
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

SCXML Language Reference

Orchestration Server Developer's
Guide

4/9/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 SCXML Language Reference
• 1.1 Usage
• 1.2 Syntax and Semantics
• 1.3 Extensions and Deviations
• 1.4 ECMAScript
• 1.5 SCXML Elements
• 1.6 Event Extensions

• 2 Logging and Metrics
• 3 Supported URI Schemes
• 4 Supported Profiles
• 5 Examples

Orchestration Server Developer's Guide 2

SCXML Language Reference
Click here to view the organization and contents of the SCXML Language Reference.

SCXML stands for State Chart XML: State Machine Notation for Control Abstraction. Orchestration
Server utilizes an internally developed SCXML engine which is based on, and supports the
specifications outlined in the W3C Working Draft 7 May 2009 [4]. There are, however, certain changes
and/or notable differences (see Extensions and Deviations) between the W3C specification and the
implementation in Orchestration Server which are described on this page. Only the ECMAScript
profile is supported (the minimal and XPath profiles are not supported).

Usage

SCXML documents are a means of defining control behaviour through the design of state machines.
The SCXML engine supports a variety of control flow elements as well as methods to manipulate and
send/receive data, thus enabling users to create complex mechanisms.

For example, Orchestration, which is a consumer of the SCXML engine, uses SCXML documents to
execute strategies. A simple strategy may involve defining different call routing behaviours
depending on the incoming caller, however, the SCXML engine facilitates a wide variety of
applications beyond simple call routing.

Authoring SCXML documents can be done using any text editor or by leveraging the Genesys
Composer tool.

Syntax and Semantics

The appearance of an SCXML document is very similar to that of any other markup language. The use
of various SCXML-specific tags define the structure and operation of a state machine. The SCXML
snippet below illustrates how an SCXML document may look like in structure:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Specifying the encoding is important! -->

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
name="SCXML DOCUMENT NAME" >

<initial>
<transition target="FIRST_STATE">

<log expr="'Inside the initial transition'" />
</transition>

</initial>

<state id="FIRST_STATE">
<onentry>

<log expr="'Do things here when state is first entered'" />
<send event="LEAVE_STATE" />

</onentry>

SCXML Language Reference

Orchestration Server Developer's Guide 3

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/SCXMLContents
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/SCXMLRef#Extensions_and_Deviations

<onexit>
<log expr="'Do things here when state is being exited'" />

</onexit>
<transition event="LEAVE_STATE" target="exit">

<script>
var message = 'Do things here during a transition';

</script>
<log expr="message" />

</transition>
</state>

<final id="exit" />
</scxml>

Basic Elements
SCXML elements for defining states, transitions, and behaviour include (but are not limited to):

• <state>
• <transition>
• <parallel>
• <initial>
• <final>
• <onentry>
• <onexit>

In addition, it is also possible to define actions which are performed during state transitions
(<onentry>, <onexit>, within <transition>) by using the following Executable Content elements (but
are not limited to):

• <if>/<elseif>/<else>
• <foreach> (planned feature)

• <raise>
• <log>

It is also possible to embed script code (ECMAScript) within the state machine by using the following
element:

• <script>

One may refer to the W3C Working Draft[5] for more detailed explanations of the above elements
and basic usage examples.

Managing Data
SCXML applications are commonly driven by data acquisition and manipulation, where the data
gathered can be processed to determine application behaviour. Users may define data models within
an SCXML document by using the <datamodel> element. A <datamodel> element may have any
number of <data> elements as seen below:

SCXML Language Reference

Orchestration Server Developer's Guide 4

<datamodel>
<data ID="target" expr="'Hello World!'" />
<data ID="this_is_one" expr="1" />
<data ID="m_array" expr="['a', 'b', 'c']" />

</datamodel>

Any data objects defined in this manner become accessible as a child of the _data global object. To
access a data object defined within a <datamodel>, the following syntax is used:

_data.data_ID // Where data_ID is replaced by the ID of the data element

Alternatively, one may opt to declare data objects/variables within a <script> block instead if more
complex initialization routines are required. Variables defined within a <script> block, however,
become children of the <script> element's parent's local scope. That is, if it was defined in the global
scope (<scxml>), the variables will be globally accessible; if it was defined within a state, the
variables will become children of the state's local scope.

<script>
var target='Hello World!';
var this_is_one=1;
var m_array = ['a', 'b', 'c'];

</script>
<log expr="'The value of target is: ' + target" />

Data sharing between SCXML sessions

It may be desirable in many situations to be able to share data between multiple SCXML sessions.
Data may be shared between sessions using the following methods:

Session Initiated

When one SCXML session initiates another SCXML session via the <invoke>
action (or <session:start>, <session:fetch>, which are specific to
Orchestration only!) the initiating session can share data via the model
defined in the SCXML specification. For details, see the <invoke>
implementation section.

Session runtime

During the execution of a session, a session can shared data with another
session via events and the <send> action.

Events
Event handling (both internal and external) is fully supported by the SCXML engine. The event model
allows users to control SCXML sessions by sending events from external entities or by raising events
internally during the execution of an SCXML document. These events can be used to drive transitions
or send data to external systems.

Internal Events

[+] Internal Events

SCXML Language Reference

Orchestration Server Developer's Guide 5

These events are published and consumed by the same SCXML session. The following are the
methods of managing them:

Publish

To generate an event, either the <event> or <send> element can be used.
The SCXML engine puts the event into the session's event queue. When using
<send>, it is possible to place the event on either the external event queue
or internal event queue, based on the value of the target attribute. (If the
special value '_internal' is specified, the event is added to the internal
event queue of the current session. If no value is specified, the event is
added to the external event queue of the current session.). When using
<send> to generate events, if there is an intention to cancel the event sent,
it is recommended to use the attribute idlocation instead of id.

Note: If multiple internal events were simultaneously published via <send> with a delay attribute
value smaller than one second and, as a result, they may have to be raised within the same second,
the events could be raised, but not in the same order as they were published.

Subscribe

Receiving events is achieved by using the <transition> element. If the event
contains properties, one may access the event's properties via the _event
system variable:

_event.data

The Orchestration platform supports the use of wildcards ("*") when evaluating event names.

External Events

[+] External Events
These events are published and consumed by the given SCXML session and the corresponding
external entity. The following is a list of external entities that are supported:

• Other SCXML sessions
• External systems via Functional Modules
• External applications

The following are the methods of managing events from an SCXML-session standpoint:

Publish
The <send> element with the appropriate targettype attribute value:

• scxml - for other SCXML sessions. Events may be delivered to the appropriate session within
the same platform server or across platforms, and is facilitated by the message functionality
of the platform. The target attribute has the following format: url#sessionid

SCXML Language Reference

Orchestration Server Developer's Guide 6

• basichttp - for external applications. These events are delivered to the appropriate external
application, based on the defined target URL and an HTTP POST message.

• fm - for any Functional Module-related systems. The target attribute is the functional
module's namespace name.

In addition to the <send> element, a given Functional Module may have
an action element to send events, as well.

Subscribe
The <transition> element. If the event contains properties, one may
access the event's properties via the _event system variable:

_event.data

In general, overall external event subscription is implicit:
• Functional Modules -
• External applications and other SCXML sessions - When these events are sent, they are sent

explicitly to the given session (by session ID), so no explicit subscription is needed.

The following are the methods of managing events from an external system standpoint:

Publish
The method depends on the source of the event:

• Other SCXML sessions - The <send> element is used.
• External applications - The platform external interface is used (SendTransitionEvent). The

platform has the appropriate functionality to receive events from external sources and deliver
them to the appropriate sessions.

• Functional Modules - The Functional Module sends the events to the platform based on the
defined Functional Module framework interfaces and the platform then delivers the events to
the appropriate session event queue.

Subscribe
For any of the potential subscribers, there is no explicit subscription
method, because the SCXML session is targeting a specific destination
when publishing the event, so the destination must have the appropriate
interface to receive the event.

• Functional Modules - The Functional Module supports the appropriate functional module
framework interface to receive the events from the session.

• External applications have the appropriate web application to process the HTTP post.
• Other SCXML sessions receive the event on their event queues via the platform.

Common Properties for Internal and External Events

[+] Internal and External Events

SCXML Language Reference

Orchestration Server Developer's Guide 7

The following common properties are present in all events, whether internal or external:

• name - This is a character string giving the name of the event. It is what is matched against the 'event'
attribute of <transition>. Note that transitions can carry out additional tests by using the value of this
field inside boolean expressions in the 'cond' attribute.

• type - This field describes the event type. It MUST contain one of an enumerated set of string values
consisting of: "platform" (for events raised by the platform itself, such as error events), "internal" (for
events raised by <event>), and "external" (for all other events, including those that the state machine
sends to itself via <send>).

• sendid - In the case of error events triggered by a failed attempt to send an event, this field contains
the sendid or id of the triggering <send> element. Otherwise it is blank.

• invokeid - If this event is generated from an invoked child process, this field contains the invokeid of
the invocation (<invoke invokeid="..." or id="...">) that triggered the child process or in the case of
error events triggered by a failed attempt to invoke another process, this field contains the invokeid or
id of the invoking <invoke> element. Otherwise it is blank.

The following fields are logically present in all events, but are filled in only in external events:

• origin - This a URL, equivalent to the 'target' attribute on the <send> element. The combination of this
field with the 'origintype' field SHOULD allow the receiver of the event to <send> a response back to
the entity that originated this event. Not currently supported.

• origintype - This is a character string, similar to the 'targettype' or 'type" attribute in <send>. The
combination of this field with the 'origin' field SHOULD allow the receiver of the event to <send> a
response back to the entity that originated this event. Not currently supported.

• data - This field contains whatever data the sending entity chose to include in this event. The receiving
platform SHOULD reformat this data to match its data model, but MUST not otherwise modify it.

Extensions and Deviations

The Genesys SCXML implementation introduces various additions and differences from the W3C
SCXML specifications. The following extensions and deviations were introduced to accommodate the
needs of the SCXML engine.

ECMAScript
[+] ECMAScript
SpiderMonkey 1.7 is used as the ECMAScript engine. It implements a superset of ECMA-262 Edition 3.
This allows for the inclusion of scripts within SCXML documents when more advanced computational
logic is required beyond the standard SCXML elements.

System Variables

The SCXML specification defines the following system variables which may provide useful information

SCXML Language Reference

Orchestration Server Developer's Guide 8

to applications (all of which are available in the global scope):

_sessionid

This represents the unique ID associated with this SCXML session. It is set by
the platform.

_name

This represents the name that the developer gives this particular SCXML
document (for example, "Mortgage Process Logic". It is set by the developer
when creating the document.

_event

This represents the event being presented to the application. It is set by the
platform when the event is available to the application.

_type

This represents the type of application that the developer gives this
particular SCXML document (that is, <SCXML> element _type attribute). It is
set by the developer when creating the document.

In addition to the above variables, the SCXML engine also provides the following extension system
variables:

_parentSessionid

This represents the unique ID associated with the parent of this SCXML
session. If the session has no parent, the value returned is an empty string. It
is set by the platform.

_genesys

This is the root object for accessing all Genesys-specific ECMAScript objects
and functions. Note that the user is not allowed to set properties in _genesys
as it is a protected system object. See Orchestration Extensions for more
information.

_data (<datamodel>)

These are the objects that are created based on the datamodels defined
within the SCXML document. For example, data to be used during the
processing of the logic and expected initiation and return parameters for the
session. See the _data (ORS Extensions) section below for Orchestration-
specific properties of the datamodel.

SCXML Language Reference

Orchestration Server Developer's Guide 9

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/OrchExt

Protected Variables

Variables may be defined and set on any scope except within _genesys. In addition, top-level
variables starting with '_' are considered system variables and should not be modified. Defining top-
level variables with names starting with an underscore '_' is prohibited. However, the same restriction
does not apply if the variable is defined under a top level property such as the datamodel.

_data (ORS extensions)

In addition to storing session start parameters and user-defined datamodel items, the _data object
may sometimes be used by Orchestration to provide extra information about the session.

Property Name Description

_data.provision_object_name (8.1.200.48)
Name of Enhanced Routing Script object associated with
session. Provided in sessions that are started from a Script
object (of type Enhanced Routing).

Variable Scoping

An SCXML session has one Global Scope, and many Local Scopes. Note that this implementation
differs from the W3C specification (as of February 16, 2012<ref
name="scxml_0216">http://www.w3.org/TR/2012/WD-scxml-20120216/</ref>) as the specification
dictates that all variables must be placed into a single global ECMAScript scope. Nevertheless, it is
still in compliance with the W3C Working Draft 7 May 2009[1].

The SCXML engine creates a scope for each state in the document. The parent scope for each local
scope is the parent state's local scope (or for <scxml>, the global scope). Each local scope shares it's
name with the state name. This allows the SCXML logic to access ECMAScript objects and variables in
its active ancestor's local scopes. For example, to access object x in the local scope of the
grandparent of the current local scope state, one may use the following syntax:

__grand-parent-name__.x // Returns value of x from grandparent's local scope

See the following example on variable scoping:

<?xml version="1.0" encoding="UTF-8"?>
<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"

initial="outer">
<datamodel>

<data ID="dataval" expr="'Accessible from anywhere!'" />
</datamodel>

<script>
var globalval = 'Also accessible from anywhere!';

</script>

<state id="outer">
<onentry>

<script>
var parentval = 'Accessible from outer';

</script>
<log expr="_data.dataval" />
<log expr="globalval" />

SCXML Language Reference

Orchestration Server Developer's Guide 10

</onentry>

<initial>
<transition target="inner" />

</initial>

<state id="inner">
<onentry>

<script>
var childval = 'Accessible from inner';

</script>
<log expr="childval" />
<log expr="__outer__.parentval" />

</onentry>
<transition target="done_inner" />

</state>

<final id="done_inner" />

<transition event="done.state.outer" target="exit" />
</state>

<final id="exit" />
</scxml>

Function Scoping and Persistence

ORS functions defined within SCXML documents (e.g., via <script> elements) may not behave as
expected following an Orchestration failover and session restoration. Specifically, the scope in which
a function executes may change following a session restore. Consider the following example:

<scxml initial=”my_state”>
…
<script>

// This is a top-level script block
var scope = “global”;
</script>
<state id=”my_state”>

<onentry>
<script>

var scope = “my_state”;
var hello = “hello world!”;
var fun = function(){

__Log(scope + “: “ + hello);
}

<script>
</onentry>
<transition event=”show_message”>

<script>
fun();

</script>
</transition>

</state>
…

The purpose of the function fun is simple: It will print the message "my_state: hello world!". Given
the example SCXML above, every time the event show_message is processed, the function fun will
be called.

Now assume that an ORS failover has occurred. On session recovery, the user may find that he/she
can no longer call the function fun without receiving an error like:

SCXML Language Reference

Orchestration Server Developer's Guide 11

14:57:28.247 METRIC <exec_error sid='T5SL1E5D9923J7OG8TM4LCLQMG000001'
result='ReferenceError:
hello is not defined. Line 1 - in <script> at line: 117' thread='8596' />

An uneval of the session datamodel post-recovery might indicate the variables declared within the
state have all been persisted:

__my_state__:{
scope:”my_state”,
hello:”hello world!”,
fun:(function () {__Log(scope + “: “ + hello);})
}

The key difference between pre-recovery and post-recovery is that now, the function fun will execute
in global scope instead of local scope. This means that any variables referred to within the function
fun will only be resolved in the global scope. A slight modification can illustrate the difference:

<scxml initial=”my_state”>
…
<script>

// This is a top-level script block
var scope = “global”;
</script>
<state id=”my_state”>

<onentry>
<script>

var scope = “my_state”;
var fun = function(){

__Log(scope);
}

<script>
</onentry>
<transition event=”show_message”>

<script>
fun();

</script>
</transition>

</state>
…

With the above code, fun() will now instead print: "global". The scope will be resolved to the variable
declared in the top-level script block.

One possible solution would be to design the function as follows:

<scxml initial=”my_state”>
…
<script>

// This is a top-level script block
var scope = “global”;
</script>
<state id=”my_state”>

<onentry>
<script>

var scope = “my_state”;
var hello = “hello world!”;
var fun = function(self){

__Log(self.scope + “: “ + self.hello);
}

<script>

SCXML Language Reference

Orchestration Server Developer's Guide 12

</onentry>
<transition event=”show_message”>

<script>
fun(this);

</script>
</transition>

</state>
…

By passing in a reference to this, the scope of the variables are now strictly-defined and should
survive persistence with no change in behaviour.

Object Ownership

Objects and its associated properties are not implicitly shared with other sessions or external
applications, but there are methods to explicitly share these objects and properties with other
sessions and applications. A session can only share snapshots of the current properties and objects -
they are not updated dynamically when the owning session changes them. The following are the
methods of how content can be shared:

• When the current session is starting another session, the current session can send these properties and
objects to the new session via the <invoke> or <session:start> with the <param> elements.

• One can use the <send> action element or the Web 2.0 API equivalent of the <send> element. This
allows any session or external application to get any property or object on any session.

Functions
The session has access to system functions (time, date, and so on) through the standard ECMAScript
objects and functions. In addition to the core ECMAScript script functions, the SCXML engine exposes
some other useful functions.

E4X (ECMAScript for XML)

SpiderMonkey supports E4X, which adds native XML support to ECMAScript. This allows the user to
access XML data as primitives, rather than as objects.

See the following example for usage:

var sales = <sales vendor="John">
<item type="peas" price="4" quantity="6"/>
<item type="carrot" price="3" quantity="10"/>
<item type="chips" price="5" quantity="3"/>

</sales>;

alert(sales.item.(@type == "carrot").@quantity);
alert(sales.@vendor);
for each(var price in sales..@price) {

alert(price);
}
delete sales.item[0];
sales.item += <item type="oranges" price="4"/>;
sales.item.(@type == "oranges").@quantity = 4;

SCXML Language Reference

Orchestration Server Developer's Guide 13

JSON

The following functions provide a convenient method of serializing and deserializing data to and from
the JavaScript Object Notation (JSON) format:

• JSON Function Set 1 - These functions are fast and should not be used on JSON-related data that is
untrusted:

uneval(object)
Converts object to JSON string form.

eval(string)
Converts JSON string to object form.

• JSON Function Set 2 - These functions are more secure (for example, will not run script logic) and are
defined in the ECMAScript 5th Edition standard. This function set is based on the open source version
found at http://www.json.org/js. Note also that it is currently unable to handle cycles:

JSON.stringify(object, replacer function)
Converts object to string form.

JSON.parse(string, replacer function)
Converts JSON string to object form

__GetDocumentURL

Returns the URL of the currently running scxml strategy.

Usage:

__GetDocumentURL()

Parameters:

• None

Returns:

• url: STRING - e.g. "www.example.com/scxml/strategy.scxml"

__GetDocumentBaseURL

Returns the base URL of the currently running scxml strategy.

Usage:

__GetDocumentBaseURL()

Parameters:

SCXML Language Reference

Orchestration Server Developer's Guide 14

• None

Returns:

• base_url: STRING - e.g. www.example.com/scxml/

__Log

This function is the ECMAScript equivalent to the <log> element. It allows an application to generate
a logging or debug message which a developer can use to help in application development or post-
execution analysis of application performance.

Usage:

__Log (expr) or __Log(expr, label, level)

Parameters:

• expr: STRING which can be a variable or a constant - This parameter returns the value to be logged.
• label: STRING which can be a variable or a constant - This parameter may be used to indicate the

purpose of the log.
• level: STRING which can be a variable or a constant - This parameter specifies the log level.

Returns:

• None

__Raise

This function is the ECMAScript equivalent to the <raise> element. It allows an application to raise an
event which can be used to direct the execution flow of an SCXML strategy.

Usage:

1. __Raise(expr)
2. __Raise(expr, data)
3. __Raise(expr, delay)
4. __Raise(expr, data, delay)

Parameters:

• expr: STRING which can be a variable or a constant - This parameter specifies the event name.
• data: OBJECT which can be a variable or a valid expression - This parameter specifies a data model.

The data from which is included in the event (like <param> children of a <raise> element).
• delay: STRING which can be a variable or a constant - This parameter must evaluate to a valid CSS2

time designation. It specifies the time delay prior to firing the event.

Returns:

SCXML Language Reference

Orchestration Server Developer's Guide 15

• None

__GetDocumentType

Returns the document type of the currently running scxml strategy. The value returned is equivalent
to the value of the _type attribute of the <SCXML> element, as specified by the developer.

Usage:

__GetDocumentType()

Parameters:

• None

Returns:

• type: STRING

__GetCurrentStates

Returns an array of strings containing names of the currently active states.

Usage:

__GetCurrentStates()

Parameters:

• None

Returns:

• states: ARRAY[STRING1, STRING2, ..]

__GetQueuedEvents

Returns an array of strings containing events currently placed into the event queue.

Usage:

__GetQueuedEvents()

Parameters:

• None

Returns:

• events: ARRAY[STRING1, STRING2, ..]

SCXML Language Reference

Orchestration Server Developer's Guide 16

In

Determines if the state specified is currently active. If so, returns true, otherwise returns false.

Usage:

In("example_state_name");

Parameters:

• state: STRING which can be a variable or a constant - This parameter specifies the name of the state to
be compared against.

Returns:

• is_in_state: BOOLEAN

Function Scoping
A caveat resulting from the Scoping Variable Scoping deviation is that developers must now be
aware of the scope in which his/her functions execute. User-defined functions will generally execute
in the local scope where they were defined. This means that any variables referenced within a user-
defined function must also exist within that very same scope.

It is possible to invoke a function outside of its native scope (e.g. by referencing another state directly
through the object model, or by referencing a function that was defined in a parent state), but note
that its variable scoping will remain in that native scope (where the function was defined). See
example below:

<state id="outer" initial="inner">
<onentry>

<script>
var scope="outer";
var foo=function(){__Log("foo finds scope: " + scope);}

</script>
</onentry>
<state id="inner">

<onentry>
<script>

var scope="inner";
var bar=function(){__Log("bar finds scope: " + scope);}

</script>
<script>

foo(); // Outputs --> foo finds scope: outer
bar(); // Outputs --> bar finds scope: inner

</script>
</onentry>

</state>
</state>

Note for Orchestration users only:

Function scope will not be restored after session recovery! This is a critical difference that must be
accounted for when designing an SCXML application to survive fail-over and recovery. Tests have
shown that after a session has been restored from persistence, all user-defined functions (particularly
those defined within states will execute in the global scope as opposed to their original native scope.

SCXML Language Reference

Orchestration Server Developer's Guide 17

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/#Variable

To address this issue, it is highly recommended that developers explicitly specify the scope of their
variables rather than use implicit scoping. See example below:

<state id="outer" initial="inner">
<onentry>

<script>
var scope="outer";
var implicit=function(){__Log("implicit finds scope: " + scope);}
var explicit=function(self){__Log("explicit finds scope: " + self.scope);}

</script>
</onentry>
<state id="inner">

<onentry>
<script>

var scope="inner";
</script>
<script>

implicit(); // Outputs --> implicit finds scope: outer
explicit(this); // Outputs --> explicit finds scope: inner
explicit(__outer__); // Outputs --> explicit finds scope: outer

</script>
</onentry>

</state>
</state>

SCXML Elements
[+] SCXML Elements

<anchor>
The <anchor> module is not supported by the SCXML engine. This element would otherwise be used
for providing 'go back' or 'redo'-like functionality for applications.

<cancel >
For <cancel>, either one of the attributes id and sendid may be used. However, both cannot be
defined at the same time.

When using <send> to generate events, if there is an intention to cancel the event sent, it is
recommended to use the attribute idlocation instead of id. The sendid stored at the location
specified by idlocation may then be used in <cancel>.

When the <cancel> request has been processed, the SCXML engine will send back the
"cancel.successful" event if the event was successfully removed, or "error.notallowed" if there was a
problem, along with the attribute sendid in the event.

<data>
The following are the additional Genesys attributes for <data> element. They are strictly used to

SCXML Language Reference

Orchestration Server Developer's Guide 18

help define and administer the provisioning of this data from the appropriate source.

Attribute Details

Name Required Type Default Value Valid Values Description

_type false NMTOKEN data

The following is the
set of valid values:

• data
• parameter

This allows the
developer to
identify the data
elements that are
to be parameters
that the platform
must obtain values
for when the
session is initiated.
Note that this does
not impact the way
in which the
SCXML document
is executed.

_desc false string none Any valid string

This allows the
developer to
provide a
description of the
parameter that is
to be supplied at
session initiation.
Note that this does
not impact the way
in which the
SCXML document
is executed.

src Attribute

The currently supported URI schema types for the src attribute are:
• HTTPS
• HTTP
• FILE

id Attribute

The value of this attribute must be a valid ECMAScript variable name. This
means that variable semantics that include elements like "." (for example,
foo.foo) and "-" (for example, foo-foo) are not allowed. The rule is that the
variable name must be able to be processed on its own in an ECMAScript
snippet. If not, then a TypeError event is generated.

For example,

Valid element

<data id="foo" expr="'value1'"/>

SCXML Language Reference

Orchestration Server Developer's Guide 19

Invalid element

<data id="foo.foo" expr="'value2'"/> <!--TypeError event generated ->

If you need to create complex objects you can always create them with the <script> element as a
child of the <scxml> element with the src attribute where the src attribute value points to a valid
JSON object with a mime type of application/json.

<foreach> (Since ORS 8.1.200.40, SCXML 8.1.000.77)
This element is an extension to the W3C Working Draft 7 May 2009. However, it has been formally
added to the W3C SCXML specification since the W3C Working Draft 26 April 2011. <foreach> is an
Executable Content element (like <if>, or <log>) and can be used to create iterators. The behaviour
of <foreach> is similar to that of the C# and Perl 'foreach' construct, which traverses items in a
collection. This implementation differs from the W3C specification in that the SCXML engine behaves
as though a deep copy of each item in the collection is created during iteration as opposed to a
shallow copy. Nevertheless, iteration behaviour will remain unaffected by changes to the collection.

Attribute Details

Name Required Type Default Value Valid Values Description

array true Value expression none
A value expression
that evaluates to
an iterable
collection.

The <foreach>
element will iterate
over a deep copy
of this collection.

item true string none
Any variable name
that is valid in the
specified data
model.

A variable that
stores a different
item of the
collection in each
iteration of the
loop.

index false string none
Any variable name
that is valid in the
specified data
model.

A variable that
stores the current
iteration index
upon each iteration
of the foreach loop.

<history>
The <history> element is not supported by the SCXML engine. This element would otherwise be used
for allowing 'pause and resume' control flows.

<invoke>
The child element <content> of <invoke> is not supported.

SCXML Language Reference

Orchestration Server Developer's Guide 20

<scxml>
The following are the additional Genesys attributes for the <scxml> element:

Attribute Details

Name Required Type Default Value Valid Values Description

_type false string combination Any valid string

This is set by the
developer at the
beginning of the
SCXML document
to define what type
of SCXML logic has
been defined.
Composer sets this
property based on
the type of logic
you are building. It
is used for
reporting
purposes.

_persist false boolean
• false
• true (prior

to 8.1.2)

The following is the
set of valid values:

• true
• false

This allows the
developer to
suppress all
persistence
capabilities.

Persistence is not
always desired,
due to the
associated
performance
overhead. For
instance, in
Orchestration,
current voice-
related routing
strategies normally
run to completion
in a reasonable
amount of time,
and in the event of
a failure, restarting
the routing
strategy may not
be problematic.
Therefore, this
attribute allows
sessions to
suppress all use of
persistence, which
prevents the
orchestration
platform from ever
persisting the
session. (Note that
this does *not*
preclude the
orchestration
platform from
employing other
techniques, such

SCXML Language Reference

Orchestration Server Developer's Guide 21

Name Required Type Default Value Valid Values Description

as hot standby
servers, to achieve
fault tolerance for
these types of
session.

_statePersistDefault false string "may"

The following is
the set of valid
values:

• must
• may
• no

To ensure proper
session persistence
during High
Availability
recovery, the
_statePersistDefault
may be used as an
attribute to the
top-level <scxml>
element.

Orchestration
Server uses the
value of
_statePersistDefault
as the default for
the <state>
_persist attribute,
if it is not specified
at the <state>
level.

• may—Default
value. ORS
will persist
the SCXML
session in
the entered
state once
the event
queue
becomes
empty.

• must—ORS
will
immediately
persist the
SCXML
session in
the entered
state.

• no—ORS
will not
persist the
SCXML
session in
the entered
state.

SCXML Language Reference

Orchestration Server Developer's Guide 22

Name Required Type Default Value Valid Values Description

_maxtime (Since
ORS 8.1.300.03,
SCXML 8.1.300.00)

false integer "604800"
Any valid
positive
integer, inside
double quotes.

Specifies the
maximum age in
seconds that an
ORS session should
exist. If this age is
reached, ORS shall
attempt to exit the
session.

If specified, this
overrides the value
specified in
configuration for
ORS under scxml/
max-session-age.

To disable this
feature, set the
_maxtime to "0".

As of ORS
8.1.300.13, SCXML
8.1.300.13, an
available
Cassandra data
store will be
required for this
functionality.

_microStepLimit
(Since ORS
8.1.300.11, SCXML
8.1.300.10)

false integer 1000
Any valid positive
integer, inside
double quotes.

Specifies the
maximum number
of microsteps
allowed to be
taken following the
processing of one
event. Subsequent
transitions may
arise from the
processing of one
event if the
following
transitions are
eventless. If this
number is reached,
ORS shall attempt
to exit the session.
To use ORS
configured default,
leave
_microStepLimit
undefined. To
disable this
feature, set
_microStepLimit="0".

_stateEntryLimit
(Since ORS
8.1.300.11, SCXML
8.1.300.10)

false integer 100
Any valid positive
integer, inside
double quotes.

Specifies the
maximum number
of times that a
state may be
entered as the
target of a
transition. States
entered indirectly

SCXML Language Reference

Orchestration Server Developer's Guide 23

Name Required Type Default Value Valid Values Description

as the result of a
transition element
or initial attribute
are not considered
for this limit (e.g.
ancestors of the
target state that
must be entered
before entering the
target state). If this
number is reached,
ORS shall attempt
to exit the session.
To use ORS
configured default,
leave
_stateEntryLimit
undefined. To
disable this
feature, set
_stateEntryLimit="0".

_maxPendingEvents
(Since ORS
8.1.300.11, SCXML
8.1.300.10)

false integer 100

Positive integer
between 30 to
100000, inclusive,
inside double
quotes.

Specifies the
maximum number
of events allowed
to be queued to a
session (inclusive
of internal,
external, delayed
and undelivered
events). If this
number is reached,
ORS shall attempt
to exit the session.
This feature cannot
be disabled.

_processEventTimeout
(Since ORS
8.1.300.11, SCXML
8.1.300.10)

false integer 10000
Any valid positive
integer, inside
double quotes.

Specifies the
maximum time
allotted for the
processing of the
event queue. The
processing of one
event may lead to
additional events
being queued.
Processing of the
event queue does
not complete until
the event queue is
empty. This feature
sets an upper
bound to the
amount of time
dedicated to
processing these
events. If the
timeout is reached,
ORS shall attempt
to exit the session.
To use ORS
configured default,
leave

SCXML Language Reference

Orchestration Server Developer's Guide 24

Name Required Type Default Value Valid Values Description

_processEventTimeout
undefined. To
disable this
feature, set
_processEventTimeout="0".

_sendSessionRecovered
(Since ORS
8.1.300.13, SCXML
8.1.300.13)
_recoveryEnabled
(Since ORS
8.1.300.12, SCXML
8.1.300.12)

false boolean false

The following is the
set of valid values:

• true
• false

Specifies whether
or not this strategy
is eligible for
proactive recovery.
If set to true, the
session will be
explicitly restored
by ORS when an
ORS node performs
switch-over to
Primary. Proactive
recovery shall
never be used for
sessions that
process
multimedia
interactions.

_debug (Since ORS
8.1.300.11, SCXML
8.1.300.10)

false boolean false

The following is the
set of valid values:

• true
• false

Specifies whether
or not debugging
of SCXML strategy
is required. When
set to true, the
session will save a
copy of the fully
assembled SCXML
strategy to disk
(working
directory).

_transitionStyle
(Since ORS
8.1.300.28, SCXML
8.1.300.38)

false string legacy

The following is the
set of valid values:

• legacy
• genesys
• w3c

Specifies the order
in which the
<transition>
executable content
is to be executed
in the scenario
where there are
two or more
selected
transitions (only in
<parallel>
regions).

• legacy
setting
dictates
that
transitions
are
executed
by line
order
(lowest line

SCXML Language Reference

Orchestration Server Developer's Guide 25

Name Required Type Default Value Valid Values Description

number
first)

• genesys
setting
orders
transitions
by reverse
scope
order.
Transitions
of deepest
scope
(most
nested) are
executed
first. Ties
for scope
are broken
by lowest
line number
first.

• w3c setting
adheres to
the
ordering
prescribed
by the W3C
Working
Draft for
SCXML.
Transitions
are
executed in
the scope
order of the
states
which
selected
them. Ties
for scope
are broken
by lowest
line number
first.

<log>
<log> has three attributes (expr, label, level). For attribute details, please refer to State Chart XML
(SCXML): State Machine Notation for Control Abstraction W3C Working Draft 7 May 2009
(www.w3.org). As of version 8.1.200.46, specifying a level of 5 with a label of 22000 to 22020 will

SCXML Language Reference

Orchestration Server Developer's Guide 26

result in behavior equivalent to that for URS/IRD.

<state>
The following are the additional Genesys attributes, children, and behavior for the <state> element:

Attribute Details

Name Required Type Default Value Valid Values Description

_es_store (as of
8.1.400.40) false string false true, false

Introduced as part
of the Elastic
Connector feature
described in the
Orchestration
Server 8.1.4
Deployment Guide.
When set to true in
the state
description in a
strategy, ORS will
save information
about session
states into
Elasticsearch,
which can be used
for operational/
performance
monitoring and
analytics. Example:
<state
id="routing"
_es_store=”true”>.

_type false NMTOKEN normal
The following is the
set of valid values:

• normal

This allows the
developer to
control how the
platform is to
handle this state
and is a place
holder for future
support.

_persist false NMTOKEN may

The following is the
set of valid values:

• no
• may
• must

Long-running
sessions typically
experience
concentrated time
windows in which
active processing
is performed,
followed by a
relatively long time
window during
which the system
awaits follow-up by
a customer or
potentially by the
agent. This
attribute is used to
indicate to the
platform whether a

SCXML Language Reference

Orchestration Server Developer's Guide 27

Name Required Type Default Value Valid Values Description

session can or
must be persisted:

• no - Used to
indicate a
state is
transitional,
or is not
meaningful
for
recovery
purposes
over the
last
persisted
state.

• may - The
platform
may persist
the session
in this state
at its
discretion.
This is the
default
value.

• must - The
platform
must
persist the
session as
part of
entry
processing
of this state
(before the
<onentry>
elements
are
executed).
This is used
to
guarantee
that the
session can
be
recovered
from this
point in the
event of
failure (that
is, the

SCXML Language Reference

Orchestration Server Developer's Guide 28

Name Required Type Default Value Valid Values Description

ability to
reenter the
session at
this state).

Note:
Orchestration
Server uses the
value of <scxml>
_statePersistDefault
as the default for
the <state>
_persist attribute,
if it is not specified
at the <state>
level.

_deactivate false string no

The following is the
set of current valid
values:

• now
• no

This attribute
defines whether
the session that
enters this state
and is waiting for a
transition should
be immediately
persisted, removed
from platform
memory, and
marked as
inactive. This
attribute is valid
only if the
"_persist" attribute
is set to "may" or
"must", since only
persistable
sessions can be
de-activated. This
attribute is treated
purely as a hint to
the platform about
how meaningful it
is to persist the
session.

src Not Supported

Persist/Deactivate option matrix _persist

no may must

_deactivate

no
Persistence disabled.
_deactivate attribute is
ignored.

The session may be
persisted in this state
at the platform's
discretion.

The platform
guarantees that this
state will be persisted
upon entry.

now Persistence disabled.
_deactivate attribute is

The session may be
persisted in this state

The session that enters
this state and is waiting

SCXML Language Reference

Orchestration Server Developer's Guide 29

Persist/Deactivate option matrix _persist

ignored.

at the platform's
discretion and will be
marked as inactive
when waiting for
transition.

for transition will be
immediately persisted
and marked as inactive.

<param>
The <param> element has the following restriction:

• When using the <param> element with any action element, you must specify both the name and expr
attributes. Because of this, the platform does not support the name attribute value as a data model
location expression if the expr attribute is missing.

<transition>
The attribute anchor of the <transition> is not supported.

ORS Version 8.1.200.60/8.1.300.01

The behaviour of transitions in the SCXML engine is different from that which is described in the W3C
Working Draft 7 May 2009 [2]. This draft spec explains the following:

The LCA is the innermost <state>, <parallel>, or <scxml> element that is a proper ancestor of the
transition's source state and its target state(s).

During a transition, all active states that are proper descendants of the LCA are exited.

The new transition behaviour of the SCXML engine shares greater similarities with that of the W3C
Working Draft 16 December 2010 [3], in that in the case of a transition whose source state is a
compound state and whose target(s) is a descendant of the source, the transition will not exit and re-
enter its source state. In addition, the notion of the LCA is replaced by the LCCA:

The LCCA is the innermost compound <state> or <scxml> element that is a proper ancestor of the
transition's source state and its target state(s).

During a transition, all active states that are proper descendants of the LCCA are exited.

<validate>
The <validate> element is not supported by the SCXML engine. This would otherwise be used to
invoke a validation of the datamodel.

<xi:include>
The xinclude recommendation (http://www.w3.org/TR/xinclude/) is used for inlining of ECMAScripts
(<script>) and states (<state>). An application developer may specify scripts, states, and other
content separately from the main SCXML document. The included document or fragment can be text

SCXML Language Reference

Orchestration Server Developer's Guide 30

or xml. See section below on using <xi:include>.

When using xinclude, the following are important considerations to keep in mind:

• Developers should ensure that the 'resolveid' attribute value is unique within a document. This is
necessary when the same included document is used multiple times within the including document
since, the IDs of <state>, <parallel>, and so on, must be unique across the entire document.

• Included documents must NOT transition back to states that are defined in an including document. This
does not work.

Xinclude can also be used to provide a subroutine-like capability within an SCXML application by
using it like a macro facility. This replaces all <xi:include> elements with the referenced state content
during the initial document fetch and load. Once the SCXML application is fully assembled, it is
compiled and validated before sessions can be created based on this application.

In addition to the considerations above, the following guidelines must be followed when using
xinclude as a macro style "subroutine":

• For the included document:
• The document must be a valid <state> fragment that specifies the complete behavior of the

subroutine. The document can contain an <scxml> document, but if it does, the xinclude
declaration must use xpointer to reference the <state> that is to be used as the subroutine.

• The referenced <state> can be a simple or a compound state. If it is a compound state, it must
define <initial> as well as <final> states.

• An atomic state must use <raise>/<event> to return the appropriate output parameters. A
compound state, on the other hand, can use either <raise>, <event>, or the <donedata> element
of the <final> states to perform this function.

• The included <state> must be self-contained: it should not have transitions to states in the
including document or outside of itself.

• The included <state> must not use datamodel elements from the included document, unless the
<data> elements are defined within the <state> or one of its children. Using <data> elements
defined elsewhere in the included document will likely result in an error since they are not defined
in the including document.

• The included <state> should not use datamodel elements from the including document. Doing so
makes subroutine information global to the application. It is recommended that data should be
passed to a subroutine via an event, or through variables defined via <script>.

• The included <state> must not rely on events from the including document other than the transition
to the included state.

• For the including document:
• The document must have a <transition> for the event generated by the included state or

subroutine. This event will contain the results from the subroutine.
• The document must have a <transition> to the included state. The event can contain the input

parameters for the subroutine. Alternately, the including state can use a <script> element in its
<onentry> element to define and initialize a set of parameters that are passed to the included
<state>. The included state can access these parameters through the variable scoping that
ECMAScript provides.

• When using <xi:include> elements, the namespaces used in the included document need to be
declared in the including document.

SCXML Language Reference

Orchestration Server Developer's Guide 31

The following are the additional Genesys attributes for the <xi:include> element as well as existing
attribute limitations.

Attribute Details

Name Required Type Default Value Valid Values Description

accept false string Not supported

accept-language false string Not supported

encoding false string Not supported

href true URL none

The URI of the
resource to
include.

As of ORS
8.1.300.27, this
attribute also
supports
substitution by
session start
parameters. These
parameters may
come from the
ApplicationParms
section of an
Enhanced Routing
Script, URL-
encoded
parameters of a
web-started
session, or the
<param>
elements nested
within a
<session:start>

For example:

<xi:include
href="http://appsrv:80/
scxml/
subroutine_routing.scxml"
/>

It is possible to
parametrize the
URI as follows:

<xi:include
href="http://appsrv:80/
scxml/$$MY_SUBROUTINE$$"
/>

When a special
token of the form

SCXML Language Reference

Orchestration Server Developer's Guide 32

Name Required Type Default Value Valid Values Description

$$parameter_name$$
is provided, it will
be automatically
substituted with
the value of the
matching session
start parameter
(case-sensitive).

If the session start
parameters are as
follows:

MY_SUBROUTINE
=
subroutine_chat.scxml

Resulting URI:

<xi:include
href="http://appsrv:80/
scxml/
subroutine_chat.scxml"
/>

parse false string "xml" "xml", "text"

See the following
for details:
http://www.w3.org/
TR/
xinclude/#include_element

resolveid false string none Any value string

In order to support
subroutines and
avoid issues with
duplicate SCXML
element IDs (for
example, <state
id=x>), this
Genesys extension
attribute must be
used. If this
attribute is
specified, then ID
modifications will
occur. All the
SCXML elements
with an ID attribute
(<state>,
<parallel>,
<final>,
<history>,
<send>,
<invoke>,
<cancel>, and
<data>) in the
included document
are prefixed by the
value of this
attribute, and a
separating dot. In
addition, the IDREF
attributes in the

SCXML Language Reference

Orchestration Server Developer's Guide 33

Name Required Type Default Value Valid Values Description

included document
(the initial attribute
in the <state>
element and the
target and event
attributes in the
<transition>
element) can also
be modified as
long as the
following wildcard
substitution key is
specified in the
value. Otherwise
they will not be
changed when
included. The
substitution key is
the string
"$$_MY_PREFIX_$$".
If specified, it is
replaced by the
value of this
attribute for the
included
document.

IMPORTANT
NOTE: Developers
must ensure that
each use of the
'resolveid' attribute
value is unique
across the chain of
included
documents.

xmlns false string none Any value string

Used to provide
namespaces for
the included
document. This is
necessary for
fragments. If
subroutines include
subroutines, this
attribute must be
set to the
appropriate
namespace for the
including element.
For example,
xmlns:xi="http://www.w3.org/
2001/XInclude"

xpointer false string none

When
parse="xml",
xpointer may be
used to specify a
particular element
and its children to
include. The value
of xpointer must
be a literal ID. The

SCXML Language Reference

Orchestration Server Developer's Guide 34

Name Required Type Default Value Valid Values Description

first node in the
included document
that matches that
ID is included.
When xpointer is
omitted, the entire
resource is
included. Note:
XPath is not
supported.

When resolveid is used, two additional items can be used to handle the prefix provided by this
attribute:

Name Valid locations Description

$$_MY_PREFIX_$$
• initial attribute of <state>
• event and target attribute of

<transition>

During document assembly,
$$_MY_PREFIX_$$ is replaced with the
value of resolveid only in the defined
locations. The engine does not perform
global search and replace with this token.

_my_prefix Any ECMAScript expression

During document assembly, <state>,
<parallel>, and <final> is given a
_my_prefix attribute extension that
contains the value of resolveid. This
allows the prefix value to be used in
ECMAScript expressions within these
states.

Children

The child element <fallback> is not supported.

Event Extensions
[+] Event Extensions
In addition to the standard properties in all events (see the Events section), the following are the
additional attributes that are added to the SCXML events. They are accessible via the _event.data
variable.

SCXML Language Reference

Orchestration Server Developer's Guide 35

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/SCXMLRef#Events

Event Name Property Description

error.illegalcond.errortype
error.illegalloc.errortype
error.illegalvalue.errortype
error.illegaldata.errortype
error.script.errortype
error.unsupported.element
error.receive.datamismatch
error.send.nosuchsession
(ORS only, since 8.1.2)
error.send.datamismatch
error.send.ioprocessorerror
error.send.targettypeinvalid.stateid
error.send.failed
error.cancel.notallowed
error.illegalassign
error.send.noeventspecified

document
This is the URL of the document in which
the error occurred. Note: this is
important if the application uses
<xi:include>.

element This is the name of the element that was
being executed when the error occurred.

linenumber This is the line number of the document
where the error occurred.

error.badfetch.protocol.response_code
error.send.targetunavailable.stateid

target
This is the target URL which was being
used in the element when the error
occurred.

document
This is the URL of the document in which
the error occurred. Note: this is
important if the application uses
<xi:include>.

element This is the name of the element that was
being executed when the error occurred.

linenumber This is the line number of the document
where the error occurred.

done.state.stateid done.scxml.sessionid
done.invoke.invokeid

sessionid This is the session ID of the session that
has ended.

reason This is the reason the started session has
ended.

params

This is the list of parameters that is
passed back based on the <param>
elements defined in the <donedata>
element in the <final> element which is
executed while the session is finishing or
terminating.

SCXML Language Reference

Orchestration Server Developer's Guide 36

Logging and Metrics
[+] Logging and Metrics
During the execution of SCXML strategies, specially formatted log messages
(referred to as metrics) are generated and logged. These messages may be used
to trace the execution flow of an SCXML strategy and can be useful for
debugging applications.
The recorded format of a metric is typically of the form:

<metric_name data_name="value" data_name1="value" ... />

The following table describes the standard metrics:

Metric Name Description Associated Data

appl_begin Logged when the session is started Name Url (main Scxml document url)

appl_end Logged when the session ends

cancel Recorded when a request to cancel a
delayed <send> event is processed. Sendid

doc_request A document has been requested from the
fetching service Requested URL

doc_retrieved A requested document has been retrieved Requested URL Result (Success, Failure)
Error Message Cache Hit (true/false)

eval_cond A condition attribute is evaluated Condition Result (true/false) Line Number

eval_expr An expression is evaluated Expression Result (true/false) Line
Number

event_processed A queued event has been processed Event name Disposition (normal,
terminated, no target)

event_queued
An event has been queued to the
session. Note that events may appear
more than once, as a result of
deserialization.

Event name Queue Line Number (of the
element that generated the event) Type
(internal/external/platform)

exec_error An error was encountered while executing
the document Message

SCXML Language Reference

Orchestration Server Developer's Guide 37

Metric Name Description Associated Data

fm_exec_error An FM encountered an error. Function Scope Message

extension
A Custom Action Element has been
selected for execution (but has not
executed, yet).

Name Namespace

initial An <initial> tag was entered.

invoke The <invoke> tag is about to be
executed. Target Type Target

js_diag
JS Diag data (occurs whenever
max ops is reached; only
available on Win32)

JSRuntime GC Bytes JSRuntime GC
MaxBytes JSRuntime GC Max Malloc Bytes
JSRuntime GC Last Bytes JSRuntime ID

log Summarizes the result of a <log> tag. Label Expression Level

onentry The executable content of an <onentry >
element is about to be run

Line Number State (name of containing
state)

onexit The executable content of an <onexit >
element is about to be run

Line Number State (name of containing
state)

param The value of a param element passed to
<invoke> and triggered sessions. Name Value

parse_warning
A warning generated while parsing the
document that does NOT result in a
failure to parse or process the document

Message

send The <send> tag has been selected for
execution, but has not executed yet. Target Target Type Event Send ID

state_enter The specified state has been entered Name Type (standard, parallel, final,
history, initial)

state_exit The specified state has exited Name Duration (the time in ms since the
related state_enter metric was logged)

transition The executable content of a <transition>
is about to be run.

State (name of containing state)
Condition (the string) Line Number Event
Target

persist_store A request to persist the session
has been made.

Type (document, session) Key (for
document type) Request ID (for session
type) Message (for session type)

SCXML Language Reference

Orchestration Server Developer's Guide 38

Metric Name Description Associated Data

persist_result A request to persist has
completed. Message

persist_restore A request to restore the session
has been made.

persist_destroy A request to delete the session
from persistence has been made.

persist_error An error was encountered during
persistence.

Type (document, session) Request Key
Error Code Error Message

deactivate Deactivation was requested for
the session. Status (success, failed)

restored The session was restored.

SCXML Language Reference

Orchestration Server Developer's Guide 39

Supported URI Schemes
[+] Supported URI Schemes
The following are the set of URI schemes that are supported:

• HTTP as defined by the RFC 2616
• HTTPS as defined by the RFC 2817
• File as defined by the RFC 1738
• gesp is a Genesys specific schema which is used to invoke an Interaction Server ESP function. (For

Orchestration only)
• FORMAT - gesp: <applname>\ [<type>\]<service>\[method>] For example,

gesp:CFGInteractionServer/Interaction/SubmitNew

• The following are the meanings of the different elements of the format:

• "applname" is the 3rd party application that is to be used to process this request.
• "service" is the name of the service with which this request is associated.

• "method" is the specific function to be performed by the 3rd party application.

• gdata is a Genesys specific schema which is used to address configuration layer objects and options in
Genesys Configuration Server, as well as data in an interaction's user data. Currently only supported in
<submit> and <createmessage> actions. (For Orchestration only)
• FORMAT - gdata:[<host>:<port>/]<source> [/<objtype>.<objname>][/<p-name>] For example,

gdata:config/AG.SalesGroup/supervisor, gdata:udata
• The following are the meanings of the different elements of the format:

• "host" is the IP host address for the targeted Configuration Server. This is optional. This element
is ignored if the source element is "udata"

• "port" is the port number for the targeted Configuration Server. This is optional. This element is
ignored if the source element is "udata".

• "source" is the source of the data. The following are the possible values:
• config-This is data from Configuration Server.
• udata-This is data from the associated interaction.

• "objtype" is the type of configuration layer object. This element is only valid when the
source element is "config". The values are the following:
• DN-DN object
• SS-Script object
• AG-Agent Group object
• PG-Place Group
• CA-BA Category or Standard Response object

SCXML Language Reference

Orchestration Server Developer's Guide 40

• CM-Campaign object
• CL-Calling ListTR-Transaction object
• AP-Application object
• PE-Person object.
• SK-Skill object
• PL-Place object
• ST-Statistics Table
• SC-BA Screening Rule object

• "objname" is the unique name (ID) for the configuration layer object that is being referenced.
There is one exception where the name is not unique and this is with the CfgDN object. This
element is only valid when the source element is "config". So the unique name will be
the following combination of names:
• DN name-This is the name of the CfgDN object.
• Switch name-This is the name of the CfgSwitch object.
• The format of the objname string in this case will be dname@switchname.

• "p-name" is the name of a specific property of the object. For properties like annex data. The p-
name has the following format: "annex"/section-name/option-name. In the case where the
source element value is "udata", this will be the key name of the user data that you want to use.
For example, gdata:udata/CategoryID

SCXML Language Reference

Orchestration Server Developer's Guide 41

Supported Profiles
The SCXML engine supports only the ECMAScript profile. Other profiles (such as minimal or XPath) will
not be supported.

SCXML Language Reference

Orchestration Server Developer's Guide 42

Examples
[+] Examples

Using <xi:include>

The following example illustrates how xinclude can be used to compose several subroutine
documents into the main application. The main application (complex_main.scxml) includes a
subroutine (complex_sub) that is composed of two additional subroutines (compound_sub and
simple_sub).

Main document/SCXML Application (complex_main.scxml)

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="http://www.genesyslab.com/modules/queue"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
xmlns:dialog="http://www.genesyslab.com/modules/dialog"
xmlns:xi="http://www.w3.org/2001/XInclude">
<initial>

<transition target="start"/>
</initial>

<state id="start" initial="complex.complex_sub">
<onentry>

<script>
var args = new Object();
args.var1 = 3;
args.var2 = 'data3';

</script>
</onentry>

<transition event="done.state.complex.complex_sub" target="exit">
<log expr="_event.data.val1"/>
<log expr="_event.data.val2"/>

</transition>
<xi:include parse="xml" href="complex_sub.scxml" resolveid="complex" />

</state>

<final id="exit">
<onentry>

<log expr="'success!'"/>
</onentry>

</final>

<final id="error">
<onentry>

<log expr="'failed!'"/>
</onentry>

</final>
</scxml>

Primary subroutine (complex_sub.scxml)

SCXML Language Reference

Orchestration Server Developer's Guide 43

<state id="complex_sub" initial="$$_MY_PREFIX_$$.first_step" >
<onentry>

<script>
var usefulName1 = args.var1;
var usefulName2 = args.var2;

</script>
</onentry>
<state id="first_step" initial="$$_MY_PREFIX_$$.compound.compound_sub">

<onentry>
<log expr="'Performing complex_sub.results calculation for ' + _my_prefix" />
<script>

var args = new Object();
args.var1 = 1;
args.var2 = 'data1';

</script>
</onentry>
<xi:include parse="xml" href="compound_sub.scxml" resolveid="compound"

xmlns:xi="http://www.w3.org/2001/XInclude" />
<transition event="done.state.$$_MY_PREFIX_$$.compound.compound_sub"

target="$$_MY_PREFIX_$$.second_step">
<log expr="_event.data.val1"/>
<log expr="_event.data.val2"/>

</transition>
</state>
<state id="second_step" initial="$$_MY_PREFIX_$$.simple.simple_sub">

<onentry>
<script>

var args = new Object();
args.var1 = 2;
args.var2 = 'data2';

</script>
</onentry>

<xi:include parse="xml" href="simple_sub.scxml" resolveid="simple"
xmlns:xi="http://www.w3.org/2001/XInclude" />

<transition event="simple_sub.results.*" target="$$_MY_PREFIX_$$.complete">
<log expr="_event.data.val1"/>
<log expr="_event.data.val2"/>

</transition>
</state>

<final id="complete">
<donedata>

<param name="val1" expr="usefulName1"/>
<param name="val2" expr="usefulName2"/>

</donedata>
</final>

</state>

Nested compound subroutine (compound_sub.scxml):

<state id="compound_sub" initial="$$_MY_PREFIX_$$.calculate" >
<onentry>

<script>
var usefulName1 = args.var1;
var usefulName2 = args.var2;
</script>

</onentry>
<state id="calculate">

<onentry>
<log expr="'Performing compound_sub.results calculation for ' + _my_prefix" />

</onentry>
<transition target="$$_MY_PREFIX_$$.complete"/>

SCXML Language Reference

Orchestration Server Developer's Guide 44

</state>
<final id="complete">

<donedata>
<param name="val1" expr="usefulName1"/>
<param name="val2" expr="usefulName2"/>

</donedata>
</final>

</state>

Nested simple subroutine (simple_sub.scxml):

<state id="simple_sub">
<onentry>

<script>
var usefulName1 = args.var1;
var usefulName2 = args.var2;

</script>
<log expr="'Performing simple_sub.results calculation for ' + _my_prefix" />
<raise event="simple_sub.results.success">

<param name="val1" expr="usefulName1"/>
<param name="val2" expr="usefulName2"/>

</raise>
</onentry>

</state>

Fully assembled SCXML Application document:

<scxml xmlns="http://www.w3.org/2005/07/scxml" version="1.0"
xmlns:dialog="http://www.genesyslab.com/modules/dialog"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
xmlns:queue="http://www.genesyslab.com/modules/queue"
xmlns:xi="http://www.w3.org/2001/XInclude">

<initial>
<transition target="start"/>

</initial>

<state id="start" initial="complex.complex_sub">
<onentry>

<script>
var args = new Object();
args.var1 = 3;
args.var2 = 'data3';

</script>
</onentry>
<transition event="done.state.complex.complex_sub" target="exit">

<log expr="_event.data.val1"/>
<log expr="_event.data.val2"/>

</transition>
<state _my_prefix="complex" id="complex.complex_sub" initial="complex.first_step" >

<onentry>
<script>

var usefulName1 = args.var1;
var usefulName2 = args.var2;

</script>
</onentry>

<state _my_prefix="complex" id="complex.first_step" initial="complex.compound.compound_sub">
<onentry>

<log expr="'Performing complex_sub.results calculation for ' + _my_prefix"/>
<script>

var args = new Object();
args.var1 = 1;
args.var2 = 'data1';

SCXML Language Reference

Orchestration Server Developer's Guide 45

</script>
</onentry>
<state _my_prefix="complex.compound" id="complex.compound.compound_sub"

initial="complex.compound.calculate">
<onentry>

<script>
var usefulName1 = args.var1;
var usefulName2 = args.var2;

</script>
</onentry>
<state _my_prefix="complex.compound" id="complex.compound.calculate">

<onentry>
<log expr="'Performing compound_sub.results calculation for ' + _my_prefix"/>

</onentry>
<transition target="complex.compound.complete"/>

</state>
<final _my_prefix="complex.compound" id="complex.compound.complete">

<donedata>
<param expr="usefulName1" name="val1"/>

<param expr="usefulName2" name="val2"/>
</donedata>

</final>
</state>

<transition event="done.state.complex.compound.compound_sub" target="complex.second_step">
<log expr="_event.data.val1"/>
<log expr="_event.data.val2"/>

</transition>
</state>
<state _my_prefix="complex" id="complex.second_step" initial="complex.simple.simple_sub">

<onentry>
<script>

var args = new Object();
args.var1 = 2;
args.var2 = 'data2';

</script>
</onentry>

<state _my_prefix="complex.simple" id="complex.simple.simple_sub">
<onentry>

<script>
var usefulName1 = args.var1;
var usefulName2 = args.var2;

</script>
<log expr="'Performing simple_sub.results calculation for ' + _my_prefix"/>
<raise event="simple_sub.results.success">

<param expr="usefulName1" name="val1"/>
<param expr="usefulName2" name="val2"/>

</raise>
</onentry>

</state>
<transition event="simple_sub.results.*" target="complex.complete">

<log expr="_event.data.val1"/>
<log expr="_event.data.val2"/>

</transition>
</state>
<final _my_prefix="complex" id="complex.complete">

<donedata>
<param expr="usefulName1" name="val1"/>
<param expr="usefulName2" name="val2"/>

</donedata>
</final>
</state>
</state>

SCXML Language Reference

Orchestration Server Developer's Guide 46

<final id="exit">
<onentry>

<log expr="'success!'"/>
</onentry>

</final>
<final id="error">

<onentry>
<log expr="'failed!'"/>

</onentry>
</final>

</scxml>

Output from application:

"Performing complex_sub.results calculation for complex"
"Performing compound_sub.results calculation for complex.compound"
"1"
"data1"
"Performing simple_sub.results calculation for complex.simple"
"2"
"data2"
"3"
"data3"
"success!"

SCXML Language Reference

Orchestration Server Developer's Guide 47

	Orchestration Server Developer's Guide
	SCXML Language Reference
	Logging and Metrics
	Supported URI Schemes
	Supported Profiles
	Examples

