
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Orchestration Getting Started Guide

Orchestration Server Developer's
Guide

4/3/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Orchestration Getting Started Guide
The aim of the guide is to help you build your SCXML applications. It is assumed at this point that you
have installed Orchestration and have it working with other Genesys products. You may also want to
install RestClient to test your applications. It is also assumed that you have a general understanding
of the Genesys Product Suite, SCXML, as well as Internet technologies such as HTTP, XML, and JSON.
If you want to review basic SCXML concepts before continuing, you may find them here.

Writing your first application

Now that you have familiarized yourself with states and transitions, you are ready to write your first
application. Let's begin with a simple application that plays music when we receive a voice call:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="begin">

<datamodel>
<data id="ixnid" expr="''" />
<data id="reqid" expr="''" />

</datamodel>
<state id="begin">

<transition event="interaction.added" target="play_music">
<script>

_data.ixnid = _event.data.interactionid;
</script>

</transition>
</state>
<state id="play_music">

<onentry>
<dialog:playsound interactionid="_data.ixnid"

requestid="_data.reqid"
type="'music'"
resource="'music/on_hold'"
duration="'10 '"/>

</onentry>
<transition event="dialog.playsound.done" target="exit"/>
<transition event="error.dialog.playsound" target="error"/>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

Let's look at how this SCXML file works:

• At the top of the file you have included one of the custom ORS extensions, the dialog FM with
xmlns:dialog="www.genesyslab.com/modules/dialog".

• The document declares an initial state of begin, which is the entry point into the state machine.
• Before we enter the state machine, there is a <datamodel> element which encapsulates any number of

<data> elements. This is the single globally visible data model for the entire state machine.

Orchestration Getting Started Guide

Orchestration Server Developer's Guide 2

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/OrchExt
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/DialogIntf

• Each <data> element defines a named data element and is created when the document is loaded.
• While inside the begin state, it waits for the interaction.added event to trigger a transition.
• The interaction.added event is generated when a new interaction is associated with the session. In

this case, a voice call will trigger the interation.added event which will cause the state machine to
transition to the play_music state.

• When the transition is triggered, the executable content contained in the <script> is executed and
the variable _data.ixnid within the data model is updated with the interaction id that was returned as
part of the _event.data object.

• Once the state play_music is entered, the executable content contained in the <onentry> is
immediately executed which plays the music file found at music/on_hold for a during of 10 seconds.

• <dialog:playsound> is a custom action whose local name is playsound and is bound to the namespace
www.genesyslab.com/modules/dialog.

• The custom action playsound has been defined within ORS as an extension. For details, see the section
on the dialog interface.

• If 10 seconds of music was played successfully, the dialog.playsound.done event is received.
Otherwise, we get the error.dialog.playsound event. One of these two events will trigger a
transition to a final state.

• The final state indicates that the state machine has run to completion.

Now we will add to the scenario by routing the call to an agent after playing music for 10 seconds:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="begin">

<datamodel>
<data id="ixnid" expr="''" />
<data id="reqid" expr="''" />

</datamodel>
<state id="begin">

<transition event="interaction.added" target="play_music">
<script>

_data.ixnid = _event.data.interactionid;
</script>

</transition>
</state>
<state id="play_music">

<onentry>
<dialog:playsound interactionid="_data.ixnid"

requestid="_data.reqid"
type="'music'"
resource="'music/on_hold'"
duration="'10 '"/>

</onentry>
<transition event="dialog.playsound.done" target="route_to_agent"/>
<transition event="error.dialog.playsound" target="error"/>

</state>
<state id="route_to_agent">

<onentry>
<queue:submit requestid="_data.reqid" interactionid="_data.ixnid" priority="5"

timeout="20">
<queue:targets type="agent">

<queue:target name="'702_sip'"/>
</queue:targets>

</queue:submit>

Orchestration Getting Started Guide

Orchestration Server Developer's Guide 3

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/DialogIntf#.3Cplaysound.3E

</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
<transition event="error.queue.submit" target="error">

<log expr="'ERROR'"/>
</transition>

</state>

<final id="exit"/>
<final id="error"/>

</scxml>

• First, we added the queue FM at the beginning of the file with xmlns:queue="www.genesyslab.com/
modules/queue".

• After playing music for 10 seconds, the dialog.playsound.done is received and will trigger a transition
to the state route_to_agent.

• Once the state route_to_agent is entered, the executable content contained in the <onentry> is
immediately executed which tries to route the call to agent 702_sip.

• <queue:submit> is a custom action whose local name is submit and is bound to the namespace
www.genesyslab.com/modules/queue.

• The custom action submit has been defined within ORS as an extension. For details, see the section on
the queue submit.

• If the interaction has been routed successfully to agent 702_sip, the queue.submit.done event is
received. Otherwise, we get the error.queue.submit event if the interaction was not routed within the
20 seconds timeout period. One of these two events will trigger a transition to a final state.

• Before transitioning to the final exit state, the standard action of <log> is called which outputs a string
containing information about the <queue:submit> request.

So far, our example has been fairly simple, where a voice call comes in, we play music to it for 10
seconds, then try for 20 seconds to route the call to an agent. But what if the agent is on a call and is
unavailable? A more realistic scenario is to wait for the agent to become available and play music to
the caller while they are waiting. Of course we don't want to wait indefinitely so let's try for 5 minutes
and if the agent doesn't become available, we exit the state machine, as follows:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="begin">

<datamodel>
<data id="reqid" expr="''" />
<data id="ixnid" expr="''" />

</datamodel>

<state id="begin">
<transition event="interaction.added" target="routingwithdialog">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>

<parallel id="routingwithdialog">

Orchestration Getting Started Guide

Orchestration Server Developer's Guide 4

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/QueueIntf
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/QueueIntf#.3Csubmit.3E

<state id="play_music">
<onentry>

<dialog:playsound type="'music'" resource="'music/on_hold'"
duration="'300'"/>

</onentry>
<transition event="dialog.playsound.done" target="exit"/>
<transition event="error.dialog.playsound" target="error"/>

</state>
<state id="route_to_agent">
<onentry>

<queue:submit requestid="_data.reqid" interactionid="_data.ixnid" priority="5"
timeout="300">

<queue:targets>
<queue:target type="agent" name="'702_sip'"/>
</queue:targets>

</queue:submit>
</onentry>

<transition event="queue.submit.done" target="exit">
<log expr="'Queue Submit DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>

<transition event="error.queue.submit" target="error" >
<log expr="'ERROR'"/>

</transition>
</state>

</parallel>

<final id="exit"/>
<final id="error"/>

</scxml>

• From the begin state, we now transition to a set of parallel states. When we enter the parallel state
routingwithdialog, we simultaneously enter the child states play_music and route_to_agent.

• The play_music state is the same as before, except the duration of the music has been increased to
300 seconds (5 minutes). Once the music has been playing for 300 seconds, we will receive the
dialog.playsound.done event, at which point we will exit the play_music state, as well as the
routingwithdialog state, and enter the final state exit.

• The route_to_agent is the same as before, and will try to route the interaction to agent 702_sip.
• If the interaction is successfully routed to agent 702_sip, we get the queue.submit.done event and

transition to the final state exit.
• If the interaction was not routed within 300 seconds, we get the error.queue.submit event, which

triggers a transition to final state error.

This SCXML file will work well as long as agent 702_sip becomes available within 300 seconds (5
minutes). Of course, we can modify this value and wait longer than 5 minutes, but what happens if
agent 702_sip never becomes available? If there are other agents, we may want to expand our agent
selection to include those. A better approach is to first try to route to a particular agent, if
unsuccessful, try to route to an agent group, if unsuccessful, try to route to a place, if unsuccessful,
try to route to a place group, and if all those options could not successfully route the call, then give
up. It would also be nice to let the caller know what the estimated wait time is. Here is what the
SCXML file will look like:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"

Orchestration Getting Started Guide

Orchestration Server Developer's Guide 5

xmlns:dialog="www.genesyslab.com/modules/dialog"
initial="initial">

<datamodel>
<data id="reqid" expr="''" />
<data id="ixnid" expr="''" />

</datamodel>

<state id="initial">
<transition event="interaction.added" target="routingwithdialog">

<script>
_data.ixnid = _event.data.interactionid;

</script>
</transition>

</state>

<parallel id="routingwithdialog">

<state id="dialog" initial="play_estimated_wait_time">
<state id="play_estimated_wait_time">

<onentry>
<dialog:play language="'English(US)'">

<dialog:prompts type="ann">
<dialog:prompt interrupt="true" intid="1"/>

</dialog:prompts>
</dialog:play>

</onentry>
<transition event="dialog.play.done" target="play_music"/>
<transition event="error.dialog.play" target="error"/>

</state>
<state id="play_music">

<onentry>
<dialog:playsound type="'music'" resource="'music/on_hold'"

duration="'60'"/>
</onentry>
<transition event="dialog.playsound.done"

target="play_estimated_wait_time"/>
<transition event="error.dialog.playsound" target="error"/>

</state>
</state>
<state id="routing" initial="route_to_agent">

<state id="route_to_agent">
<onentry>

<queue:submit requestid="_data.reqid" interactionid="_data.ixnid" priority="5"
timeout="60">

<queue:targets>
<queue:target type="agent" name="'702_sip'"/>

</queue:targets>
</queue:submit>

</onentry>
<transition event="error.queue.submit" target="route_to_agent_group">

<log expr="'Queue Submit to Agent Group'"/>
</transition>

</state>

<state id="route_to_agent_group">
<onentry>

<queue:submit requestid="_data.reqid" interactionid="_data.ixnid" priority="5"
timeout="60">

<queue:targets>
<queue:target type="agentgroup"

name="'SipGr_2'"/>
</queue:targets>

Orchestration Getting Started Guide

Orchestration Server Developer's Guide 6

</queue:submit>
</onentry>

<transition event="error.queue.submit" target="route_to_place">
<log expr="'Queue Submit to Place'"/>

</transition>
</state>

<state id="route_to_place">
<onentry>

<queue:submit requestid="_data.reqid" interactionid="_data.ixnid" priority="5"
timeout="60">

<queue:targets>
<queue:target type="place" name="'702'"/>

</queue:targets>
</queue:submit>

</onentry>
<transition event="error.queue.submit" target="route_to_place_group">

<log expr="'Queue Submit to Place Group'"/>
</transition>

</state>

<state id="route_to_place_group">
<onentry>

<queue:submit requestid="_data.reqid" interactionid="_data.ixnid" priority="5"
timeout="60">

<queue:targets>
<queue:target type="placegroup"

name="'SIP_PlGr2'"/>
</queue:targets>

</queue:submit>
</onentry>

<transition event="error.queue.submit" target="error">
<log expr="'ERROR'"/>

</transition>
</state>

<transition event="queue.submit.done" target="exit">
<log expr="'Queue Submit DONE'"/>
<log expr="_event.data.targetselected"/>

</transition>
</state>

</parallel>

<final id="exit"/>
<final id="error"/>

</scxml>

• This time, we enter the two child states dialog and routing simultaneously as soon as we enter the
routingwithdialog parallel state.

• The dialog state now has two child states, play_estimated_wait_time and play_music. As soon as
the dialog state is entered, the play_estimated_wait_time state becomes the active state because it
has been declared as the initial state.

• The play_estimated_wait_time will play a prompt announcing the estimated wait time before the call
will get routed to an agent. When the announcement is finished, we will get the dialog.play.done
event to trigger a transition to the play_music state.

• The play_music state is the same as before and will play music for 60 seconds, then fire the
dialog.playsound.done event, which will trigger a transition to the play_estimated_wait_time state.

• The routing state has four child states, all trying to route the call to an agent. As soon as the routing

Orchestration Getting Started Guide

Orchestration Server Developer's Guide 7

state is entered, the route_to_agent state becomes the active state. While the state machine is in any
of the four child states, the queue.submit.done event could be fired. Since this event has no matches
in the currently active child state, it will look at the parent state routing and look for a transition with
the event name queue.submit.done. This will cause a transition to the final state exit.

• The route_to_agent state will try to route the call to agent 702_sip for 60 seconds before it fires the
error.queue.submit event which will trigger a transition to the route_to_agent_group state.

• The route_to_agent_group state will try to route the call to agent group SipGr_2 for 60 seconds
before it fires the error.queue.submit event which will trigger a transition to the route_to_place
state.

• The route_to_place state will try to route the call to place 702 for 60 seconds before it fires the
error.queue.submit event which will trigger a transition to the route_to_place_group state.

• The route_to_place_group state will try to route the call to place group SIP_PlGr2 for 60 seconds
before it fires the error.queue.submit event which will trigger a transition to the final state error.

Next, we have a situation where we are trying to detect whether the call was created from a consult
call. The following SCXML file was configured on a Routing Point, and was triggered when a primary
call initiated a consult call to the Routing Point:

<scxml version="1.0" xmlns="http://www.w3.org/2005/07/scxml"
xmlns:queue="www.genesyslab.com/modules/queue"
xmlns:dialog="www.genesyslab.com/modules/dialog"
xmlns:ixn="http://www.genesyslab.com/modules/interaction"
initial="global">

<script>
var reqid;
var consult_ixn_id;
var primary_ixn_id;
var effective_ixn_id;
var sessionStarted = false;

</script>
<!--**-->
<state id="global" initial="initial">

<!--**-->
<state id="initial">

<!--This ensures the session terminates after 10 minutes-->
<onentry>

<send event="'toExit'" delay="'600s'" />
</onentry>
<transition event="interaction.added" cond="sessionStarted == false" >

<script>
/*

To avoid catching another 'interaction.added' event (caused by 'attach') in the same state
again,
set sessionStarted to true. 'Attach' action could be done in a separate state, but for the
sake of

simplicity and to minimize number of states it is done here in initial state...
*/
sessionStarted = true;
/* Assign interaction IDs that will be needed later on ... */
if(_genesys.ixn.interactions[_event.data.interactionid].voice.type == 'consult')

{
consult_ixn_id = _event.data.interactionid;
primary_ixn_id =

_genesys.ixn.interactions[consult_ixn_id].parentid;
effective_ixn_id = consult_ixn_id;
}

else
{

Orchestration Getting Started Guide

Orchestration Server Developer's Guide 8

consult_ixn_id = undefined;
primary_ixn_id = _event.data.interactionid;
effective_ixn_id = primary_ixn_id;

}
</script>

<log expr="'CONSULT_EXAMPLE: consult_ixn_id = ' + consult_ixn_id" />
<log expr="'CONSULT_EXAMPLE: primary_ixn_id = ' + primary_ixn_id" />
<log expr="'CONSULT_EXAMPLE: effective_ixn_id = ' +

effective_ixn_id" />
<if cond="consult_ixn_id != undefined">

<log expr="'CONSULT_EXAMPLE: Consult call started
strategy.

Attaching primary call...'"/>
<ixn:attach requestid="reqid"

interactionid="primary_ixn_id" />
<else/>
<log expr="'CONSULT_EXAMPLE: Normal call started strategy.
Proceeding with session ...'"/>

<send event="'toProceed'" />
</if>

</transition>
<transition event="interaction.attach.done"

cond="_event.data.requestid == reqid"
target="prewaiting_state" />
<!-- error.interaction.attach event (if happened) will be caught in

global state -->
<transition event="toProceed" target="CUSTOM_WORKING_STATE" />

</state>
<!--**-->
<state id="prewaiting_state">
<onentry>
<!-- This illustrates the case when the session is started by a consult call

(and that
call is still alive here), sometimes it makes sense to wait for some short

amount of time.
This time could depend on how fast TServer completes transfer, or
could be done to avoid routing consult call during mute transfer, etc. -->
<log expr="'CONSULT_EXAMPLE: Continuing session with some short delay...'"/>
<send event="'toProceed'" delay="'1s'"

/>
</onentry>
<transition event="toProceed" target="CUSTOM_WORKING_STATE"

/>
</state>
<!--**-->
<!--************ This is where your main logic goes *********************-->
<!--**-->
<state id="CUSTOM_WORKING_STATE" initial="route_to_agent">

<!-- This will try to route the call to agent 703_sip.
If it is not successful within 3 seconds, it will transition to state "dialog" and

play music.
The attribute "clearontimeout" is set to false so router will continue trying to

route to the
agent while the music is playing. -->

<state id="route_to_agent">
<onentry>

<queue:submit requestid=
"reqid" interactionid="effective_ixn_id" priority="5"

timeout="3"
clearontimeout="false" >

<queue:targets>
<queue:target type="agent"

Orchestration Getting Started Guide

Orchestration Server Developer's Guide 9

name="'703_sip'"/>
</queue:targets>

</queue:submit>
</onentry>
<transition event="error.queue.submit" target="dialog" >

<log expr="'ERROR WITH QUEUE SUBMIT: ' + uneval(
_event)"/>

</transition>
</state>

<!-- This plays music for 60 seconds. -->
<state id="dialog" >
<onentry>

<dialog:playsound requestid="reqid"
interactionid="effective_ixn_id"

type="'music'" resource="'music/on_hold'" duration="60" />
</onentry>

<transition event="dialog.playsound.done.timeout" />
<transition event="dialog.playsound.done" target="exit"/>
<transition event="error.dialog.playsound" target="error">

<log expr="'ERROR PLAYING MUSIC: ' + uneval(_event)"
/>

</transition>
</state>

<transition event="queue.submit.done" target="exit">
<log expr="'QUEUE SUBMIT DONE. Ending Session.'"/>

</transition>
<transition event="interaction.partystatechanged" cond=\

"effective_ixn_id == _event.data.interactionid">
<log expr="'CONSULT_EXAMPLE: Got partystatechanged event: ' +
uneval(_event.data)" />

</transition>
</state>

<!--**-->
<!--**-->
<!--**-->
<transition event="interaction.onmerge" cond="_event.data.frominteractionid
== consult_ixn_id && _event.data.tointeractionid == primary_ixn_id" >

<script>
consult_ixn_id = undefined;
effective_ixn_id = primary_ixn_id;

</script>
<log expr="'CONSULT_EXAMPLE:

Effective call ID changed because of transfer completion: ' + uneval(_event)"/>
<log expr="'CONSULT_EXAMPLE: consult_ixn_id = ' + consult_ixn_id" />
<log expr="'CONSULT_EXAMPLE: primary_ixn_id = ' + primary_ixn_id" />
<log expr="'CONSULT_EXAMPLE: effective_ixn_id = ' + effective_ixn_id"

/>
</transition>
<transition event="interaction.deleted" cond="_event.data.interactionid ==
effective_ixn_id" target="exit" >

<log expr="'CONSULT_EXAMPLE: Effective call is dead. Exiting...: ' +
uneval(_event)"/>

</transition>
<transition event="interaction.deleted" cond="_event.data.interactionid ==

primary_ixn_id && consult_ixn_id != undefined" target="exit" >
<log expr="'CONSULT_EXAMPLE: Primary call is dead, consult call is alive and

useless.
Exiting...: ' + uneval(_event)"/>

</transition>
<!--In case none of the other events are triggered, this will end the session

Orchestration Getting Started Guide

Orchestration Server Developer's Guide 10

after
number of minutes specified at the strategy beginning-->
<transition event="toExit" target="exit">

<log expr="'CONSULT_EXAMPLE: Possibly stuck session is self-
destructing.

Exiting...: ' + uneval(_event)"/>
</transition>
<!--This will catch all the errors that are not processed elsewhere-->
<transition event="error.*" target="error" >

<log expr="'CONSULT_EXAMPLE: ERROR AT GLOBAL LEVEL'"/>
<log expr="'CONSULT_EXAMPLE: Got error event: ' + uneval(_event)" />

</transition>
</state>
<final id="exit"/>
<final id="error"/>

</scxml>

• When an agent that is part of the primary call initiates a transfer or consult to the Routing Point, it will
trigger a SCXML session to be created and will wait for the interaction.added event.

• After the interaction.added event is received, it will set the consult_ixn_id, primary_ixn_id, and
effective_ixn_id depending on whether the session was started by a regular call, or a consult call to
the Route Point.

• If the call that started the session is a consult call, we attach the parent interaction (the primary call
which is ownerless) to the current session (see interaction attach for more details about ownership).

• The interaction.attach.done event will trigger a transition to the prewaiting_state, where we put
in a delay. This delay is needed depending on how fast TServer completes the transfer, or is sometimes
done to avoid routing a consult call during a mute transfer.

• The CUSTOM_WORKING_STATE is where you would put your main logic. In this example, we first try to
route the call to agent 703_sip. If this is not successful within 3 seconds, we transition to the dialog
state and play music for 60 seconds.

• At any time during the session, if the transfer or consult is completed, the interaction.onmerge event
will be triggered and various interaction IDs will be updated. This is needed to because the consult call
is deleted during the merge. The consult_ixn_id will no longer be valid and is set to undefined. The
effective_ixn_id is updated and should be used from this point forward for all functions and actions
that require an interaction ID.

• Exiting the session is triggered by any of the following situations:
• The call is successfully routed to agent 703_sip.
• Music has been played for 60 seconds.
• There was a problem playing the file music/on_hold.
• The effective call is deleted (effective call is the consult call until the consult or transfer is complete,

at which time, it is the only call left).
• The primary call is deleted before the consult or transfer is complete (the consult call can still be

alive but is useless at this point).
• Any error.* events that are raised during the session.
• The session may be stuck and self-destucts 10 minutes after it was created.

Orchestration Getting Started Guide

Orchestration Server Developer's Guide 11

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/IxnIntfActionElements#.3Cattach.3E

	Orchestration Server Developer's Guide
	Orchestration Getting Started Guide

