
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

External Interfaces

Orchestration Server Developer's
Guide

4/3/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

External Interfaces

Contents

• 1 External Interfaces
• 1.1 Start SCXML Session
• 1.2 Stop SCXML Session
• 1.3 Query SCXML Session
• 1.4 Send Request to SCXML Session
• 1.5 Publish Event to SCXML Session
• 1.6 Orchestration Platform Status
• 1.7 API Parameter Passing

External Interfaces

Orchestration Server Developer's Guide 2

The orchestration platform has a set of RESTFul Web 2.0 Web Services APIs. These APIs allow the
following interaction with SCXML sessions:

• Start SCXML Session - This action starts a new orchestration application instance (session).
• Stop SCXML Session - This action terminates a given orchestration application instance (session).
• Publish Event to SCXML Session - This action allows an external system to send an event to a given

orchestration session.
• Send a Request to SCXML Session - This action allows an external system to send a request to a

given session to be processd. The session will respond to this request with the <response> element.
• Query SCXML Session - This action gets the requested orchestration session data. This can be used to

get current session data on any session.

Tip
(Starting with 8.1.400.55), the /ors/help method provides help for ORS REST APIs.

These external interfaces may have equivalent functionality in SCXML or Orchestration extensions.
The following table reflects the mapping between the two.

External RESTful APIs SCXML or Functional Module Function

http://<server:port>/scxml/session/start <session:start>

http://<server:port>/scxml/session/<session
id>/terminate <session:terminate>

http://<server:port>/scxml/session/<session
id>/event/<name>[?<parameters>] <scxml:send>

http://<server:port>/scxml/session/<session
id>/request/<name>[?<parameters>] <session:fetch>

http://<server:port>/scxml/session/<session
id>/query none

Start SCXML Session

This API starts a new SCXML session for a specific application. The "src" parameter is mandatory. All
of the other parameters are optional.

External Interfaces

Orchestration Server Developer's Guide 3

http://<server:port>/scxml/session/start

HTTP Verbs

PUT Not used

POST

Used to start a given session. (supported
Content-Type - application/x-www-
form-urlencoded). Starting with ORS
8.1.400.30, application/json is
supported as a new value for Content-
Type.

DELETE Not used

GET Not used

URI-Variable Elements none
Request-URI Parameters none

Document Body - using application/x-
www-form-urlencoded

src URL of the SCXML document to use for
the new session.

idealtime

A dateTime value which will represent the
date and time that this session is to be
started. This value should be the time as
returned by the ECMAScript
Date(...).getTime() function, which is
given in the number of milliseconds since
00:00:00 UTC on January 1, 1970.

request-specific

These are request-specific parameters.
These parameters will be put in the
appropriate session data items (<data>)
when the session is initiated if the name
of the parameter matches the ID attribute
of the <data> element. For example, if
you have the following parameters,
p1=12355, p2=abcd, then <data
id="p1> and <data id="p2"> will be set
to the corresponding values. If a
parameter value does not match the ID of
a data item, it will be thrown away. In
addition, there will be a parameter which
specifies the content type for the
parameters and it will be set to
"application/x-www-form-urlencoded".

results

A body parameter value which will
represent a callback URL that accepts the
results of a scheduled session start,
whether it has positive or negative
results. This URL will be invoked with the
HTTP POST method. The content of the
document body will be the following:

• Type - This is the type of

External Interfaces

Orchestration Server Developer's Guide 4

http://<server:port>/scxml/session/start

response - positive or
negative.

• Reason - This is the reason
why the response was
generated.

• sessionid - This is the ID of
the session that is being
started.

• server - This is the URL of the
server that can be used to
invoke other requests on the
same session. (Question:
Should this be merged with
the sessionid?)

Positive Response (200 Response) ID The identifier of the newly created
session.

Negative Response HTTP Error Code HTTP 4xx

Example

POST http://<server:port>/scxml/session/start
. . .
Content-type: application/x-www-form-urlencoded
. . .
src=http://appserver/appname.scxml

Stop SCXML Session

This API terminates a SCXML session.

http://<server:port>/scxml/session/<session id>/terminate

HTTP Verbs

PUT Not used

POST Stops an existing session.

DELETE Not used

GET Not used

URI-Variable Elements session id This identifies the session which is to be
stopped.

External Interfaces

Orchestration Server Developer's Guide 5

http://<server:port>/scxml/session/<session id>/terminate

Document Body none none

Positive Response (200 Response) OK OK

Negative Response HTTP error code HTTP 4xx

Example POST http://<server:port>/scxml/session/1234567/terminate

Query SCXML Session

This API queries a given SCXML session's data.

http://<server:port>/scxml/session/<session ids>/query

HTTP Verbs

PUT Not used

POST Not used

DELETE Not used

GET Query a set of existing sessions.

URI-Variable Elements session ids

This identifies the set of sessions which
are to be queried. The session ids are
separated by a "," For example,
<server:port>/scxml/session/
123456,345677,66778898 . Currently,
we only support a list of one session id.

Request-URI Parameters none

Document Body none none

Positive Response (200 Response) sessionData

This is a list of sessions and their
associated data. The following is the
JSON-formatted set of session data which
will be returned for each session in the
list:

• Session ID
• URL of the application
• Name - _name attribute

External Interfaces

Orchestration Server Developer's Guide 6

http://<server:port>/scxml/session/<session ids>/query

• Type - _type attribute
• Current states
• Current events
• _data properties (application-

related data)
• _genesys properties

(functional module-related
data)

Negative Response HTTP error code 404 Not found

Example GET http://<server:port>/scxml/session/1234567/query

Send Request to SCXML Session

This API sends a request to the SCXML session to process.

http://<server:port>/scxml/session/<session id>/request/<name>

HTTP Verbs

PUT Not used

POST Send a request to an existing session.

DELETE Not used

GET Not used

URI-Variable Elements

session id This is the session which the request is
targeted for.

name

This is the name of the request which is
to be performed by the SCXML session
when it receives the corresponding
request event. This value will be the
name of the SCXML event which the
SCXML session will process.

Request-URI Parameters none

Document Body - can be in any of the
following encodings - application/x-www-
form-urlencoded - application/json - text/
xml

request-specific
These are request-specific parameters.
These parameters will be put into the
SCXML event at the following location:
_event.data.param.xxx. For example, if

External Interfaces

Orchestration Server Developer's Guide 7

http://<server:port>/scxml/session/<session id>/request/<name>

you have the following body parameters,
p1=12355, p2=abcd, then the following
will be the structure in the event:
_event.data.param.p1 and
_event.data.param.p2. In addition, there
will be a parameter which specifies the
content type for the parameters and it
will be set based HTTP Content-Type
element value. For details see the [[|API
Parameter passing]] section.

request identifier

This API-related parameter is generated
by the orchestration platform when it
gets the HTTP request. It is used to
correlate the requests and the
corresponding responses for a given
session. This identifier is put in the sendid
property of the request's SCXML event
(that is, _event.sendid) when sent to the
application. This identifier must be used
in the corresponding <response>
element.

Positive Response (200 Response)

results
This is a set of data, based on the results
of the request. It is request-specific in its
content. The SCXML session sends this
data via the [[|<response>]] element.

headers

This is a collection of key-value pairs,
representing a select group of request
headers obtained from the HTTP request.
It is request-specific in its content. This
data can be accessed in the SCXML event
at the following location:
_event.data.headers
The list of retrievable headers are as
follows:

• HTTP_METHOD,
HTTP_VERSION,
HTTP_REQUEST_URI, ACCEPT,
DATE, USER-AGENT,
CONNECTION, ACCEPT-
LANGUAGE, REFERER, IF-
MODIFIED-SINCE, FROM,
MIME-VERSION, PRAGMA,
AUTHORIZATION, CONTENT-
LENGTH, CONTENT-TYPE,
CONTENT-ENCODING

Negative Response HTTP error code HTTP 4xx

Example POST http://<server:port>/scxml/session/1234567/request/
getxData

External Interfaces

Orchestration Server Developer's Guide 8

http://<server:port>/scxml/session/<session id>/request/<name>

. . .
Content-type: application/x-www-form-urlencoded
. . .
parm1=john

The SCXML session must have the following SCXML snippet somewhere in its
definition. This type of request processing SCXML snippet is probably best placed as a
global document event handler.

<transition event="getxData" cond="_event.data.param.parm1
= ''" >

<ws:response requestid="_event.sendid"
type="negative"

resultcode="invalidparameter"/>
</transition>
<transition event="getxData"
cond="_event.data.param.parm1 != ''" >

<script>
var rdata =

_getdata(_event.data.param.parm1);
</script>
<ws:response requestid="_event.sendid" >

<param name="results" expr="rdata"/>
</ws:response>

</transition>

Special Considerations

It is recommended that the orchestration logic for processing this event should be
processed within the executable content of the <transition> element that receives
the request event. This includes using the <response> element to respond to the
request. If the processing of the request requires more complicated processing (for
example, it must transition to a sub-state model for processing), then the application
must copy all the necessary request data (for example, _event.sendid) from the event
and put it into the appropriate global variables so that the sub-state model can use it
to process the request. This is because the event data becomes invalid after the
transition element has been processed.

Publish Event to SCXML Session

This API sends an event to an existing session.

http://<server:port>/scxml/session/<session id>/event/<name>

HTTP Verbs

PUT Not used

POST Send an event to an existing session.

DELETE Not used

GET Not used

External Interfaces

Orchestration Server Developer's Guide 9

http://<server:port>/scxml/session/<session id>/event/<name>

URI-Variable Elements

session id This is the session which the event is
targeted for.

name
This is the name of the event which is to
be sent to the SCXML session. This value
will be the name of the SCXML event
which the SCXML session will process.

Request-URI Parameters none

Document Body - can be in any of the
following encodings - application/x-www-
form-urlencoded - application/json - text/
xml

request-specific

These are event-specific parameters.
These parameters will be put into the
SCXML event at the following location:
_event.data.param.xxx. For example, if
you have the following body parameters,
p1=12355, p2=abcd, then the following
will be the structure in the event:
_event.data.param.p1 and
_event.data.param.p2. In addition, there
will be a parameter which specifies the
content type for the parameters and it
will be set based HTTP Content-Type
element value. For details see API
Parameter Passing.

Positive Response (200 Response)

none

Note: (Since 8.1.200.50) Behaviour
depends on configuration option
orchestration/webfm-event-hold-response
(default = true).
When [Orchestration/
webfm_event_hold_response] is true, no
response is given until the event is
processed. The response status code
depends on how the event is processed:

• Event is processed and
transition is taken - OK 200
Response

• Event is processed and no
transition is taken - No
Content 204 Response

When [Orchestration/
webfm_event_hold_response] is false,
200 Response is provided immediately.
Prior to 8.1.200.50, 200 Response is
provided immediately.

headers

This is a collection of key-value pairs,
representing a select group of request
headers obtained from the HTTP request.
It is request-specific in its content. This
data can be accessed in the SCXML event
at the following location:
_event.data.headers
The list of retrievable headers are as

External Interfaces

Orchestration Server Developer's Guide 10

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ExternalIntf#API_Parameter_Passing
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ExternalIntf#API_Parameter_Passing
https://docs.genesys.com/Documentation/OS/8.1.4/Deployment/AppLevel#webfm-event-hold-response

http://<server:port>/scxml/session/<session id>/event/<name>

follows:

• HTTP_METHOD,
HTTP_VERSION,
HTTP_REQUEST_URI, ACCEPT,
DATE, USER-AGENT,
CONNECTION, ACCEPT-
LANGUAGE, REFERER, IF-
MODIFIED-SINCE, FROM,
MIME-VERSION, PRAGMA,
AUTHORIZATION, CONTENT-
LENGTH, CONTENT-TYPE,
CONTENT-ENCODING

Negative Response HTTP error code HTTP 4xx

Example

POST http://<server:port>/scxml/session/1234567/event/
xisDone
. . .
Content-type: application/x-www-form-urlencoded
. . .
parm1=john

The SCXML session must have the following SCXML snippet somewhere in its
definition. This type of request-processing SCXML snippet is probably best placed as a
global document event handler.

<transition event="xisDone" target="continuewithY" >
<! - Do some processing here/>

</transition>

Orchestration Platform Status

The status of the orchestration platform can be obtained simply by using a GET HTTP request. The
following are the URLs for different types of platform status. The results from the request are in XML.

URL Type Results

<Orch platform server>:<port> Basic data

• Version
• Start time
• Running time

<Orch platform
server>:<port>/server?cfgStatisticsConfiguration data

External Interfaces

Orchestration Server Developer's Guide 11

URL Type Results

<Orch platform
server>:<port>/server?activeCallsInteraction data

<Orch platform
server>:<port>/server?scxmlStat SCXML engine data

<Orch platform
server>:<port>/serverx?activeApplicationsSCXML Application data

For each active application, the following
information is provided:

• URL
• Name
• startedSessions
• endedSessions
• abortedSessions

API Parameter Passing

Parameters are passed from the Web 2.0 APIs to the SCXML session using two basic mechanisms.
These mechanisms are mutually exclusive:

URL-Encoded Parameters

URL-encoded parameters can be specified in a request. Parameters may be specified either in the
URL for GET based APIs:

GET http://<server:port>/scxml/session/<session id>/event/<name>?param1=1¶m2=2

Or in the document body for POST and PUT based APIs:

POST http://<server:port>/scxml/session/<session id>/event/<name>
.. . .
Content-type: application/x-www-form-urlencoded
. . .
param1=1¶m2=2

In both cases, URL encoded parameters will be translated to properties of the SCXML event:

_event.data.param.param1 = 1
_event.data.param.param2 = 2

The _event.data.paramtype will be set to application/x-www-form-urlencoded. In the case of the
[http:// http://]<server:port>/scxml/session/start API (Start Session), the following
processing will be done:

• • If the name of the parameter matches the 'id' of a <data> element in the data model of the started
session, then the value of the parameter will replace the value of the corresponding <data>

External Interfaces

Orchestration Server Developer's Guide 12

element.
• If the names do not match, the value of the parameter will not be added to the started session's

data model.

Document Body-Encoded Parameters

These parameters are specified in the document body using the following supported content types:

• application/json - In this case, the body of the request contains JSON-encoded data. The whole body of
the request is passed to the SXCML session as a value of the "_event.data.param" event property. In
addition, the "_event.data.paramtype" property will be set to "application/json", based on the HTTP
Content-Type element. For example:

POST http://<server:port>/scxml/session/<session id>/event/<name>
...
Content-Type=application/json
Content-Length=xx
...
param="{

"firstName": "John",
"lastName": "Smith",
"address": {

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": 10021

},
"phoneNumbers": [

"212 555-1234",
"646 555-4567"

]}"

An SCXML application may process these parameters by evaluating JSON text to ECMAScript objects.
In the case of the [http:// http://]<server:port>/scxml/session/start API (Start Session), the following
processing will be done:

• If the name of the parameter matches the 'id' of a <data> element in the data model of the started
session, then the value of the parameter will replace the value of the corresponding <data> element.

• If the names do not match, the value of the parameter will not be added to the started session's data
model.

text/xml - In this case, the body of the request contains XML-encoded data. The whole body of the
request is passed to the SXCML session as a value of the "_event.data.param" event property. In
addition, the "_event.data.paramtype" property will be set to "text/xml". For example:

POST http://<server:port>/scxml/session/<session id>/request/<name>
...
Content-Type=text/xml
Content-Length=xx
...
param="
<findCar>

<make>Dodge</make>
<model>Daytona</model>

</findCar>
"

External Interfaces

Orchestration Server Developer's Guide 13

An SCXML application may process this parameter using ECMAScript XML capabilities. In the case of
the http://server:port/scxml/session/start API (Start Session), the following processing will be done:

• If the name of the parameter matches the 'id' of a <data> element in the data model of the started
session, then the value of the parameter will replace the value of the corresponding <data> element.

• If the names do not match, the value of the parameter will not be added to the started session's data
model.

External Interfaces

Orchestration Server Developer's Guide 14

	Orchestration Server Developer's Guide
	External Interfaces

