
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Detect Consult Call

Orchestration Server Developer's
Guide

5/1/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Detect Consult Call
The following example illustrates the case when we are trying to detect whether the call that started
the session is a consult call. The assumption is that the following SCXML file is configured on a
Routing Point and the SCXML session is started when a call is made to the Routing Point.

Here are two scenarios:

1. Direct call to Routing Point
• Customer makes a call and is connected to a Routing Point.
• This is considered the primary call and the only active interaction.
• All actions (<queue:submit>, <dialog:playsound>, etc) are applied to this interaction.

2. Consult call to Routing Point
• Customer makes a call and is connected to an agent X.
• This is considered the primary call and is not being monitored by Orchestration Server (the

interaction is ownerless).
• Agent X does a consult call to the Routing Point. This starts a SCXML session which is monitored by

Orchestration.
• The consult call is considered the effective call until the primary and consult calls are merged

(which happens if agent X completes the transfer to the Routing Point). At that time, the consult call
is no longer valid and the primary call is the effective call.

• All actions (<queue:submit>, <dialog:playsound>, etc) are applied to the effective call.

Assumptions:

• At any time during the session, if the primary call is dead, the SCXML session will be terminated,
regardless of the status of the consult call. This assumes the primary call and consult calls have not
been merged.

• At any time during the session, if the effective call is dead, the SCXML session will be terminated.

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
initial="global">
<script>

var reqid;
var consult_ixn_id;
var primary_ixn_id;
var effective_ixn_id;
var sessionStarted = false;

</script>
<!--**-->
<state id="global" initial="initial">

<!--**-->
<state id="initial">

<!--This ensures the session terminates after 10 minutes-->

Detect Consult Call

Orchestration Server Developer's Guide 2

<onentry>
<send event="'toExit'" delay="'600s'" />

</onentry>
<transition event="interaction.added" cond="sessionStarted == false">

<script>
/* To avoid catching another 'interaction.added' event
(caused by 'attach') in the same state again, set

sessionStarted to
true. 'Attach' action could be done in a separate

state, but for
the sake of simplicity and to minimize number of

states it is done
here in initial state...*/
sessionStarted = true;
/* Assign interaction IDs that will be needed later

on ... */
if(

_genesys.ixn.interactions[_event.data.interactionid].voice.type == 'consult')
{

consult_ixn_id = _event.data.interactionid;
primary_ixn_id =

_genesys.ixn.interactions[consult_ixn_id].parentid;
effective_ixn_id = consult_ixn_id;

}
else
{

consult_ixn_id = undefined;
primary_ixn_id = _event.data.interactionid;
effective_ixn_id = primary_ixn_id;

}
</script>
<log expr="'CONSULT_EXAMPLE: consult_ixn_id = ' +

consult_ixn_id" />
<log expr="'CONSULT_EXAMPLE: primary_ixn_id = ' +

primary_ixn_id" />
<log expr="'CONSULT_EXAMPLE: effective_ixn_id = ' +

effective_ixn_id" />
<if cond="consult_ixn_id ;!= undefined">

<log expr="'CONSULT_EXAMPLE: Consult call started
strategy. Attaching primary call...'" />

<ixn:attach requestid="reqid"
interactionid="primary_ixn_id" />

<else />
<log expr="'CONSULT_EXAMPLE: Normal call started

strategy. Proceeding with session ...'" />
<send event="'toProceed'" />

</if>
</transition>
<transition event="interaction.attach.done"

cond="_event.data.requestid == reqid" target="prewaiting_state" />
<!-- error.interaction.attach event (if happened) will be caught in

global state -->
<transition event="toProceed" target="CUSTOM_WORKING_STATE" />

</state>
<!--**-->
<state id="prewaiting_state">

<onentry>
<!--This illustrates the case when the session is started by

a consult
call (and that call is still alive here), sometimes

it makes sense
to wait for some short amount of time. This time

could depend on

Detect Consult Call

Orchestration Server Developer's Guide 3

how fast TServer completes transfer, or could be done
to avoid

routing consult call during mute transfer, etc.-->
<log expr="'CONSULT_EXAMPLE: Continuing session with some

short delay...'" />
<send event="'toProceed'" delay="'1s'" />

</onentry>
<transition event="toProceed" target="CUSTOM_WORKING_STATE" />

</state>
<!--**-->
<!--************ This is where your main logic goes *********************-->
<!--**-->
<state id="CUSTOM_WORKING_STATE" initial="route_to_agent">

<!--This will try to route the call to agent 703_sip. If it is not
successful within 3 seconds, it will transition to state

"dialog"
and play music. The attribute "clearontimeout" is set to

false so
router will continue trying to route to the agent while the

music is
playing.-->

<state id="route_to_agent">
<onentry>

<queue:submit requestid="reqid"
interactionid="effective_ixn_id"

priority="5" timeout="3"
clearontimeout="false">

<queue:targets>
<queue:target type="agent"

name="'703_sip'" />
</queue:targets>

</queue:submit>
</onentry>
<transition event="error.queue.submit" target="dialog">

<log expr="'ERROR WITH QUEUE SUBMIT: ' + uneval(
_event)" />

</transition>
</state>
<!-- This plays music for 60 seconds. -->
<state id="dialog">

<onentry>
<dialog:playsound requestid="reqid"

interactionid="effective_ixn_id"
type="'music'" resource="'music/on_hold'"

duration="60" />
</onentry>
<transition event="dialog.playsound.done.timeout" />
<transition event="dialog.playsound.done" target="exit" />
<transition event="error.dialog.playsound" target="error">

<log expr="'ERROR PLAYING MUSIC: ' + uneval(_event)"
/>

</transition>
</state>
<transition event="queue.submit.done" target="exit">

<log expr="'QUEUE SUBMIT DONE. Ending Session.'" />
</transition>
<transition event="interaction.partystatechanged"

cond="effective_ixn_id == _event.data.interactionid">
<log expr="'CONSULT_EXAMPLE: Got partystatechanged event: ' +

uneval(_event.data)" />
</transition>

</state>
<!--**-->

Detect Consult Call

Orchestration Server Developer's Guide 4

<!--**-->
<!--**-->
<transition event="interaction.onmerge"

cond="_event.data.frominteractionid == consult_ixn_id && _event.data.tointeractionid ==
primary_ixn_id">

<script>
consult_ixn_id = undefined;
effective_ixn_id = primary_ixn_id;

</script>
<log expr="'CONSULT_EXAMPLE: Effective call ID changed because of

transfer completion: ' + uneval(_event)" />
<log expr="'CONSULT_EXAMPLE: consult_ixn_id = ' + consult_ixn_id" />
<log expr="'CONSULT_EXAMPLE: primary_ixn_id = ' + primary_ixn_id" />
<log expr="'CONSULT_EXAMPLE: effective_ixn_id = ' + effective_ixn_id"

/>
</transition>
<transition event="interaction.deleted"

cond="_event.data.interactionid == effective_ixn_id" target="exit">
<log expr="'CONSULT_EXAMPLE: Effective call is dead. Exiting...: ' +

uneval(_event)" />
</transition>
<transition event="interaction.deleted"

cond="_event.data.interactionid == primary_ixn_id &&
consult_ixn_id != undefined"

target="exit">
<log expr="'CONSULT_EXAMPLE: Primary call is dead, consult call is

alive and useless. Exiting...: ' + uneval(_event)" />
</transition>
<!--In case none of the other events are triggered, this will end the

session after number of minutes specified at the strategy beginning-->
<transition event="toExit" target="exit">

<log expr="'CONSULT_EXAMPLE: Possibly stuck session is self-
destructing. Exiting...: ' + uneval(_event)" />

</transition>
<!--This will catch all the errors that are not processed elsewhere-->
<transition event="error.*" target="error">

<log expr="'CONSULT_EXAMPLE: ERROR AT GLOBAL LEVEL'" />
<log expr="'CONSULT_EXAMPLE: Got error event: ' + uneval(_event)" />

</transition>
</state>
<final id="exit" />
<final id="error" />

</scxml>

• When agent X initiates a transfer or consult to the Routing Point, it will trigger a SCXML session to be
created and will wait for the interaction.added event.

• After the interaction.added event is received, it will set the consult_ixn_id, primary_ixn_id, and
effective_ixn_id depending on whether the session was started by a regular call, or a consult call to
the Route Point.

• If the SCXML application detects that the call from Agent X to the Routing Point is of type consult, we
attach the parent interaction (the primary call which is ownerless) to the current session (see
interaction attach for more details about ownership).

• The interaction.attach.done event will trigger a transition to the prewaiting_state, where we put
in a delay. This delay is needed depending on how fast TServer completes the transfer, or is sometimes
done to avoid routing a consult call during a mute transfer.

• The CUSTOM_WORKING_STATE is where you would put your main logic. In this example, we first try to
route the call to agent 703_sip. If this is not successful within 3 seconds, we transition to the dialog
state and play music for 60 seconds.

Detect Consult Call

Orchestration Server Developer's Guide 5

https://docs.genesys.com/Documentation/IW/8.1.4/Developer/IxnIntfActionElements#.3Cattach.3E

• At any time during the session, if agent X decides to complete the transfer to the Routing Point or to
agent Y (if the consult call was routed from the Routing Point to agent Y), the primary and consult calls
are merged, and the event interaction.onmerge is raised. This event triggers a transition in the
SCXML application and redefines the variables consult_ixn_id, and effective_ixn_id since the
consult interaction is deleted during the merge. The consult_ixn_id will no longer be valid and is set
to undefined. The effective_ixn_id is changed from the consult call to the primary call and should
be used from this point forward for all functions and actions that require an interaction ID.

• Exiting the session is triggered by any of the following situations:
• The call is successfully routed to agent 703_sip.
• Music has been played for 60 seconds.
• There was a problem playing the file music/on_hold.
• The effective call is deleted (effective call is the consult call until the consult or transfer is complete,

at which time, it is the only call left).
• The primary call is deleted before the consult or transfer is complete (the consult call can still be

alive but is useless at this point).
• Any error.* events that are raised during the session.
• The session may be stuck and self-destucts 10 minutes after it was created.

Detect Consult Call

Orchestration Server Developer's Guide 6

	Orchestration Server Developer's Guide
	Detect Consult Call

