
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Interaction Management 8.5.1

Interaction Server Administration
Guide

3/14/2022

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Interaction Server Administration Guide 3
Interaction Server Limitations 5
Improving the Performance of the Interaction Server Database 7

General Remarks on Partitioning 8
Planning 9
Creating the Database 10
Carrying Out the Partitioning 11
Verification 13

Converting to and From BLOB 14
Event Logger 15

Deploying Event Logger 16
Managing Event Logger Data 17
Classification of Events in Event Logger 18
Event Logger Options 20
Using a Message Queue with Event Logger 23
Using the JMS Event Logger with Apache ActiveMQ 24
Using the Groovy Event Logger 27

Interaction Server Administration Guide
This document provides information for administrators regarding Interaction Server.

In addition to the information on this page, there is also information on:

• Limitations to observe concerning Interaction Server.
• Improving the performance of the Interaction Server database.
• Converting attached data to and from BLOB format.
• Deploying and using Event Logger, which stores reporting event messages in a database.

Be aware of the following:

• Use CC Pulse to monitor interaction queues (in interaction workflows) for signs of problems with routing
strategies. If the number of interactions in a queue increases abnormally, it may be a sign that the
strategy that processes interactions from that queue is not loaded in Universal Routing Server.

• Depending on the amount of configuration objects and the volume of the interactions stored in the
Interaction Server database, it might take considerable time for Interaction Server to start up and shut
down.

• Interaction Server has two possible Application types in the Configuration Layer. Interaction Server
is the normal type; the T-Server type is also available for backward compatibility. Be aware that an
Interaction Server 7.6 or later of type T-Server, upon startup, will make two attempts to connect to
Configuration Server. The first attempt will generate trace-level alarms (about a missing application of
type: Interaction Server) that you should ignore. The second attempt will succeed.

• If you want to use the Dynamic Workflow Management functionality, be sure to run Interaction Server
with a user that has write access to the Configuration Server database for all of the tenants associated
with this Interaction Server (that is, the user specified on the Security tab of the Interaction Server
Application object).
In this situation Interaction Server does not support Configuration Server Proxy, which has only read
access to the Configuration Server database.

Interaction Server Clusters

Starting with release 8.5.106.x of Interaction Server and 8.5.107.x of Interaction Server Proxy, you
can configure multiple Interaction Servers into a cluster that works with a single instance of
Interaction Server Proxy.

KPI Counters

Starting with the 8.5.102.02 release, Interaction Server includes KPI (Key Performance Indicator)
counters that monitor:

Interaction Server Administration Guide

Interaction Server Administration Guide 3

https://docs.genesys.com/Documentation/ES/8.1.4/User/Config#Interaction_Server
https://docs.genesys.com/Documentation/IXN/latest/Depl/IxnClus

• The number of requests of different types received from clients.
• The number of Interaction Server protocol errors, counted per error type, sent to clients.
• The number of ESP (External Service Protocol) errors, counted per original request type, sent to clients.

Interaction Server clients can access these counters using EventPing.

By default, Interaction Server does not calculate these counters. To enable the counters, set the
following options in the [settings] section to true:

• For requests received, collect-request-counters
• For Interaction Server protocol errors, collect-error-counters
• For ESP errors, collect-esp-error-counters

Interaction Server Administration Guide

Interaction Server Administration Guide 4

Interaction Server Limitations
• Interaction Server does not support the following requests:

• RequestQueryServer
• RequestQueryLocation
• RequestDeletePair (when URS sends this request after RequestRouteCall)

• It is not desirable to run Interaction Server in an environment in which servers and clients differ as to
the codepages used (by operating systems or databases). In such an environment, characters of non-
Latin alphabets may appear as the symbol ? (question mark) in log files and in applications with a user
interface, such as Agent Desktop. The functionality of other features of the solution may also be
restricted or compromised.

• Making an on-the-fly change to the host or port specification (on the Server Info tab) of a backup
Interaction Server will cause it to exit.

• When Interaction Server sends a database request right before disconnecting from DB Server, and the
request executes after disconnecting, Interaction Server fails to generate events to clients for
submitted interactions.

• Starting in release 8.1.3, the scripts supplied with Interaction Server for Oracle databases create the
flexible_properties field with the type BLOB. To support this feature, you must use DB server 8.1.1
and above with Oracle client 10.2 and above.

• Take these precautions when configuring Interaction Server for high availability (HA).
• The interaction state timeouts set by the following options are not exact and can be delayed for up to

10 seconds due to the way they are implemented.
• delivering-timeout
• handling-timeout
• routing-timeout

• You cannot use commas (,) and semicolons (;) in interaction queue names.

Interaction Ordering in Clusters

For the ordering of interactions to work correctly in RequestGetWorkbinContent,
RequestFindInteractions and RequestTakeSnaphot in cluster environments, the following
conditions must be met:

• All Interaction Server nodes in the cluster must use the same type of database.
• The database encoding and collation must be the same for all the databases used by Interaction Server.
• The encoding used by all the cluster nodes must be the same. Genesys recommends using UTF-8 for

Interaction Server. (Interaction Server Proxy neither requires nor allows setting UTF-8 specifically).
• The ordering may contain only predefined interaction properties (a list is provided below) and defined

interaction custom properties. The field names may also be used interchangeably with the

Interaction Server Limitations

Interaction Server Administration Guide 5

https://docs.genesys.com/Documentation/ES/8.1.4/User/Backup

corresponding property names.

In addition, these conditions are important because the Business Process definition (view conditions
and orders) may be specific to the particular database type, and all nodes within the cluster use the
same business process.

Below is a list of the field names and corresponding predefined interaction property names that can
be used in the attributes that specify interaction order:

Field name Property name
abandoned_at AbandonedAt
assigned_at AssignedAt
assigned_to AssignedTo
completed_at CompletedAt
delivered_at DeliveredAt
external_id ExternalId
held_at HeldAt
id InteractionId
is_locked IsLocked
is_online IsOnline
media_type MediaType
moved_to_queue_at MovedToQueueAt
parent_id ParentId
place_in_queue_seq PlaceInQueueSeq
placed_in_queue_at PlacedInQueueAt
priority Priority
queue Queue
received_at ReceivedAt
scheduled_at ScheduledAt
service_objective ServiceObjective
state InteractionState
submit_seq SubmitSeq
submitted_at SubmittedAt
submitted_by SubmittedBy
subtype InteractionSubtype
tenant_id TenantId
type InteractionType
workbin Workbin

Interaction Server Limitations

Interaction Server Administration Guide 6

Improving the Performance of the
Interaction Server Database
To optimize the performance of Interaction Server, try the following steps:

1. Design or redesign the Business Process for greater efficiency; for example, by minimizing the number
of processing steps. This provides for the most performance gain for custom Business Processes.

2. Analyze and optimize the SELECT statements generated by Interaction Server. Analyze the execution
plans for the generated SELECT statements and create appropriate indexes. This is especially important
if you have added an custom Business Processes: the standard indexes provided with the default
schema do not take account of any custom database fields, specific conditions configured, and other
items added by custom Business Processes. This step might provide all the performance gain that you
need.

3. Perform a general tuneup on the database.
4. Partition the database. The subtopics in this section deal with this.

Improving the Performance of the Interaction Server Database

Interaction Server Administration Guide 7

General Remarks on Partitioning
A partition is a division of a logical database or its constituent elements into independent parts.
Database partitioning may be done for reasons of performance, manageability, or availability. This
section concentrates on partitioning to improve performance.

By splitting a large table into several smaller tables, queries that need to access only a fraction of the
data can run faster because there is less data to scan. Maintenance tasks, such as rebuilding indexes
or backing up a table, can also run more quickly. Placing logical parts on physically separate
hardware provides a major performance boost since all this hardware can perform operations in
parallel.

Interaction Server performs large numbers of queries, updates, inserts, and deletes on its database.
While it is relatively easy to achieve optimal performance with updates, inserts, and deletes, queries
(SELECTs) are different.

The Interaction Server database consists of a single major table that stores all the interaction data.
Every interaction in the system is always assigned to some interaction queue, represented by value
of the field queue in the Interaction Server table. Business processes may employ dozens or even
hundreds of queues.

Queues can vary greatly in the way they are used: some hold many interactions which are rarely
processed at all (for example, an archive queue), others hold a small number of interactions with a
high processing rate (for example, a queue for interactions that need some preliminary processing).

If these two types of queue are separated into different partitions, then the slower selection rate of
the first type will not interfere with the high-speed selections of the second type. So the queue field is
a natural choice to partition the data on. The remainder of this section describes partitioning by
queue.

Improving the Performance of the Interaction Server Database General Remarks on Partitioning

Interaction Server Administration Guide 8

Planning
Decide for which queues it makes sense to separate data into logical partitions. Start by surveying
the queues in your Business Processes and separate them out into three types:

1. Queues that contain high numbers of interactions; for example, post processing backlog or archive
queues.

2. Queues that should not contain lots of interactions because all interactions in these queues should be
processed immediately. A good example is the first queue in a Business Process which is meant for
some preliminary processing (such as performing classification, calculating and attaching some user
data, or sending an acknowledgment).

3. Queues that feed strategies that wait for resources (agents) to become available; usually there is a
single such distribution queue in a Business Process.

Here is the rationale for separating data into at least three partitions that correspond to these three
types of queues:

1. Separating Type 1 queues, those with many "inactive" interactions, ensures that these interactions are
not even considered when SELECT statements are executed to pull interactions from Type 2 ("active")
queues. Even if there are complex conditions for some views in your Business Process, there is much
less data to scan because the majority of the interactions in an archive or post processing backlog are
not touched by these scans.

2. Separating Type 2 queues is logical because most of the time these queues should be completely
empty. Selecting new interactions out of these queues is trivial since there are not many interactions to
select from.

3. Type 3 is the most demanding. While the rate of processing can be high, if there are many agents and
handling time is relatively low, interactions may still accumulate in these queues when the peak
inbound rate is higher than the processing rate. This means that SELECT statements are executed
frequently against many records. If there are multiple queues of this type, it may be beneficial to assign
them to separate partitions.

Hardware Planning
While purely logical separation of data may be of some benefit, placing the partitions on separate
hard drives provides the best performance gain. In planning which drives in your system to dedicate
to Interaction Server database partitions, it is advisable set aside one drive for the operating system
and one for database log files, and place the Interaction Server database partition on other drives.

The rest of this section presents an example of partitioning using Microsoft SQL.

Improving the Performance of the Interaction Server Database Planning

Interaction Server Administration Guide 9

Creating the Database
To create a database with several file groups that will hold data for different partitions, use an SQL
statement similar to the following:

CREATE DATABASE [itx_partitioned] ON PRIMARY
(NAME = N'itx802partitioned', FILENAME =
N'D:\MSSQL\DATA\itx802partitioned.ndf',
SIZE = 44828672KB, MAXSIZE = UNLIMITED, FILEGROWTH = 1024KB),
FILEGROUP [P1]
(NAME = N'itx802partitioned1', FILENAME =
N'E:\MSSQL\DATA\itx802partitioned1.ndf',
SIZE = 2048KB , MAXSIZE = UNLIMITED, FILEGROWTH = 1024KB),
FILEGROUP [P2]
(NAME = N'itx802partitioned2', FILENAME =
N'F:\MSSQL\DATA\itx802partitioned2.ndf',
SIZE = 2048KB , MAXSIZE = UNLIMITED, FILEGROWTH = 1024KB),
FILEGROUP [P3]
(NAME = N'itx802partitioned3', FILENAME =
N'G:\MSSQL\DATA\itx802partitioned3.ndf',
SIZE = 2048KB , MAXSIZE = UNLIMITED, FILEGROWTH = 1024KB)
LOG ON
(NAME = N'itx802partitioned_log', FILENAME =
N'H:\MSSQL\DATA\itx802partitioned_log.ldf',
SIZE = 5095872KB , MAXSIZE = 2048GB , FILEGROWTH = 10%)
GO

Or you can create the database and file groups using Microsoft SQL Management Studio.

You can create as many file groups as your resources allow.

Improving the Performance of the Interaction Server Database Creating the Database

Interaction Server Administration Guide 10

Carrying Out the Partitioning

Partition Function

The partition function calculates the logical partition number for any specific record based on the
record’s field value. We only need to consider the value of the 'queue' field since we want to partition
data according to queues.

The following is an example of the partition function:

CREATE PARTITION FUNCTION [QNamePFN](varchar(64)) AS
RANGE RIGHT FOR VALUES (N'Archive', N'Distribution', N'Inbound')
GO

Note that an SQL server partition function is always a range function. The values for the range
function must be sorted in ascending order so that you can clearly see which range any particular
value falls into.

In the example above, all data that comes earlier in the alphabet than Archive is placed in the first
partition. All data whose alphabetical order is the same or later than Archive but earlier than
Distribution is placed in the second partition. All data whose alphabetical order is the same or later
than Distribution but earlier than Inbound is placed in the third partition. All other data is placed in
the forth partition.

Note that it is the partition scheme that assigns a specific partition to the range; you can actually
assign different ranges to the same partition.

Also, this partition function applies to all queues in the Business Process. For example, if there is a
queue Begin it falls into the second range and will be assigned to the same partition as the Archive
queue. But if Begin is not a Type 1 queue this result may be less than ideal. One way to ensure that
every queue is assigned to its intended partition is to list all the queues in the Business Process in
alphabetical order in the partitioning function, and then specify the appropriate partition for each
queue. If a new queue is added to the Business Process, you can alter the partition function and
partition scheme to take account of this new queue.

Partitioning Scheme

The partitioning scheme uses the partitioning function to define which records (with a particular value
of the partitioning function) go to which partition.

CREATE PARTITION SCHEME [QNamePScheme]
AS PARTITION [QNamePFN] TO ([PRIMARY], [P1], [P2], [P3])
GO

Since our partitioning function is based solely on the value of the 'queue' field, our partitioning
scheme tells the database which queue goes to which partition.

Improving the Performance of the Interaction Server Database Carrying Out the Partitioning

Interaction Server Administration Guide 11

Partitioning the Table

To partition the table, simply specify the partitioning scheme for the table:

create table interactions
(
id varchar(16) not null,
...
) on QNamePScheme(queue)
Go

Note that we explicitly specify that the queue field value should be given to the partitioning scheme
and subsequently to the partitioning function to decide which partition the record should go to.

Improving the Performance of the Interaction Server Database Carrying Out the Partitioning

Interaction Server Administration Guide 12

Verification
The following SQL statement is an easy way to monitor how many records are stored in each partition
for a given partitioned table (the interactions table in this example):

SELECT
p.partition_number, fg.name, p.rows
FROM
sys.partitions p
INNER JOIN sys.allocation_units au
ON au.container_id = p.hobt_id
INNER JOIN sys.filegroups fg
ON fg.data_space_id = au.data_space_id
WHERE
p.object_id = OBJECT_ID('interactions')

This produces results similar to those shown in the following table.

Partition_number Name Rows
1 PRIMARY 1
2 P1 1
3 P2 1
4 P3 1

The table shows that each partition contains a single record. If you insert a new record and execute
the above statement again, it will show which partition the new record has been placed in, verifying
your partition function and scheme.

Important
To compare performance of the partitioned database with an unpartitioned database,
you will need to artificially create a certain distribution of interactions between
partitions (different queues) and see how fast the same SELECTs are being executed.
When interactions change queues, the records are physically relocated into different
partitions (according to the partition scheme).

Improving the Performance of the Interaction Server Database Verification

Interaction Server Administration Guide 13

Converting to and From BLOB
Interaction Server ordinarily stores attached data in the flexible_properties field as a BLOB
(binary large object).

Converting from BLOB

You can convert attached data to a custom field by running Interaction Server in a special utility
mode, in which Interaction Server uses the key-value format of this attached data to convert all such
fields to custom fields.

To run Interaction Server in utility mode, launch it from a command line with the following option:

-convert-fields [command_or_parameters]

where the optional command_or_parameters is one of the following:

• reset—Ensures that the next run in utility mode will start processing from the beginning, rather than
picking up where it left off.

• bulk-size=N—Determines the number of records that are processed before committing the transaction.
The default value is 100, valid values are any integer in the range 1–1000.

Here is an example command line:

interaction_server -host genesys_host -port 9876 -app IxnSrv05 -convert-fields reset

You can also have Interaction Server convert an existing database field into a BLOB, stored in the
flexible_properties field. To do so, use the following procedure.

Converting a field to a BLOB

1. Open the corresponding Business Attribute Value in Configuration Manager.
2. In the translation section, add an option called to-delete and give it the value yes.

3. Run Interaction Server in utility mode, as described above. Interaction Server, in utility mode, moves
the content of all such fields into the flexible_properties field and leaves the custom field with an
empty value.

Important
When Interaction Server runs in utility mode all of its other features are disabled: it
cannot process interactions or open ports for clients.

Converting to and From BLOB Verification

Interaction Server Administration Guide 14

https://docs.genesys.com/Documentation/ES/latest/IxnProps/CustProps#translation

Event Logger
In release 7.6.1 and later, Interaction Server includes Event Logger, a mechanism for storing
reporting event messages in a database or a message queue. You can configure it to store all
reporting events or a selected subset. You can also create multiple instances of it.

Interaction Server generates, to registered reporting engines, messages that provide a detailed
picture of the processing of each interaction. It classifies these messages, in two ways. The attributes
of these messages include much information about the interaction itself, such as its type, time
received, associated agents, queues and workbins it was placed it, and so on. For a reference listing
of these events and their attributes, see the
Genesyslab.Platform.OpenMedia.Protocols.InteractionServer.Events in the Platform SDK API
Reference for .NET (or Java).

All configuration for the logger functionality is done in the Database Access Point (DAP) associated
with the logger database.

There are ways to manage the flow of data produced by Event Logger.

Event Logger Verification

Interaction Server Administration Guide 15

https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome
https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome

Deploying Event Logger
1. Create a database to store the reporting data.
2. Locate the correct setup script for your RDMBS and run it on the database you created in Step 1.

This script is called eldb_<database_name>.sql, where <database_name> is either db2, postgre,
mssql, or oracle (for example, eldb_mssql.sql). To locate the script, go to the Script subdirectory of
the installation directory of your Interaction Server, then open the subdirectory named after your
RDBMS; for example, \InteractionServer_801\Script\Oracle.

3. Create a Database Access Point (DAP), filling in the usual mandatory settings on the General and DB
Info tabs.

4. On the DAP’s Options tab, create a section called logger-settings. This is the only mandatory
section; its existence tells Interaction Server to use this DAP for storing reporting events.

5. In the logger-settings section, add at least one option (the section must contain at least one option in
order to be valid).

6. Optionally add any of the following section types:
• event-filtering—Contains options filtering out certain classes of event messages
• custom-events—Specifies a custom mapping of the CustomEventId attribute value of

EventCustomReporting (the option name) to the Event Logger table to store them in (the option
values)

• Custom data sections—Five sections that enable you to map the name of any event onto a custom
field in the Logger database.

7. On Interaction Server’s Connections tab, add a connection to the DAP. For multiple instances of the
Event Logger, run the creation script multiple times, creating multiple databases. Also create a DAP for
each database.

`

Event Logger Deploying Event Logger

Interaction Server Administration Guide 16

Managing Event Logger Data
For the rpt_interaction, rpt_agent, and rpt_esp tables, Genesys supplies a set of scripts that
deletes events as soon as processing of the interaction stops, the agent logs out, or the external
service responds, respectively. For custom reporting events that are stored in the rpt_custom table,
the event-driven trigger trg_del_cust_delay purges them from the rpt_custom table, with a
configurable delay (the default is 10 minutes).

If you want to preserve this data, you can disable the triggers trg_delete_stopped,
trg_delete_resp, trg_del_cust_delay, and trg_delete_logout after you run the setup script.
For Oracle, additionally, disable the triggers trg_mark_cust_logged, trg_mark_responded,
trg_mark_ended_session and trg_mark_stopped_ixn.

You can reenable the triggers any time and resume removing records from the database
automatically.

Of course event messages increase rapidly in number as interactions are processed, so you will want
to take measures to periodically delete data from the database or move it elsewhere.

Also note that after creating or removing custom fields in a database, some triggers become invalid.
If this happens, you must recompile them to be sure they work properly.

Event Logger Managing Event Logger Data

Interaction Server Administration Guide 17

Classification of Events in Event Logger
The logger functionality classifies reporting events in two ways:

• By activity type—that is, whether the activity refers to an interaction, an agent, an ESP server, or is of a
custom type. The database contains tables for each type: interaction activity is stored in
rpt_interaction, agent activity is stored in rpt_agent, and ESP server activity is stored in
rpt_esp. Custom activity can be stored in rpt_interaction, rpt_agent, or rpt_custom, depending
on the configuration in the custom-events section of the Event Logger DAP.

• By endpoint type—that is, whether that interaction is being transmitted to a queue, strategy, agent, or
ESP service. You can filter out events according to endpoint type. A few events do not have an endpoint
type; you cannot filter these events.

The following table lists the events and their classifications.

Event Activity Endpoint
EventPropertiesChanged Interaction -
EventPartyAdded Interaction Agent, Strategy
EventPartyRemoved Interaction Agent, Strategy
EventRevoked Interaction Agent
EventInteractionSubmited Interaction -
EventProcessingStopped Interaction -
EventHeld Interaction -
EventResumed Interaction -
EventPlacedInQueue Interaction Queue
EventPlacedInWorkbin Interaction Queue
EventAgentInvited Interaction Agent
EventRejected Interaction Agent
EventTakenFromQueue Interaction Queue
EventTakenFromWorkbin Interaction Queue
EventAgentLogin Agent Agent State
EventAgentLogout Agent Agent State
EventDoNotDisturbOn Agent Agent State
EventDoNotDisturbOff Agent Agent State
EventMediaAdded Agent Agent State
EventMediaRemoved Agent Agent State
EventNotReadyForMedia Agent Agent State
EventReadyForMedia Agent Agent State
EventAgentStateReasonChanged Agent Agent State
EventMediaStateReasonChanged Agent Agent State

Event Logger Classification of Events in Event Logger

Interaction Server Administration Guide 18

https://docs.genesys.com/Documentation/IXN/latest/Gloss/Glossary#ESP

Event Activity Endpoint
EventExternalServiceRequested ESP Server ESP Server
EventExternalServiceResponded ESP Server ESP Server
EventCustomReporting Interaction, Agent, or Custom -

Event Logger Classification of Events in Event Logger

Interaction Server Administration Guide 19

Event Logger Options
This section provides short descriptions of the DAP options that configure the Event Logger’s
behavior. See the eServices 8.1 Reference Manual for full details.

logger-settings Section

batch-size—Defines the minimum number of records to store in internal memory before flushing to
the database. Valid values are 1–5,000; the default is 500.

max-queue-size—Defines the maximum number of records that are kept in memory while waiting to
be written to the database. If the number of records exceeds this maximum, the data are discarded
from memory and are not written to the database. Valid values are 10,000–100,000; the default is
20,000.

storing-timeout—Defines a time interval, in milliseconds, between operations of writing to the
database. Valid values are 500–60,000; the default is 1,000.

Important
storing-timeout and batch-size define limits that trigger writing
to the database: writing takes place as soon as one or the other is
reached.

schema-name—Specifies the name of the schema used to access the database.

custom-events Section

This section contains options that list custom events by their identifiers and specify which table
(interaction, agent or custom) stores them.

event-filtering Section

This section contains seven options, six of which are named for one of the endpoint types that is
referred to in the classification of events:

log-agent-state
log-agent-activity

Event Logger Event Logger Options

Interaction Server Administration Guide 20

log-queue
log-strategy
log-esp-service

With the value false, events associated with the named endpoint type are filtered out. For example,
setting log-queue to a value of false prevents the events EventPlacedInQueue,
EventPlacedInWorkbin, EventTakenFromQueue, and EventTakenFromWorkbin from being stored.
The remaining two options in this section are:

• log-userdata—With the value false, data from custom fields is filtered out.
• event-filter-by-id—A list of comma-separated event identifiers. Only these events are stored in

Event Logger. If this option is not present or contains no event identifiers, event filtering by identifier is
not applied.

These event identifiers are listed in the Platform SDK 8.5.x API Reference for .NET
(or Java). For example, the identifier of EventRejected is 168.

Custom Data Sections

The five sections contain options specifying a list of events that are to be stored in custom fields of
the event logger database. All five work identically, the differences being (a) the events from which
the user data is taken and (b) the database table that stores them. These differences are shown in
the following table.

Section Source Event Logger Database Table

itx-custom-data
UserData and EventContent
attributes of interaction-related
reporting events

rpt_interaction

esp-custom-data
UserData attribute of
EventExternalServiceRequested
and
EventExternalServiceResponded

rpt_esp

esp‑service‑data
Envelope3rdServer attribute of
EventExternalServiceRequested
and
EventExternalServiceResponded

rpt_esp

agent‑custom‑data EventContent attribute of
EventCustomReporting rpt_agent

custom‑customdata EventContent attribute of
EventCustomReporting rpt_custom

For an explanation of the Envelope3rdServer attribute, see Platform SDK 8.5.x API Reference for
.NET (or Java).

To use these options, you must first add a field to the appropriate Event Logger database table. Its
data type must be the same as that of the mapped user data key. In these sections, the options have
the following characteristics:

Event Logger Event Logger Options

Interaction Server Administration Guide 21

https://docs.genesys.com/Documentation/PSDK/8.5.x/API/Welcome
https://docs.genesys.com/Documentation/PSDK/8.5.x/API/Welcome
https://docs.genesys.com/Documentation/PSDK/8.5.x/API/Welcome
https://docs.genesys.com/Documentation/PSDK/8.5.x/API/Welcome

• The name is a user data key name (case-sensitive).
• The value is three semicolon-separated strings, which specify the following:

1. The name of the field that you added to the database table. This value is required.
2. The data type: string, integer, or timestamp. The default is string, with default length 64. If your

data type is other than string, or if it is string and you want to specify a non-default length (next
item), this value is required.

3. Optionally, the length. The default for the string type is 64. There are no default values for integer
and timestamp.

For example, if you have a data key called CustomerSegment, you can add a custom field to store
this data as follows:

1. Add a field called customer_segment to the rpt_interaction table.
2. In the itx-custom-data section, create an option called CustomerSegment.

3. Give it this value: customer_segment;string;64.

Since string and 64 are the default values for type and length respectively, the value of this option
could also be simply customer_segment.

Event Logger Event Logger Options

Interaction Server Administration Guide 22

Using a Message Queue with Event Logger
You can have Event Logger send events to a message queue, such as IBM MQ-Series, or Microsoft
Message Queue (MSMQ). This provides a mechanism for reliable reporting events delivery to
Interaction Server's reporting clients. Disconnection of the client does not lead to a loss of reporting
events. Instead, events are stored in the message queue and delivered to the client (or otherwise
read by the client) after it reconnects.

To use this functionality, you must create a DAP object that is specifically for the streaming of
reporting events into MSMQ or MQ-Series. Both Interaction Server and the client connect to this DAP.
This DAP must have the following section and options, which partly resemble the sections and
options of the Event Logger DAP and are also documented in the eServices 8.1 Reference Manual:

• logger-settings section
• delivery-protocol. Possible values are:

• event-log—The default, for using Event Logger database scripts
• mq-series—For the MQ-Series message queue system
• msmq—For the MSMQ message queue system
• jms—For a JMS queue
• groovy—For the Groovy Event Logger

• delivery-queue-name—The name of the queue to send messages to.

Optionally, Event Logger DAP can use the following section and option:

• event-filtering section. Contains the single option event-filter-by-id, whose value is a list of
comma-separated event identifiers. Only these events are sent to the message queue; events not
listed are not sent. This option is analogous to the option of the same name used in the Event Logger
DAP.

Important
The event identifiers used in event-filter-by-id are listed in the Platform SDK 8.5.x
API Reference for .NET (or Java).

Event Logger Using a Message Queue with Event Logger

Interaction Server Administration Guide 23

https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome
https://docs.genesys.com/Documentation/PSDK/latest/API/Welcome

Using the JMS Event Logger with Apache
ActiveMQ

Important
You must have Apache ActiveMQ 5.14.5 or higher.

You can use the JMS Event Logger with Apache ActiveMQ to process reporting events using a JMS
queue.

To enable the JMS Event Logger with Apache ActiveMQ, edit the option delivery-protocol and set
the value to jms.

Configuring JMS Event Logger with Apache ActiveMQ

1. Configure Apache ActiveMQ, as described on the Apache website.
2. Create a jndi.properties file with the following content:

java.naming.factory.initial = org.apache.activemq.jndi.ActiveMQInitialContextFactory
java.naming.provider.url = tcp://activemq_host:61616
connectionFactoryNames = ConnectionFactory
queue.InxEventLogQueue = InxEventLogQueue
queue.inbound = inx.inbound
queue.error = inx.error
queue.processed = inx.processed
queue.notification = inx.notification

Important
The value of queue.InxEventLogQueue refers to a queue name in your environment.

3. Pack the jndi.properties file in amq-jndi.jar.
4. Add the following jars to the -Djava.class.path option in the jvm-options section:

• activemq-all-5.14.5.jar
• amq-jndi.jar

5. Create the JMS Event Logger as a Database Access Point (DAP).
6. Configure JMS Event Logger for connecting to Apache ActiveMQ by adding the following options in the

logger-settings section:

Event Logger Using the JMS Event Logger with Apache ActiveMQ

Interaction Server Administration Guide 24

https://docs.genesys.com/Documentation/FR/latest/DBConn/DAPs

• delivery-protocol=jms

• delivery-queue-name=InxEventLogQueue

• jms-connection-factory-lookup-name=ConnectionFactory

• jms-initial-context-factory=org.apache.activemq.jndi.ActiveMQInitialContextFactory

• jms-provider-url=tcp://activemq_host:61616

• reconnect-timeout=10

Important
• Change the value of InxEventLogQueue to the queue value you set in the

jndi.properties file.
• The value of jms-provider-url is the Apache ActiveMQ URL that corresponds to the

<transportConnectorname> node from the activemq.xml file.

7. Configure persistence of messages generated by JMS Event Logger by setting the option recoverable. If
this option is set to true, the message producer delivery mode is set to DeliveryMode.PERSISTENT.
Otherwise, if set to false, the delivery mode is set to DeliveryMode.NON_PERSISTENT.

Important
If the delivery mode is DeliveryMode.NON_PERSISTENT and the corresponding message queue is deleted
on the fly, Interaction Server does not report any errors, even though the messages are not written anywhere.

8. Optionally, you can repeat the steps in this section to set up multiple JMS Event Loggers. With each
additional logger, you must increment the name of additional queues as queue.InxEventLogQueue2 =
InxEventLogQueue2 in the jndi.properties file.

9. Add created JMS Event Loggers to Interaction Server connections.

Using TLS with Apache ActiveMQ

1. Prepare the TLS certificates, as described in the Genesys Security Deployment Guide.
2. Copy cert.jks and truststore.jks into the following folder: <Apache ActiveMQ installation

directory>/conf.
3. Open the file activemq.xml in the folder <Apache ActiveMQ installation directory>/conf and add

the following lines:
<transportConnectors>
...

<transportConnectorname="ssl"uri="ssl://0.0.0.0:61617?trace=true&needClientAuth=true"/>
...

Event Logger Using the JMS Event Logger with Apache ActiveMQ

Interaction Server Administration Guide 25

https://docs.genesys.com/Documentation/System/8.5.x/SDG/TLSPrep

</transportConnectors>
<sslContext>

<sslContextkeyStore="file:${activemq.base}/conf/cert.jks"
keyStorePassword="YourKeyStorePassword"
trustStore="file:${activemq.base}/conf/truststore.jks"
trustStorePassword="YourTrustStorePassword"/>

</sslContext>

Important
Change the values of keyStorePassword and trustStorePassword to acceptable passwords.

4. Restart ActiveMQ.
5. Update the following configuration options in the logger-settings section:

• jms-initial-context-factory=org.apache.activemq.jndi.ActiveMQSslInitialContextFactory
• jms-provider-url=ssl://activemq_host:61617

6. Add the following configuration options in the jms-additional-context-attributes section:
• connection.ConnectionFactory.keyStore=cert.jks

• connection.ConnectionFactory.keyStorePassword=keyStorePassword

• connection.ConnectionFactory.keyStoreType=jks

• connection.ConnectionFactory.trustStore=truststore.jks

• connection.ConnectionFactory.trustStorePassword=trustStorePassword

• connection.ConnectionFactory.trustStoreType=jks

Important
Change the values of connection.ConnectionFactory.keyStorePassword and
ConnectionFactory.trustStorePassword to the values you set in the activemq.xml file.

Event Logger Using the JMS Event Logger with Apache ActiveMQ

Interaction Server Administration Guide 26

Using the Groovy Event Logger
You can use the Groovy Event Logger to process reporting events using custom Groovy scripts.

The Groovy Event Logger is configured, as any other event logger, using the Database Access Point
application and has its own specific options.

To enable the Groovy Event Logger, edit the option delivery-protocol and set the value to groovy.

The Interaction Server IP (installation package) contains sample Groovy projects that implement the
following types of event loggers:

• Elasticsearch Event Logger—Logs the reporting events to Elasticsearch.
• Kafka Event Logger—Logs reporting events to the Kafka message queue.
• File Event Logger—Simplified sample that logs the reporting events to files. Only use this project as a

starting point or for integration with third-party systems.

The IP also contains a document that describes the sample projects, as well as an XML template file
for each sample project.

Event Logger Using the Groovy Event Logger

Interaction Server Administration Guide 27

	Interaction Server Administration Guide
	Table of Contents
	Interaction Server Administration Guide
	Interaction Server Limitations
	Improving the Performance of the Interaction Server Database
	General Remarks on Partitioning
	Planning
	Creating the Database
	Carrying Out the Partitioning
	Verification

	Converting to and From BLOB
	Event Logger
	Deploying Event Logger
	Managing Event Logger Data
	Classification of Events in Event Logger
	Event Logger Options
	Using a Message Queue with Event Logger
	Using the JMS Event Logger with Apache ActiveMQ
	Using the Groovy Event Logger

