="setudata">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>
<state id="setudata">

<onentry>
<script>

var data = { details : { name : "Smith, John", age : 45 } };
_genesys.ixn.setuData( data );

</script>
</onentry>
<transition event="interaction.udata.changed"

cond="_genesys.ixn.interactions[_data.ixnid].udata.details.name=='Smith,
John' &&

_genesys.ixn.interactions[_data.ixnid].udata.details.age==45"
target="delete"/>

</state>
<state id="delete">

<onentry>
<script>

_genesys.ixn.deleteuData( { details:{ age:0 } }, _data.ixnid );
</script>

</onentry>
<transition event="interaction.udata.changed"

cond="_genesys.ixn.interactions[_data.ixnid].udata.details.name=='Smith,
John' &&

_genesys.ixn.interactions[_data.ixnid].udata.details.age==undefined"
target="exit"/>

<transition target="error"/>
</state>
<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Delete User Data

Orchestration Server Developer's Guide 527



Delete All User Data
The following SCXML strategy shows how to delete all user data from an interaction.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="setudata">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>
<state id="setudata">

<onentry>
<script>

var data = { details : { name : "Smith, John", age : 45 } };
_genesys.ixn.setuData( data, _data.ixnid );

</script>
</onentry>
<transition event="interaction.udata.changed"

cond="_genesys.ixn.interactions[_data.ixnid].udata.details.name=='Smith,
John' &&

_genesys.ixn.interactions[_data.ixnid].udata.details.age==45"
target="delete_all_udata"/>

</state>

<state id="delete_all_udata">
<onentry>

<script>
_genesys.ixn.deleteuData( "$ALL", _data.ixnid );

</script>
</onentry>
<transition event="interaction.udata.changed"

cond="_genesys.ixn.interactions[_data.ixnid].udata.ORSession==undefined &&
_genesys.ixn.interactions[_data.ixnid].udata.ORDbid==undefined &&
_genesys.ixn.interactions[_data.ixnid].udata.ORUrl==undefined &&
_genesys.ixn.interactions[_data.ixnid].udata.details==undefined"
target="exit"/>

<transition target="error"/>
</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Delete All User Data

Orchestration Server Developer's Guide 528



Access Voice Interaction Properties
The following SCXML strategy shows how to access the properties of a voice interaction object.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
initial="initial">

<script>
var ixnid;

</script>

<state id="initial">
<transition event="interaction.added" target="get_ixn_voice_properties">

<script>
ixnid = _event.data.interactionid;

</script>
</transition>

</state>
<state id="get_ixn_voice_properties">

<onentry>
<script>

var type = _genesys.ixn.interactions[ixnid].voice.type;
var media = _genesys.ixn.interactions[ixnid].voice.media;
var ani = _genesys.ixn.interactions[ixnid].voice.ani;
var dnis = _genesys.ixn.interactions[ixnid].voice.dnis;
var acdq = _genesys.ixn.interactions[ixnid].voice.acdq;
var callid = _genesys.ixn.interactions[ixnid].voice.callid;
var connid = _genesys.ixn.interactions[ixnid].voice.connid;

</script>
</onentry>

<transition cond="type=='internal' && media=='TMediaVoice'" target="exit">
<log expr="'type: ' + type" />
<log expr="'media: ' + media" />
<log expr="'ani: ' + ani" />
<log expr="'dnis: ' + dnis" />
<log expr="'acdq: ' + acdq" />
<log expr="'callid: ' + callid" />
<log expr="'connid: ' + connid" />

</transition>

<transition target="error" />
</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Access Voice Interaction Properties

Orchestration Server Developer's Guide 529



Create Call
The following SCXML strategy shows how to create a voice call with extension hints.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
initial="initial">

<datamodel>
<data ID="reqid"/>
<data ID="ixnid"/>
<data ID="time_delay" expr="'2s'" />

</datamodel>
<state id="initial">

<transition event="interaction.added" target="calling"/>
</state>
<state id="calling">

<onentry>
<log expr="'Calling ...'" />
<ixn:createcall requestid="_data.reqid" type="regular" from="'701'" to="'702'"

udata="({key_1:10*10, key_2:20*20, key_3:30*30})" hints="({extensions:{key_1:100*100,
key_2:200*200, key_3:300*300}})" />

</onentry>
<transition event="error.voice.createcall" cond="_event.data.requestid == _data.reqid"

target="error">
<log expr="'Got createcall error:'" />
<log expr="uneval( _event )" />

</transition>
<transition event="voice.createcall.done" cond="_event.data.requestid == _data.reqid"

target="delay">
<log expr="'Got createcall confirmation:'"/>
<log expr="'event name = ' + _event.name" />
<script>

_data.ixnid = _event.data.interactionid;
</script>

</transition>
</state>
<state id="delay">

<onentry>
<log expr="'======== Inside Delay ========'"/>
<send event="'SynchroEvent'" delay="_data.time_delay"/>

</onentry>
<transition event="SynchroEvent" target="acceptcall" />

</state>
<state id="acceptcall">

<onentry>
<ixn:accept requestid="_data.reqid" interactionid="_data.ixnid" resource="'702'" />

</onentry>
<transition event="error.interaction.accept" target="error" />
<transition event="interaction.accept.done" cond="_event.data.requestid == _data.reqid"

target="exit" />
</state>
<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Create Call

Orchestration Server Developer's Guide 530



Collect Digits
The following SCXML strategy collects a set of digits from a caller. The digits collected is returned in
the _event.data.digits object and is stored in the user data.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="dialog">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>
<state id="dialog">

<onentry>
<dialog:collect>

<dialog:input max_digits="6" abort_digits="'1'" term_digits="'9'"
total_timeout="20" ignore_digits="'hj'"

backspace_digits = "'kl'" reset_digits="'123'" clear="false"
start_timeout="10" digit_timeout="5"/>

</dialog:collect>
</onentry>
<transition event="dialog.collect.done" target="exit">

<script>
_genesys.ixn.setuData({ "CED" : _event.data.digits }, _data.ixnid );

</script>
</transition>
<transition event="error.dialog.collect" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Collect Digits

Orchestration Server Developer's Guide 531



Play Announcement With One Prompt
The following SCXML strategy plays an announcement to a caller.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="dialog"/>

</state>
<state id="dialog">

<onentry>
<dialog:play language="'English(US)'">

<dialog:prompts type="ann">
<dialog:prompt interrupt="true" intid="1"/>

</dialog:prompts>
</dialog:play>

</onentry>
<transition event="dialog.play.done" target="routing"/>
<transition event="error.dialog.play" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Play Announcement With One Prompt

Orchestration Server Developer's Guide 532



Play Announcement With Two Prompts
The following SCXML strategy plays an announcement with two prompts.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">
<state id="initial">

<transition event="interaction.added" target="dialog" />
</state>
<state id="dialog">

<onentry>
<dialog:play language="'English(US)'">

<dialog:prompts type="ann">
<dialog:prompt interrupt="true" intid="1" />
<dialog:prompt interrupt="true" intid="2" />

</dialog:prompts>
</dialog:play>

</onentry>
<transition event="dialog.play.done" target="exit" />
<transition event="error.dialog.play" target="error" />

</state>
<final id="exit" />
<final id="error" />

</scxml>

Orchestration Server Sample Applications Play Announcement With Two Prompts

Orchestration Server Developer's Guide 533



Play Announcement and Collect Digits
The following SCXML strategy plays an announcement to, and collects digits from, a caller.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">
<state id="initial">

<transition event="interaction.added" target="dialog" />
</state>
<state id="dialog">

<onentry>
<dialog:playandcollect>

<dialog:prompts type="ann">
<dialog:prompt interrupt="true" intid="1111" />
<dialog:prompt interrupt="true" number="'2222'" />

</dialog:prompts>
<dialog:input max_digits="6" abort_digits="'1'"

term_digits="'9'" total_timeout="30" start_timeout="5"
digit_timeout="5" />

</dialog:playandcollect>
</onentry>
<transition event="dialog.playandcollect.done"

cond="_event.data.digits=='422678'"
target="exit" />

<transition event="error.dialog.playandcollect" target="error" />
</state>
<final id="exit" />
<final id="error" />

</scxml>

Orchestration Server Sample Applications Play Announcement and Collect Digits

Orchestration Server Developer's Guide 534



Play Sound
The following SCXML strategy plays a voice-related sound to a caller.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue" xmlns:dialog="www.genesyslab.com/

modules/dialog"
initial="initial">
<state id="initial">

<transition event="interaction.added" target="dialog" />
</state>
<state id="dialog">

<onentry>
<dialog:playsound type="'busy'" duration="10" />

</onentry>
<transition event="dialog.playsound.done" target="exit" />
<transition event="error.dialog.playsound" target="error" />

</state>
<final id="exit" />
<final id="error" />

</scxml>

Orchestration Server Sample Applications Play Sound

Orchestration Server Developer's Guide 535



Record User Announcement
The following SCXML strategy creates and records an announcement from a caller.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">
<state id="initial">

<transition event="interaction.added" target="dialog" />
</state>
<state id="dialog">

<onentry>
<dialog:createann userid="'12334567'" abort_digits="'1'"

term_digits="'9'" total_timeout="20" reset_digits="'123'"
start_timeout="456">
<dialog:prompts type="ann">

<dialog:prompt interrupt="true" intid="1111" />
</dialog:prompts>

</dialog:createann>
</onentry>
<transition event="dialog.createann.done" target="exit" />
<transition event="error.dialog.createann" target="error" />

</state>
<final id="exit" />
<final id="error" />

</scxml>

Orchestration Server Sample Applications Record User Announcement

Orchestration Server Developer's Guide 536



Delete User Announcement
The following sample demonstrates how to delete an announcement from a strategy.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">
<state id="initial">

<transition event="interaction.added" target="dialog" />
</state>
<state id="dialog">

<onentry>
<dialog:deleteann userid="'12334567'" annid="464" />

</onentry>
<transition event="dialog.deleteann.done" target="exit" />
<transition event="error.dialog.deleteann" target="error" />

</state>
<final id="exit" />
<final id="error" />

</scxml>

Orchestration Server Sample Applications Delete User Announcement

Orchestration Server Developer's Guide 537



Play Application
The following SCXML strategy requests that a specific dialog be started on a specified interaction by
a specified resource.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">
<state id="initial">

<transition event="interaction.added" target="dialog" />
</state>
<state id="dialog">

<onentry>
<dialog:start type="'applid'" application="464646464" />

</onentry>
<transition event="dialog.start.done" target="exit" />
<transition event="error.dialog.start" target="error" />

</state>
<final id="exit" />
<final id="error" />

</scxml>

Orchestration Server Sample Applications Play Application

Orchestration Server Developer's Guide 538



Cancel Call
The following sample demonstrates how to cancel a currently running dialog application.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">
<state id="initial">

<transition event="interaction.added" target="dialog" />
</state>
<state id="dialog">

<onentry>
<dialog:stop compatible="true" />

</onentry>
<transition event="dialog.stop.done" target="exit" />
<transition event="error.dialog.stop" target="error" />

</state>
<final id="exit" />
<final id="error" />

</scxml>

Orchestration Server Sample Applications Cancel Call

Orchestration Server Developer's Guide 539



Start on Remote Resource
The following SCXML strategy requests that a specific dialog be started on a specified interaction by
a new remote resource.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">
<state id="initial">

<transition event="interaction.added" target="dialog" />
</state>
<state id="dialog">

<onentry>
<dialog:remote destination="'123456'" default="'2334'" />

</onentry>
<transition event="dialog.remote.done" target="exit" />
<transition event="error.dialog.remote" target="error" />

</state>
<final id="exit" />
<final id="error" />

</scxml>

Orchestration Server Sample Applications Start on Remote Resource

Orchestration Server Developer's Guide 540



Run Series of Treatments
The following SCXML strategy performs a series of treatments in the order specified.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">
<state id="initial">

<transition event="interaction.added" target="routing" />
</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets>
<queue:target type="agent" name="'az'" />

</queue:targets>
<dialog:runtreatments>

<dialog:play language="'English_US'">
<dialog:prompts type="ann">

<dialog:prompt interrupt="true"
text="'You reached Genesys'" />

</dialog:prompts>
</dialog:play>

</dialog:runtreatments>
</queue:submit>

</onentry>
<transition event="queue.submit.done" target="exit">

<log expr="'DONE'" />
<log expr="_genesys.ixn.interactions[0].voice.ani" />
<log expr="'DONE'" />
<log expr="_event.data.targetselected" />

</transition>
<transition event="error.queue.submit" target="error" />

</state>
<final id="exit" />
<final id="error" />

</scxml>

Orchestration Server Sample Applications Run Series of Treatments

Orchestration Server Developer's Guide 541



Get Statistic Value
The following example requests a statistic in the script block and then uses a delay to determine
when this value will become available to the SCXML session.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:statistic="www.genesyslab.com/modules/statistic"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="subscribe"/>

</state>
<state id="subscribe">

<onentry>
<statistic:subscribe object="'SipGr_2@.GA'"

statistic="'StatAgentsAvailable'"/>
</onentry>

<transition event="statistic.subscribe.done" target="delay"/>
<transition event="error.statistic.subscribe" target="error"/>

</state>
<state id="delay">

<onentry>
<send event="'delay'" target="_sessionid" targettype="'scxml'" delay="'2s'"/>

</onentry>
<transition event="delay" target="check"/>

</state>
<state id="check">

<transition cond="_genesys.statistic.sData('SipGr_2@.GA', 'StatAgentsAvailable')==1"
target="exit"/>

<transition cond="_genesys.statistic.sData('SipGr_2@.GA', 'StatAgentsAvailable')!=1"
target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Get Statistic Value

Orchestration Server Developer's Guide 542



Get Average Statistic Value
The following example requests the average statistic value for a set of targets in the script block and
then uses a delay to indicate when this value will become available to the SCXML session.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:statistic="www.genesyslab.com/modules/statistic"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="subscribe"/>

</state>
<state id="subscribe">

<onentry>
<statistic:subscribe object="'702_sip@.A'" statistic="'StatAgentsAvailable'"/>
<statistic:subscribe object="'SipGr_2@.GA'"

statistic="'StatAgentsAvailable'"/>
</onentry>

<transition event="statistic.subscribe.done" target="delay"/>
<transition event="error.statistic.subscribe" target="error"/>

</state>
<state id="delay">

<onentry>
<send event="'delay'" target="_sessionid" targettype="'scxml'" delay="'2s'"/>

</onentry>
<transition event="delay" target="check"/>

</state>
<state id="check">

<onentry>
<log expr="_genesys.statistic.sData('702_sip@.A', 'StatAgentsAvailable')"/>
<log expr="_genesys.statistic.sData('SipGr_2@.GA', 'StatAgentsAvailable')"/>

</onentry>
<transition cond="_genesys.statistic.getAvgData('702_sip@.A,SipGr_2@.GA',

'StatAgentsAvailable')==1" target="exit"/>
<transition cond="_genesys.statistic.getAvgData('702_sip@.A,SipGr_2@.GA',

'StatAgentsAvailable')!=1" target="error"/>
</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Get Average Statistic Value

Orchestration Server Developer's Guide 543



Get Minimum Statistic Value
The following example requests the minimum statistic value for a set of targets in the script block
and then uses a delay to dictate when this value will become available to the SCXML session.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:statistic="www.genesyslab.com/modules/statistic"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="subscribe"/>

</state>
<state id="subscribe">

<onentry>
<statistic:subscribe object="'SipGr_2@.GA'"

statistic="'StatAgentsAvailable'"/>
<statistic:subscribe object="'SipGr_3@.GA'"

statistic="'StatAgentsAvailable'"/>
</onentry>

<transition event="statistic.subscribe.done" target="delay"/>
<transition event="error.statistic.subscribe" target="error"/>

</state>
<state id="delay">

<onentry>
<send event="'delay'" target="_sessionid" targettype="'scxml'" delay="'2s'"/>

</onentry>
<transition event="delay" target="check"/>

</state>
<state id="check">

<transition cond="_genesys.statistic.getMinData('SipGr_2@.GA,SipGr_3@.GA',
'StatAgentsAvailable')==0" target="exit"/>

<transition cond="_genesys.statistic.getMinData('SipGr_2@.GA,SipGr_3@.GA',
'StatAgentsAvailable')!=0" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Get Minimum Statistic Value

Orchestration Server Developer's Guide 544



Get Maximum Statistic Value
The following example requests the maximum statistic value for a set of targets in the script block
and then uses a delay to indicate when value will become available to the SCXML session.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:statistic="www.genesyslab.com/modules/statistic"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="subscribe"/>

</state>
<state id="subscribe">

<onentry>
<statistic:subscribe object="'SipGr_2@.GA'"

statistic="'StatAgentsAvailable'"/>
<statistic:subscribe object="'SipGr_3@.GA'"

statistic="'StatAgentsAvailable'"/>
</onentry>

<transition event="statistic.subscribe.done" target="delay"/>
<transition event="error.statistic.subscribe" target="error"/>

</state>
<state id="delay">

<onentry>
<send event="'delay'" target="_sessionid" targettype="'scxml'" delay="'2s'"/>

</onentry>
<transition event="delay" target="check"/>

</state>
<state id="check">

<transition cond="_genesys.statistic.getMinData('SipGr_2@.GA,SipGr_3@.GA',
'StatAgentsAvailable')==0" target="exit"/>

<transition cond="_genesys.statistic.getMinData('SipGr_2@.GA,SipGr_3@.GA',
'StatAgentsAvailable')!=0" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Get Maximum Statistic Value

Orchestration Server Developer's Guide 545



Get Configuration Option Name
The following SCXML strategy uses the getConfigOption function from the session module.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="check"/>

</state>
<state id="check">

<transition
cond="_genesys.session.getConfigOption(_genesys.ixn.interactions[0].g_uid,
'test',
_genesys.session.lookupseq.StartFromCDN)=='12345'"
target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Get Configuration Option Name

Orchestration Server Developer's Guide 546



Check If Special Day
The following SCXML strategy uses the isSpecialDay function from the session module.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="check"/>

</state>
<state id="check">

<transition cond="_genesys.session.isSpecialDay('Call Center Open',
'Any Day', '', false)=='true'" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Check If Special Day

Orchestration Server Developer's Guide 547



Get List Item Value
The following SCXML strategy uses the getListItemValue function from the session module.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="check"/>

</state>
<state id="check">

<transition cond="_genesys.session.getListItemValue('Call In Numbers',
'MasterCard', 'number')=='18002343434'" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Get List Item Value

Orchestration Server Developer's Guide 548



Lookup Value
The following SCXML strategy uses the listLookupValue function from the session module.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="check"/>

</state>
<state id="check">

<transition cond="_genesys.session.listLookupValue('Call In Numbers',
'Discover')=='true'" target="routing"/>

</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Lookup Value

Orchestration Server Developer's Guide 549



Get Time in Time Zone
The following SCXML strategy uses the timeInZone function from the session module.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="check"/>

</state>
<state id="check">

<transition cond="_genesys.session.timeInZone('PST')" target="routing"/>
</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.session.timeInZone('PST')"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Get Time in Time Zone

Orchestration Server Developer's Guide 550



Get Date in Time Zone
The following SCXML strategy uses the dateInZone function from the session module.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="check"/>

</state>
<state id="check">

<transition cond="_genesys.session.dateInZone('PST')" target="routing"/>
</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="Date.parse(_genesys.session.dateInZone('PST'))"/>
<log expr="_genesys.session.dateInZone('PST')"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Get Date in Time Zone

Orchestration Server Developer's Guide 551



Get Day in Time Zone
The following SCXML strategy uses the dayInZone function from the session module.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<state id="initial">
<transition event="interaction.added" target="check"/>

</state>
<state id="check">

<transition cond="_genesys.session.dayInZone('PST')" target="routing"/>
</state>
<state id="routing">

<onentry>
<queue:submit priority="5" timeout="20">

<queue:targets type="dn">
<queue:target name="'7102'"/>

</queue:targets>
</queue:submit>

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_genesys.ixn.interactions[0].voice.ani"/>
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Orchestration Server Sample Applications Get Day in Time Zone

Orchestration Server Developer's Guide 552



Work With E-Mail Or SMS
The following SCXML strategy receives an inbound e-mail or SMS from a customer. It then sends an
acknowledgement is to the customer and calls submit to find an available agent. The e-mail or SMS is
redirected to the agent and an e-mail response from the agent is sent to the customer. Any inbound
e-mail delivery confirmation is also handled.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="http://www.genesyslab.com/modules/queue"

xmlns:ixn="http://www.genesyslab.com/modules/interaction"
xmlns:ws="http://www.genesyslab.com/modules/ws"

xmlns:dialog="http://www.genesyslab.com/modules/dialog"
_persist="false" >
<datamodel>

<data ID="reqid" expr="''"/>
<data ID="childIxn" expr="''"/>
<data ID="routetarget" expr="''"/>

</datamodel>
<initial>

<transition target="listening">
</transition>

</initial>
<state id="main" initial="listening">

<state id="listening">
<onentry>

<log expr="'Listening ...'" />
</onentry>
<!-- This script handles email and sms interactions -->
<transition event="interaction.present"

cond="_genesys.ixn.interactions[_event.data.interactionid].category =='msgbased'"
target="arriving_ixn">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>
<state id="arriving_ixn">

<onentry>
<log expr="uneval( global )" />

<if
cond="_genesys.ixn.interactions[_data.ixnid].msgbased.media == 'TMediaEMail'">

<if
cond="_genesys.ixn.interactions[_data.ixnid].udata.FromAddress ==
'postmaster@genesyslab.com'">

<!-- This looks to be a delivery
confirmation.  -->

<event name="handle.email.confirmation"/>
<else/>

<event name="send.email.ack"/>
</if>

<elseif
cond="_genesys.ixn.interactions[_data.ixnid].msgbased.media == 'TMediaNativeSMS'"/>

<event name="send.sms.ack"/>
</if>

</onentry>
<transition event="handle.email.confirmation" target="exit">

<!-- Add logic here to handle the delivery confirmation... -->
<!-- Terminate the confirmation interaction -->

Orchestration Server Sample Applications Work With E-Mail Or SMS

Orchestration Server Developer's Guide 553



<ixn:terminate interactionid="_data.ixnid" />
</transition>
<transition event="send.email.ack">

<!-- Send an Email acknowledgment -->
<!-- Acknowledgment text is a "Standard Response" with the

specified, 16-digit name. -->
<ixn:createmessage requestid="_data.reqid"

type="acknowledgement"
media="_genesys.ixn.mediaType.TMediaEMail"

to="'_origin'" subject="'$USESRL'"
msgsrc="'gdata:config\\SR.0000Na5C1F3500JW'"

delivery="false" />
</transition>
<transition event="send.sms.ack">

<!-- Send an SMS acknowledgment -->
<ixn:createmessage requestid="_data.reqid"

type="acknowledgement"
media="_genesys.ixn.mediaType.TMediaNativeSMS"

to="'_udata\\_smsSrcNumber'" from="'8881234567'"
msgsrc="'Your request has been received and is being

processed'" />
</transition>
<transition event="msgbased.createmessage.done" target="find_agent"/>
<transition event="error.msgbased.createmessage" target="ack_failed"/>

</state>
<state id="ack_failed">

<transition  target="find_agent">
<log expr="Acknowledgement request failed and should be

handled here." />
</transition>

</state>
<state id="find_agent">

<onentry>
<!-- Submit URS request to find an agent. -->
<queue:submit route="false">

<queue:targets>
<queue:target name="'5'" type="agent"

statserver="'statserver'" />
<queue:target name="'6'" type="agent"

statserver="'statserver'" />
<queue:target name="'7'" type="agent"

statserver="'statserver'" />
</queue:targets>

</queue:submit>
</onentry>
<transition event="queue.submit.done" target="deliver_to_agent">

<log expr="uneval( _event )" />
<assign location="_data.routetarget"

expr="_event.data.resource" />
</transition>
<transition event="error.queue.submit" target="error">

<log expr="uneval( _event )" />
</transition>

</state>
<state id="deliver_to_agent">

<onentry>
<log expr="'Routing ...'" />
<script>

var hint = new Object();
hint.outqueues = new Object();
hint.outqueues.Orchestration_queue = "queue for

outbound response";
</script>

Orchestration Server Sample Applications Work With E-Mail Or SMS

Orchestration Server Developer's Guide 554



<!-- For redirect, the 'to' object is gotten from data
returned from queue:submit -->

<ixn:redirect requestid="_data.reqid"
interactionid="_data.ixnid"

from="'scxml'" to="_data.routetarget" hints="hint"/>
</onentry>
<transition event="interaction.redirect.done" target="responding">

<log expr="uneval( _event )" />
</transition>
<transition event="error.interaction.redirect" target="error">

<log expr="uneval( _event )" />
</transition>

</state>
<parallel id ="responding">

<onentry>
<log expr="'Process Agent response...'" />

</onentry>

<state id="responding_outbound">
<transition event="interaction.present"

cond="_genesys.ixn.interactions[_event.data.interactionid].msgbased.type == 'OutboundReply'">
<!-- This present occurs if agent sends outbound

response to queue which this ORS instance manages -->
<log expr="'Event Interaction Present...'" />
<assign location="_data.childIxn"

expr="_event.data.interactionid" />
<!-- Send agent's response to customer -->
<ixn:sendmessage interactionid="_data.childIxn"

delivery="true"/>
</transition>

<transition event="msgbased.sendmessage.done"
target="cleanup">

<log expr="'Sending of outbound response
successful.'" />

<ixn:terminate interactionid="_data.childIxn"
/>

</transition>
<transition event="error.msgbased.sendmessage"

target="requesterror">
<log expr="'Error in sending outbound response.'" />
<log expr="uneval( _event )" />

</transition>
</state>
<state id="responding_initial_interaction">

<transition event="interaction.notcontrolled">
<log expr="'Initial interaction is no longer

controlled by this scxml.'" />
</transition>
<transition event="interaction.deleted">

<!-- Initial interaction is going away -->
<!-- Wait up to 60 seconds for any response to be

processed (in parallel state). -->
<send delay="'60s'" type="'scxml'"

event="'wait_is_over'" />
</transition>
<transition event="wait_is_over" target="cleanup" />

</state>
</parallel>
<state id="cleanup">

<onentry>
<log expr="'Cleanup logic goes here...'" />

</onentry>
<transition target="exit"/>

Orchestration Server Sample Applications Work With E-Mail Or SMS

Orchestration Server Developer's Guide 555



</state>
<state id="requesterror">

<onentry>
<log expr="'Request error processing goes here...'" />

</onentry>
<transition target="error"/>

</state>
</state>
<final id="error"/>
<final id="exit"/>

</scxml>

Orchestration Server Sample Applications Work With E-Mail Or SMS

Orchestration Server Developer's Guide 556



Work With Chat
The following SCXML strategy receives an inbound chat from the customer. Submit is called to find an
available agent and the chat interaction is redirected to the agent. Upon termination of the chat
interaction, a transcript of the chat session is e-mailed to the customer.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="http://www.genesyslab.com/modules/queue"

xmlns:ixn="http://www.genesyslab.com/modules/interaction"
xmlns:ws="http://www.genesyslab.com/modules/ws"

xmlns:dialog="http://www.genesyslab.com/modules/dialog"
_persist="false" >
<datamodel>

<data ID="reqid" expr="''"/>
<data ID="ixnid" expr="''"/>
<data ID="routetarget" expr="''"/>

</datamodel>
<initial>

<transition target="listening">
</transition>

</initial>
<state id="main" initial="listening">

<state id="listening">
<onentry>

<log expr="'Listening ...'" />
</onentry>
<!-- This script handles chat interactions -->
<transition event="interaction.present"

cond="_genesys.ixn.interactions[_event.data.interactionid].category =='chat'"
target="find_agent">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>
<state id="find_agent">

<onentry>
<log expr="uneval( global )" />

<!-- Submit URS request to find an agent. -->
<queue:submit route="false">

<queue:targets>
<queue:target name="'3'" type="agent"

statserver="'statserver'" />
<queue:target name="'4'" type="agent"

statserver="'statserver'" />
<queue:target name="'5'" type="agent"

statserver="'statserver'" />
</queue:targets>

</queue:submit>
</onentry>
<transition event="queue.submit.done" target="deliver_to_agent">

<log expr="uneval( _event )" />
<assign location="_data.routetarget"

expr="_event.data.resource" />
</transition>
<transition event="error.queue.submit" target="error">

<log expr="uneval( _event )" />
</transition>

Orchestration Server Sample Applications Work With Chat

Orchestration Server Developer's Guide 557



</state>
<state id="deliver_to_agent">

<onentry>
<log expr="'Routing ...'" />
<script>

var hint = new Object();
hint.outqueues = new Object();
hint.outqueues.Orchestration_queue = "queue for

outbound response";
</script>
<!-- For redirect, the 'to' object is gotten from data

returned from queue:submit -->
<ixn:redirect requestid="_data.reqid"

interactionid="_genesys.ixn.firstixnid"
from="'scxml'" to="_data.routetarget" hints="hint"/>

</onentry>
<transition event="interaction.redirect.done" target="responding">

<log expr="uneval( _event )" />
</transition>
<transition event="error.interaction.redirect" target="error">

<log expr="uneval( _event )" />
</transition>

</state>
<state id ="responding">

<onentry>
<log expr="'Wait for interaction to be terminated and send

chat transcript...'" />
<script>

var customer_email_address = "undefined";
</script>
<if cond="typeof

_genesys.ixn.interactions[_data.ixnid].udata.EmailAddress != 'undefined'">
<assign location="customer_email_address"

expr="_genesys.ixn.interactions[_data.ixnid].udata.EmailAddress" />
<else/>

<!-- No email address provided so continue without
sending transcript. -->

<event name="no.email.address"/>
</if>

</onentry>

<transition event="interaction.notcontrolled">
<log expr="'Initial interaction is no longer controlled by

this scxml.'" />
</transition>
<transition event="interaction.deleted">

<!-- Initial interaction has been terminated -->
<if cond="customer_email_address != 'undefined'">

<!-- Email the chat transcript.  Message text is a
standard response. -->

<ixn:createmessage  type="outbound_new"
chattranscript="true"

subject="'Chat transcript'"
msgsrc="'gdata:config\\SR.0000Na5C1F3500FY'"

relatedixnid="_data.ixnid"
to="customer_email_address" />

</if>
</transition>
<transition event="msgbased.createmessage.done" target="cleanup"/>
<transition event="no.email.address" target="cleanup"/>
<transition event="error.msgbased.createmessage"

target="requesterror">
<log expr="uneval( _event )" />

Orchestration Server Sample Applications Work With Chat

Orchestration Server Developer's Guide 558



</transition>
</state>
<state id="cleanup">

<onentry>
<log expr="'Cleanup logic goes here...'" />

</onentry>
<transition target="exit"/>

</state>
<state id="requesterror">

<onentry>
<log expr="'Request error processing goes here...'" />

</onentry>
<transition target="error"/>

</state>
</state>
<final id="error"/>
<final id="exit"/>

</scxml>

Orchestration Server Sample Applications Work With Chat

Orchestration Server Developer's Guide 559



Orchestration Server Sample Templates

Orchestration Server Sample Templates Work With Chat

Orchestration Server Developer's Guide 560



Using The Queue Module
• Expand Targets

Orchestration Server Sample Templates Work With Chat

Orchestration Server Developer's Guide 561



Using The Interaction Interface
• Change the Ownership of an Interaction
• Detach an Interaction
• Detect Consult Call
• Detect User Data Changes

Orchestration Server Sample Templates Work With Chat

Orchestration Server Developer's Guide 562



Using Multiple Interfaces
• Route to Fetched Targets With Invoking SCXML Strategies

Orchestration Server Sample Templates Work With Chat

Orchestration Server Developer's Guide 563



Expand Target List
The following SCXML strategy tries to route the call to various objects, starting with a specific agent.
If this is not successful within 10 seconds, it will expand the target list to route the call to an agent
group. Again, if this is not successful within 10 seconds, it will route the call to a place. And finally, if
it is not successful within 10 seconds, it will expand the target list to a place group.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
initial="initial">
<datamodel>

<data id="reqid" expr="''" />
<data id="ixnid" expr="''" />

</datamodel>
<state id="initial">

<transition event="interaction.added" target="routing">
<script>

_data.ixnid = _event.data.interactionid;
</script>

</transition>
</state>
<state id="routing" initial="route_to_agent">

<state id="route_to_agent">
<onentry>

<log expr="'Queue Submit to Agent'" />
<queue:submit requestid="_data.reqid"

interactionid="_data.ixnid"
priority="5" timeout="10" clearontimeout="false">

<queue:targets>
<queue:target type="agent" name="'701_sip'" />

</queue:targets>
</queue:submit>
<send event="'to_gr1'" delay="'5s'" />

</onentry>
<transition event="error.queue.submit" target="route_to_agent_group"

/>
</state>
<state id="route_to_agent_group">

<onentry>
<log expr="'Queue Submit to Agent Group'" />
<queue:submit requestid="_data.reqid"

interactionid="_data.ixnid"
priority="5" timeout="10" clearontimeout="false">

<queue:targets>
<queue:target type="agentgroup"

name="'SipGr_1'" />
</queue:targets>

</queue:submit>
</onentry>
<transition event="error.queue.submit" target="route_to_place" />

</state>
<state id="route_to_place">

<onentry>
<log expr="'Queue Submit to Place'" />
<queue:submit requestid="_data.reqid"

interactionid="_data.ixnid"
priority="5" timeout="10" clearontimeout="false">

<queue:targets>

Orchestration Server Sample Templates Expand Target List

Orchestration Server Developer's Guide 564



<queue:target type="place" name="'701'" />
</queue:targets>

</queue:submit>
</onentry>
<transition event="error.queue.submit" target="route_to_place_group"

/>
</state>
<state id="route_to_place_group">

<onentry>
<log expr="'Queue Submit to Place Group'" />
<queue:submit requestid="_data.reqid"

interactionid="_data.ixnid"
priority="5" timeout="10" clearontimeout="false">

<queue:targets>
<queue:target type="placegroup"

name="'SIP_PlGr2'" />
</queue:targets>

</queue:submit>
</onentry>
<transition event="error.queue.submit" target="error">

<log expr="'ERROR'" />
</transition>

</state>
<transition event="queue.submit.done" target="exit">

<log expr="'Queue Submit DONE'" />
<log expr="_event.data.targetselected" />

</transition>
</state>
<final id="exit" />
<final id="error" />

</scxml>

Orchestration Server Sample Templates Expand Target List

Orchestration Server Developer's Guide 565



Change the Ownership of an Interaction
The following example illustrates how to detach an interaction (ex. a voice call) from the parent
session, and attach it to a child session that was started using <session:start>. The child session
operates completely independently of the parent session, meaning that the termination of the parent
session has no effect on the child session, and vice versa. Also, session content is not shared
between the sessions.

Parent strategy

The following SCXML application detaches an interaction, then starts a new child session. The session
terminates when we get a confirmation that the child session has been started.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="http://www.genesyslab.com/modules/queue"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
xmlns:session="http://www.genesyslab.com/modules/session"
initial='initial'>
<datamodel>

<data id="reqid" expr="''" />
<data id="ixnid" expr="''" />
<data id="newsessionid" expr="''" />

</datamodel>
<state id="initial">

<transition event="interaction.added" target="detachcall">
<script>

_data.ixnid = _event.data.interactionid;
</script>

</transition>
</state>
<state id="detachcall">

<onentry>
<log expr="'Detach call from current session ...'" />
<ixn:detach requestid="_data.reqid" interactionid="_data.ixnid" />

</onentry>
<transition event="error.interaction.detach" target="error">

<log expr="'Got detach error:'" />
<log expr="uneval( _event )" />

</transition>
<transition event="interaction.detach.done"
cond="_event.data.requestid == _data.reqid &&

_event.data.interactionid==_data.ixnid"
target="create_new_session">

<log expr="'Got detach confirmation'" />
<log expr="uneval( _event )" />

</transition>
</state>
<state id="create_new_session">

<onentry>
<log expr="'Starting a new session that will attach the interaction

...'" />
<session:start src="'http://localhost:17080/ixn_attach.scxml'"

sessionid="_data.newsessionid">
<param name="parent_sessionid" expr="_sessionid" />

Orchestration Server Sample Templates Change the Ownership of an Interaction

Orchestration Server Developer's Guide 566



<param name="interactionid" expr="_data.ixnid" />
</session:start>

</onentry>
<transition event="session.start.done" target="exit">

<log expr="'**** Start Session Done'" />
<log expr="'**** Event details: ' + uneval( _event )" />
<log expr="'**** New Session ID: ' + _data.newsessionid" />

</transition>
<transition event="error.session.start" target="error">

<log expr="'Start Session Error'" />
<log expr="uneval( _event )" />

</transition>
</state>
<final id="exit" />
<final id="error" />

</scxml>

Child strategy

The following SCXML application was used by the parent session to start the child session. Two
parameters were passed in from the parent session, parent_sessionid and interactionid (the
interactionid of the voice call that was detached from the parent session). Using the interactionid,
the child session is able to do an attach and take ownership of the interaction. Then we accept the
call on DN 702.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="http://www.genesyslab.com/modules/queue"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
xmlns:session="http://www.genesyslab.com/modules/session"
initial='initial'>
<datamodel>

<data id="reqid" expr="''" />
<data id="ixnid" expr="''" />
<data id="newsessionid" expr="''" />
<data id="DN2" expr="'702'" />
<!--    Parameters passed in from parent session
parent_sessionid
interactionid
-->

</datamodel>
<state id="initial">

<onentry>
<log expr="'New session has been started ...'" />
<log expr="'Datamodel = ' + uneval(_data)" />

</onentry>
<transition target="attachcall" />

</state>
<state id="attachcall">

<onentry>
<log expr="'Attach call to this new session ...'" />
<ixn:attach requestid="_data.reqid"

interactionid="_data.interactionid" />
</onentry>
<transition event="error.interaction.attach" target="error">

<log expr="'Got attach error:'" />
<log expr="uneval( _event )" />

</transition>
<transition event="interaction.attach.done"
cond="_event.data.requestid == _data.reqid && _event.data.interactionid

Orchestration Server Sample Templates Change the Ownership of an Interaction

Orchestration Server Developer's Guide 567



==_data.interactionid"
target="acceptcall">

<log expr="'Got attach confirmation:'" />
<log expr="uneval( _event )" />

</transition>
</state>
<state id="acceptcall">

<onentry>
<log expr="'Answering call on dn = ' + _data.DN2" />
<ixn:accept requestid="_data.reqid"

interactionid="_data.interactionid"
resource="_data.DN2" />

</onentry>
<transition event="error.interaction.accept" cond="_event.data.requestid ==

_data.reqid"
target="error">
<log expr="'*** Got accept error:'" />
<log expr="uneval( _event )" />

</transition>
<transition event="interaction.accept.done"
cond="_event.data.requestid == _data.reqid && _event.data.interactionid ==

_data.interactionid"
target="exit">

<log expr="'*** Got accept confirmation on DN = ' + _data.DN2" />
<log expr="'event details = ' + uneval( _event )" />

</transition>
</state>
<final id="exit" />
<final id="error" />

</scxml>

Orchestration Server Sample Templates Change the Ownership of an Interaction

Orchestration Server Developer's Guide 568



Detach an Interaction
The following SCXML strategy detaches a call from the current session, then redirects it from DN
3001 on Switch 'tel_sw' to DN 7778 on Switch 'tel_sw_1'.

<!-- ****************************************** -->
<!-- * TEST OF DETACH AND SUBSEQUENT REDIRECT * -->
<!-- ****************************************** -->
<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"

name="simple monitoring app"
xmlns:queue="http://www.genesyslab.com/modules/queue"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
xmlns:dialog="http://www.genesyslab.com/modules/dialog" >

<!--********************************************************************-->
<datamodel>

<data ID="stateName" expr="'initial'" />
<data ID="reqid" expr="''" />
<data ID="ixnid" expr="''" />
<data ID="test_result" expr="'PASSED'" />

</datamodel>
<!--********************************************************************-->
<initial>

<transition target="waiting"/>
</initial>
<!--********************************************************************-->
<state id="main" initial="waiting">

<!--********************************************************************-->
<state id="waiting">

<onentry>
<log expr="'Waiting for incoming call...'" />

</onentry>
<transition event="interaction.added" target="detachcall">

<script>
_data.ixnid = _event.data.interactionid;
var dev =

_genesys.ixn.interactions[_data.ixnid].parties[_data.ixnid + '-1'].device;
</script>
<log expr="'G_G_GOT initial interaction added: ' + uneval(

_event.data )"/>
<log expr="'_genesys.ixn: ' + uneval( _genesys.ixn )" />

</transition>
</state>
<!--********************************************************************-->
<!--  Detaching call from session with graceful termination by timeout  -->
<!--********************************************************************-->
<state id="detachcall">

<onentry>
<script>

var noMoreDetach = false;
var detachTimeout = '3s'; /*'infinite' means endless

trying to detach*/
</script>
<if cond="detachTimeout != 'infinite'">

<send event="'DetachTimeoutEvent'"
delay="detachTimeout"/>

</if>
<ixn:detach interactionid="_data.ixnid"

requestid="_data.reqid" />
</onentry>

Orchestration Server Sample Templates Detach an Interaction

Orchestration Server Developer's Guide 569



<transition event="DetachTimeoutEvent">
<script>

noMoreDetach = true;
</script>

</transition>
<transition event="error.interaction.detach" cond="(_event.data.error

== 'invalidstate')&&!noMoreDetach&&(_event.data.requestid == _data.reqid)">
<log expr="'G_G_GOT detach invalidstate error: ' + uneval(

_event.data )" />
<ixn:detach interactionid="_data.ixnid"

requestid="_data.reqid" />
</transition>
<transition event="error.interaction.detach" cond="(_event.data.error

== 'invalidstate')&&noMoreDetach&&(_event.data.requestid == _data.reqid)"
target="abnormal_exit">

<log expr="'G_G_GOT final detach invalidstate error: ' +
uneval( _event.data )" />

</transition>
<transition event="error.interaction.detach"

cond="(_event.data.error != 'invalidstate')&&(_event.data.requestid == _data.reqid)"
target="abnormal_exit">

<log expr="'G_G_GOT detach error: ' + uneval( _event.data )"
/>

</transition>
<transition event="interaction.detach.done"

cond="_event.data.requestid == _data.reqid" target="redirectcall">
<log expr="'G_G_GOT detach done: ' + uneval( _event.data )"/>

</transition>
<!--*** Targetless transition to intercept interaction.deleted event

***-->
<transition event="interaction.deleted"

cond="_event.data.interactionid == _data.ixnid">
<log expr="'G_G_GOT detached interaction deleted: ' + uneval(

_event.data )"/>
<log expr="'_genesys.ixn: ' + uneval( _genesys.ixn )" />

</transition>
</state>
<!--********************************************************************-->
<state id="redirectcall">

<onentry>
<ixn:redirect interactionid="_data.ixnid"

from="({'dn':'3001', 'switch':'tel_sw'})" to="({'dn':'7778', 'switch':'tel_sw_1'})"
requestid="_data.reqid" />

</onentry>
<transition event="error.interaction.redirect"

cond="_event.data.requestid == _data.reqid" target="abnormal_exit">
<log expr="'G_G_GOT redirect error: ' + uneval( _event.data

)" />
</transition>
<transition event="interaction.redirect.done"

cond="_event.data.requestid == _data.reqid" target="somedelay">
<log expr="'G_G_GOT redirect done: ' + uneval( _event.data

)"/>
</transition>

</state>
<!--********************************************************************-->
<!--*** Just to make old and new sessions coexist after ixn_detach

(additional detach verification) ***-->
<state id="somedelay">

<onentry>
<send event="'SynchroEvent'" delay="'33s'"/>

</onentry>
<transition event="SynchroEvent" target="exit"/>

Orchestration Server Sample Templates Detach an Interaction

Orchestration Server Developer's Guide 570



</state>
<!--*** Common event handler for primary ixn deletion (just to terminate this

test session) ***-->
<transition event="interaction.deleted" cond="_event.data.interactionid ==

_data.ixnid" target="exit">
<log expr="'G_G_GOT initial interaction deleted: ' + uneval(

_event.data )"/>
<log expr="'_genesys.ixn: ' + uneval( _genesys.ixn )" />

</transition>
</state>
<!--********************************************************************-->
<state id="abnormal_exit">

<onentry>
<log expr="'G_G_GOT ABNORMAL SESSION TERMINATION'" />
<script>

//Overwrite _data.test_result initial value that was set in
data block

_data.test_result = 'FAILED';
</script>

</onentry>
<transition target="exit"/>

</state>
<!--********************************************************************-->
<final id="exit">

<onentry>
<log expr="'G_G_GOT SESSION TERMINATION WITH TEST_RESULT = ' +

_data.test_result" />
</onentry>

</final>
</scxml>

Orchestration Server Sample Templates Detach an Interaction

Orchestration Server Developer's Guide 571



Detect Consult Call
The following example illustrates the case when we are trying to detect whether the call that started
the session is a consult call. The assumption is that the following SCXML file is configured on a
Routing Point and the SCXML session is started when a call is made to the Routing Point.

Here are two scenarios:

1. Direct call to Routing Point
• Customer makes a call and is connected to a Routing Point.
• This is considered the primary call and the only active interaction.
• All actions (<queue:submit>, <dialog:playsound>, etc) are applied to this interaction.

2. Consult call to Routing Point
• Customer makes a call and is connected to an agent X.
• This is considered the primary call and is not being monitored by Orchestration Server (the

interaction is ownerless).
• Agent X does a consult call to the Routing Point. This starts a SCXML session which is monitored by

Orchestration.
• The consult call is considered the effective call until the primary and consult calls are merged

(which happens if agent X completes the transfer to the Routing Point). At that time, the consult call
is no longer valid and the primary call is the effective call.

• All actions (<queue:submit>, <dialog:playsound>, etc) are applied to the effective call.

Assumptions:

• At any time during the session, if the primary call is dead, the SCXML session will be terminated,
regardless of the status of the consult call. This assumes the primary call and consult calls have not
been merged.

• At any time during the session, if the effective call is dead, the SCXML session will be terminated.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
initial="global">
<script>

var reqid;
var consult_ixn_id;
var primary_ixn_id;
var effective_ixn_id;
var sessionStarted = false;

</script>
<!--**********************************************************************-->
<state id="global" initial="initial">

<!--**********************************************************************-->
<state id="initial">

<!--This ensures the session terminates after 10 minutes-->

Orchestration Server Sample Templates Detect Consult Call

Orchestration Server Developer's Guide 572



<onentry>
<send event="'toExit'" delay="'600s'" />

</onentry>
<transition event="interaction.added" cond="sessionStarted == false">

<script>
/* To avoid catching another 'interaction.added' event
(caused by 'attach') in the same state again, set

sessionStarted to
true. 'Attach' action could be done in a separate

state, but for
the sake of simplicity and to minimize number of

states it is done
here in initial state...*/
sessionStarted = true;
/* Assign interaction IDs that will be needed later

on ... */
if(

_genesys.ixn.interactions[_event.data.interactionid].voice.type == 'consult' )
{

consult_ixn_id = _event.data.interactionid;
primary_ixn_id =

_genesys.ixn.interactions[consult_ixn_id].parentid;
effective_ixn_id = consult_ixn_id;

}
else
{

consult_ixn_id = undefined;
primary_ixn_id = _event.data.interactionid;
effective_ixn_id = primary_ixn_id;

}
</script>
<log expr="'CONSULT_EXAMPLE: consult_ixn_id = ' +

consult_ixn_id" />
<log expr="'CONSULT_EXAMPLE: primary_ixn_id = ' +

primary_ixn_id" />
<log expr="'CONSULT_EXAMPLE: effective_ixn_id = ' +

effective_ixn_id" />
<if cond="consult_ixn_id ;!= undefined">

<log expr="'CONSULT_EXAMPLE: Consult call started
strategy. Attaching primary call...'" />

<ixn:attach requestid="reqid"
interactionid="primary_ixn_id" />

<else />
<log expr="'CONSULT_EXAMPLE: Normal call started

strategy. Proceeding with session ...'" />
<send event="'toProceed'" />

</if>
</transition>
<transition event="interaction.attach.done"

cond="_event.data.requestid == reqid" target="prewaiting_state" />
<!-- error.interaction.attach event (if happened) will be caught in

global state -->
<transition event="toProceed" target="CUSTOM_WORKING_STATE" />

</state>
<!--**********************************************************************-->
<state id="prewaiting_state">

<onentry>
<!--This illustrates the case when the session is started by

a consult
call (and that call is still alive here), sometimes

it makes sense
to wait for some short amount of time. This time

could depend on

Orchestration Server Sample Templates Detect Consult Call

Orchestration Server Developer's Guide 573



how fast TServer completes transfer, or could be done
to avoid

routing consult call during mute transfer, etc.-->
<log expr="'CONSULT_EXAMPLE: Continuing session with some

short delay...'" />
<send event="'toProceed'" delay="'1s'" />

</onentry>
<transition event="toProceed" target="CUSTOM_WORKING_STATE" />

</state>
<!--**********************************************************************-->
<!--************ This is where your main logic goes *********************-->
<!--**********************************************************************-->
<state id="CUSTOM_WORKING_STATE" initial="route_to_agent">

<!--This will try to route the call to agent 703_sip. If it is not
successful within 3 seconds, it will transition to state

"dialog"
and play music. The attribute "clearontimeout" is set to

false so
router will continue trying to route to the agent while the

music is
playing.-->

<state id="route_to_agent">
<onentry>

<queue:submit requestid="reqid"
interactionid="effective_ixn_id"

priority="5" timeout="3"
clearontimeout="false">

<queue:targets>
<queue:target type="agent"

name="'703_sip'" />
</queue:targets>

</queue:submit>
</onentry>
<transition event="error.queue.submit" target="dialog">

<log expr="'ERROR WITH QUEUE SUBMIT: ' + uneval(
_event )" />

</transition>
</state>
<!-- This plays music for 60 seconds. -->
<state id="dialog">

<onentry>
<dialog:playsound requestid="reqid"

interactionid="effective_ixn_id"
type="'music'" resource="'music/on_hold'"

duration="60" />
</onentry>
<transition event="dialog.playsound.done.timeout" />
<transition event="dialog.playsound.done" target="exit" />
<transition event="error.dialog.playsound" target="error">

<log expr="'ERROR PLAYING MUSIC: ' + uneval(_event)"
/>

</transition>
</state>
<transition event="queue.submit.done" target="exit">

<log expr="'QUEUE SUBMIT DONE.  Ending Session.'" />
</transition>
<transition event="interaction.partystatechanged"

cond="effective_ixn_id == _event.data.interactionid">
<log expr="'CONSULT_EXAMPLE: Got partystatechanged event: ' +

uneval(_event.data)" />
</transition>

</state>
<!--**********************************************************************-->

Orchestration Server Sample Templates Detect Consult Call

Orchestration Server Developer's Guide 574



<!--**********************************************************************-->
<!--**********************************************************************-->
<transition event="interaction.onmerge"

cond="_event.data.frominteractionid == consult_ixn_id && _event.data.tointeractionid ==
primary_ixn_id">

<script>
consult_ixn_id = undefined;
effective_ixn_id = primary_ixn_id;

</script>
<log expr="'CONSULT_EXAMPLE: Effective call ID changed because of

transfer completion: ' + uneval(_event)" />
<log expr="'CONSULT_EXAMPLE: consult_ixn_id = ' + consult_ixn_id" />
<log expr="'CONSULT_EXAMPLE: primary_ixn_id = ' + primary_ixn_id" />
<log expr="'CONSULT_EXAMPLE: effective_ixn_id = ' + effective_ixn_id"

/>
</transition>
<transition event="interaction.deleted"

cond="_event.data.interactionid == effective_ixn_id" target="exit">
<log expr="'CONSULT_EXAMPLE: Effective call is dead. Exiting...: ' +

uneval(_event)" />
</transition>
<transition event="interaction.deleted"

cond="_event.data.interactionid == primary_ixn_id &&
consult_ixn_id != undefined"

target="exit">
<log expr="'CONSULT_EXAMPLE: Primary call is dead, consult call is

alive and useless. Exiting...: ' + uneval(_event)" />
</transition>
<!--In case none of the other events are triggered, this will end the

session after number of minutes specified at the strategy beginning-->
<transition event="toExit" target="exit">

<log expr="'CONSULT_EXAMPLE: Possibly stuck session is self-
destructing. Exiting...: ' + uneval(_event)" />

</transition>
<!--This will catch all the errors that are not processed elsewhere-->
<transition event="error.*" target="error">

<log expr="'CONSULT_EXAMPLE: ERROR AT GLOBAL LEVEL'" />
<log expr="'CONSULT_EXAMPLE: Got error event: ' + uneval( _event )" />

</transition>
</state>
<final id="exit" />
<final id="error" />

</scxml>

• When agent X initiates a transfer or consult to the Routing Point, it will trigger a SCXML session to be
created and will wait for the interaction.added event.

• After the interaction.added event is received, it will set the consult_ixn_id, primary_ixn_id, and
effective_ixn_id depending on whether the session was started by a regular call, or a consult call to
the Route Point.

• If the SCXML application detects that the call from Agent X to the Routing Point is of type consult, we
attach the parent interaction (the primary call which is ownerless) to the current session (see
interaction attach for more details about ownership).

• The interaction.attach.done event will trigger a transition to the prewaiting_state, where we put
in a delay. This delay is needed depending on how fast TServer completes the transfer, or is sometimes
done to avoid routing a consult call during a mute transfer.

• The CUSTOM_WORKING_STATE is where you would put your main logic. In this example, we first try to
route the call to agent 703_sip. If this is not successful within 3 seconds, we transition to the dialog
state and play music for 60 seconds.

Orchestration Server Sample Templates Detect Consult Call

Orchestration Server Developer's Guide 575



• At any time during the session, if agent X decides to complete the transfer to the Routing Point or to
agent Y (if the consult call was routed from the Routing Point to agent Y), the primary and consult calls
are merged, and the event interaction.onmerge is raised. This event triggers a transition in the
SCXML application and redefines the variables consult_ixn_id, and effective_ixn_id since the
consult interaction is deleted during the merge. The consult_ixn_id will no longer be valid and is set
to undefined. The effective_ixn_id is changed from the consult call to the primary call and should
be used from this point forward for all functions and actions that require an interaction ID.

• Exiting the session is triggered by any of the following situations:
• The call is successfully routed to agent 703_sip.
• Music has been played for 60 seconds.
• There was a problem playing the file music/on_hold.
• The effective call is deleted (effective call is the consult call until the consult or transfer is complete,

at which time, it is the only call left).
• The primary call is deleted before the consult or transfer is complete (the consult call can still be

alive but is useless at this point).
• Any error.* events that are raised during the session.
• The session may be stuck and self-destucts 10 minutes after it was created.

Orchestration Server Sample Templates Detect Consult Call

Orchestration Server Developer's Guide 576



Detect User Data Changes
The following SCXML strategy shows how to detect changes in user data for an interaction.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
initial="waitForInteraction">
<script>

var userdata = ({});
function detectChanges( oldObj, newObj, objDiffs )
{

if ( null == oldObj || null == newObj ||
"undefined" ==        typeof( oldObj ) || "undefined" ==

typeof( newObj ) )
{

__Log( 'Invalid        userdata' )
return false;

}

var key;
for ( key in oldObj )
{

if ( newObj.hasOwnProperty( key ) )
{

if ( oldObj[key] !=        newObj[key] )
{

objDiffs.push({ userdata : "updated" ,
key:        key, oldvalue :        oldObj[key], newvalue :        newObj[key] });

}
}
else
{

objDiffs.push({ userdata: "deleted", key : key,
value :        oldObj[key] });

}
}
for ( key in newObj )
{

if ( !oldObj.hasOwnProperty( key ) )
{

objDiffs.push({ userdata: "added", key : key, value :
newObj[key] });

}
}

return true;
}

</script>
<datamodel>

<data id="reqid" />
</datamodel>
<state id="waitForInteraction">

<transition event="interaction.added" target="globalstate">
<script>

_data.ixnid = _event.data.interactionid;
</script>

</transition>
</state>
<state id="globalstate">

<onentry>

Orchestration Server Sample Templates Detect User Data Changes

Orchestration Server Developer's Guide 577



<script>
userdata = _genesys.ixn.interactions[_data.ixnid].udata;
__Log('Userdata initial value = ' + uneval( userdata ) );

</script>
</onentry>
<initial>

<transition target="addUdata" />
</initial>
<transition event="interaction.udata.changed"

cond="_genesys.ixn.interactions[_data.ixnid].udata.hasOwnProperty(
'timeToExit' )"

target="exit" />
<transition event="interaction.udata.changed">

<script>
var objDiffs =[];
if ( detectChanges( userdata,

_genesys.ixn.interactions[_data.ixnid].udata, objDiffs ) )
{

__Log( uneval( objDiffs ) );
}
__Log('Userdata updated to = ' + uneval(
_genesys.ixn.interactions[_data.ixnid].udata ) )
userdata =
_genesys.ixn.interactions[_data.ixnid].udata;

</script>
</transition>
<state id="addUdata">

<onentry>
<script>

var myData = { name : "Smith, John", age : 45 };
_genesys.ixn.setuData( myData );

</script>
</onentry>
<transition target="updateUdata" />

</state>
<state id="updateUdata">

<onentry>
<script>

_genesys.ixn.setuData( { age : 25 } );
</script>

</onentry>
<transition target="deleteUdata" />

</state>
<state id="deleteUdata">

<onentry>
<script>

_genesys.ixn.deleteuData( 'name' );
</script>

</onentry>
<transition target="endInteraction" />

</state>
<state id="endInteraction">

<onentry>
<script>

var exitFlag = { timeToExit : "Y" };
_genesys.ixn.setuData( exitFlag );

</script>
</onentry>

</state>
</state>
<final id="exit" />
<final id="error" />

</scxml>

Orchestration Server Sample Templates Detect User Data Changes

Orchestration Server Developer's Guide 578



In this example, the "detectChanges" function is called five times (see sample ORS log below). It is
first called when ORS information such as ORDbid, ORSession, and ORUrl are added to the interaction
user data. It is called a second time after "name" and "age" are added to the user data during state
"addUdata". It is called a third time after the "age" is modified during the state "updateUdata". It is
called a fourth time after the "name" is deleted during the state "deleteUdata". It is called a fifth time
after "timeToExit" is added to the user data during state "endInteraction", which signals the strategy
to end when it transitions to the state "exit".

The inputs to the function "detectChanges" are the userdata object before the
"interaction.udata.changed" event, and the userdata object after the "interaction.udata.changed"
event. The output is the "objDiffs" object which keeps track of changes such as additions, deletions,
and modifications.

METRIC <transition sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' name='globalstate'
event='interaction.udata.changed' line='64' />
METRIC <log sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' expr='[{userdata:"added", key:"ORDbid",
value:"143"},

{userdata:"added", key:"ORSession", value:"2M4DTARKVT2MBFSKSCVVHVM08K000001"},
{userdata:"added", key:"ORUrl", value:"http://localhost:17011/scxml"}]' label=''

level='1' />
METRIC <log sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' expr='Userdata updated to =
({ORDbid:"143", ORSession:"2M4DTARKVT2MBFSKSCVVHVM08K000001",

ORUrl:"http://localhost:17011/scxml"})' label='' level='1' />
...
METRIC <event_queued sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' name='interaction.udata.changed'
type='external' />
METRIC <event_processed sid='2M4DTARKVT2MBFSKSCVVHVM08K000001'
name='interaction.udata.changed' disposition='transition selected' />
METRIC <transition sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' name='globalstate'
event='interaction.udata.changed' line='64' />
METRIC <log sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' expr='[{userdata:"added", key:"age",
value:45},

{userdata:"added", key:"name", value:"Smith, John"}]' label='' level='1' />
METRIC <log sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' expr='Userdata updated to =
({ORDbid:"143", ORSession:"2M4DTARKVT2MBFSKSCVVHVM08K000001",

ORUrl:"http://localhost:17011/scxml", age:45, name:"Smith, John"})' label='' level='1'
/>
...
METRIC <event_queued sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' name='interaction.udata.changed'
type='external' />
METRIC <event_processed sid='2M4DTARKVT2MBFSKSCVVHVM08K000001'
name='interaction.udata.changed' disposition='transition selected' />
METRIC <transition sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' name='globalstate'
event='interaction.udata.changed' line='64' />
METRIC <log sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' expr='[{userdata:"updated", key:"age",
oldvalue:45, newvalue:25}]' label='' level='1' />
METRIC <log sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' expr='Userdata updated to =
({ORDbid:"143", ORSession:"2M4DTARKVT2MBFSKSCVVHVM08K000001",

ORUrl:"http://localhost:17011/scxml", age:25, name:"Smith, John"})' label='' level='1'
/>
...
METRIC <event_queued sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' name='interaction.udata.changed'
type='external' />
METRIC <event_processed sid='2M4DTARKVT2MBFSKSCVVHVM08K000001'
name='interaction.udata.changed' disposition='transition selected' />
METRIC <transition sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' name='globalstate'
event='interaction.udata.changed' line='64' />
METRIC <log sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' expr='[{userdata:"deleted", key:"name",
value:"Smith, John"}]' label='' level='1' />
METRIC <log sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' expr='Userdata updated to =
({ORDbid:"143", ORSession:"2M4DTARKVT2MBFSKSCVVHVM08K000001",

Orchestration Server Sample Templates Detect User Data Changes

Orchestration Server Developer's Guide 579



ORUrl:"http://localhost:17011/scxml", age:25})' label='' level='1' />
...
METRIC <event_queued sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' name='interaction.udata.changed'
type='external' />
METRIC <event_processed sid='2M4DTARKVT2MBFSKSCVVHVM08K000001'
name='interaction.udata.changed' disposition='transition selected' />
METRIC <transition sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' name='globalstate'
event='interaction.udata.changed' line='64' />
METRIC <log sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' expr='[{userdata:"added",
key:"timeToExit", value:"Y"}]' label='' level='1' />
METRIC <log sid='2M4DTARKVT2MBFSKSCVVHVM08K000001' expr='Userdata updated to =
({ORDbid:"143", ORSession:"2M4DTARKVT2MBFSKSCVVHVM08K000001",

ORUrl:"http://localhost:17011/scxml", age:25, timeToExit:"Y"})' label='' level='1' />

Orchestration Server Sample Templates Detect User Data Changes

Orchestration Server Developer's Guide 580



Route to Fetched Targets With Invoking
SCXML Strategies
The following SCXML strategy uses the results of a fetch request to construct routing targets.

Fetched files content

• File //myhost/Fetch_1.txt:
{"id":813, "id1":819}

• File //myhost/Fetch_2.txt:
{"id":511, "id1":517}

Root strategy
<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"

xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:session="www.genesyslab.com/modules/session"
xmlns:xi= "http://www.w3.org/2001/XInclude"
initial="waitinteraction">

<script>
var data1;
var data2;

</script>
<state id="waitinteraction">

<transition event="interaction.added" target="getdata1"/>
</state>
<state id="getdata1">

<onentry>
<session:fetch srcexpr="'http://myhost/Fetch_1.txt'"/>

</onentry>
<transition event="session.fetch.done" target="getdata2">

<script>
data1= JSON.parse(_event.data.content);

</script>
</transition>
<transition event="error.session.fetch" target="error"/>

</state>
<state id="getdata2">

<onentry>
<session:fetch srcexpr="'http://myhost/Fetch_2.txt'"/>

</onentry>
<transition event="session.fetch.done" target="initial">

<script>
data2= JSON.parse(_event.data.content);

</script>

Orchestration Server Sample Templates Route to Fetched Targets With Invoking SCXML Strategies

Orchestration Server Developer's Guide 581



</transition>
<transition event="error.session.fetch" target="error"/>

</state>
<state id="initial">
<transition cond="_genesys.ixn.interactions[0].userdata['switch']=='1'"
target="queued"/>
<transition cond="_genesys.ixn.interactions[0].userdata['switch']=='2'"
target="queued1"/>

</state>
<state id="queued">
<onentry>
<queue:submit queue="'vq1'" priority="5" timeout="2">
<queue:targets type="skill" statserver="'Single_StatServer'">
<queue:target

skillexpr="'switch=1&id>' + data1.id + '&id<' + data1.id1"/>
</queue:targets>

</queue:submit>
</onentry>
<transition event="queue.submit.done" target="exit" />
<transition event="error.queue.submit" target="q2.queued" />

</state>
<state id="queued1">
<onentry>
<queue:submit queue="'vq1'" priority="5" timeout="2">
<queue:targets type="skill" statserver="'Single_StatServer'">
<queue:target

skillexpr="'switch=1&id>'+ data2.id + '&id<' + data2.id1"/>
</queue:targets>

</queue:submit>
</onentry>
<transition event="queue.submit.done" target="exit" />
<transition event="error.queue.submit" target="q3.queued" />

</state>
<xi:include  resolved ="q2" href="Inv_Queue_2.xml" xpointer="queued" >
<xi:include  resolved ="q3" href="Inv_Queue_3.xml" xpointer="queued" >
<final id = "exit"/>
<final id = "error"/>
</scxml>

Strategies making second-chance routing to queues (if first
queue:submit failed)

• File //myhost/Inv_Queue_2.xml:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
initial="initial">

<state id="initial" >
<transition event="interaction.added" target="queued"/>

</state>
<state id="queued">

<onentry>
<queue:submit queue="'vq1'" priority="5" timeout="100">

<queue:targets type="queue">
<queue:target name="'8112_sw1'"/>

</queue:targets>
</queue:submit>

Orchestration Server Sample Templates Route to Fetched Targets With Invoking SCXML Strategies

Orchestration Server Developer's Guide 582



</onentry>
<transition event="queue.submit.done" target="exit" />
<transition event="error.queue.submit" target="error" />

</state>
<final id = "exit"/>
<final id = "error"/>
</scxml>

• File //myhost/Inv_Queue_3.xml:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
initial="initial">

<state id="initial" >
<transition event="interaction.added" target="queued"/>

</state>
<state id="queued">

<onentry>
<queue:submit queue="'vq1'" priority="5" timeout="100">

<queue:targets type="queue">
<queue:target name="'8113_sw1'"/>

</queue:targets>
</queue:submit>

</onentry>
<transition event="queue.submit.done" target="exit" />
<transition event="error.queue.submit" target="error" />

</state>
<final id = "exit"/>
<final id = "error"/>
</scxml>

Orchestration Server Sample Templates Route to Fetched Targets With Invoking SCXML Strategies

Orchestration Server Developer's Guide 583



Orchestration Server Troubleshooting

Common Problems
Issue What to do

Incorrect processing of call in following scenario:

Issue:

1. An inbound call with certain DID (DNIS) comes
from Media Gateway to SIP Server and directly
forwarded to GVP.

2. GVP is represented by a Trunk DN in SIP Server,
meaning SIP Server won't generate DN related
TEvent on it.

3. After caller's interaction with GVP is finished,
GVP transfers the call to a Routing Point at SIP
Server

4. Time of call processing in GVP is higher than
~30 sec.

Resolution:

1. Configure a TrunkGroup DN that points to GVP,
instead of the Trunk DN. This will result in
generating Tevents on the Trunk Group, which
will ensure proper completion of call create
transaction in this scenario.

2. Increase the timeout to the length of time to
wait for the event before failing the call create
transaction. By default it's 30 seconds. If in the
scenario described here, the call spends more
than 30 seconds on GVP, call create transaction
would fail. To increase the timeout, set option
"cti-transaction-timeout" in section "gts" in the
ORS application to the desired value in seconds.
This option can have a maximum value of 600
(10 minutes).

Unexpected crash after some period of time ORS
stops creating sessions

The most common cause for this problem is that
sessions are not ending. In Orchestration, a
session ends by transition to a <final> element.
Orchestration sessions can be started in a number

of ways and have a number of purposes. For
sessions that are based around voice interactions,
it should be made certain that the session ends.
This is typically done by detecting the event

interaction.deleted and then transitioning to a
<final>. For projects built with Composer, this can
be easily done by adding an exception handler to

Orchestration Server Troubleshooting Route to Fetched Targets With Invoking SCXML Strategies

Orchestration Server Developer's Guide 584



Issue What to do
the default Entry point.

Internal communication delays

In cases where there are unexpected delays within
the SCXML application execution, the cause may be
unneccessary attempts to resolve 'localhost'
through DNS. Internal thread communication
employs this hostname. Check the /etc/hosts file
to determine if localhost is defined as 127.0.0.1, for
example for ipv4.

ORS occasionally fails to fetch document with error
"Recv failure: Connection reset by peer" if idle time
between calls exceeds web server Connection
Timeout

This was observed on a RedHat installation of ORS
where it was discovered that TCP_KEEPALIVE was
turned off on ORS sockets. ORS attempts to re-use
existing connections but when TCP_KEEPALIVE is
disabled, libcurl fails to detect when TCP
connections are disconnected. TCP_KEEPALIVE can
be forcibly enabled by loading libkeepalive.so via
LD_PRELOAD (add path of libkeepalive.so to
LD_PRELOAD environment variable) prior to
starting ORS.

Orchestration Server Troubleshooting Route to Fetched Targets With Invoking SCXML Strategies

Orchestration Server Developer's Guide 585



ECMAScript

SCXML Elements

<anchor>
The <anchor> module is not supported by the SCXML engine. This element would otherwise be used
for providing 'go back' or 'redo'-like functionality for applications.

<cancel >
TTTTFor <cancel>, either one of the attributes id and sendid may be used. However, both cannot be
defined at the same time.

When using <send> to generate events, if there is an intention to cancel the event sent, it is
recommended to use the attribute idlocation instead of id. The sendid stored at the location
specified by idlocation may then be used in <cancel>.

When the <cancel> request has been processed, the SCXML engine will send back the
"cancel.successful" event if the event was successfully removed, or "error.notallowed" if there was a
problem, along with the attribute sendid in the event.

<data>
The following are the additional Genesys attributes for <data> element. They are strictly used to
help define and administer the provisioning of this data from the appropriate source.

Attribute Details

Name Required Type Default Value Valid Values Description

_type false NMTOKEN data

The following is the
set of valid values:

• data
• parameter

This allows the
developer to
identify the data
elements that are
to be parameters
that the platform
must obtain values
for when the
session is initiated.
Note that this does
not impact the way
in which the
SCXML document
is executed.

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 586



Name Required Type Default Value Valid Values Description

_desc false string none Any valid string

This allows the
developer to
provide a
description of the
parameter that is
to be supplied at
session initiation.
Note that this does
not impact the way
in which the
SCXML document
is executed.

src Attribute

The currently supported URI schema types for the src attribute are:
• HTTPS
• HTTP
• FILE

id Attribute

The value of this attribute must be a valid ECMAScript variable name. This
means that variable semantics that include elements like "." (for example,
foo.foo) and "-" (for example, foo-foo) are not allowed. The rule is that the
variable name must be able to be processed on its own in an ECMAScript
snippet. If not, then a TypeError event is generated.

For example,

Valid element

<data id="foo" expr="'value1'"/>

Invalid element

<data id="foo.foo" expr="'value2'"/> <!--TypeError event generated ->

If you need to create complex objects you can always create them with the <script> element as a
child of the <scxml> element with the src attribute where the src attribute value points to a valid
JSON object with a mime type of application/json.

<foreach> (Since ORS 8.1.200.40, SCXML 8.1.000.77)
This element is an extension to the W3C Working Draft 7 May 2009. However, it has been formally
added to the W3C SCXML specification since the W3C Working Draft 26 April 2011. <foreach> is an
Executable Content element (like <if>, or <log>) and can be used to create iterators. The behaviour
of <foreach> is similar to that of the C# and Perl 'foreach' construct, which traverses items in a
collection. This implementation differs from the W3C specification in that the SCXML engine behaves

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 587



as though a deep copy of each item in the collection is created during iteration as opposed to a
shallow copy. Nevertheless, iteration behaviour will remain unaffected by changes to the collection.

Attribute Details

Name Required Type Default Value Valid Values Description

array true Value expression none
A value expression
that evaluates to
an iterable
collection.

The <foreach>
element will iterate
over a deep copy
of this collection.

item true string none
Any variable name
that is valid in the
specified data
model.

A variable that
stores a different
item of the
collection in each
iteration of the
loop.

index false string none
Any variable name
that is valid in the
specified data
model.

A variable that
stores the current
iteration index
upon each iteration
of the foreach loop.

<history>
The <history> element is not supported by the SCXML engine. This element would otherwise be used
for allowing 'pause and resume' control flows.

<invoke>
The child element <content> of <invoke> is not supported.

<scxml>
The following are the additional Genesys attributes for the <scxml> element:

Attribute Details

Name Required Type Default Value Valid Values Description

_type false string combination Any valid string

This is set by the
developer at the
beginning of the
SCXML document
to define what type
of SCXML logic has
been defined.
Composer sets this
property based on

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 588



Name Required Type Default Value Valid Values Description

the type of logic
you are building. It
is used for
reporting
purposes.

_persist false boolean false true (prior to
8.1.2)

The following is the
set of valid values:

• true
• false

This allows the
developer to
suppress all
persistence
capabilities.

Persistence is not
always desired,
due to the
associated
performance
overhead. For
instance, in
Orchestration,
current voice-
related routing
strategies normally
run to completion
in a reasonable
amount of time,
and in the event of
a failure, restarting
the routing
strategy may not
be problematic.
Therefore, this
attribute allows
sessions to
suppress all use of
persistence, which
prevents the
orchestration
platform from ever
persisting the
session. (Note that
this does *not*
preclude the
orchestration
platform from
employing other
techniques, such
as hot standby
servers, to achieve
fault tolerance for
these types of
session.

_statePersistDefault false string "may"

The following is
the set of valid
values:

• must
• may
• no

To ensure proper
session persistence
during High
Availability
recovery, the
_statePersistDefault
may be used as an
attribute to the
top-level <scxml>
element.

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 589



Name Required Type Default Value Valid Values Description

Orchestration
Server uses the
value of
_statePersistDefault
as the default for
the <state>
_persist attribute,
if it is not specified
at the <state>
level.

• may—Default
value. ORS
will persist
the SCXML
session in
the entered
state once
the event
queue
becomes
empty.

• must—ORS
will
immediately
persist the
SCXML
session in
the entered
state.

• no—ORS
will not
persist the
SCXML
session in
the entered
state.

_maxtime (Since
ORS 8.1.300.03,
SCXML 8.1.300.00)

false integer "604800"
Any valid
positive
integer, inside
double quotes.

Specifies the
maximum age in
seconds that an
ORS session should
exist. If this age is
reached, ORS shall
attempt to exit the
session.

If specified, this
overrides the value
specified in
configuration for
ORS under scxml/
max-session-age.

To disable this
feature, set the

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 590



Name Required Type Default Value Valid Values Description

_maxtime to "0".

As of ORS
8.1.300.13, SCXML
8.1.300.13, an
available
Cassandra data
store will be
required for this
functionality.

_microStepLimit
(Since ORS
8.1.300.11, SCXML
8.1.300.10)

false integer 1000
Any valid positive
integer, inside
double quotes.

Specifies the
maximum number
of microsteps
allowed to be
taken following the
processing of one
event. Subsequent
transitions may
arise from the
processing of one
event if the
following
transitions are
eventless. If this
number is reached,
ORS shall attempt
to exit the session.
To use ORS
configured default,
leave
_microStepLimit
undefined. To
disable this
feature, set
_microStepLimit="0".

_stateEntryLimit
(Since ORS
8.1.300.11, SCXML
8.1.300.10)

false integer 100
Any valid positive
integer, inside
double quotes.

Specifies the
maximum number
of times that a
state may be
entered as the
target of a
transition. States
entered indirectly
as the result of a
transition element
or initial attribute
are not considered
for this limit (for
example, ancestors
of the target state
that must be
entered before
entering the target
state). If this
number is reached,
ORS shall attempt
to exit the session.
To use ORS
configured default,
leave
_stateEntryLimit

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 591



Name Required Type Default Value Valid Values Description

undefined. To
disable this
feature, set
_stateEntryLimit="0".

_maxPendingEvents
(Since ORS
8.1.300.11, SCXML
8.1.300.10)

false integer 100

Positive integer
between 30 to
100000, inclusive,
inside double
quotes.

Specifies the
maximum number
of events allowed
to be queued to a
session (inclusive
of internal,
external, delayed
and undelivered
events). If this
number is reached,
ORS shall attempt
to exit the session.
This feature cannot
be disabled.

_processEventTimeout
(Since ORS
8.1.300.11, SCXML
8.1.300.10)

false integer 10000
Any valid positive
integer, inside
double quotes.

Specifies the
maximum time
allotted for the
processing of the
event queue. The
processing of one
event may lead to
additional events
being queued.
Processing of the
event queue does
not complete until
the event queue is
empty. This feature
sets an upper
bound to the
amount of time
dedicated to
processing these
events. If the
timeout is reached,
ORS shall attempt
to exit the session.
To use ORS
configured default,
leave
_processEventTimeout
undefined. To
disable this
feature, set
_processEventTimeout="0".

_sendSessionRecovered
(Since ORS
8.1.300.13, SCXML
8.1.300.13)
_recoveryEnabled
(Since ORS
8.1.300.12, SCXML
8.1.300.12)

false boolean false

The following is the
set of valid values:

• true
• false

Specifies whether
or not this strategy
is eligible for
proactive recovery.
If set to true, the
session will be
explicitly restored
by ORS when an
ORS node performs
switch-over to

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 592



Name Required Type Default Value Valid Values Description

Primary.

_debug (Since ORS
8.1.300.11, SCXML
8.1.300.10)

false boolean false

The following is the
set of valid values:

• true
• false

Specifies whether
or not debugging
of SCXML strategy
is required. When
set to true, the
session will save a
copy of the fully
assembled SCXML
strategy to disk
(working
directory).

_transitionStyle
(Since ORS
8.1.300.28, SCXML
8.1.300.38)

false string legacy

The following is the
set of valid values:

• legacy
• genesys
• w3c

Specifies the order
in which the
<transition>
executable content
is to be executed
in the scenario
where there are
two or more
selected
transitions (only in
<parallel>
regions).

• legacy
setting
dictates
that
transitions
are
executed
by line
order
(lowest line
number
first)

• genesys
setting
orders
transitions
by reverse
scope
order.
Transitions
of deepest
scope
(most
nested) are
executed
first. Ties
for scope
are broken

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 593



Name Required Type Default Value Valid Values Description

by lowest
line number
first.

• w3c setting
adheres to
the
ordering
prescribed
by the W3C
Working
Draft for
SCXML.
Transitions
are
executed in
the scope
order of the
states
which
selected
them. Ties
for scope
are broken
by lowest
line number
first.

<log>
<log> has three attributes (expr, label, level). For attribute details, please refer to State Chart XML
(SCXML): State Machine Notation for Control Abstraction W3C Working Draft 7 May 2009
(www.w3.org). As of version 8.1.200.46, specifying a level of 5 with a label of 22000 to 22020 will
result in behavior equivalent to that for URS/IRD.

<state>
The following are the additional Genesys attributes, children, and behavior for the <state> element:

Attribute Details

Name Required Type Default Value Valid Values Description

_type false NMTOKEN normal
The following is the
set of valid values:

• normal

This allows the
developer to
control how the
platform is to
handle this state
and is a place

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 594



Name Required Type Default Value Valid Values Description

holder for future
support.

_persist false NMTOKEN may

The following is the
set of valid values:

• no
• may
• must

Long-running
sessions typically
experience
concentrated time
windows in which
active processing
is performed,
followed by a
relatively long time
window during
which the system
awaits follow-up by
a customer or
potentially by the
agent. This
attribute is used to
indicate to the
platform whether a
session can or
must be persisted:

• no - Used to
indicate a
state is
transitional,
or is not
meaningful
for
recovery
purposes
over the
last
persisted
state.

• may - The
platform
may persist
the session
in this state
at its
discretion.
This is the
default
value.

• must - The
platform
must
persist the
session as
part of
entry
processing

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 595



Name Required Type Default Value Valid Values Description

of this state
(before the
<onentry>
elements
are
executed).
This is used
to
guarantee
that the
session can
be
recovered
from this
point in the
event of
failure (that
is, the
ability to
reenter the
session at
this state).

Note:
Orchestration
Server uses the
value of <scxml>
_statePersistDefault
as the default for
the <state>
_persist attribute,
if it is not specified
at the <state>
level.

_deactivate false string no

The following is the
set of current valid
values:

• now
• no

This attribute
defines whether
the session that
enters this state
and is waiting for a
transition should
be immediately
persisted, removed
from platform
memory, and
marked as
inactive. This
attribute is valid
only if the
"_persist" attribute
is set to "may" or
"must", since only
persistable
sessions can be
de-activated. This
attribute is treated
purely as a hint to
the platform about
how meaningful it

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 596



Name Required Type Default Value Valid Values Description

is to persist the
session.

src Not Supported

Persist/Deactivate option matrix _persist

no may must

_deactivate

no
Persistence disabled.
_deactivate attribute is
ignored.

The session may be
persisted in this state
at the platform's
discretion.

The platform
guarantees that this
state will be persisted
upon entry.

now
Persistence disabled.
_deactivate attribute is
ignored.

The session may be
persisted in this state
at the platform's
discretion and will be
marked as inactive
when waiting for
transition.

The session that enters
this state and is waiting
for transition will be
immediately persisted
and marked as inactive.

<param>
The <param> element has the following restriction:

• When using the <param> element with any action element, you must specify both the name and expr
attributes. Because of this, the platform does not support the name attribute value as a data model
location expression if the expr attribute is missing.

<transition>
The attribute anchor of the <transition> is not supported.

ORS Version 8.1.200.60/8.1.300.01

The behaviour of transitions in the SCXML engine is different from that which is described in the W3C
Working Draft 7 May 2009 [1]. This draft spec explains the following:

The LCA is the innermost <state>, <parallel>, or <scxml> element that is a proper ancestor of the
transition's source state and its target state(s).

During a transition, all active states that are proper descendants of the LCA are exited.

The new transition behaviour of the SCXML engine shares greater similarities with that of the W3C
Working Draft 16 December 2010 [2], in that in the case of a transition whose source state is a
compound state and whose target(s) is a descendant of the source, the transition will not exit and re-
enter its source state. In addition, the notion of the LCA is replaced by the LCCA:

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 597



The LCCA is the innermost compound <state> or <scxml> element that is a proper ancestor of the
transition's source state and its target state(s).

During a transition, all active states that are proper descendants of the LCCA are exited.

<validate>
The <validate> element is not supported by the SCXML engine. This would otherwise be used to
invoke a validation of the datamodel.

<xi:include>
The xinclude recommendation (http://www.w3.org/TR/xinclude/) is used for inlining of ECMAScripts
(<script>) and states (<state>). An application developer may specify scripts, states, and other
content separately from the main SCXML document. The included document or fragment can be text
or xml. See section below on using <xi:include>.

When using xinclude, the following are important considerations to keep in mind:

• Developers should ensure that the 'resolveid' attribute value is unique within a document. This is
necessary when the same included document is used multiple times within the including document
since, the IDs of <state>, <parallel>, and so on, must be unique across the entire document.

• Included documents must NOT transition back to states that are defined in an including document. This
does not work.

Xinclude can also be used to provide a subroutine-like capability within an SCXML application by
using it like a macro facility. This replaces all <xi:include> elements with the referenced state content
during the initial document fetch and load. Once the SCXML application is fully assembled, it is
compiled and validated before sessions can be created based on this application.

In addition to the considerations above, the following guidelines must be followed when using
xinclude as a macro style "subroutine":

• For the included document:
• The document must be a valid <state> fragment that specifies the complete behavior of the

subroutine. The document can contain an <scxml> document, but if it does, the xinclude
declaration must use xpointer to reference the <state> that is to be used as the subroutine.

• The referenced <state> can be a simple or a compound state. If it is a compound state, it must
define <initial> as well as <final> states.

• An atomic state must use <raise>/<event> to return the appropriate output parameters. A
compound state, on the other hand, can use either <raise>, <event>, or the <donedata> element
of the <final> states to perform this function.

• The included <state> must be self-contained: it should not have transitions to states in the
including document or outside of itself.

• The included <state> must not use datamodel elements from the included document, unless the
<data> elements are defined within the <state> or one of its children. Using <data> elements
defined elsewhere in the included document will likely result in an error since they are not defined
in the including document.

• The included <state> should not use datamodel elements from the including document. Doing so

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 598



makes subroutine information global to the application. It is recommended that data should be
passed to a subroutine via an event, or through variables defined via <script>.

• The included <state> must not rely on events from the including document other than the transition
to the included state.

• For the including document:
• The document must have a <transition> for the event generated by the included state or

subroutine. This event will contain the results from the subroutine.
• The document must have a <transition> to the included state. The event can contain the input

parameters for the subroutine. Alternately, the including state can use a <script> element in its
<onentry> element to define and initialize a set of parameters that are passed to the included
<state>. The included state can access these parameters through the variable scoping that
ECMAScript provides.

• When using <xi:include> elements, the namespaces used in the included document need to be
declared in the including document.

The following are the additional Genesys attributes for the <xi:include> element as well as existing
attribute limitations.

Attribute Details

Name Required Type Default Value Valid Values Description

accept false string Not supported

accept-language false string Not supported

encoding false string Not supported

href true URL none

The URI of the
resource to
include.

As of ORS
8.1.300.27, this
attribute also
supports
substitution by
session start
parameters. These
parameters may
come from the
ApplicationParms
section of an
Enhanced Routing
Script, URL-
encoded
parameters of a
web-started
session, or the
<param>
elements nested
within a
<session:start>

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 599



Name Required Type Default Value Valid Values Description

For example:

<xi:include
href="http://appsrv:80/
scxml/
subroutine_routing.scxml"
/>

It is possible to
parametrize the
URI as follows:

<xi:include
href="http://appsrv:80/
scxml/$$MY_SUBROUTINE$$"
/>

When a special
token of the form
$$parameter_name$$
is provided, it will
be automatically
substituted with
the value of the
matching session
start parameter
(case-sensitive).

If the session start
parameters are as
follows:

MY_SUBROUTINE
=
subroutine_chat.scxml

Resulting URI:

<xi:include
href="http://appsrv:80/
scxml/
subroutine_chat.scxml"
/>

parse false string "xml" "xml", "text"

See the following
for details:
http://www.w3.org/
TR/
xinclude/#include_element

resolveid false string none Any value string

In order to support
subroutines and
avoid issues with
duplicate SCXML
element IDs (for
example, <state
id=x>), this
Genesys extension

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 600



Name Required Type Default Value Valid Values Description

attribute must be
used. If this
attribute is
specified, then ID
modifications will
occur. All the
SCXML elements
with an ID attribute
(<state>,
<parallel>,
<final>,
<history>,
<send>,
<invoke>,
<cancel>, and
<data>) in the
included document
are prefixed by the
value of this
attribute, and a
separating dot. In
addition, the IDREF
attributes in the
included document
(the initial attribute
in the <state>
element and the
target and event
attributes in the
<transition>
element) can also
be modified as
long as the
following wildcard
substitution key is
specified in the
value. Otherwise
they will not be
changed when
included. The
substitution key is
the string
"$$_MY_PREFIX_$$".
If specified, it is
replaced by the
value of this
attribute for the
included
document.

IMPORTANT
NOTE: Developers
must ensure that
each use of the
'resolveid' attribute
value is unique
across the chain of
included
documents.

xmlns false string none Any value string

Used to provide
namespaces for
the included
document. This is
necessary for

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 601



Name Required Type Default Value Valid Values Description

fragments. If
subroutines include
subroutines, this
attribute must be
set to the
appropriate
namespace for the
including element.
For example,
xmlns:xi="http://www.w3.org/
2001/XInclude"

xpointer false string none

When
parse="xml",
xpointer may be
used to specify a
particular element
and its children to
include. The value
of xpointer must
be a literal ID. The
first node in the
included document
that matches that
ID is included.
When xpointer is
omitted, the entire
resource is
included. Note:
XPath is not
supported.

When resolveid is used, two additional items can be used to handle the prefix provided by this
attribute:

Name Valid locations Description

$$_MY_PREFIX_$$
• initial attribute of <state>
• event and target attribute of

<transition>

During document assembly,
$$_MY_PREFIX_$$ is replaced with the
value of resolveid only in the defined
locations. The engine does not perform
global search and replace with this token.

_my_prefix Any ECMAScript expression

During document assembly, <state>,
<parallel>, and <final> is given a
_my_prefix attribute extension that
contains the value of resolveid. This
allows the prefix value to be used in
ECMAScript expressions within these
states.

Children

The child element <fallback> is not supported.

Orchestration Server Troubleshooting ECMAScript

Orchestration Server Developer's Guide 602


	Orchestration Server Developer's Guide
	Table of Contents
	Orchestration Server 8.1.4 Developer Guide
	Document Change History
	SCXML Language Reference
	Logging and Metrics
	Contents of SCXML Language Reference

	Orchestration Extensions
	Queue Interface
	Classification Interface
	Core Extensions
	Interaction Interface
	Interaction Interface Object Model

	_genesys.ixn Object
	Interaction Objects
	Voice Objects
	Message Objects
	Chat Objects
	Interaction Interface Functions
	Interaction Interface Action Elements
	Interaction Interface Events

	Voice Events
	Message Based Events
	Chat Events
	Dialog Interface
	Statistic Interface
	Resource Interface

	Resource Interface
	Functions
	Action Elements
	Events
	Elasticsearch Connector
	Agent Extension

	Migration from IRD
	Orchestration Server Integration
	Introduction
	Genesys Servers
	Orchestration Getting Started Guide
	Introduction
	Writing your first application
	Orchestration Server How-To
	Timers and Wait Functions
	Modularity
	External Interfaces
	Orchestration Server Sample Applications
	Using The Queue Module
	Using ECMAScript
	Fetching Data
	Invoking SCXML Sessions
	Using The Interaction Interface
	Using The Voice Interaction Interface
	Using The Dialog Interface
	Using The Statistics Interface
	Using The Session Interface
	Using Multimedia
	Route to DN
	Route to DN Using Target ID
	Handle Routing Failure
	Route to DN and Put to Virtual Queue
	Route to Agent
	Route to Agent Using Target ID
	Route to Agent Without Checking Ready State
	Route to Agent on Specific DN Type
	Route to Agent and Run Treatments in Parallel
	Route to Place
	Route to Place Using Target ID
	Route to Place Without Checking Ready State
	Route to Agent Group
	Route to Agent Group Using Target ID
	Route to Agent Group Without Checking Ready State
	Route to Agent Group With Threshold
	Route to Place Group
	Route to Place Group Using Target ID
	Route to Place Group Without Checking Ready State
	Route to Queue
	Route to Queue Using Target ID
	Route to Agent by Skills
	Route to Agent by Skills Using Target ID
	Route to Routing Point
	Route to Routing Point Using Target ID
	Route to Multiple Agents
	Route to Multiple Agents Using Target ID
	Route to Agent Using Statistic
	Set Default Destination
	ECMA Script on Top Level
	ECMA Script on Entry Into State
	ECMA Script on Exit From State
	ECMA Script During Transition
	ECMA Script After Invoke
	ECMA Script Function
	ECMA Script and Data Model
	Fetch Data
	Fetch Data in JSON Format
	Fetch Data With Parameters
	Fetch Data Using POST Method
	Handle Fetch Failure
	Invoke Session
	Invoke Session With Parameters
	Receive Event From Invoked Session
	Receive Event From Invoked Session and Extract Event Data
	Cancel Invoked Session
	Handle Invoke Failure
	Access Interaction Properties
	Set User Data
	Delete User Data
	Delete All User Data
	Access Voice Interaction Properties
	Create Call
	Collect Digits
	Play Announcement With One Prompt
	Play Announcement With Two Prompts
	Play Announcement and Collect Digits
	Play Sound
	Record User Announcement
	Delete User Announcement
	Play Application
	Cancel Call
	Start on Remote Resource
	Run Series of Treatments
	Get Statistic Value
	Get Average Statistic Value
	Get Minimum Statistic Value
	Get Maximum Statistic Value
	Get Configuration Option Name
	Check If Special Day
	Get List Item Value
	Lookup Value
	Get Time in Time Zone
	Get Date in Time Zone
	Get Day in Time Zone
	Work With E-Mail Or SMS
	Work With Chat

	Orchestration Server Sample Templates
	Using The Queue Module
	Using The Interaction Interface
	Using Multiple Interfaces
	Expand Target List
	Change the Ownership of an Interaction
	Detach an Interaction
	Detect Consult Call
	Detect User Data Changes
	Route to Fetched Targets With Invoking SCXML Strategies

	Orchestration Server Troubleshooting
	ECMAScript


