
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Core Extensions

Orchestration Server Developer's
Guide

4/9/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Core Extensions
• 1.1 Session Interface
• 1.2 Web Services Interface

Orchestration Server Developer's Guide 2

Core Extensions

Session Interface

Object Model
_genesys.session Object

Every SCXML session instance running in the orchestration platform will have an object with a set of
common orchestration logic properties. These properties are maintained by the orchestration
platform, but they can be set or updated by the orchestration logic itself. They are also used by the
orchestration platform for orchestration logic reporting and management functionality. The name of
the object will be "_genesys.session". This is the set of properties for the object:

Name Access Type Default Value Valid Values Description

server read only genesys.session.server
object none

This is the Genesys
server information
on which this
session is running.

tenant read only string none

This is the name of
the tenant that this
session is
associated with. It
can be changed
with the
_genesys.session.setTenant()
function.

_genesys.session.server Object

Every SCXML session instance running in the orchestration platform will have a global root object
from which an application will have access to platform server information. This object is maintained
by the orchestration platform. The name of the object will be "_genesys.session.server". This is the
set of properties for the object:

Name Access Type Default Value Valid Values Description

url read only string none

This is the URL of
ORS that executes
this session. The
value is undefined
if port with
connection
protocol “http” is

Core Extensions

Orchestration Server Developer's Guide 3

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CoreExt#genesys.session.server_Object

Name Access Type Default Value Valid Values Description

not defined in
Configuration
Layer for that ORS.

name read only string none

This is the
configuration layer
application name
for the active
platform server
running this
session.

cluster read only string none

This is the
configuration layer
application name
of the platform
cluster (that is, the
primary platform
server) running
this session.

_genesys.session.lookupseq ENUM Object

This represents the lookupsequence enumeration. This enumeration is maintained by the
orchestration platform. This is the set of properties for the object:

Name Access Type Default Value Valid Values Description

StartFromStrategy Read only Integer None -1
The lookup starts
from the routing
strategy

StartFromCDN Read only Integer None 0 The lookup starts
from the CDN

StartFromTserver Read only Integer None 1 The lookup starts
from the T-Server

StartFromTenant Read only Integer None 2 The lookup starts
from the Tenant

StartFromRouter Read only Integer None 3 The lookup starts
from the URS

_genesys.session.day ENUM Object

This represents the day enumeration. This enumeration is maintained by the orchestration platform.
This is the set of properties for the object:

Core Extensions

Orchestration Server Developer's Guide 4

Name Access Type Default Value Valid Values Description

Sunday read only integer none 0 This represents
Sunday.

Monday read only integer none 1 This represent
Monday.

Tuesday read only integer none 2 This represents
Tuesday.

Wednesday read only integer none 3 This represents
Wednesday.

Thursday read only integer none 4 This represents
Thursday.

Friday read only integer none 5 This represents
Friday.

Saturday read only integer none 6 This represents
Saturday.

Functions
_genesys.session.dateInZone

This function returns the current date in the specified time zone. The results will be in the xml date
datatype format (that is, yyyy-mm-dd). This can be compared with other variables that use the same
time format. date _genesys.session.dateInZone(tzone) Parameters:

• tzone: STRING which can be a variable or a constant - This parameter is the name of a time zone
configured in the configuration layer.

Returns: date: xml date datatype - This value represents the current date, based on the time zone
specified. For example, "if (_genesys.dateInZone("EST") == "2009-01-28")".

_genesys.session.timeInZone

This function returns the current time in the specified time zone; that is, the number of minutes
elapsed since the last midnight (00:00 AM) in the specified time zone. The results will be in the xml
time datatype format (that is, hh:mm:ss or hh:mm). This can be compared with other variables that
use the same time format. time _genesys.session.timeInZone(tzone) Parameters:

• tzone: STRING which can be a variable or a constant - This parameter is the name of a time zone
configured in the configuration layer.

Returns: time: xml time datatype - This value represents the current time, based on the time zone

Core Extensions

Orchestration Server Developer's Guide 5

specified. For example, "if (_genesys.timeInZone("EST") == "17:00:00")".

_genesys.session.dayInZone

This function returns the current day of the week in the specified time zone. The results will be a
value from the _genesys.session.day enumeration. This can be compared with other objects that use
the same enumeration object. day _genesys.session.dayInZone(tzone) Parameters:

• tzone: STRING which can be a variable or a constant - This parameter is the name of a time zone
configured in the configuration layer.

Returns: day: genesys.session.day ENUM OBJECT which can be a variable or a constant - This value
represents the current day of the week, based on the time zone specified. For example, "if
(_genesys.session.dayInZone("PST") == 5)".

_genesys.session.isSpecialDay

This function checks to see if the current day and time is defined in the configuration layer as a
special day. value _genesys.session.isSpecialDay(stat_table, stat_day, zone, useTime)
Parameters:

• stat_table: STRING which can be a variable or a constant - This parameter is the stat table in the
configuration layer which this function will check.

• stat_day: STRING which can be a variable or a constant - This parameter is optional. If it is specified,
the platform inquires from the configuration layer whether the specified statistical day is configured for
the specified statistical table and whether the current date meets the definition of the statistical day. If
this parameter is not specified, the platform inquires from configuration layer whether the current date
meets the definition of any of the statistical days configured for the specified statistical table.

• zone: STRING which can be a variable or a constant - This parameter is optional. It defines the
timezone to be used to determine if the given day is a special one. If this parameter is not specified,
then the current date and time are used in the current TimeZone. If this parameter is specified, then
the specified time zone will be used to calculate the adjusted date and time.

• useTime: BOOLEAN which can be a variable or a constant - This parameter is optional. It specifies
whether or not to use the time limits specified within the stat day definition in the configuration layer.

Returns: value: BOOLEAN - This indicates if the current day and time is special, based on
configuration information.

_genesys.session.getConfigOption

This function allows the use of customized configuration options from the configuration layer and is
obtained via URS - the user can configure any option name that is different from the standard options
and then use its value in the session. In particular, you can specify any options you like in addition to
the required ones and then give them meaning in the logic. This function retrieves the current value
of any platform configuration option for use in the session. The search for the option starts with the
object properties given by lookup sequence (the DN or resource that triggered the start of the
session, the media server controlling this DN, the tenant to which they belong, or the orchestration
platform). If the option is not found there, the search continues in the object properties corresponding
to greater values of lookup sequence, in increasing order, until the option is found. The key should be
located within a section called __ROUTER__ of the corresponding objects from which the function will
search. Failure to provide the key within such a section of the objects will result in an empty string
being returned. Please refer to the Universal Routing Reference Manual for more details on setting

Core Extensions

Orchestration Server Developer's Guide 6

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CoreExt#genesys.session.day_ENUM_Object

URS Options and supported sections where options may be located from. value
_genesys.session.getConfigOption(ixnid, key, lookupseq) Parameters:

• ixnid: STRING which can be a variable or a constant - This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• key: STRING which can be a variable or a constant - This parameter is mandatory. It is the key name of
the configuration option in the configuration layer, it should be present under the required section of
the objects, i.e. __ROUTER__

• lookupseq: genesys.session.lookupseq ENUM OBJECT which can be a variable or a constant - This
parameter is mandatory. It defines the lookup sequence to use while searching the configuration layer..

Returns: value: STRING - This is the value of the configuration option key. The empty string is
returned if the option is not found.

_genesys.session.getServerVersion

Starting with ORS 8.1.400.24, this function allows you to retrieve the Orchestration Server version.

• Parameters: None
• Returns: STRING (version of Orchestration Server)

_genesys.session.getValue

This function searches an object tree to find a specific property and returns the value of that property.
This is needed for properties like _genesys.ixn.interactions[x].udata or
_genesys.ixn.interactions[x].xdata. object _genesys.session.getValue(object rObj, string
key) Parameters:

• rObj: OBJECT which can be a variable or a constant - This parameter is the object which is going to be
searched.

• key: STRING which can be a variable or a constant - This parameter is the name of property to search
for.

Returns: value: OBJECT - This is the value of the property. An empty object is returned if no property
was found in the object tree.

_genesys.session.setOptions

This function is an override for platform-level configuration options. It enables the session to take
control of certain options, instead of leaving them under the control of the platform or of functional
modules. These changes only affect the current session and are not applied to the entire platform.

void _genesys.session.setOptions(ixnid, option, value)
Parameters:

• ixnid: STRING which can be a variable or a constant. This parameter is mandatory. It defines the ID of
the interaction which should have this action applied.

• option: STRING which can be a variable or a constant. Previously, the options that could be overridden
were as listed below. Starting with Release 8.1.400.17, this restriction is now removed.

Core Extensions

Orchestration Server Developer's Guide 7

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CoreExt#genesys.session.lookupseq_ENUM_Object

• request_timeout (all functional module requests)
• null_value (not valid any more, because DB access will be through the <fetch> element)
• default_object (Queue functional module)
• use_ivr_info (Queue functional module)
• default_destination (Queue functional module)
• use_agentid (Queue functional module)
• use_extrouter (Queue functional module)
• use_extrouting_type (Queue functional module)

• value: STRING which can be a variable or a constant - This parameter is the value that is to be used as
the override for the option.

Returns: VOID
Notes:
Previously, ORS allowed function _genesys.session.setOptions to override only the eight options
shown above. Starting with Release 8.1.400.17, this restriction is now removed.
Using this function may negatively impact URS performance.

_genesys.session.setTenant

This function overrides the tenant for this session. void _genesys.session.setTenant(name)
Parameters:

• name: STRING which can be a variable or a constant - This parameter is the configuration layer name
of the tenant to be set.

Returns: VOID

_genesys.session.getListItemValue

A developer can create string-related lists in the configuration layer. For example, these lists can be
used to create lists of toll-free numbers instead of references for each individual 800 number in the
logic. You can logically group numbers together and name the group. Then, when you need to add or
edit numbers, the logic does not need changing; you just add to or edit the list. This function looks for
an element item in the configured list and returns the value of its property key. value
_genesys.session.getListItemValue(list, item, key) Parameters:

• list: STRING which can be a variable or a constant - This parameter is the name of the list in the
configuration layer which this function will try and get the appropriate value for.

• item: STRING which can be a variable or a constant - This parameter is the name of the item in the list
which this function will try and get the appropriate value for.

• key: STRING which can be a variable or a constant - This parameter is optional. It is the name of the
key in the list which this function will try and get the appropriate value for. If this parameter is not
specified, all properties of the found list elements are returned in as an OBJECT of key/value pairs:
{Key1:value1, Key2:Value2, ...}.

Returns: value: STRING - This is the value of the key in the list that was found, or OBJECT - all key/
value pairs if the key wasn't specified. If the item or key is not found, this function returns an empty

Core Extensions

Orchestration Server Developer's Guide 8

string. If list object itself is not found the function returns error (i.e. raises exception).

Starting with ORS 8.1.400.49, if option functions-by-urs is false, an asterisk ('*') can be specified
as the value of item in the second parameter of the _genesys.session.getListItemValue(list,
item, key) function. The key parameter is then mandatory and cannot be an asterisk. In this case,
ORS performs a lookup for the specified key among all items. If only one key is found, the function
returns a string value that corresponds to the key. If the key is found in several items, then the
function returns object: {Item1:Value1, Item2:Value2…}

_genesys.session.listLookupValue

This function checks whether a List object in the configuration layer contains a particular element
item.

value _genesys.session.listLookupValue(list, item) Parameters:

• list: STRING which can be a variable or a constant - This parameter is the name of the list in the
configuration layer which will be searched to determine whether it contains the item.

• item: STRING which can be a variable or a constant - This parameter is the name of the item that will
be searched for in the list.

Returns: value: BOOLEAN - This return value indicates whether the the item is part of the list.

Action Elements
This covers action elements that are related to SCXML sessions, but are Genesys-specific. The
namespace for these session-related actions is www.genesyslab.com/modules/session .

<fetch>
Note: See the Document Change History for recent updates to this section. Also see example web
scenarios in Composer.

This action element fetches business content or data from an application server and is an enabler for
Orchestration Server Integration within a customers environment.. The content could be generated
by actual "business logic" running on the application server or it could just be a static content file on
the application server, which could be updated (even manually) as required to allow things to be
dynamic. The business content and associated logic itself will be created based on the programming
technology of the application server it is going to run on. So the application server-specific
development tools will be used to create this content and associated logic. This element is used
within executable content processing. This business content and associated logic will be deployed
and executed on an application server. The orchestration platform will support both .NET and J2EE
application servers. The form of the returned business content will be JSON.

There is no explicit context or state shared between the orchestration platform and the application
server. All context or state that is needed by the business content and logic must be sent via this
action element. If the needed context or state is not totally known at the time of invocation, then the
developer can use the QuerySessionData web services within their business content-fetching logic to
get the current orchestration logic context for the given orchestration logic session. This provides a
more flexible and dynamic mechanism. It also allows the developer to optimize what context or state
is needed for each business content-fetching logic "application". This element may cover web service
invocations in the future. In the meantime, the customer can use business content-fetching logic as a

Core Extensions

Orchestration Server Developer's Guide 9

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/DocumentChangeHistory
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/Server-SideCommonBlocks#Example_Web_Scenarios
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/Server-SideCommonBlocks#Example_Web_Scenarios
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/Integration

proxy for executing web services. This is also the way to invoke both database-related actions and
rules system-related actions.

In addition, this action will support ESP-based requests from Genesys Interaction Server through the
ESP (External Service Protocol) protocol and access URS REST API via direct ORS-URS connection. For
HTTP and HTTPS, basic authentication is supported if the username and or password is provided in
the request. This will result in the request being submitted to the application server with the
Authorization HTTP header element added to the message. In addition to this, for both HTTP and
HTTPS additional headers may be provided by passing an ECMAScript object into the request.

Attribute Details

Name Required Type Default Value Valid Values Description

attach_ixn_data false Boolean true true/false

Introduced in
8.1.400.48. Use to
enable/disable
attachment of
interaction
properties. ORS
will ignore this
attribute if
“method” attribute
is not “’esp’”.
Default value of
that attribute is
true. If true, ORS
will populate
UserData in the
ESP request with
the following
interaction
properties:
InteractionId,
ParentId, TenantId,
MediaType,
InteractionType,
InteractionSubtype,
InteractionState,
IsOnline, IsLocked,
Queue, Workbin,
WorkbinAgentId,
WorkbinAgentGroupId,
WorkbinPlaceId,
WorkbinPlaceGroupId,
SubmittedBy,
ReceivedAt,
SubmittedAt,
DeliveredAt,
SubmittedToRouterAt,
PlacedInQueueAt,
MovedToQueueAt,
AbandonedAt,
SubmitSeq,
PlaceInQueueSeq,
HeldAt, IsHeld,
AssignedAt,
CompletedAt,
AssignedTo.

requestid false location expression none Any valid location This is the location

Core Extensions

Orchestration Server Developer's Guide 10

Name Required Type Default Value Valid Values Description

expression which
represents a string

for the request ID
that is returned as
part of this
request. Any data
model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the action being
sent. If this
attribute is not
specified, the
event identifier is
dropped. This
identifier can be
tested by the
completion event
handler to
distinguish among
several
outstanding
requests. If this
attribute is not
specified, the
identifier can be
acquired from the
completion event.
Every request must
receive a unique
identifier.

srcexpr true value expression none

Any value
expression that
returns a valid
string URI of the
following types:

• HTTP
• HTTPS
• File
• gesp

This value
expression will be
evaluated at the
time that the fetch
element is
executed to
produce the URI to
pass to the
application server.
The URI schemes
supported are
HTTP, HTTPS and
File. Note: when
the scheme is
'gesp', the URI will
have a specific
format. See the
ESP based <fetch>
actions section for
details. Note: when
the method is 'urs',
the URI will have a
specific format.
See SCXML Legal
Data Values and

Core Extensions

Orchestration Server Developer's Guide 11

Name Required Type Default Value Valid Values Description

Value Expressions
for details.

type false value expression application/json
application/xml,
application/json,
text/plain

This value
expression returns
a character string
that specifies the
type of the fetched
content. Values
defined by the
specification are:

• application/
xml - This
specifies
that the
document
being
fetched
must be an
XML
document
for a given
namespace.

• application/
json - This
specifies
that the
fetched
content
must be
JSON
format. This
is the
default.

• text/plain -
This
specifies
that the
fetched
content
must be
plain text in
format.

If method attribute
is "esp" or "urs",
this attribute is
ignored. The type
attribute in the
issued HTTP
request will be
passed to the
application server
as the Accept

Core Extensions

Orchestration Server Developer's Guide 12

Name Required Type Default Value Valid Values Description

header. See SCXML
Legal Data Values
and Value
Expressions for
details.

method false value expression get get post esp urs
put delete

A value expression
which returns a
character string
that indicates the
HTTP method to
use. See SCXML
Legal Data Values
and Value
Expressions for
details. Values
defined by the
specification are:

• get - This
indicates
that the
"GET"
method
must be
used to
fetch the
URL.

• post - This
indicates
that the
"POST"
method
must be
used while
submitting
the URL to
the web
server.

• esp - This
indicates
that the
ixn-server
ESP
protocol is
to be used.

• urs - This
indicates
that URS
REST API
will be used
via direct
connection.

Core Extensions

Orchestration Server Developer's Guide 13

Name Required Type Default Value Valid Values Description

An example
is shown
below.

• put - This
indicates
that the
"PUT"
method
must be
used while
submitting
the URL to
the web
server.

• delete - This
indicates
that the
"DELETE"
method
must be
used while
submitting
the URL to
the web
server.

timeout false value expression 0
A value expression
which returns an
integer

A value expression
which returns an
integer that
represents the
number of seconds
to wait. See SCXML
Legal Data Values
and Value
Expressions for
details. The integer
returned must be
interpreted as a
time interval. This
interval begins
when <fetch> is
executed. A failed
and timed out
fetch must return
the
error.session.fetch
event.

maxage false value expression

A value expression
which returns a
valid integer for
the HTTP 1.1
request RFC 2616

The integer
returned must be
interpreted as a
time interval. This
indicates that the
logic is willing to
use content whose

Core Extensions

Orchestration Server Developer's Guide 14

Name Required Type Default Value Valid Values Description

age must be no
greater than the
specified time in
seconds (compare
with 'max-age' in
HTTP 1.1 RFC
2616). The logic is
not willing to use
stale content,
unless maxstale is
also provided. If
method attribute is
"esp" or "urs", this
attribute is
ignored.

maxstale false value expression

A value expression
which returns a
valid integer for
the HTTP 1.1
request RFC 2616

The integer in
string form
returned must be
interpreted as a
time interval. This
indicates that the
logic is willing to
use content that
has exceeded its
expiration time (cf.
'max-age' in HTTP
1.1 RFC 2616). If
maxstale is
assigned a value,
then the logic is
willing to accept
content that has
exceeded its
expiration time by
no more than the
specified number
of seconds. If
method attribute is
"esp" or "urs," this
attribute is
ignored.

username (since
8.1.1) false value expression none

Any expression
that results in a
valid string value

This value
expression returns
a character string
that represents the
username to be
used as apart of
HTTP Basic
Authentication as
defined by HTTP
1.1 [See RFC
2616]. If method
attribute is "urs",
this attribute is
ignored.

password (since
8.1.1) false value expression none

Any expression
that results in a
valid string value

This value
expression returns
a character string
that represents the

Core Extensions

Orchestration Server Developer's Guide 15

Name Required Type Default Value Valid Values Description

password to be
used as apart of
HTTP Basic
Authentication as
defined by HTTP
1.1 [See RFC
2616]. If method
attribute is "urs",
this attribute is
ignored.

enctype false value expression application/x-www-
form-urlencoded

application/x-www-
form-urlencoded,
application/json

This value
expression returns
a character string
that specifies the
type of encoding to
be used for the
content of the
POST/PUT
message. Values
defined by the
specification are:

• application/
x-www-
form-
urlencoded
- This
specifies
that the
message
content
must be
encoded in
URL
encoded
form. This
is the
default.

• application/
json - This
specifies
that the
message
content
must be
encoded in
JSON
format.

If method attribute
is "esp" or "urs",
this attribute is
ignored. The
content type
returned by the
application server

Core Extensions

Orchestration Server Developer's Guide 16

Name Required Type Default Value Valid Values Description

response will be
checked against
the enctype
attribute. If it is
different, an
error.session.fetch
event will be raised
- the exception is
the text/plain value
case, in which case
any type of
returned value is
accepted.The
returned body is
provided "as-is" in
the content of the
session.fetch.done
event. The
application logic is
supposed to use
the JSON functions
to convert it into
appropriate values.
See SCXML Legal
Data Values and
Value Expressions
for details.

gdelivery false value expression false
A value expression
which returns a
boolean value (true
or false)

A value expression
which returns a
boolean value that
indicates whether
the platform is to
guarantee the
execution of the
<fetch> action.
This does not
guarantee that the
action associated
with the srcexpr
value has been
carried out
successfully. It just
guarantees that
the HTTP request
gets to the defined
destination
(srcexpr value) and
that a response
(positive or
negative) is
returned. If method
attribute is "urs",
this attribute is
ignored. See
SCXML Legal Data
Values and Value
Expressions for
details.

gd_retries false value expression 0
A value expression
which returns a
valid integer

A value expression
which returns an
integer that

Core Extensions

Orchestration Server Developer's Guide 17

Name Required Type Default Value Valid Values Description

indicates the
number of times
the platform
should try to
successfully deliver
the associated
HTTP request to
the defined
destination
(srcexpr value).
This attribute is
ignored if the
gdelivery attribute
value is false. If the
gdelivery attribute
value is true and
the gd_retries
value is 0, the
platform will try to
delivery the
associated HTTP
request
indefinitely. If
method attribute is
"urs", this attribute
is ignored. See
SCXML Legal Data
Values and Value
Expressions for
details.

gd_retry_interval false value expression 0
A value expression
which returns a
valid integer

A value expression
which returns an
integer that
represents the
number of seconds
to wait. The
integer returned
must be
interpreted as a
time interval. This
interval is the time
to wait between
retries. This
interval begins
after a failed retry.
This attribute is
ignored if the
gdelivery attribute
value is false. If
method attribute is
"urs", this attribute
is ignored. See
SCXML Legal Data
Values and Value
Expressions for
details.

headers false value expression none Any valid
ECMAScriipt object

A value expression
which returns an
ECMAScript object.
Each property
name within the

Core Extensions

Orchestration Server Developer's Guide 18

Name Required Type Default Value Valid Values Description

object will be
interpreted as a
separate HTTP
header. Its value
will be obtained
using toString()
and appended
after the property
name followed by
a ":" character. No
checking or
validation will be
performed on the
properties and or
values provided
within the object.
This will not
override any
headers
automatically
added by <fetch>
such as Cache-
Control and is
provided as a
means to provide
the ability to add
customer header
information. If
method attribute is
"urs", this attribute
is ignored. See
SCXML Legal Data
Values and Value
Expressions for
details.

Important Note: Any evaluated attribute, if specified, must evaluate to a valid value. Otherwise, an
error.script event will be generated. This also applies to attributes that are ignored under specific
conditions. The mapping of this action to the underlying HTTP request and response is described in
the Mapping of the SCXML and Functional Module Elements to the HTTP Messages section.

The following are examples of the <session:fetch> action.

The example below demonstrate how to use <fetch> with method=”’urs’”. If you need to call a
function from the URS REST API, the example demonstrates how to specify function name, how to
pass parameters, and how to retrieve the returning object. The example is applicable for any
function, not only FindConfigObject as is used in the example.

<state id="FindPersonByEmployeeID">
<datamodel>

<data id="reqid" />
</datamodel>

<onentry>
<script>

var s_URI = 'urs/call/@' + system.InteractionID + '/func';
var message = [3, "employeeid:EID_1000"];

</script>
<session:fetch requestid="_data.reqid" srcexpr="s_URI" method="'urs'">

<param name= "name" expr="'FindConfigObject'" />

Core Extensions

Orchestration Server Developer's Guide 19

https://docs.genesys.com/Documentation/IW/8.1.3/Developer/CoreExt#Mapping_of_the_SCXML_and_Functional_Module_Elements_to_the_HTTP_Messages

<param name= "params" expr="uneval(message)" />
</session:fetch>
</onentry>
<transition event="session.fetch.done" target="statex">

<script>
var PersonObject = eval("(" + _event.data + ")");

</script>
<assign location="_interactionID"

expr="eventDataObject.envelope.Parameters.InteractionId"/>
</transition>
<transition event="error.session.fetch" target="statey" />
</state>

Another example:

<state id="get_business_data_using_param_child">
<datamodel>
<data id="reqid"/>
<data id="customervalue"/>

</datamodel>
<onentry>
<session:fetch requestid="_data.reqid" srcexpr="'www.joes.com\getbusinessdata'" timeout="30">

<param name="customerID" expr="_cv.customerid"/>
</session:fetch>

</onentry>
<transition event="session.fetch.done" target="statex">
<assign location="customervalue" expr="_event.data.cvalue"/>

</transition>
<transition event="error.session.fetch" target="statey"/>
</state>
<state id="get_business_data_using_content_child">
<datamodel>
<data id="reqid"/>
<data id="complexobject"/>

</datamodel>
<onentry>
<session:fetch requestid="_data.reqid" srcexpr="'www.joes.com\getbusinessdata'" timeout="30">

<content _expr="_data.complexobject"/>
</session:fetch>

</onentry>
<transition event="session.fetch.done" target="statex">
<assign location="customervalue" expr="_event.data.cvalue"/>

</transition>
<transition event="error.session.fetch" target="statey"/>
</state>
<state id="get_business_data_using_basic_auth_and_headers">
<datamodel>
<data id="reqid"/>
<data id="customervalue"/>

</datamodel>
<onentry>
<script>

var myheaders = new Objects();
myheaders["If-Modified-Since"] = "Sat, 1 Jan 2011 20:00:00 GMT";
myheaders["X-CUSTOM-HEADER"] = "Custom header information";

</script>
<session:fetch requestid="_data.reqid" srcexpr="'www.joes.com\getbusinessdata'" timeout="30"

username="'bob'" password="'mysecret'" headers="myheaders" >
<param name="customerID" expr="_cv.customerid"/>

</session:fetch>
</onentry>
<transition event="session.fetch.done" target="statex">
<assign location="customervalue" expr="_event.data.cvalue"/>

Core Extensions

Orchestration Server Developer's Guide 20

</transition>
<transition event="error.session.fetch" target="statey"/>
</state>

Children

• <param> Occurs 0 to N. See SCXML <param> for details. This element is mutually exclusive with the
<content> element. These parameters will be submitted differently, depending on the type of message
used:
• HTTP GET/DELETE Message - The <param> elements yield a URL parameter list (name1=

value1&name2=value2...) at the end of the path element. Note that if the srcexpr attribute
evaluates to a URL with URL parameters, the <param> element parameters will be concatenated to
the end of the URL component. If the <param> element value is a complex object, the value is the
result of evaluating the ECMAScript toString() function of that object, which is usually the string
"[object object]". As a result, instead of submitting objects directly, the application developer must
explicitly submit the properties of an object, for example, "_genesys.session.server.name". The
following is the mapping of the <param> element attributes to the URL parameter list format:
• name - The "name" attribute of the <param> element will be submitted with the given parameter

value as its key.
• value - The current value associated with this <param> element "expr" attribute:

• Simple types (string, integer, boolean, or decimal) will be converted into strings.
• ECMAScript objects will be converted into the string "[object object]". Complex objects should

not be used.

• HTTP POST/PUT Message - The <param> elements yield different formats depending on the
<fetch> enctype attribute value. Regardless, the results will be put into the body element of the
POST/PUT message:
• application/x-www-form-urlcoded - The <param> elements for this encoding format will be

transformed into a URL parameter list (name1=value1&name2=value2...) which will be inserted
into the body element of the message. If the <param> element value is a complex object, the
value is the result of evaluating the ECMAScript toString() function of that object, which is
usually the string "[object object]". As a result, instead of submitting objects directly, the
application developer must explicitly submit the properties of an object, for example,
"_genesys.session.server.name". The following is the mapping of the <param> element attributes
to the URL parameter list format:
• name - The "name" attribute of the <param> element will be submitted with the given

parameter value as its key.
• value - The current value associated with this <param> element "expr" attribute:

• Simple types (string, integer, boolean, or decimal) will be converted into strings.
• ECMAScript objects will be converted into the string "[object object]". Complex objects

should not be used.

• application/json - The <param> elements for this encoding format will be a JSON-formatted
string which will be inserted into the body element of the message. Each <param> element will
be a top-level attribute in the format. For example, <param name="a" expr="value1"/> <param
name="b" expr="complexb"/> <!- complexb has three properties e,f,g -> will result in
the following JSON-formatted string - {"a":value1, "b":{"e":88, "f":"john", "g":22}}.

• ESP Message - The <param> element can only be used to pass request parameters on the ESP
request message. If the ESP request message requires the passing of user-data parameters as well,

Core Extensions

Orchestration Server Developer's Guide 21

then the <content> element MUST be used instead. The <param> elements will put in the
Interaction Server TKVList format. The <fetch> enctype attribute value is ignored.

• urs Message - the same as for HTTP GET/DELETE

• <content> Occurs 0 to 1. See SCXML <content> for details. This element is mutually exclusive with the
<param> element. The content defined in this element will match the value of the <fetch> element
enctype attribute:
• application/x-www-form-urlencoded - The _expr attribute cannot be used and the content of this

element will be sent as is.
• application/json - The _expr attribute must be specified and must evaluate to an ECMAScript object.

The object will be sent as is.

Summary of URL and JSON encoding

The following table is a summary of the rules described above.

URL Encoded JSON Encoded

<param> <content> <param> <content>

GET, DELETE Name and expression
attributes of each
<param> element
(name and expr,
correspondingly) will be
evaluated, URL-
encoded, and combined
into a standard name-
value sequence
(n1=v1&n2=v2&...).
Duplicate parameter
names are acceptable.
The following rules will
be used when URL-
encoding the
expression attribute:

• String, number,
true, false, and
null - as usual.

• Any ECMAScript
object will be
encoded to the
following:
%5Bobject%20Object%5D

• Array will be
encoded as a
comma-
separated
string of
values. For
example,

Content of the
<content> element will
be URL-encoded
without prior
evaluation. This
element cannot be
used together with
<param>.

Not supported. Not supported.

POST, PUT

Name and expression
attributes of each
<param> element
(name and expr,
correspondingly) will be
evaluated, combined
into a single object and
then converted into the
JSON string. Duplicate
parameter names are
acceptable, however,
remember that
duplicate property
names in JSON string
will be eliminated
during evaluation. For
example, the following
ECMAScript expression:
eval('({"p1":1,"p1":2})');
will return the following
object:
{"p1": 2}

Expression attribute
(_expr) of the
<content> element will
be evaluated and
converted into the JSON
string. This element
cannot be used
together with
<param>.

Core Extensions

Orchestration Server Developer's Guide 22

URL Encoded JSON Encoded

[1,2,A] will be
encoded as the
following:
1%2C2%2C%5Bobject%20Object%5D

Events

The following events can be generated as part of this action:

• session.fetch.done
• error.session.fetch

As of 8.1.200.50, upon successful execution of <session:fetch>, the event session.fetch.done is
generated. It is possible to retrieve the response headers of the HTTP request from this event using:
_event.data.headers
The headers are provided as key-value pairs.

ESP-Based <fetch> Actions

For backwards compatibility purposes the platform and the <fetch> element will support the
invocation of External Service Protocol (ESP) requests and responses. In order to use the <fetch>
element for ESP-related requests, the developer needs to do the following:
gesp:[<applname>]|[\<type>\]<service>\[<method>] The following are the meanings of the
different elements of the format: For example:

MyEmailServer\CFGEmailServer\EMail\CreateEmailOut
\CFGContactServer\Contact\Update

• Specify a value of 'esp" for the method attribute.
• Construct the gesp URI with the following format for the srcexpr attribute:

• • "applname" is the 3rd party application that is to be used to process this request.
• "type" is the 3rd party application type that is to be used to process this request. (optional)
• "service" is the name of the service with which this request is associated.
• "method" is the specific function to be performed by the 3rd party application. (optional)

• The only way to pass request parameters and interaction user data on an ESP-based <fetch> action is
with the <content> element. You use the _expr attribute with an ECMAScript object which contains
properties called "params" and "udata". The one with the name "udata" will be an ECMAScript object
which contains the user-data parameters that you want to pass with the action. The other properties in
the main ECMAScript object will be request parameters. All of these parameters will be in the
Interaction Server TKVList format.

• The <fetch> type, enctype, maxage, and maxstale attributes are ignored.
• The response data content will be return as a JSON string in the session.fetch.done event.

Core Extensions

Orchestration Server Developer's Guide 23

The following is an example of the <session:fetch> action:

<state id="updateContact">
<datamodel>

<data id="reqid" />
</datamodel>
<onentry>
<script>

var updateContactRequestContent = {
params: {
UseDataFromParameters: false
},

udata: {
TenantId: 101,
ContactId: "GK4MW583K80DTE04",
FirstName: "James",
LastName: "Johnson"
}

};
</script>
<session:fetch method="'esp'" requestid="_data.reqid"
srcexpr="'ContactServer_801_04\\CFGContactServer\\Contact\\Update'">

<content _expr="updateContactRequestContent" />
</session:fetch>
</onentry>
<transition event="session.fetch.done" target="statex">

<script>
var eventDataObject = eval("(" + _event.data + ")");

</script>
<assign location="_interactionID"

expr="eventDataObject.envelope.Parameters.InteractionId"/>
</transition>
<transition event="error.session.fetch" target="statey" />

</state>

For a successful ESP call the returned response will use the following conversion logic to determine
how the JSON object is structured.

• The ESP JSON response will contain an envelope and user_data only if the corresponding sections are
returned with the data section of the ESP response.

• The ESP response containing the ESP envelope will contain Service and Method properties together
with the associated envelope Parameters that will contain the key name value properties.

• The ESP response containing the ESP user_data will contain the key name value properties if provided
in the ESP response.

• For both the envelope Parameters and also for the user data if any key names are duplicated in the
ESP response then these will be converted to a JSON array of values. For entries that may have
incompatible types but share the same name then such values will be incorporated into the same
named array but provided as an object, rather than a value.

The following is an example of the above ESP-to-JSON conversion logic operating on the following ESP
response.

06:22:54.082 'external_srvice_response' (501) message:
attr_ref_id [int] = 294014
attr_envelope [list, size (unpacked)=604] =
'Service' [str] = "Contact"
'Method' [str] = "Identify"
'Parameters' [list] = (size=228)

Core Extensions

Orchestration Server Developer's Guide 24

'ContactCreated' [str] = "false"
'ContactIdList' [str] = "0005Ua6CJC69002J"
'ContactIdList' [str] = "0005Ua6CJC69002N"
'ContactIdList' [str] = "0005Ub6CJC6H0001"
'ContactIdList' [str] = "0005Ub6CJC6H0004"
'ContactIdList' [str] = "0005Ub6CJC6H0007"
'NumberOfContactsFound' [int] = 5

The following would be the JSON representation of the successful ESP call.

{
"envelope": {
"Service": "Contact",
"Method": "Identify",
"Parameters": {
"ContactCreated": "false",
"ContactIdList": [
"0005Ua6CJC69002J",
"0005Ua6CJC69002N",
"0005Ub6CJC6H0001",
"0005Ub6CJC6H0004",
"0005Ub6CJC6H0007"],
"NumberOfContactsFound": 5
}
}

}

For ESP calls that return user data in addition to an enevelope, the following would be expected to be
represented.

{
"envelope": {
"Service": "Contact",
"Method": "Identify",
"Parameters": {
"ContactCreated": "false",
"ContactIdList": "0005Ub6CJC6H0001",
"NumberOfContactsFound": 1
}
},
"user_data": {
"FirstName": "James",
"ContactId": "0005Ub6CJC6H0001",
"LastName": "Johnson"
}

}

Guaranteed Delivery of the <fetch> Action

When a web service request is made to the external service using <fetch>, the orchestration
platform guarantees delivery of such a request. That is, the orchestration platform handles situations
in which normal web service requests cannot be fulfilled. Here are some situations in which a web
service request cannot be fulfilled:

• Cannot establish a connection to a given URI
• Received a redirect response when making a request to a given URI
• Received an error response when making a request to a given URI

Core Extensions

Orchestration Server Developer's Guide 25

• No response received to the web service request during timeout

To handle these situations, the orchestration platform would queue web service requests, and retry
making the request within the configured timeout period. The orchestration platform would queue
web service requests on the basis of their URIs. Note that this functionality addresses both cases of:

• Temporary unavailability of the external service
• Unavailability of one of the nodes in the load-balanced external service

Important Note: If the session exits a state that has an outstanding <fetch> action, then the
outstanding <fetch> action will be terminated. Also if an invoked session with an outstanding
<fetch> action terminates, then the outstanding <fetch> action will be terminated.

Mapping of the SCXML and Functional Module Elements to the HTTP Messages

The following sections cover the mapping of the SCXML and functional module element's attributes
into the corresponding HTTP message elements.

Get/Delete message

Here is an example of the <fetch> action including basic authentication and optional headers:

<script>
var myheaders = new Object();
myheaders["If-Modified-Since"] = "Sat, 1 Jan 2011 20:00:00 GMT";
myheaders["X-CUSTOM-HEADER"] = "Custom header information";

</script>
<session:fetch requestid="_data.reqid"

srcexpr="'http://www.business1.com/data2/content'" type="'text/plain'"
method="'get or delete'" timeout="100" maxstale="10" maxage="20"
username="'open'" password="'sesame'" headers="myheaders">

<param name="param1" expr="'value1'"/>
<param name="p2" expr="'v2'"/>

</session:fetch>

Here is how it maps to an HTTP GET/DELETE message:

GET/DELETE /data2/content?param1=value1&p2=v2 HTTP/1.1
Host: www.business1.com
Cache-Control: max-age=10, max-stale=10
Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==
If-Modified-Since: Sat, 1 Jan 2011 20:00:00 GMT
X-CUSTOM-HEADER: Custom header information
...

Mapping Summary:

• The results of evaluating the srcexpr attribute yields the host and path elements of the HTTP message.
• The result of evaluating the child <param> elements yields the URL parameter list at the end of the

path. Note that if the srcexpr attribute evaluates to a URL with URL parameters, we would concatenate
the <param> element parameters to them. If the <param> element value is a complex object, the value
is the result of evaluating the toString() function of that object, which is usually [object object].

Core Extensions

Orchestration Server Developer's Guide 26

• The result of evaluating the maxage attribute yields the Cache-Control header with the max-age
directive.

• The result of evaluating the maxstale attribute yields the Cache-Control header with the max-stale
directive.

• The result of evaluating the username and password yields the addition of the Authorization header with
the type specified as basic and the username and password base64 encoded.

• The result of providing header yields a header element for each of the items provided within the
supplied object. No validation will occur on this and the headers will be appended "as-is".

• The result of evaluating the type attribute yields the Accept header. Also the data type returned by the
application server in the HTTP response will be checked against the type value. If it is different, an
error.session.fetch will be raised - an exception that is text-plain, which means any type of
returned value is accepted.

• There is no HTTP body for the GET request.

Note: The Basic authentication and optional headers will operate exactly the same for POST or
PUT types.

POST/PUT Message

Here is an example of the <fetch> action with enctype = application/x-www-form-urlcoded:

<session:fetch requestid="_data.reqid"
srcexpr="'http://www.business1.com/data2/content'" type="'text/plain'"
method="'post or put'" timeout="100" maxstale="10"
maxage="20" enctype="'application/x-www-form-urlencoded'">

<param name="param1" expr="'value1'"/>
<param name="p2" expr="'v2'"/>
<param name="p3" expr="v3"/>

</session:fetch>

Note: v3 is an object with two properties: "a" and "b". v3.a = 4 and v3.b = 5. Here is how it maps to
an HTTP POST/PUT message:

POST/PUT /data2/content HTTP/1.1
Host: www.business1.com
Cache-Control: max-age=10, max-stale=10
Content-Type=application/x-www-form-urlencoded
Content-Length=xx
param1=value1&p2=v2&p3=[object object]
...

Here is an example of the <fetch> action with enctype = application/json:

<session:fetch requestid="_data.reqid"
srcexpr="'http://www.business1.com/data2/content'" type="'text/plain'"
method="'post or put'" timeout="100" maxstale="10"
maxage="20" enctype="'application/json'">

<param name="param1" expr="'value1'"/>
<parm name="p2" expr="'v2'"/>
<parm name="p3" expr="v3"/>

</session:fetch>

Note: v3 is an object with two properties "a" and "b". v3.a = 4 and v3.b = 5. Here is how it maps to
an HTTP POST/PUT message:

Core Extensions

Orchestration Server Developer's Guide 27

POST/PUT /data2/content HTTP/1.1
Host: www.business1.com
Cache-Control: max-age=10, max-stale=10
Content-Type=application/json
Content-Length=xx
{"param1":"value1","p2":"v2","p3":{"a":4,"b":5}}
...

Mapping Summary:

• The results of evaluating the srcexpr attribute yields the host and path elements of the HTTP message.
• The results of the <param> elements depend on the enctype attribute. Note: the Content-Length

header value will be set to the total length of the resulting body element.
• application/x-www-form-urlcoded - The result of evaluating the <param> elements yields the body

element in the format p1=v1&p2=v2&p3=v3..., where p1, p2, p3,... are the names in the <param>
elements, and v1, v2, and v3 are values that result from evaluating the corresponding expr attributes.
If one of the values is not a simple type, we would put the result of the "toString()" function in the
body, as in the GET case.

• application/json - The result of evaluating the <param> elements yields the body element formatted
in JSON format, where each <parameter> name should appear as a top-level attribute.

• The result of evaluating the maxage attribute yields the Cache-Control header with the max-age
directive.

• The result of evaluating the maxstale attribute yields the Cache-Control header with the max-stale
directive.

• The result of evaluating the enctype attribute yields the Content-Type header value.
• The result of evaluating the type attribute yields the Accept header. Also the data type returned by the

application server in the HTTP response will be checked against the type value. If it is different, an
error.session.fetch will be raised - this exception is text-plain, which means any type of returned
value is accepted.

<start>
This starts an independent SCXML document and session and runs completely independently of the
starting (that is, parent) session. If the starting session ends, the started session does not, and vice
versa. Session content is not shared between the sessions. Any session or 3rd party application can
terminate (for example, <terminate>) this started session, as long as they have the session ID. When
this session terminates, a done event will be fired by the orchestration platform for all interested
parties (other sessions, and so on).

Attribute Details

Name Required Type Default Value Valid Values Description

sessionid false location expression none
Any value location
that represents a
valid string field

This is the location
for the session ID
that is returned as
part of this
request. Any data

Core Extensions

Orchestration Server Developer's Guide 28

Name Required Type Default Value Valid Values Description

model expression
evaluating to a
data model
location. See
SCXML Location
Expressions for
details. The
location's value will
be set to an
internally
generated unique
string identifier to
be associated with
the newly created
session. This ID is
immediately
populated by the
platform and can
be used on
subsequent
elements (<send>,
for example).

src true value expression none
Any value
expression that
returns a valid URI

This value
expression returns
a character string
that represents the
URI of the SCXML
document. The URI
schemes
supported are
HTTP, HTTPS and
File. See SCXML
Legal Data Values
and Value
Expressions for
details.

Starting with
8.1.400.09,
Orchestration
Server provides
the ability to use
the Enhanced
Routing Script
object when
starting a new
session by the
<session:start>
action or web
request. The
script:ScriptName
can be defined as
a value of the src
attribute of the
<session:start>
action element, or
as a value of the
src parameter of
the /scxml/
session/start
web request. When
the Script:
notation is used,
the URL of the

Core Extensions

Orchestration Server Developer's Guide 29

Name Required Type Default Value Valid Values Description

SCXML strategy is
taken from the
Application
section of the
corresponding
Enhanced Routing
Script. Examples:

<session:start
src="’script:Script1’"
sessionid="newid"/>

http://localhost:7031/
scxml/session/
start?src=script:Script1

Note: If you are
using an Enhanced
Routing Script
object that exists
under a Tenant
other than
Environment, the
Tenant must be
explicitly specified
as a URL attribute.
For example:

http://<host>:<port>/scxml/
session/
start?src=script:<scriptname>&tenant=<TenantName>)

idealtime false value expression none
Any expression
that results in a
valid integer for
the dateTime value

This value
expression returns
a dateTime value
which will
represent the date
and time that this
session is to be
started. This value
should be the time
as returned by the
ECMAScript
Date(...).getTime()
function, which is
given in the
number of
milliseconds since
00:00:00 UTC on
January 1, 1970.
See SCXML Legal
Data Values and
Value Expressions
for details.

prewindow false value expression none
Any expression
that results in a
valid integer for
the duration value

This value
expression returns
a duration value
which will
represent the time
window prior to the
ideal time for
which the session

Core Extensions

Orchestration Server Developer's Guide 30

Name Required Type Default Value Valid Values Description

could be started.
For details on the
duration type, see
the duration
datatype . See
SCXML Legal Data
Values and Value
Expressions for
details.

postwindow false value expression none
Any expression
that results in a
valid integer for
the duration value

This value
expression returns
a duration value
which will
represent the time
window after the
ideal time for
which the session
could be started.
For details on the
duration type, see
the duration
datatype . See
SCXML Legal Data
Values and Value
Expressions for
details.

The following is an example:

<state id="Starting_a_new_session">
<datamodel>

<data id="newsession"/>
</datamodel>
<onentry>

<session:start src="'www.genesyslab.com\session\orchapp1'" sessionid="_data.newsessid" />
</onentry>
<transition event="session.start.done" target="statex">

<send event="'start.event'" target="_data.newsessid"/>
</transition>
<transition event="error.session.start" target="statey"/>

</state>

Children

• <param> Occurs 0 to N - This contains data to be passed to the newly created session. The use of this
element will follow the same rules as the SCXML <invoke> element definition.

Events

The following events can be generated as part of this action:

• session.start.done

Core Extensions

Orchestration Server Developer's Guide 31

• error.session.start
• session.restored

<updatestart>
This action updates the starting time of the SCXML session. It can only be used after the session is
started using the idealtime attribute and if the requested session has not been started yet.

Attribute Details

Name Required Type Default Value Valid Values Description

sessionid true value expression none
Any value
expression which
returns a valid
string.

A value expression
which returns the
session ID to be
updated. See
SCXML Legal Data
Values and Value
Expressions for
details.

idealtime false value expression none
Any expression
that results in a
valid integer for
the dateTime value

This value
expression returns
a dateTime value
which will
represent the
updated date and
time that this
session is to be
started. This value
should be the time
as returned by the
ECMAScript
Date(...).getTime()
function, which is
given in the
number of
milliseconds since
00:00:00 UTC on
January 1, 1970.
See SCXML Legal
Data Values and
Value Expressions
for details.

prewindow false value expression none
Any expression
that results in a
valid integer for
the duration value

This value
expression returns
a duration value
which will
represent the
updated time
window prior to the
ideal time for
which the session
could be started.
For details on the
duration type, see
the duration
datatype. See
SCXML Legal Data

Core Extensions

Orchestration Server Developer's Guide 32

Name Required Type Default Value Valid Values Description

Values and Value
Expressions for
details.

postwindow false value expression none
Any expression
that results in a
valid integer for
the duration value

This value
expression returns
a duration value
which will
represent the
updated time
window after the
ideal time for
which the session
could be started.
For details on the
duration type, see
the duration
datatype . See
SCXML Legal Data
Values and Value
Expressions for
details.

Children

None

Events

The following events can be generated as part of this action:

• session.updatestart.done
• error.session.updatestart

<terminate>
This action terminates an SCXML session from an unrelated SCXML session. As a result of
termination, the orchestration platform sends the done event to the invoking SCXML session (if it is
still running). It will also be used to cancel a scheduled session.

Attribute Details

Name Required Type Default Value Valid Values Description

sessionid true value expression none
Any value
expression which
returns a valid
string.

A value expression
which returns the
session ID to be
terminated. See
SCXML Legal Data
Values and Value
Expressions for

Core Extensions

Orchestration Server Developer's Guide 33

Name Required Type Default Value Valid Values Description

details.

Children

None

Events

The following events can be generated as part of this action:

• session.terminate.done
• error.session.terminate

<cancel>
This action terminates a pending fetch action request <session:fetch>. This is used to allow the
application to ensure that any guaranteed delivery fetch requests are terminated. This action should
be put in the <onexit> element where these types of fetch actions are invoked.

Attribute Details

Name Required Type Default Value Valid Values Description

requestid true value expression none
Any valid value
expression which
returns a valid
string.

This is the request
ID of the
outstanding
<fetch> action.

Children

None

Events

The following events can be generated as part of this action:

• session.cancel.done
• error.session.cancel

Events
The event namespace convention is session.xxxx The following are the session action result events:

Core Extensions

Orchestration Server Developer's Guide 34

Event Attributes Description

session.fetch.done

This event indicates the success of the
request and that the data location has
been updated with the returned content
in JSON format.

requestid This is the ID of the <fetch> request.

content

This is the returned content. Its format is
based on the <fetch> request's type
attribute. If it is "JSON", the content will
be a JSON-based string and the
application must use the appropriate
function to convert it to the appropriate
ECMAScript objects. The format of the
response content will be based on the
<fetch> type attribute. If there is not a
match, an error.session.fetch will be
raised. Note: when the <fetch> method
attribute value is "esp", the content value
will always be JSON.

hints

This is the protocol-specific data
associated with the fetch response (for
example, HTTP header data). Its format is
based on the <fetch> request's srcexpr
and type attributes. If it is HTTP, the
content will be ECMAScript Object with
the HTTP header elements as properties
of the object.

headers (8.1.200.50)
This is a collection of response headers,
presented as key-value pairs. HTTP
header data found in the fetch response
can be accessed here.

error.session.fetch

This indicates that an error occurred while
trying to perform the fetch request.

requestid This is the ID associated with the request.

error

This is the type of error that occurred.
The following is a specific error code:

• protocol.errorcode - This
represents the protocol-
specific errors that occur
when the attempting the
<fetch> request.

description This is a more detailed description of the
error

Core Extensions

Orchestration Server Developer's Guide 35

Event Attributes Description

session.start.done

This event reflects the results of <start>
and is sent as a confirmation that the
session has been started. The sessionid
returned shall be the same as the
sessionid provided as a return parameter
for the sessionid attribute within <start>

sessionid This is the ID of the SCXML session that
has been started.

error.session.start

This indicates that an error occurred while
trying to perform the <start> request.
The sessionID returned on the action will
be invalid after receiving this event.

sessionid This is the ID of the SCXML session that
was supposed to have started.

error This is the type of error that occurred.

description This is a more detailed description of the
error

session.terminate.done

This event reflects the results of
<terminate>.

sessionid This is the ID of the SCXML session that
has terminated.

error.session.terminate

This indicates that an error occurred while
trying to perform the <terminate>
request.

error This is the type of error that occurred.

sessionid This is the ID associated with a fetch
request.

description This is a more detailed description of the
error

session.updatestart.done

This event reflects the results of
<updatestart>.

sessionid This is the ID of the SCXML session that
was updated.

Core Extensions

Orchestration Server Developer's Guide 36

Event Attributes Description

error.session.updatestart

This indicates that an error occurred while
trying to perform the <updatestart>
request.

error This is the type of error that occurred.

description This is a more detailed description of the
error.

session.cancel.done

This event reflects the results of
<cancel>.

requestid This is the ID associated with a fetch
request.

error.session.cancel

This indicates that an error occurred while
trying to perform the <cancel> request.

requestid This is the ID associated with a fetch
request.

error This is the type of error that occurred.

description This is a more detailed description of the
error

Asynchronous Events
The following are the session asynchronous events:

Event Attributes Description

done.xxx

This event indicates that a started
session was finished or was terminated.
The xxx part of the event is different
depending on how the session was
started.

• <invoke> - The xxx is
"invoke.invokeid"

• <start> and web service
interface initiation - The xxx
is "scxml.sessionid"

• <final> for a state - The xxx

Core Extensions

Orchestration Server Developer's Guide 37

Event Attributes Description

is "state.stateid" where statid
is the value from the <state>
id attribute and id is an
identifier generated by the
platform.

session.restored

This event indicated that a session was
restored from a previous checkpoint and
some state processing may be lost.

sessionid This is the session ID of the session that
is being restored.

type This is the type of event. The only
possible value is "external"

session.terminating

This event indicates that the session is
being terminated because of a hung
condition.This is only sent when a session
is being terminated by the platform due
to an error condition (hung condition,
infinite loop, and so on). This gives the
session the ability to graceful terminate
itself. So this event is sent by the
platform to a session in trouble. A
done.xxx will not be sent at all in this
condition.

sessionid This is the session ID of the session that
is being terminated.

reason

This is the reason the platform is
terminating the session. The following is
the set of reasons:

• TerminationTimeout - The
termination cancel operation
has not finished in a
reasonable time frame or the
<final> processing for an
application has not finished in
a reasonable time frame.

• IdleTimeout - A session has
been idle for a given time
period (no events or
processing).

• ElementCountExceeded - A
session has executed too
many of the same type of
SCXML element

Core Extensions

Orchestration Server Developer's Guide 38

Event Attributes Description

(<transition>).
• ElementTimeout - A session

spends too long executing an
element (<script>,
<queue:submit>, and so on).

session.cancelled

This event indicates that the session is
being cancelled from a <terminate>
action.

sessionid This is the session ID of the session that
is being terminated.

session.restarted

Introduced in 8.1.400.45. See Recovery of
Voice Calls Without Persistence. This
event is distributed when ORS restarts
the processing of calls after an ORS
switchover without using persistence.
After that event, ORS will distribute all
SCXML events from the beginning of call
existence while the current ORS instance
was running in backup mode.

interactionid The ID of the interaction whose
processing has been restarted.

Web Services Interface

Action Elements
<response>

This action is used to send a response to a request-based event from an external application (for
details see Send Request to SCXML Session). It is recommended that you use this action element
within the <transition> element associated with event processing for the given request. If not, you
may encounter network-related timeouts and potential performance issues.

Core Extensions

Orchestration Server Developer's Guide 39

https://docs.genesys.com/Documentation/OS/8.1.4/Deployment/Avail#Recovery_of_Voice_Calls_Without_Persistence
https://docs.genesys.com/Documentation/OS/8.1.4/Deployment/Avail#Recovery_of_Voice_Calls_Without_Persistence
https://docs.genesys.com/Documentation/IW/8.1.3/Developer/ExternalIntf#Send_Request_to_SCXML_Session

Attribute Details

Name Required Type Default Value Valid Values Description

requestid true value expression none

This value
expression returns
the corresponding
request ID which
this response is for.
Note: this must be
the sendid
property from the
associated request
event (that is,
_event.sendid).
See SCXML Legal
Data Values and
Value Expressions
for details.

type false value expression 'positive' 'positive' 'negative'

This value
expression returns
the type of
response this is.
Values defined are:

• 'positive' -
This
indicates
that the
response is
positive.

• 'negative' -
This
indicates
that the
response is
negative.

See SCXML Legal
Data Values and
Value Expressions
for details.

resultcode false value expression none
any expression
that results in a
valid string

This value
expression returns
a string which will
represent the
result code
associated with the
response. See
SCXML Legal Data
Values and Value
Expressions for
details.

headers
(since 8.1.200.50) false value expression none any expression

that evaluates to
This value
expression defines

Core Extensions

Orchestration Server Developer's Guide 40

Name Required Type Default Value Valid Values Description

an iterable
collection of key-
value pairs

custom headers (if
any) to be included
with the HTTP
response.

The following is an example of the response processing in the <transition> element:

<state id="processing_requests_in_transition">
<transition event="DoFunctionX" cond="_event.data.paramtype == 'application/json' &&

_event.data.param !=''">
<script>

<! - do specific function x logic ->
</script>
<ws:response requestid="_event.sendid">

<param name="op1" expr="ovar1"/>
<param name="op2" expr="ovar2"/>

</ws:response>
</transition>
<transition event="DoFunctionX" cond="_event.data.paramtype != 'application/json' ||

_event.data.param ==''">
<ws:response requestid="_event.sendid" type="'negative'"

resultcode="'invalidparameter'"/>
</transition>

</state>

The following is an example of the response processing in a sub-state model:

<state id="processing_requests_in_substate_model">
<datamodel>

<data id="reqid"/>
<data id="functionXparms"/>

</datamodel>
<transition event="DoFunctionX" cond="_event.data.paramtype == 'application/json' &&

_event.data.param !=''" target="functionX'>
<script>

_data.reqid = _event.sendid;
_data.functionXparms = _event.data.param;

</script>
</transition>
<transition event="DoFunctionX" cond="_event.data.paramtype != 'application/json' ||

_event.data.param ==''">
<ws:response requestid="_event.sendid" type="'negative'"

resultcode="'invalidparameter'"/>
</transition>
<! - This is the substate model to execute the processing associated with function X

->
<state id="functionX" initial="fXStep1">

<state id="fXStep1">
</state>
...
<final>

<onentry>
<ws:response requestid="_event.sendid">

<param name="op1" expr="ovar1"/>
<param name="op2" expr="ovar2"/>

</ws:response>
</onentry>

</final>

Core Extensions

Orchestration Server Developer's Guide 41

</state>
</state>

Children

• <param> (Since 8.1.200.25) Occurs 0 to N - This contains data to be passed in the HTTP response.

Events

None

HTTP Mappings

Here is an example of a positive <response> action:

<ws:response requestid="_event.sendid">
<param name="param1" expr="'value1'"/>
<param name="p2" expr="'v2'"/>
<param name="p3" expr="v3"/>

</ws:response>

Here is how it maps to an HTTP GET Response message:

HTTP/1.1 200 OK
Content-Type=application/json
Content-Length=xx
{"param1":"value1","p2":"v2","p3":{"a":4,"b":5}}
...

Here is an example of a negative <response> action:

<ws:response requestid="_event.sendid" type="'negative'"
resultcode="'invalidparameter'">

<param name="description" expr="'Invalid value for parm2'"/>
</ws:response>

Here is how it maps to an HTTP GET Response message:

HTTP/1.1 500 Internal Server Error
Content-Type=application/json
Content-Length=xx
Reason-Phrase=invalidparameter
{"description":"Invalid value for parm2"}
...

Mapping Summary:

• The result of evaluating the <param> elements yields the body element formatted in JSON format, where
each <parameter> name should appear as a top-level attribute. Note: the Content-Length header
value will be set to the total length of the resulting body element.

• The Content-Type header value can be application/json or text/html if the <ws:response>
element has no <param> children, but attribute resultcode is present so its value will be populated as
content in the resulting HTTP request.

Core Extensions

Orchestration Server Developer's Guide 42

• The Status-Code header value will either be "200" for positive responses or "500" for negative
responses.

• The resultcode attribute will be mapped to the Reason-Phrase header element.

Here is an example of a positive <response> action:

<ws:response requestid="_event.sendid">
<param name="param1" expr="'value1'"/>
<parm name="p2" expr="'v2'"/>
<parm name="p3" expr="v3"/>

</ws:response>

Here is how it maps to an HTTP POST Response message:

HTTP/1.1 200 OK
Content-Type=application/json
Content-Length=xx
{"param1":"value1","p2":"v2","p3":{"a":4,"b":5}}
...

Here is an example of a negative <response> action:

<ws:response requestid="_event.sendid" type="'negative'"
resultcode="'invalidparameter'">

<param name="description" expr="'Invalid value for parm2'"/>
</ws:response>

Here is how it maps to an HTTP POST Response message:

HTTP/1.1 500 Internal Server Error
Content-Type=application/json
Content-Length=xx
Reason-Phrase=invalidparameter
{"description":"Invalid value for parm2"}
...

Mapping Summary:

• The result of evaluating the <param> elements yields the body element formatted in JSON format, where
each <parameter> name should appear as a top-level attribute. Note: the Content-Length header
value will be set to the total length of the resulting body element.

• The Content-Type header value will always be "application/json".
• The Status-Code header value will either be "200" for positive responses or "500" for negative

responses.
• The resultcode attribute will be mapped to the Reason-Phrase header element.

Core Extensions

Orchestration Server Developer's Guide 43

	Orchestration Server Developer's Guide
	Core Extensions

