
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Interaction Management 8.1.4

Integrated Capture Points Guide

2/14/2022

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
eServices Integrated Capture Points Guide 5
Configure the Integrated Capture Point 7
JMS Capture Point 11

JMS Capture Point Configuration Options 13
OpenMQ—JMS Capture Point Queues 15
OpenMQ—JMS Capture Point Application 17
OpenMQ—Interaction Server JVM 18
TIBCO—JMS Capture Point Application 19
TIBCO—Interaction Server JVM 21
ActiveMQ—JMS Capture Point Queues 22
ActiveMQ—JMS Capture Point Application 23
ActiveMQ—Interaction Server JVM 24
WebSphereMQ-JMS CP Queues 25
WebSphereMQ—JMS CP Application 27
WebSphereMQ—Interaction Server JVM 28
ActiveMQ—SSL for JMS CP 29
OpenMQ—SSL for JMS CP 31
TIBCO—SSL for JMS Capture Point 33

Kafka Capture Point 36
Kafka Capture Point Configuration Options 38
Kafka Capture Point Sample Configuration 39
Kafka Capture Point - Interaction Server JVM 40
Kafka Capture Point - Topic Partitioning 41
Kafka Capture Point - Matching Requests and Replies 43
Kafka Capture Point - Debugging 44

File Capture Point 46
File Capture Point Modes of Operation 47
File Capture Point File Naming Rules 49
File Capture Point Configuration Options 50

Database Capture Point 51
Database Capture Point Configuration Options 53
ODBC Drivers 54
ODBC Drivers for Windows 55
ODBC Drivers Non-Windows 57

Configure unixODBC for Oracle on Solaris 60

Configure unixODBC for Oracle on Linux 64 62
Configure unixODBC for Oracle on Linux 32 64
Configure unixODBC for Oracle on AIX 64 66
Configure unixODBC for Oracle on AIX 32 68
Configure unixODBC for DB2 on Solaris 70
Configure unixODBC for DB2 on Linux 32 or 64 71
Configure unixODBC for DB2 on AIX 64 72
Configure unixODBC for DB2 on AIX 32 73

Notification Queries for Database Capture Point 74
Inbound Queries for Database Capture Point 78
Source Update Queries for Database Capture Point 79
Query Language for Database Capture Point 80

Web Service Capture Point 83
Web Service Capture Point Configuration Options 88
Web Service Capture Point Native Mode 89
Web Service Capture Point iWD Compatibility Mode 90
Web Services Capture Point—Generate a .NET Client 92
Generate Service Proxy with wsimport 95
Apache CXF—Java Client 97
Apache CXF—Javascript Client 99
Generate Service Proxy with Axis2 102
Web Service Capture Point Client Over Secure HTTP 104

Server Certificate 105
Configure Web Service Capture Point for HTTPS 107
HTTPS for WS CP .NET Client 108
HTTPS for WS CP Java Client 109
Generate Client Certificate (.NET) 110
Generate a Client Certificate (Java) 111

Web Service Capture Point Requests (Native) 112
Web Service Capture Point Responses (Native) 115
Web Service Capture Point Requests (iWD-Compatible) 116
Web Service Capture Point Responses (iWD-Compatible) 119

Java Configuration 120
XML Representation 124

Inbound Messages 126
Responses to Capture Point Requests 129
Outbound Notifications 130

Transformation 133
Inbound Transformation Script 136
Outbound Transformation Script 139

eServices Integrated Capture Points Guide
The integrated capture points are a feature of Interaction Server that provides a mechanism for
capturing new interactions from external source systems, and for issuing various requests to existing
interactions.

The capture points, with the exception of the Web Service Capture Point, also produce notifications on
changes to interactions.

The following video is from the iWD documentation and helps to demonstrate the purpose of
integrated capture points:

Link to video

JMS Capture Point
The integrated JMS (Java Message Service) Capture Point functionality is supported in Interaction
Server starting in release 8.0.2. This functionality enables Interaction Server to capture requests to
Interaction Server from a JMS-compliant message queue and to send Interaction Server replies and
interaction event notifications to JMS-compliant message queues, in the form of XML documents. In
iWD 7.6.1, the JMS Capture Adapter was a separate component, but its functionality was integrated
into Interaction Server 8.0.2.

Kafka Capture Point
The integrated Kafka Capture Point functionality is supported in Interaction Server starting in release
8.5.305. This capture point is similar to JMS Capture Point as it works with Interaction Server
requests, replies, and notifications in the form of XML documents. However, it uses specified Kafka
topics to capture requests from and to produce replies and notifications to systems that use Kafka as
a message bus. This capture point is compatible with the iWD XML file capture adapter by means of
configuration options and transformation scripts.

File Capture Point
The integrated File Capture Point is supported in Interaction Server starting in release 8.0.21. This
capture point is similar to JMS Capture Point as it works with Interaction Server requests, replies, and
notifications in the form of XML documents. However, it uses specified file directories to capture
requests and to produce replies and notifications in the form of XML files. This capture point is
compatible with the iWD XML file capture adapter by means of configuration options and
transformation scripts.

JMS, Kafka, and File Capture Points - operation modes
For the JMS, Kafka, and File Capture Points, XML representation of requests and notifications enables
two modes of operation:

• Native mode, in which requests and interaction events notifications are consumed and generated,
respectively, in Interaction Server native XML format.

eServices Integrated Capture Points Guide

Integrated Capture Points Guide 5

https://docs.genesys.com/Documentation/IWD/8.5.1/IWDCP/Welcome
https://player.vimeo.com/video/295200109?title=0&byline=0&portrait=0

• iWD (intelligent Workload Distribution) compatibility mode, in which supplied transformation scripts
convert between iWD XML representation and native Interaction Server XML representation, supporting
the full iWD API functionality (such as task creation, updating, holding, canceling, and various task state
change notifications). For information on how to set up transformation, see Transformation.

DB Capture Point
The integrated Database Capture Point, introduced in Interaction Server 8.1.0, is functionally
equivalent to Database Capture Adapter in iWD 8.0. It provides the ability to capture new interactions
and to propagate updates for existing interactions in the form of user defined queries to external
databases. It also provides a mechanism of propagating interaction event notifications to the external
system in the form of user-defined queries. No transformation scripts are used with Database Capture
Point.

WS Capture Point
The integrated Web Service Capture Point, introduced in Interaction Server 8.1.2, provides a web
service interface for interaction-related requests such as submit, stop, update, hold, resume,
and get info, as well as for ping requests. It fully supports web service definition of the Web
Service Capture Point in iWD 8.0 when operating in iWD compatibility mode. It can be configured to
work with either HTTP or Secure HTTP, in both native and iWD-compatible modes. No transformation
scripts are used with Web Service Capture Point.

eServices Integrated Capture Points Guide

Integrated Capture Points Guide 6

Configure the Integrated Capture Point
The procedures in this section are applicable to all types of capture points. Differences in
configuration between the capture points are mentioned specifically in the procedures where
necessary.

Creating the capture point application

The capture point functionality is built within Interaction Server 8.1, which means that there is no
separate installation package for any type of capture points. An Application object for the capture
point must be configured in Configuration Manager or Genesys Administrator, however. One
Application object must be configured for each instance of the capture point. Interaction Server
supports multiple capture points.

Prerequisites

• Interaction Server must be installed as described earlier in this guide.
• iWD 8.0 must be installed as described in the iWD 8.0 Deployment Guide.

1. Login to Configuration Manager or Genesys Administrator, and import the required capture point
application template from <Interaction Server installation location>\CapturePointTemplates\.

Important
Configuration Server 8.0.3 supports the Capture Point application type. Earlier
releases of Configuration Server should use the Third Party Server application type
for capture points. Also, if a version of Configuration Server earlier than 8.0.3 is
being used, you should modify the corresponding XML metadata file when you
import metadata into Genesys Administrator. In the XML metadata file, replace
type="163" with type="23".

2. Create a new Application object based on the template you imported. The CapturePointId will be
automatically set to the name of the capture point application as configured in Configuration Manager
or Genesys Administrator. In iWD compatibility mode, it will also be saved as the IWD_capturePointId
property in user data. When the capture point is later configured in iWD Manager, the Capture Point ID
must be the same as the application name in order to ensure accurate events history reporting and
accurate filtering. (The capture point Name can be anything).

Important
The name of the Capture Point Application object must start with a letter, contain
only alpha-numeric characters and underscores, and cannot be longer than 16

Configure the Integrated Capture Point

Integrated Capture Points Guide 7

https://docs.genesys.com/Documentation/IWD/latest/Dep/Welcome

characters and cannot contain spaces.

3. Because the capture point is integrated with Interaction Server, the host and port information is taken
from Interaction Server (which must be listed as a connection on the Connections tab). On the Server
Info tab, you can enter the host and port of Interaction Server in the Host field, but the information will
actually be taken from the connection to Interaction Server, not the information entered on this tab.

4. There is no installation package, so the Application object does not correspond to an installed
component. Therefore, the information entered in the Start Info tab are not read. In order to save the
Application object, the fields cannot be left blank, so you can enter any text in these fields.

5. If you are using a version of Configuration Server that does not support the Capture Point application
type, then you must configure the following section and option for the Third Party Server Application
object in order for Interaction Server to recognize it as a Capture Point:
a. In the properties for the Third Party Server application, create a configuration option section called

settings.
b. In the settings section, add the option capture-point-type and set its value to:

• jms for the JMS Capture Point.
• kafka for the Kafka Capture Point.
• file for the File Capture Point.
• db for the Database Capture Point.
• webservice for the Web Service Capture Point.

If you do not create this option, the Third Party Server application will not be treated like a
capture point.

Tip
For information about all configuration options for the Capture Point application and
configuration options for Interaction Server that are related to the capture point
functionality, refer to the Configuration options warehouse.

• Add a connection to Interaction Server. Multiple Capture Point Application objects can connect to the same
Interaction Server.

• Save the Application object.

Next Steps

• For the JMS Capture Point:
• Verify your Java Configuration. See Java Configuration.
• Set configuration options. There are four sample configurations that you can consult.
• Configure a Capture Point Service in iWD Manager. See Configuring the capture point service on this

page.

Configure the Integrated Capture Point

Integrated Capture Points Guide 8

https://docs.genesys.com/Documentation/Options/Current/ES/InteractionServer

• For the Kafka Capture Point:
• Verify your Java Configuration. See Java Configuration.
• Set configuration options. There is a sample configuration that you can consult.
• Configure a Capture Point Service in iWD Manager. See Configuring the capture point service on this

page.

• For the File Capture Point:
• Verify your Java Configuration. See Java Configuration, if Groovy transformations are present (for

example, in iWD compatibility mode).
• Set configuration options.
• Configure a Capture Point Service in iWD Manager. See Configuring the capture point service on this

page.

• For the Database Capture Point:
• Set configuration options.
• Configure a Capture Point Service in iWD Manager. See Configuring the capture point service on this

page.
• Install a driver, configure ODBC and test the connection. See ODBC Drivers.

• For the Web Service Capture Point:
• Set configuration options.
• Configure a Capture Point Service in iWD Manager. See Configuring the capture point service on this

page.

Configuring the capture point service

The following procedure creates the service in iWD Manager.

1. Log into iWD Manager.

Important
For a detailed description of the iWD Manager interface, including logging in, the
interface layout, and available functionality, refer to the iWD Deployment Guide.

2. In iWD Manager, select the Services navigation section.
3. Locate your Solution in the navigation tree. Expand the Services node in the navigation tree (if

necessary), and click New Service.
4. From the templates drop down list,

a. For iWD 8.1.0 or higher, select the Generic Capture Point service. The Capture Point ID must match
the name of the Capture Point Application object that you configured in Creating the capture point
application. Configure the remaining properties of the service. All other configuration for the

Configure the Integrated Capture Point

Integrated Capture Points Guide 9

https://docs.genesys.com/Documentation/IWD/latest/Dep/Welcome

capture point is done in Configuration Manager or Genesys Administrator by using configuration
options.

b. For iWD 8.0, select any Capture Point service. The service that you are creating will serve as a
"dummy" Capture Point Service. The Capture Point ID must match the name of the Capture Point
Application object that you configured in Creating the capture point application. The rest of the
properties can be left at their default values, as they will not be used. All configuration for the
Capture Point is done in Configuration Manager or Genesys Administrator by using configuration
options.

3. When configuration is complete, click Save. Remember to deploy your changes in iWD Manager.

Starting or stopping the Capture Point Service

You can set an Integrated Capture Point (ICP) to stopped mode by changing the state of the
corresponding configuration object to disabled; changing the state to enabled restarts the inbound
cycle of the ICP.

Configure the Integrated Capture Point

Integrated Capture Points Guide 10

JMS Capture Point
The integrated JMS Capture Point is used to capture interactions from systems that use JMS as a
message bus.

Prerequisites

The following prerequisites must be met in order to enable the JMS Capture Point functionality in
Interaction Server:

• Licensing: Interaction Server will enable JMS Capture Point functionality only if the technical license
(iwd_jms_cp) is present.

• The latest version of Interaction Server must be installed.
• Existing JMS-compliant message queue provider must be present.
• JRE 1.8 is required.
• JMS is supported by using Java Native Interface (JNI) and requires Java in order to work. If Java is not

installed or not properly configured, JMS functionality will not be available. In addition to JMS API Java
libraries, all required jar files for the specific provider need to be installed and accessible.

• iWD 8.0 must be installed.

Outline

• For information on configuring JVM in Interaction Server, see here.
• Configure JMS Capture Point

• Start with the general procedure for creating a Capture Point Application object and a Capture Point
Service.

• Set configuration options for your particular environment.
• Consult specific examples of configuring JMS Capture Points, listed in the next section.

• XML Representation—The integrated JMS Capture Point is capable of capturing interactions in the form
of XML documents from JMS-compliant message queue providers. Consult the description of inbound
and outbound XML messages.

Sample Configurations

This guide provides sample configurations for JMS Capture Point applications working with various JMS
providers:

JMS Capture Point

Integrated Capture Points Guide 11

https://docs.genesys.com/Documentation/Options/latest/ES/InteractionServer-JMSCapturePoint

• OpenMQ
• Setting up queues
• Creating a Capture Point Application
• Configuring for Java

• ActiveMQ
• Setting up Queues
• Creating a Capture Point Application
• Configuring for Java
• Enabling SSL

• TIBCO
• Creating a Capture Point Application
• Configuring for Java

• WebSphere MQ
• Setting up Queues
• Creating a Capture Point Application
• Configuring for Java

• Using SSL
• With OpenMQ
• With TIBCO

JMS Capture Point

Integrated Capture Points Guide 12

JMS Capture Point Configuration Options
PAGE TO BE DELETED AND CONTENT MOVED TO OPTIONS WAREHOUSE

Refer to the eServices 8.1 Reference Manual for detailed descriptions of all Capture Point-related
configuration options. This section briefly describes some of the configuration options. The following
options should be configured in the settings section of the Capture Point application.

• inbound-queue-name (mandatory)—Specifies message queue from which incoming messages will be
read.

• processed-queue-name (optional)—Specifies the message queue to copy successfully processed
messages. If the option is empty, the successfully processed messages are consumed from the inbound
queue and no copy remains anywhere except in the form of the newly created interaction.

• error-queue-name (optional)—Specifies the message queue to copy messages that cannot be
processed from incoming queue. If the option is empty, unsuccessfully processed messages are
consumed from the inbound queue and no copy remains.

• notification-queue-name (optional)—Specifies the message queue into which notification messages
are placed. The notification queue provides the most details regarding processing of the messages out
of the inbound queue and the progress in the interaction processing. For simple integrations, however,
this might not be necessary.

• reconnect-timeout (optional)—Specifies the time interval (in seconds) between the reconnect
attempts in case a connection with corresponding messages queue broker is broken. The minimum
value is 3, the maximum value is 30, and the default value is 10.

• outbound-message-type (optional)—Specifies the type of messages the capture point sends to the
outbound queues if they are present (processed, notifications, error). The possible values of this option
are binary and text. The default value is binary. For the JMS Capture Point, setting this option to
binary means that "BytesMessage" messages are sent and text means that "TextMessage"
messages are sent.

• rollback-on-transformation-fail—Specifies that the message queue transaction should be rolled
back if inbound message transformation fails for any reason. This option is set to false by default.

• after-rollback-delay—Specifies delay in seconds to wait before attempting to process inbound
messages again after the previous transaction has been rolled back. The default value is 30, the
minimum value is 0, and the maximum value is 300.

• jms-initial-context-factory (mandatory) A fully qualified class name of the factory class in a JNDI
service provider that will create an initial context. For example,
com.sun.jndi.fscontext.RefFSContextFactory is the factory class name for the file system service
provider.

For TIBCO EMS, set the value to com.tibco.tibjms.naming.TibjmsInitialContextFactory.

• jms-provider-url (mandatory)—Holds the name of the environment property for specifying
configuration information for the service provider to use. The value of the property should contain a
URL string (for example, ldap://somehost:389). In the case of a file system service provider, it
contains the directory path to the .bindings file.

TIBCO EMS provides a built-in JNDI provider. For TIBCO EMS set the value to
tibjmsnaming://hostname:7222.

JMS Capture Point JMS Capture Point Configuration Options

Integrated Capture Points Guide 13

• jms-connection-factory-lookup-name (mandatory)—Specifies the name of the connection factory
lookup name for the connection factory to be looked up in the initial context. Once looked up, the
connection factory is used to create a connection with a JMS provider.

For TIBCO EMS, this is the name of the factory that is created by using the create factory
command.

• number-receiving-sessions (optional)—Specifies the number of receiving sessions (number of
consumers from the inbound queue) per capture point, consuming from the inbound queue. The
minimum value is 1, the maximum value is 20, and the default value is 3.

• consumer-receive-timeout (optional)—Specifies the timeout (in milliseconds) on the message
consumer blocking receive method. The minimum value is 200, the maximum value is 5000, and the
default value is 1000.

• username and password (optional)—Specifies the username and the password to be used when the
connection factory creates a connection to the message queue. If one of these parameters is missing,
the connection is created with the default user identity.

For TIBCO EMS it is important to create a user with a password for Interaction Server to access
queues.

Endpoints

To enable endpoints functionality for the integrated Capture Point, you must add a tenant on the
Tenants tab of the Capture Point Application and you must add a section called endpoints to the
configuration options. You can add the endpoints section manually in Configuration Manager or by
using Interaction Routing Designer (IRD) version 8.0.100.12 or later. The integrated Capture Point
endpoints work in the same way as endpoints for media servers. Refer to the eServices Reference
Manual, Universal Routing Business Process User's Guide and IRD Help for detailed descriptions.

JMS Capture Point JMS Capture Point Configuration Options

Integrated Capture Points Guide 14

OpenMQ—JMS Capture Point Queues
This page provides an example of setting up queues for the JMS Capture Point using the OpenMQ
provider.

Setting up queues with Open Message Queue Administration
Console

1. Connect to the OpenMQ broker that is running.
2. Add the following queues using the Add Broker Destination dialog: Inbound, Processed, Error, and

Notification.
3. For each queue that you have added, set Max Number of Producers and Max Number of Active

Consumers to Unlimited.
4. Add a new Object Store and set the following JNDI Naming Service Properties:

a. Set java.naming.factory.initial to com.sun.jndi.fscontext.RefFSContextFactory.
b. Set java.naming.provider.url to file:///D:/OpenMQExample.

Important
This is the directory in which the .bindings file containing definitions will be
saved.

3. Connect to the newly created object store.
4. Add a connection factory object using the Add Connection Factory Object dialog:

a. Specify the lookup name, such as ConnectionFactory.
b. Specify the Factory Type as QueueConnectionFactory.
c. In the Client Identification tab, specify the Default Username and Default Password (for

example, guest and guest, respectively).

4. Add destinations to the object store for all four queues that you defined previously:
a. For the Inbound queue, specify the lookup name inbound and destination name Inbound.
b. For the other queues, set the lookup names as processed, error, and notification.

Important

JMS Capture Point OpenMQ—JMS Capture Point Queues

Integrated Capture Points Guide 15

The lookup names can be different from the destination names.

3. After the above steps have been completed, the folder D:/OpenMQExample/ contains the .bindings
file with connection factory and queue definitions. Open the file, examine it for the presence of the
defined queues and connection factory, and save it with file format set to UNIX so that it is possible to
use it on UNIX operating systems.

Next Steps

• Create a capture point Application object in Configuration Manager.

JMS Capture Point OpenMQ—JMS Capture Point Queues

Integrated Capture Points Guide 16

OpenMQ—JMS Capture Point Application
This page provides an example to configuring a JMS Capture Point Application object when using the
OpenMQ provider.

This is a specific example of the more general configuration procedure titled "Configure Integrated
CP."

Creating a capture point application in Configuration Manager
(OpenMQ example)

1. Create a Capture Point Application in the Configuration Manager named CP_OpenMQ_solaris.
2. On the Options tab, create a section named settings. In this section add the following options:

• capture-point-type=jms

• inbound-queue-name=inbound (the same as in the queue lookup name above)
• error-queue-name=error

• processed-queue-name=processed

• notification-queue-name=notification

• xsl-inbound-transform-path=./iwd_scripts/iWD2IxnServerTransformer.groovy (points to the
default iWD Compatibility scripts)

• xsl-outbound-transform-path=./iwd_scripts/IxnServer2iWDTransformer.groovy

• username=guest (as configured in the connection factory)
• password=guest

• jms-initial-context-factory=com.sun.jndi.fscontext.RefFSContextFactory

• jms-provider-url=file:///home/InteractionServer (the path points to the folder where the
.bindings file (in UNIX file format) is stored on the Interaction Server host)

• jms-connection-factory-lookup-name=ConnectionFactory

3. On the Connections tab add the Interaction Server that will use this JMS Message queue.

Next Steps

• Configure the Interaction Server options to load JVM and all of the required libraries.

JMS Capture Point OpenMQ—JMS Capture Point Application

Integrated Capture Points Guide 17

OpenMQ—Interaction Server JVM
This page provides an example of configuring Interaction Server options to load JVM and all of the
required libraries when using OpenMQ.

See also the general description of configuring for Java.

Configuring Interaction Server to load JVM and required libraries
(OpenMQ example)

1. In the options of the Interaction Server to which the Capture Point Application object is connected,
create a section called java-config and add the following option: jvm-path=/usr/local/java/
jdk1.6.0_22/jre/lib/sparcv9/server/libjvm.so

This is the full path to the libjvm.so (jvm.dll on Windows) on the host on which the Interaction
Server is deployed.

2. Create a section called jvm-options and add the following option: -Djava.class.path=./jms/
jms_wrapper.jar:/home/OpenMQ_sol/mq/lib/imq.jar:/home/OpenMQ_sol/mq/lib/fscontext.jar:
/home/OpenMQ_sol/mq/lib/jms.jar:./transformation/
xml_transformer_capture_point.jar:./transformation/groovy-all-
1.7.3.jar:./transformation/xercesImpl.jar:./transformation/xsltc.jar:

This option specifies the classpath to all of the Java archives that are necessary for JMS Capture
Points on OpenMQ with iWD compatibility transformations to run. Note that the jar files imq.jar,
fscontext.jar, and jms.jar are located in the Open MQ installation directory and are not
supplied in the Interaction Server installation package.

3. Add the options -Xoss1m and -Xss1m to the jvm-options section. These options must have empty
values.

JMS Capture Point OpenMQ—Interaction Server JVM

Integrated Capture Points Guide 18

TIBCO—JMS Capture Point Application
This example assumes the following:

• The host of the TIBCO message queue service is called tibhost.
• Queues called inbound, error, notification, and processed are defined.
• Both user name and password are guest.
• The connection factory is called tibconnectionfact.

Configuring a JMS Capture Point Application Object (TIBCO
example)

1. On the Options tab, create a section called settings. In this section add the following options:
• capture-point-type=jms

• inbound-queue-name=inbound (the same as the queue name)
• error-queue-name=error

• processed-queue-name=processed

• notification-queue-name=notification

• xsl-inbound-transform-path=./iwd_scripts/iWD2IxnServerTransformer.groovy (points to
the default iWD Compatibility scripts)

• xsl-outbound-transform-path=./iwd_scripts/IxnServer2iWDTransformer.groovy

• username=guest

• password=guest

• jms-connection-factory-lookup-name=tibconnectionfact (the name of the connection factory
on TIBCO)

• jms-initial-context-factory=com.tibco.tibjms.naming.TibjmsInitialContextFactory

• jms-provider-url=tibjmsnaming://tibhost:7222

2. (Optional) In case the lookup of the Connection Factory over JNDI on Tibco EMS is protected by simple
authentication, do these additional steps. In the Options tab, create a section called jms-additional-
context-attributes. In this section add the following options:
• java.naming.security.principal=<username> // JNDI user

• java.naming.security.credentials=<password> // JNDI password

• java.naming.security.authentication=simple

JMS Capture Point TIBCO—JMS Capture Point Application

Integrated Capture Points Guide 19

Important
<username> and <password> are the credentials used to authenticate on the JNDI server and may be
different from those used to authenticate the connection to the JMS objects.

3. On the Connections tab, add the Interaction Server that will use this JMS Message queue.

Next Steps

• Configure the Interaction Server options that are required to load JVM and the necessary libraries.

JMS Capture Point TIBCO—JMS Capture Point Application

Integrated Capture Points Guide 20

TIBCO—Interaction Server JVM
This page provides an example of configuring Interaction Server options to load JVM and all of the
required libraries when using TIBCO.

See also the general description of configuring for Java.

This example assumes the following:

• The host of the TIBCO message queue service is called tibhost.
• Queues called inbound, error, notification, and processed are defined.
• Both user name and password are guest.
• The connection factory is called tibconnectionfact.

Configuring Interaction Server to load JVM and the required
libraries (TIBCO example)

1. On the Options' tab of the Interaction Server Application, create a section named java-config and
add the option: jvm-path=/usr/local/java/jdk1.6.0_22/jre/lib/sparcv9/server/libjvm.so

This is the full path to the libjvm.so file (jvm.dll if the operating system is Windows) on the host
on which the Interaction Server is deployed.

2. Create a section named jvm-options and add the following option: -Djava.class.path=./jms/
jms_wrapper.jar:/opt/tibco/ems/6.0/lib/jms.jar:/opt/tibco/ems/6.0/lib/tibjms.jar:
./transformation/xml_transformer_capture_point.jar:./transformation/groovy-
all-1.7.3.jar: ./transformation/xercesImpl.jar:./transformation/xsltc.jar:

This option specifies the class path to all of the Java archives that are necessary for JMS Capture
Points on TIBCO with iWD compatibility transformations to run. Note that the jar files tibjms.jar
and jms.jar are located in the TIBCO installation directory and are not supplied in the Interaction
Server installation package.

3. Add the options -Xoss1m and -Xss1m to the jvm-options section. These options must have empty
values.

JMS Capture Point TIBCO—Interaction Server JVM

Integrated Capture Points Guide 21

ActiveMQ—JMS Capture Point Queues
This page provides an example of how to set up queues for the JMS Capture Point using the ActiveMQ
provider.

Setting up queues for the JMS Capture Point using the ActiveMQ provider

1. Configure Apache ActiveMQ, as described on the Apache website.
2. Create a jndi.properties file with the following content:

connectionFactoryNames = ConnectionFactory

queue.inbound = inx.inbound

queue.error = inx.error

queue.processed = inx.processed

queue.notification = inx.notification

Use the ZIP Utility to pack the jndi.properties file in the amq-jndi.jar file.

JMS Capture Point ActiveMQ—JMS Capture Point Queues

Integrated Capture Points Guide 22

ActiveMQ—JMS Capture Point Application
This page provides an example of how to configure a JMS Capture Point Application object when using
ActiveMQ.

Creating a Capture Point application

1. On the Application Options tab, edit the setting section:
capture-point-type=jms

inbound-queue-name=inbound

error-queue-name=error

processed-queue-name=processed

notification-queue-name=notification

xsl-inbound-transform-path=./iwd_scripts/iWD2IxnServerTransformer.groovy (points to
the default iWD Compatibility scripts)

xsl-outbound-transform-path=./iwd_scripts/IxnServer2iWDTransformer.groovy

username=(as configured in the connection factory)

password=(as configured in the connection factory)

jms-initial-context-factory=org.apache.activemq.jndi.ActiveMQInitialContextFactory

jms-provider-url=tcp://<activemq_host>:<activemq_port>

jms-connection-factory-lookup-name=ConnectionFactory

2. On the Connections tab, add the Interaction Server that will use this JMS Message queue.

JMS Capture Point ActiveMQ—JMS Capture Point Application

Integrated Capture Points Guide 23

ActiveMQ—Interaction Server JVM
This page provides an example of configuring Interaction Server options to load JVM and all of the
required libraries when using ActiveMQ. See also the general description of the configuration
requirements for Java.

Configuring Interaction Server to load JVM and required libraries

In the Interaction Server Application object, on the Applications Options tab, add the following jar
files to the -Djava.class.path option in the jvm-options section:

• activemq-all-<version>.jar
• amq-jndi.jar

The activemq-all-<version>.jar file is located in the ActiveMQ installation directory and not
supplied with Interaction Server.

JMS Capture Point ActiveMQ—Interaction Server JVM

Integrated Capture Points Guide 24

WebSphereMQ-JMS CP Queues
This page provides an example of setting up queues for the JMS Capture Point when using IBM
WebSphere MQ.

Setting up queues using IBM WebSphere MQ Explorer

1. Start WebSphere MQ Explorer. Find the Object tree in the Navigator window.
2. Right-click the Queue Managers node and select New to create a new Queue Manager. Follow the

steps in the resulting Wizard, choosing a name (for example, my_QManager) and unique listening
port.

3. As the Object tree is updated, find the Queues node under the new Queue Manager. Right-click this
node and select New> Local Queue.

4. Create Local Queues named mq_inbound, mq_notifications, mq_errors, and mq_processed. Select
Persistent for the Default Persistence setting.

5. With the Queues node selected in the Object tree, right-click mq_inboundin the Content pane and
select Put Test Message. Enter any text of your choice in the Message data field, then click Put
message. This test message will wait in the queue until the capture point retrieves it.

6. In the Object tree, right-click the JMS Administered Objects node and select Add Initial Context.
Choose File system for the JNDI namespace location and select the directory where the corresponding
storage file will be created.

7. The new node for initial context now appears in the Object tree. Select it and verify that the
Connection Factories and Destinations nodes appear under it. If necessary, right-click and use the
context menu to connect to the InitialContext object make these nodes visible.

8. Right-click Connection Factories and select New > Connection Factory. Enter or select the
following values:
a. Sample name—my_ConnFactory
b. Messaging provider—WebSphere MQ
c. Transport—MQ Client
d. Base queue manager and Broker queue manager (last screen)—The Queue Manager that you

created in Step 2.
e. Host name and port—Correct values for your environment

9. Right-click Destinations and select New > Destination and create four new Destinations that
correspond to the queues that you created in Step 4:
a. Type—Queue
b. Names—jms-inbound, jms-errors, jms-notifications, and jms-processed.
c. On the last screen, select the proper Queue Manager and Queue objects.

10. Find the file named .bindings at the location established in Step 6. It will be referred to later on the
sample configuration.

JMS Capture Point WebSphereMQ-JMS CP Queues

Integrated Capture Points Guide 25

Next Steps

Configure the JMS Capture Point Application object.

JMS Capture Point WebSphereMQ-JMS CP Queues

Integrated Capture Points Guide 26

WebSphereMQ—JMS CP Application
This page provides an example to configuring a JMS Capture Point Application object when using
WebSphere MQ.

This is a specific example of the more general configuration procedure.

Procedure: Configuring the JMS Capture Point application in Configuration Manager
(WebSphere MQ example)

1. On the Options tab create a section called settings. In this section add the following options:
• capture-point-type=jms

• inbound-queue-name=inbound (the same as the corresponding Destination name)
• error-queue-name=jms-error

• processed-queue-name=jms-processed

• notification-queue-name=jms-notifications

• xsl-inbound-transform-path=./iwd_scripts/iWD2IxnServerTransformer.groovy (points to
the default iWD Compatibility scripts)

• xsl-outbound-transform-path=./iwd_scripts/IxnServer2iWDTransformer.groovy

• jms-connection-factory-lookup-name=my_ConnFactory (the name of the connection factory that
you created in WebSphere MQ)

• jms-initial-context-factory=com.sun.jndi.fscontext.RefFSContextFactory

• jms-provider-url=file:///home/InteractionServer (the path points to the folder where the
.bindings file—in UNIX file format—is stored on the Interaction Server host)

2. On the Connections tab, add the Interaction Server which will use this JMS Message queue.

Next Steps

Configure the Interaction Server options to load JVM and the necessary libraries.

JMS Capture Point WebSphereMQ—JMS CP Application

Integrated Capture Points Guide 27

WebSphereMQ—Interaction Server JVM
This page provides an example of configuring Interaction Server options to load JVM and all of the
required libraries when using WebSphere MQ. See also the general description of configuring for Java.

Configuring Interaction Server options to load JVM and all of the
required libraries (WebSphere MQ example)

Start

1. On the Options tab of the Interaction Server Application, create a section named java-config and
add the option:

jvm-path=/usr/local/java/jdk1.6.0_22/jre/lib/sparcv9/server/libjvm.so (the full path
to the libjvm.so, or jvm.dll if the operating system is Windows, on the host on which the
Interaction Server is deployed).

2. Create a section named jvm-options and add the following option:
-Djava.class.path=./jms/jms_wrapper.jar:./transformation/
xml_transformer_capture_point.jar:
./transformation/groovy-all-2.4.15.jar:./transformation/xercesImpl.jar:
./transformation/xsltc.jar:/usr/location/jms/mq/com.ibm.mq.allclient.jar:
/usr/location/jms/mq/providerutil.jar:/usr/location/jms/mq/fscontext.jar:/usr/
location/jms/mq/jms.jar

The example classpath contains list of jars required for IBM MQ 9.0.0. If you use another version of
IBM MQ, refer to the corresponding documentation.

3. Add the options -Xoss1m and -Xss1m to the jvm-options section. These options must have empty
values.

End

Note on the first of the three options in Step 2: This option specifies the class path to Java archives
that are necessary for JMS Capture Points on WebSphere MQ with iWD compatibility transformations
to run. Note that in the class-path the jar files com.ibm.mq.jar, com.ibm.mqjms.jar,
fscontext.jar, and jms.jar are located in some user-defined location, and are not supplied in the
Interaction Server installation package. These files are installed on your host by the WebSphere MQ
installation, server or client, and are typically located in the subdirectory /opt/mqm on Linux and
C:\Program Files\IBM\MQ on Windows.

The connection to WebSphere MQ requires more than just the four jar files listed in the class-path, as
these jar files depend on other jar files in the same directory. Therefore, the class-path should refer to
them at the same location where they were placed by WebSphere MQ installation. Or, if they were
copied, all files contained in the ./lib directory should be copied to the new location.

JMS Capture Point WebSphereMQ—Interaction Server JVM

Integrated Capture Points Guide 28

ActiveMQ—SSL for JMS CP
This page provides an example of how to enable SSL with the ActiveMQ provider.

Enabling SSL with the ActiveMQ provider

Important
ActiveMQ client jar of version 5.14.2 or later is needed.

1. Prepare the TLS certificates, as described in the Genesys Security Deployment Guide.
2. Copy cert.jks and truststore.jks into the following folder: <Apache ActiveMQ installation directory>/conf.
3. Open the file activemq.xml in the folder <Apache ActiveMQ installation directory>/conf and add the

following lines:
<transportConnectors>

...

<transportConnectorname="ssl"uri="ssl://0.0.0.0:<ssl_port>?trace=true≠edClient
Auth=true"/>

...

</transportConnectors>

<sslContext>
<sslContextkeyStore="file:${activemq.base}/conf/cert.jks"

keyStorePassword="YourKeyStorePassword"

trustStore="file:${activemq.base}/conf/truststore.jks"

trustStorePassword="YourTrustStorePassword"/>

</sslContext>

4. Restart Active MQ to let it read new configuration.
5. In the Capture Point application options, in the settings section, edit the following options:

• jms-provider-url=ssl://<activemq_host>:<ssl_port>

• jms-initial-context-
factory=org.apache.activemq.jndi.ActiveMQSslInitialContextFactory

6. In the Capture Point application, create a section jms-additional-context-attributes with following
options:
• connection.ConnectionFactory.keyStore=<path to local keystore file>

• connection.ConnectionFactory.keyStorePassword=<local keystore password>

JMS Capture Point ActiveMQ—SSL for JMS CP

Integrated Capture Points Guide 29

https://docs.genesys.com/Documentation/System/8.5.x/SDG/TLSPrep

• connection.ConnectionFactory.keyStoreType=jks

• connection.ConnectionFactory.trustStore=<path to local truststore file>

• connection.ConnectionFactory.trustStorePassword=<local keystore password>

• connection.ConnectionFactory.trustStoreType=jks

7. To debug SSL, add the following option into the Interaction Server Application options, section java-
options:

-Djavax.net.debug=ssl:handshake,data,trustmanager,record

JMS Capture Point ActiveMQ—SSL for JMS CP

Integrated Capture Points Guide 30

OpenMQ—SSL for JMS CP
This section provides an example of enabling SSL with the OpenMQ provider.

Outline

In general, configuration of an SSL connection consists of the following major steps:

1. Prepare the certificates.
2. Configure the JMS provider to operate in SSL mode.
3. Configure the options in Interaction Server's jvm-options section and add required JARs to the class

path.
4. Configure the JMS Capture Point.

Configure Capture Point to use SSL (OpenMQ example)

This example assumes that an instance of Open MQ is configured and operating with a JMS Capture
Point, without SSL.

The first several steps involve configuring the OpenMQ broker.

1. Generate a self-signed broker certificate:
a. Run keytool to generate a key store (if one does not already exist) to generate a self-signed

certificate:
<OpenMQ installation dir>\mq\bin>imqkeytool

b. Answer all the prompts and remember the chosen passwords. By default, the keystore will be called
keystore and will be located in <OpenMQ installation dir>\etc\mq.

2. Add ssljms to active broker services:
a. Locate the file <OpenMQinstallation>\var\mq\instances\imqbroker\props\config.properties.
b. At the end of the file, add the following line: imq.service.activelist=ssljms,admin,httpjms
c. Set the SSL port by adding the following line: imq.ssljms.tls.port=1756
d. Restart the broker.

The broker will prompt the user for a keystore password.

3. Update the connection factory properties: In the .bindings file, find the line
{Your connection factory lookup name}/RefAddr/44/Content=
and change it to
{Your connection factory lookup name}/RefAddr/44/Content=mqssl\://{your broker

JMS Capture Point OpenMQ—SSL for JMS CP

Integrated Capture Points Guide 31

host}\:1756
where 1756 is the same port as that set in the broker properties. This operation can be done using the
OpenMQ Administration Console by selecting the corresponding connection factory and adding
mqssl://{your broker host}:1756 to the Message Server Address List properties on its Connection
Handing tab.

The next steps involve configuring Interaction Server.

4. Export the broker certificate to a trust store:
a. Export the broker certificate with the following command:

keytool -export -alias imq -keystore keystore -file openmqbroker.cer

b. Copy the .cer file to Interaction Server's host and import it to a local trust store:

keytool -import -keystore truststore.jks -file openmqbroker.cer -alias
openmqbroker

3. Add the following to the Interaction Server jvm-options section:

-Djavax.net.ssl.trustStore= {Path to the local trust store}/truststore.jks
-Djavax.net.ssl.trustStorePassword={your local trust store password}
-Djavax.net.ssl.trustStoreType=jks

For debugging purposes, you can also add the following option, which prints debug information
to the console:
-Djavax.net.debug=ssl:handshake,data,trustmanager,record

4. Finally, configure the JMS Capture Point by adding the following to the jms-additional-context-
attributes section:

java.naming.security.protocol=ssl java.naming.security.authentication=simple

It should be noted that in this example, the JNDI naming service used has all of the relevant context
stored in a .bindings file and does not have any mechanism of authorization and authentication.
With other JNDI services, the user accessing JNDI may have to provide a username and a password,
which can be different from the JMS connection credentials. If this is the case, the JMS Connection
credentials must be specified in the JMS Capture Point settings section as username and password,
while the JNDI username and password must be specified in the jms-additional-context-attributes
section as java.naming.security.principal and java.naming.security.credentials,
respectively.

JMS Capture Point OpenMQ—SSL for JMS CP

Integrated Capture Points Guide 32

TIBCO—SSL for JMS Capture Point
In general, configuring an SSL connection consists of the following major steps:

1. Prepare the certificates.
2. Configure the JMS provider to operate in SSL mode.
3. Configure the options in Interaction Server's jvm-options section and add required JARs to the class

path.
4. Configure the JMS Capture Point.

Configuring a capture point to use SSL (TIBCO example)

Important
This example assumes that:

• An instance of TIBCO Enterprise Message Service is configured and operating with a JMS
Capture Point, without SSL.

• TIBCO EMS 6.0 is running on a host named tibcohost.
• OpenSSL is present.

The first several steps involve configuring the TIBCO EMS:

1. Use OpenSSL to generate the following certificates:
a. Generate a server certificate: openssl req -x509 -days 365 -subj "/C=US/ST=California/

L=Daly City/CN=tibcohost.genesyslab.com" -newkey rsa:2048 -keyout
tibcoserver.key.pem -out tibcoserver.pem

Note that the PEM password in this example is tibcoserver.

b. Generate a client certificate: openssl req -x509 -days 365 -subj "/C=US/ST=California/
L=Daly City/CN=tibcohost.genesyslab.com" -newkey rsa:2048 -keyout
tibcoclient.key.pem -out tibcoclient.pem

Note that the PEM password in this example certificate is tibcoclient.

c. Export the generated certificate and the key into a client identity: openssl pkcs12 -export -in
tibcoclient.pem -inkey tibcoclient.key.pem -out tibcoclient.p12

2. Configure TIBCO properties:
a. New configuration file: this example assumes that the relevant certificates are copied into the folder

/opt/tibco/ems/6.0/samples/certs/. Prepare a new TIBCO configuration file tibemsd_ssl.conf

JMS Capture Point TIBCO—SSL for JMS Capture Point

Integrated Capture Points Guide 33

based on tibemsd.conf by adding or modifying the following lines:
listen = ssl://7243
ssl_require_client_cert = enabled
ssl_server_identity = /opt/tibco/ems/6.0/samples/certs/tibcoserver.pem
ssl_server_key = /opt/tibco/ems/6.0/samples/certs/tibcoserver.key.pem
ssl_password = tibcoserver
ssl_server_trusted = /opt/tibco/ems/6.0/samples/certs/tibcoclient.pem

b. Update factories configuration: In factories.conf, configure the following factory (or add a factory
with a new name):
[SSLQueueConnectionFactory]
type = queue
url = ssl://tibcohost.genesyslab.com:7243
ssl_identity = //opt/tibco/ems/6.0/samples/certs/tibcoclient.p12
ssl_trusted = //opt/tibco/ems/6.0/samples/certs/tibcoserver.pem

c. Use the TIBCO EMS Administration tool to create a new user: tcp://localhost:7222> create user
genesys password=tibcoclient

Important
The user password must be exactly the same as the PEM password for the example client certificate. Note
the following excerpt from the TIBCO EMS User's Guide (Chapter 18): "Because connection factories do
not contain the ssl_password (for security reasons), the EMS server uses the password that is provided
in the create connection call for user authentication. If the create connection password is different
from the ssl_password, the connection creation will fail."

d. Restart TIBCO with the new configuration: tibemsd -config "{Path to
tibemsd_ssl.conf}/tibemsd_ssl.conf"

3. Configure Interaction Server options: Add the following TIBCO EMS jars to the -Djava.class.path option
in the jvm-options section: jms.jar, tibjms.jar, tibcrypt.jar, slf4j-simple-1.4.2.jar, slf4j-
api-1.4.2.jar.

4. Configure the JMS Capture Point:
a. In the settings section, set options as follows:

• jms-connection-factory-lookup-name=SSLQueueConnectionFactory
This option points to a new connection factory.

• jms-provider-url=ssl://tibcohost.genesyslab.com:7243
The provider URL now points to a secure port.

• password=tibcoclient

• username=genesys
The username and password correspond to those of the newly created TIBCO client.

b. In the jms-additional-context-attributes section, set options as follows:
• com.tibco.tibjms.naming.security_protocol=ssl

• com.tibco.tibjms.naming.ssl_enable_verify_host=true

• com.tibco.tibjms.naming.ssl_enable_verify_hostname=false

• com.tibco.tibjms.naming.ssl_identity={Local path to certificates}\tibcoclient.p12

JMS Capture Point TIBCO—SSL for JMS Capture Point

Integrated Capture Points Guide 34

• com.tibco.tibjms.naming.ssl_password=tibcoclient

• com.tibco.tibjms.naming.ssl_trusted_certs={Local path to
certificates}\tibcoserver.pem

• java.naming.security.credentials=tibcoclient

• java.naming.security.principal=genesys

The following two options can be added for debugging:

• com.tibco.tibjms.naming.ssl_debug_trace=true

• com.tibco.tibjms.naming.ssl_trace=true

JMS Capture Point TIBCO—SSL for JMS Capture Point

Integrated Capture Points Guide 35

Kafka Capture Point
The integrated Kafka Capture Point is used to capture interactions from systems that use Kafka as a
message bus.

Prerequisites

The following prerequisites must be met in order to enable the Kafka Capture Point functionality in
Interaction Server:

• Licensing: Interaction Server will enable Kafka Capture Point functionality only if the technical license
(iwd_jms_cp) is present.

• Interaction Server 8.5.305+ must be installed.
• Existing Kafka cluster must be present. It should be running brokers of version “0.10.1.0” or newer.
• Minimum JRE 8 is required.
• OpenJDK 11 is recommended.
• Kafka is supported by using Java Kafka client and requires Java in order to work. If Java is not installed or

not properly configured, Kafka functionality will not be available. All required jar files are provided in IP.
These jars should be correctly specified in the Java Class Path option in Interaction Server. See Java
configuration.

Outline

• Configuring
• Start with the general procedure for creating a Capture Point Application object and a Capture Point

Service.
• Set configuration options for your particular environment.
• Consult specific examples of configuring Kafka Capture Points, listed in the next section.

• XML Representation—The integrated Kafka Capture Point is capable of capturing interactions in the form
of XML documents from the [Apache] Kafka messaging system. Consult the description of inbound and
outbound XML messages.

Kafka Capture Point, just like JMS Capture Point, provides the following guarantees:

• "At least once" processing of the inbound messages including sending replies to them.
• "At most once" sending of the unsolicited notification events.

Kafka Capture Point supports secured communications via TLS protocols.

Kafka Capture Point TIBCO—SSL for JMS Capture Point

Integrated Capture Points Guide 36

Sample Configuration

This guide provides sample configurations for Kafka Capture Point application.

Kafka Capture Point TIBCO—SSL for JMS Capture Point

Integrated Capture Points Guide 37

Kafka Capture Point Configuration Options
For Kafka Capture Point configuration options, refer to eServices Options Reference Manual.

Kafka Capture Point Kafka Capture Point Configuration Options

Integrated Capture Points Guide 38

https://docs.genesys.com/Documentation/Options/latest/ES/InteractionServer-KafkaCapturePoint

Kafka Capture Point Sample Configuration
The following is a sample configuration for the Kafka Capture Point application:

1. Install and start Zookeeper and Kafka Server as described on the Kafka website.
2. Create the following topics in Kafka, with 32 partitions each:

• inbound
• notification
• error
• processed

3. Configure the Kafka Capture Point application. On the application options tab, edit the settings
section:
• capture-point-type = kafka
• kafka-server = host:port of kafka broker
• inbound-topic-name = inbound
• outbound-topic-name = notification
• error-topic-name = error
• processed-topic-name = processed

Kafka Capture Point Kafka Capture Point Sample Configuration

Integrated Capture Points Guide 39

Kafka Capture Point - Interaction Server
JVM
This page provides an example of configuring Interaction Server options to load Java virtual machine
(JVM) and all of the required libraries when using Kafka. See also the general description of the
configuration requirements for Java.

Important
Kafka Capture Point requires minimum JRE 8 to function.

Configuring Interaction Server to load JVM and required libraries

In the Interaction Server Application object, on the Applications Options tab, add the following jar
files to the -Djava.class.path option in the jvm-options section:

• <path to IXN dir>/lib/ixn-java-aux.jar

• <path to IXN dir>/groovy_event_logger/lib/KafkaEventLogger/kafka-clients-2.3.0.jar

• <path to IXNdir>/groovy_event_logger/lib/KafkaEventLogger/slf4j-api-1.7.26.jar

If transformation is used in this capture point, then the following jars should be added to the option
as well:

• <path to IXN dir>/transformation/xercesImpl.jar

• <path to IXN dir>/transformation/xsltc.jar

• <path to IXN dir>/transformation/xml_transformer_capture_point.jar

• <path to IXN dir>/transformation/groovy-all-2.4.15.jar

All required jar files are provided in the IP.

Important
On Windows, libraries are separated with a semi colon (;) and on Linux, with a colon
(:).

Kafka Capture Point Kafka Capture Point - Interaction Server JVM

Integrated Capture Points Guide 40

Kafka Capture Point - Topic Partitioning
Each Kafka topic contains one or more partitions. In a practical sense, a partition is a minimum
processing unit. So, when working with Kafka, special attention should be paid to the topic
partitioning because it influences message handling strategies.

Inbound topic partitioning

This section provides information on inbound topic partitioning.

Number of partitions
For each partition of the inbound topic, Kafka Capture Point has only the offset, index of the
processed messages. This is the standard behavior for Kafka consumers. This is a simple and reliable
way of working, but it limits the number of messages that can be processed in parallel. The parallel
processing of messages is the straightforward way to speed up processing (up to some level). So, the
inbound topic partitions number is the effective hard limit for the Kafka Capture Point receiving
threads number and for performance of Kafka Capture Point. Each receiving thread is capable of
processing messages from several partitions.

The number of the inbound topic partitions should be chosen with some reserve. The recommended
number is 32 or 64.

Message partitioning
Another aspect of the partitioning is the way how the messages are spread across partitions. The
usual requirement is to process requests related to an interaction sequentially, one at a time.
Essentially, this means all such requests should be placed in one partition. This can be achieved by
specifying the same partition key for these requests. Kafka uses partition keys to select partitions to
put message to. Thus, specifying the same partition keys guarantees messages are placed in the
same partition. Combining this with the processing of one request at a time by receiving thread of the
Kafka Capture Point allows to satisfy the given requirement.

The natural candidates for the partition key are the value of Interaction ID generated by
Interaction Server and the value of External ID supplied to Interaction Server from external system.

If the requirement is not needed or satisfied by other means, the partition key of the inbound
messages can be left empty.

Notification topic partitioning

This section provides information on notification topic partitioning.

Kafka Capture Point Kafka Capture Point - Topic Partitioning

Integrated Capture Points Guide 41

Number of partitions
The number of the notification topic partitions does not have any effect on Kafka Capture Point. So, it
is not limited from the Kafka Capture Point side. This number should be chosen in accordance with
the requirements and peculiarities of the consumers of this topic. But most probably, the
recommendation for inbound topic partitions is applicable here as well.

The same applies to partitioning of error and processed topics.

Message partitioning
There are two kinds of messages that are sent to the notification topic:

• Replies to inbound requests
• Unsolicited notifications

The value of Interaction ID of the reply or the unsolicited notification is used as the partition key
for the notification topic. If the value is not present in the reply, then the partition key supplied in the
inbound request is reused for the reply.

Kafka Capture Point Kafka Capture Point - Topic Partitioning

Integrated Capture Points Guide 42

Kafka Capture Point - Matching Requests
and Replies
Unlike JMS, which supports MessageID and CorrelationID message properties for request and reply
matching, Kafka does not provide any built-in means for this goal. Thus, Kafka Capture Point uses its
own convention to allow matching outbound replies for the inbound requests.

Kafka Capture Point adds header MessageID to each outbound reply. Its value is the string
representation of index of partition and offset of the inbound message separated with a dot. That is,
if an inbound message is received from partition 6 with offset 20451, then the value of the
MessageID header of the reply is 6.20451.

Though MessageID uniquely identifies an inbound request, it is not always convenient. Thus, Kafka
Capture Point reads the value of the first CorrelationID header of the inbound request and sends it
back in the CorrelationID header of the reply. The name of the header used for reading correlation
ID can be configured in the Kafka Capture Point option correlation-id-header-key. By default, it is
CorrelationID.

Important
If the Kafka Capture Point option copy-original-headers-in-reply is set to true,
the order of the CorrelationID header in the list of all headers copied from the
inbound request to the outbound reply is preserved.

This approach effectively emulates the JMS message properties MessageID and CorrelationID.

This behavior applies to all outbound messages sent in reply to inbound requests including messages
sent to the notification, processed, and error topics.

Kafka Capture Point Kafka Capture Point - Matching Requests and Replies

Integrated Capture Points Guide 43

Kafka Capture Point - Debugging
The ixn-java-aux.jar file provides the means to debug Kafka Capture Point without Interaction
Server, thus providing a simple and rapid sanity check of the Kafka environment.

You can use the Java class
com.genesyslab.eservices.interactionserver.capturepoints.CheckCPApp to run Kafka Capture
Point as a console Java application in the same way it is done in Interaction Server. It can produce/
consume messages to/from Kafka. The only command-line argument is the path to the application
settings file. For example:

On Windows:

java -cp <path to IXN dir>/lib/ixn-java-aux.jar;<path to IXN dir>/groovy_event_logger/lib/
KafkaEventLogger/kafka-clients-2.3.0.jar;<path to
IXNdir>/groovy_event_logger/lib/KafkaEventLogger/slf4j-api-1.7.26.jar;<path to IXN
dir>/transformation/groovy-all-2.4.15.jar;
com.genesyslab.eservices.interactionserver.capturepoints.CheckCPApp <path to application
settings>

On Linux:

java -cp <path to IXN dir>/lib/ixn-java-aux.jar:<path to IXN dir>/groovy_event_logger/lib/
KafkaEventLogger/kafka-clients-2.3.0.jar:<path to
IXNdir>/groovy_event_logger/lib/KafkaEventLogger/slf4j-api-1.7.26.jar:<path to IXN
dir>/transformation/groovy-all-2.4.15.jar:
com.genesyslab.eservices.interactionserver.capturepoints.CheckCPApp <path to application
settings>

The application settings file must be in JSON format. It follows the generic Genesys format: sections
are on the first level and options are on the second level. For example:

{
"check-cp-app": {

"cp-type": "kafka",
"cp-options-file": "<path to Kafka Capture Point settings file>",
"received-messages-dir": "<path to a directory with inbound message files>",
"commit-inbound": "true"
"notifications-dir": "<path to a directory with notification files>",

}
}

The following options are available:

• cp-type - (Mandatory) Must have kafka as the value always.
• received-messages-dir - A path to a directory where all the messages read from the inbound topic are

stored in. Each message is stored in a separate file with an ordered number as a name. The default
value is an empty string, which means messages won't be stored.

• notifications-dir - A path to a directory where unsolicited notifications are read from the 'to be sent
to the notification' topic. Each file is considered to have one notification. All the characters of a file
name, up to the last period symbol, are used as a partition key. The default value is an empty string,
which means unsolicited notifications won't be sent.

• commit-inbound - If the value is set to false, Capture Point will never commit an inbound message;

Kafka Capture Point Kafka Capture Point - Debugging

Integrated Capture Points Guide 44

instead, it will keep processing this message and continuously send out notifications, resulting in an
infinite loop. The default value is true.

• cp-options-file - (Mandatory) A path to the Kafka Capture Point settings file. It follows the generic
Genesys format: sections are on the first level and options are on the second level. For example:

{
"settings": {

"inbound-topic-name": "inbound",
"processed-topic-name": "processed",
"error-topic-name": "error",
"notification-topic-name": "notification",
"copy-original-properties-in-reply": "false",
"consumer-receive-timeout": "10000",
"kafka-server": "10.10.19.160:9092,10.10.19.161:9092,10.10.19.162:9092",

},

"consumer-options": {
"max.poll.interval.ms": 1000,
"max.poll.records": 20,
"auto.offset.reset": "earliest",

},

"producer-options": {
"retries": 10,

}
}

Kafka Capture Point Kafka Capture Point - Debugging

Integrated Capture Points Guide 45

File Capture Point
The integrated File Capture Point provides the ability to capture interactions from XML files that are
found in a specified directory, and also provides compatibility with iWD file capture points.

• Configuring
• Start with the general procedure for creating a Capture Point Application object.
• Set configuration options for your particular environment.

• If you are using Groovy transformation scripts, configure Interaction Server to load the Java Virtual
Machine.

• XML Representation: File Capture Point is capable of capturing interactions in the form of XML
documents from a local or network directory. Consult the description of inbound and outbound XML
messages.

• Read about File Capture Point's two modes of operation.
• Consult the rules for file naming.

File Capture Point Kafka Capture Point - Debugging

Integrated Capture Points Guide 46

File Capture Point Modes of Operation
The File Capture Point supports two modes of operation: Native mode and iWD compatibility mode.
The mode is specified by the configuration option iwd-compatibility-mode.

Native mode

In native mode, the following four directories are defined and can be used:

• Inbound directory—The directory from which the interactions or tasks are captured.
• Error directory—If a file from the inbound directory is impossible to parse or otherwise process, and no

corresponding interaction has been created, the original file is copied to this directory.
• Processed directory—If a file from the inbound directory has been successfully processed and its

corresponding interaction has been created, the original file is copied into this directory.
• Notification directory—All solicited and unsolicited notifications, resulting from processing of

interactions captured by this capture point will be written in the form of XML files into this directory,
subject to the notification filtering settings.

iWD Compatibility Mode

In iWD compatibility mode, the following directories, which extend the functions of the Notification
directory, are added to the set of native mode directories:

• Completed directory—If an interaction is placed into one of the Interaction Server queues belonging to
the set of "completed" queues, as specified by the parameter CompleteQueues of the outbound
transformer, an iWD notification TaskInfo produced by the outbound transformation will be saved in
the form of an XML file into this directory. The name of the XML will follow the filename rules. See File
Naming Rules.

• Rejected directory—If an interaction is placed into one of the Interaction Server queues belonging to the
set of "rejected" queues, as specified by the parameter RejectQueues of the outbound transformer, an
iWD notification TaskInfo produced by the outbound transformation will be saved in the form of an
XML file into this directory. The name of the XML file will follow the filename rules.

• ErrorHeld directory—If an interaction is placed into one of the Interaction Server queues belonging to
the set of "error held" queues, as specified by the parameter ErrorHeldQueues of the outbound
transformer, an iWD notification TaskInfo produced by the outbound transformation will be saved in
the form of an XML file into this directory. The name of the XML file will follow the filename rules.

• Canceled directory—If an interaction is placed into one of the Interaction Server queues belonging to
the set of "canceled" queues, as specified by the parameter CancelQueues of the outbound
transformer, an iWD notification TaskInfo produced by the outbound transformation will be saved in
the form of an XML file into this directory. The name of the XML file will follow the filename rules.

In iWD compatibility mode, the error directory will contain a notification TXT file with the error
description, along with the copy of the original XML file that failed to be processed. The notification

File Capture Point File Capture Point Modes of Operation

Integrated Capture Points Guide 47

file will contain the error description and will be named consistently with the file that failed to be
processed. Therefore, if the XML file FileName_1.xml failed to be processed, the file name for the
error notification would be FileName_1.txt.

In iWD compatibility mode, the processed directory serves as a "captured" directory, as defined in the
iWD XML file capture adapter. In other words, if an XML file from the inbound directory has been
successfully captured and submitted to a queue of the business process, the interaction contained in
the original file is considered to be "captured" and the copy of the file is placed into the processed
directory.

Important
iWD compatibility mode should always be used together with the supplied iWD
compatibility Groovy scripts. When iWD compatibility scripts (or any other Groovy
transformation scripts) are used by the File Capture Point, the Interaction Server must
be configured to load Java Virtual Machine as described in Java Configuration, with the
following JAR files correctly configured to be present in the class path: ixn-java-
aux.jar, groovy-all-2.4.21.jar, xercesImpl.jar, and xsltc.jar.

File Capture Point File Capture Point Modes of Operation

Integrated Capture Points Guide 48

File Capture Point File Naming Rules
This page describes the file naming rules that are followed for various directories that are used by the
File Capture Point.

Error or Processed directory

When an interaction has been successfully captured from a file (for example, with the name
FileName.xml), in the inbound directory, the file is copied, with its name preserved, into the
processed directory. If Interaction Server cannot process a captured file, this file is copied into the
error directory, with its name preserved. If a file with a desired filename exists in the destination
directory, the filename resolution rule is used to find out the suffix to be appended to the desired
filename. If the File Capture Point is operating in iWD compatibility mode, the name of the error
notification file must match the name of the file that was written into the error directory (and include
the same suffix if necessary).

All Other Directories

All notifications (messages written as files into directories other than the error and processed
directories), both in normal mode and in iWD compatibility mode, can be named according to the
notifications naming mode selected. The two modes available are sequential and by-id.

sequential naming
In this mode, the files in each destination directory are named <counter>.xml, where the
<counter> is an integer, which is incremented for each new notification written. At startup, and
when switching over, the File Capture Point checks all configured notification directories (except for
inbound, error, and processed), finds out the current value of the <counter>, and increments it
before each notification is written.

by-id naming
All notifications, both in normal mode and iWD compatibility mode, are written into their
corresponding directories with the file names set to <InteractionID>.xml. If a file with a desired
filename already exists in the destination directory, the File Capture Point finds the next available
name for a notification for this Interaction ID, by sequentially checking the names matching the form
of <InteractionID>_<counter>.xml, while the <counter> is incremented starting from 1.

File Capture Point File Capture Point File Naming Rules

Integrated Capture Points Guide 49

File Capture Point Configuration Options
For File Capture Point configuration options, refer to eServices Options Reference Manual.

Important
• The Interaction Server jvm-path option (java-config section) is required for message

transformation.
• The jvm-options section must be properly configured; most notably the

-Djava.class.path option.
• If using iWD Compatibility Mode mode, Genesys suggests disabling the

schemaDocumentPath option (inbound-transformer-parameters section) because the
iwd_messages.xsd schema is extremely restrictive. To disable the option, you can
either remove it or alter its name, e.g. to //SchemaDocumentPath. This applies to both
the XML File Capture Point and the JMS Capture Point.

File Capture Point File Capture Point Configuration Options

Integrated Capture Points Guide 50

https://docs.genesys.com/Documentation/Options/latest/ES/InteractionServer-FileCapturePoint
https://docs.genesys.com/Documentation/IXN/9.0.x/ICP/FileCPModesofOperation

Database Capture Point
The integrated Database Capture Point provides the ability to capture interactions from databases,
and also provides compatibility with the iWD Database Capture Adapter. The Database Capture Point
provides the ability to create interactions based on a database query, and to update database
records to propagate changes in interaction states or parameters.

The integrated Database Capture Point picks up updates for the interactions in the source database
and applies these updates to the corresponding interactions. All relevant queries for selection and
updates in the source database are configurable in the integrated Database Capture Point application
settings.

Outline of Deployment

1. Configure the Capture Point
1. Start with the general procedure for creating a Capture Point Application object and a Capture Point

Service.
2. Set configuration options for your particular environment.

2. Install and configure the required ODBC driver.
3. Read about the Configurable Queries available with this Capture Point.
4. Read about the Query Language.
5. Read about Error Handling.

Configurable Queries

The set of possible configurable queries in Database Capture Point includes the queries of iWD 8.0
Database Capture Adapter and introduces a number of new queries, corresponding to existing
interaction events. iWD compatibility is achieved by configuring corresponding iWD-related queries
and parameters.

The queries are written in SQL language, observing the semantics of the DBMS that you are using.
When performing select queries, the columns should be named as standard interaction properties or
user data keys (both case-sensitive). In update queries (using the interaction parameters or special
keys) the interaction parameters and user data are case-sensitive as well.

When using parameters (such as "externalid=<external id of the interaction>"), write a
question mark followed by the name of the parameter known to the interaction server in single
quotes (such as " externalid=?'ExternalId' "). The question mark must be followed by the
parameter name in single quotes, with no spaces.

Database Capture Point File Capture Point Configuration Options

Integrated Capture Points Guide 51

Important
Do not use the curly apostrophe/single quote symbol (’ face="">); use the straight
single quote (').

• Inbound Queries
• Notification Queries
• Source Update Queries
• There is also the following query that does not fit in the three previous categories:

Query parameter Description

startupQuerySql
This optional query runs once, upon the Database
Capture Point point establishing a connection to
the database. It cannot take any parameters
from Interaction Server.

Query Language

The Database Capture Point uses a particular query language, for which a reference listing is
provided.

Error Handling

In situations where a capture or update query results in an error and cannot be executed, the values
ErrorCode and ErrorDescription are provided to the corresponding error queries.

A returned ErrorCode can be equal to 0 for different ErrorDescriptions. This means that the error
is not a protocol error and might not have a separate error code.

If an inbound (or source update) query results in an ODBC exception, the exception is reported in the
logs, and the inbound (or source update) cycle pauses for the duration of the inbound-exception-
sleep-interval parameter (for inbound queries) or the updates-exception-sleep-interval
parameter (for source update queries). Both of these parameters are configuration options for the
Database Capture Point.

Database Capture Point File Capture Point Configuration Options

Integrated Capture Points Guide 52

Database Capture Point Configuration
Options
For Database Capture Point configuration options, refer to eServices Options Reference Manual.

Database Capture Point Database Capture Point Configuration Options

Integrated Capture Points Guide 53

https://docs.genesys.com/Documentation/Options/latest/ES/InteractionServer-DBCapturePoint

ODBC Drivers
For the Database Capture Point to work correctly, you must install and configure drivers. For all
platforms and DBMS, you must:

• Obtain a client driver for the desired database.
• Using an ODBC manager, configure and test the connection to the database.

Important
The procedures are similar for the same DBMS on different operating systems. In the
procedures that follow, examples are used for User IDs, passwords, and names (such
as MY_ORAQ).

ODBC Manager
The type of ODBC Manager to use depends on the operating system that you are using.

Important
Environments with alternative third-party drivers, database accelerators and ODBC
Managers are not supported on compatibility issues. Genesys recommends that you
not use ODBC drivers for different RDBMS (i.e. ORACLE and DB2) on UNIX platforms
simultaneously.

• Windows Platforms
• Non-Windows Platforms

Database Capture Point ODBC Drivers

Integrated Capture Points Guide 54

ODBC Drivers for Windows
On Windows platforms, a Microsoft ODBC Data Source Administrator should be used to configure a
Data Source Name (DSN) for a particular driver and a particular connection.

On 64-bit Windows platforms, there are 32-bit and 64-bit versions of the MS ODBC Data Source
Administrator. The version choice for MS ODBC Data Source Administrator is explained below.

See also some general information on the use of ODBC Drivers with the Database Capture Point.

Driver installation

Microsoft Windows includes Microsoft SQL Server Native Client by default. Client drivers for Oracle
and DB2 can be obtained from the corresponding vendors. The "bitness" of the driver (32-bit or
64-bit) should match the bitness of the Interaction Server executable.

The ODBC drivers have been installed and tested to work with the integrated Database Capture Point
on Microsoft Windows.

MSSQL Oracle DB2

Windows 2003 x86:
NCl 2005.90.3042.00
Cl 2000.86.3959.00
Windows 2008 x64:
NativeClient 10.0
Client 6.01.7600

InstantClient 11.2
Client Shared Library 64-bit - 11.2.0.2.0

IBM Data Server Driver For ODBC and CLI
9.7.3 and 9.7.4 latest FixPacks

ODBC configuration on 32-bit platforms

To configure the ODBC on 32-bit platforms, run MS ODBC Data Source Administrator
(%WINDIR%\System32\odbcad32.exe). Add the User DSN with the corresponding driver.

Important
When Interaction Server runs as a Service, by default it starts from the System
account. If you want to start Interaction Server manually as a Service, do one of the
following:

• Use the System DSN rather than a User DSN.
• Go to Administrative Tools > Services > Log On and change the Log on as: setting

from Local System account to This account.

Database Capture Point ODBC Drivers for Windows

Integrated Capture Points Guide 55

ODBC configuration on 64-bit platforms

Run MS ODBC Data Source Administrator for 32-bit drivers from %WINDIR%\SysWOW64\
odbcad32.exe. For 64-bit drivers (and the Interaction Server executable), run from
%WINDIR%\System32\odbcad32.exe.

Database Capture Point ODBC Drivers for Windows

Integrated Capture Points Guide 56

ODBC Drivers Non-Windows
For all non-Microsoft Windows platforms (AIX 32/64 bit, Linux 32/64 bit, Solaris 10), deploying an
integrated Database Capture Point also requires installing a unixODBC (unixodbc.org) 2.3.0 driver
manager and DSN configuration for a particular driver and a particular connection.

See also some general information on the use of ODBC Drivers with the Database Capture Point.

This section details how to install the drivers on non-Windows platforms. The table below lists the
combinations of databases and operating systems on which native drivers were successfully tested.

Native Drivers
Solaris Linux 32 Linux 64 AIX 32 AIX 64

DB2 Yes Yes Yes Yes Yes
Oracle Yes Yes Yes Yes Yes

unixODBC Installation

To install unixODBC, download the unixODBC source code at http://www.unixodbc.org/download.html
and follow the instructions for configuring and making the unixODBC installation. If a location for
unixODBC other than the default is required, run the configure script with the option --prefix to
change the default location. You might need to modify some system variables for a successful
unixODBC installation. The changes are outlined below.

Here we define the variable $UNIXODBC, denoting the path to the unixODBC installation. This variable
will be used in the sections to follow. Another variable, $HOMEDIR, will be used as a substitute for the
user's home directory.

Solaris 64
You must run the following three commands before starting the unixODBC configure script:

• export CFLAGS="-xarch=v9 -xchip=ultra3 -xO3 -Xa -xstrconst -dalign -xF"

• export LDFLAGS="-xarch=v9"

• export ac_cv_sizeof_long=8

A successful unixODBC installation has been verified on the following compiler: "cc: Sun WorkShop 6
update 2 C 5.3 Patch 111679-14 2004/02/2"?.

AIX 64
You must run the following four commands before starting the unixODBC configure script:

• export CCC=xlc_r

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 57

• export CC=xlc_r

• export CFLAGS=-q64

• export OBJECT_MODE=64

Important
In instances where IBM Data Server Driver for ODBP and CLI v9.7 Fix Pack 4 will be
used to connect to a DB2 database from an AIX 64-bit host, the following patching of
unixODBC 2.3.0 code is required to mitigate a possible defect in the IBM driver for AIX
64-bit. After running the configure script and before running make, modify the
DriverManager/driver_manager.h file, so that the following two lines:

• #define DRV_SQLHANDLE SQLHANDLE

• #define DRV_SQLHDESC SQLHDESC

are replaced with the following lines:

• #define DRV_SQLHANDLE int

• #define DRV_SQLHDESC int

Warning: This patching needs to be performed for unixODBC installation for AIX
64-bit only if you are using DB2 client driver v9.7 Fix Pack 4. Future versions of the
driver may correct the possible cause for the patching.

AIX 32
No extra configuration is required.

Linux 32 and 64
No extra configuration is required, provided that unixODBC is made of the corresponding Linux OS. A
successful unixODBC installation has been verified on the following compilers:

• Linux 64: GNU Make 3.81, gcc version 4.1.1 20070105 (Red Hat 4.1.1-52)
• Linux 32: GNU Make 3.80, gcc version 3.4.6 20060404 (Red Hat 3.4.6-9)

Driver Downloads

This section details the drivers to be downloaded for each database type.

DB2
Download the DB2 drivers from https://www-304.ibm.com/support/docview.wss?uid=swg21418043.

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 58

Download-> DB2 Fixpacks for DB2 LUW and DB2 Connect -> "IBM Data Server Driver for
ODBC and CLI"

Oracle
Two packages must be downloaded:

• Instant Client Package - Basic: All files required to run OCI, OCCI, and JDBC-OCI applications
• Instant Client Package - ODBC: Additional libraries for enabling ODBC applications

Unzip both packages to the same directory.

Variable for the driver directory
Define the variable $DRIVER to denote the native ODBC driver installation directory.

For example, if you are using Oracle Instant Client driver, $DRIVER can be the same as /home/user/
oracle_driver/instantclient_11_2, and if you are using DB2, $DRIVER can be /home/user/
db2driver/db2_cli.

Driver and unixODBC Configuration for Oracle

Select one of the following platforms for detailed instructions on how to configure unixODBC for
Oracle:

• Solaris
• Linux 64
• Linux 32
• AIX 64
• AIX 32

Driver and unixODBC Configuration for DB2

Select one of the following platforms for detailed instructions on how to configure unixODBC for DB2:

• Solaris
• Linux 64 or 32
• AIX 64
• AIX 32

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 59

Configure unixODBC for Oracle on Solaris
1. Go to the Instant Client installation directory: $DRIVER
2. Run

./odbc_update_ini.sh $UNIXODBC $DRIVER Oracle11gDriver ORAONSOL

a. The $UNIXODBC/etc/odbcinst.ini file is updated with:

[Oracle11gDriver]
Description = Oracle ODBC driver for Oracle 11g
Driver = $DRIVER/libsqora.so.11.1
Setup =
FileUsage =
CPTimeout =
CPReuse =

b. The $HOMEDIR/.odbc.ini file is updated with:

[ORAONSOL]
Application Attributes = T
Attributes = W
BatchAutocommitMode = IfAllSuccessful
BindAsFLOAT = F
CloseCursor = F
DisableDPM = F
DisableMTS = T
Driver = Oracle11gDriver
DSN = ORAONSOL
EXECSchemaOpt =
EXECSyntax = T
Failover = T
FailoverDelay = 10
FailoverRetryCount = 10
FetchBufferSize = 64000
ForceWCHAR = F
Lobs = T
Longs = T
MaxLargeData = 0
MetadataIdDefault = F
QueryTimeout = T
ResultSets = T
ServerName =
SQLGetData extensions = F
Translation DLL =
Translation Option = 0
DisableRULEHint = T
UserID =
StatementCache=F
CacheBufferSize=20
UseOCIDescribeAny=F

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 60

3. Create a new Network Configuration file named $HOMEDIR/.tnsnames.ora with the following:
(DESCRIPTION =

(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = oraclehost)(PORT = 1521))

)
(CONNECT_DATA =

(SERVICE_NAME = MY_ORAQ)
)

)

Important
MY_ORAQ is a sample name only.

4. In the .odbc.ini file, change ServerName to be the same as SERVICE_NAME in .tnsnames.ora, and set
the UserID and Password

5. Set Environment Variables:
export LD_LIBRARY_PATH=$UNIXODBC/lib/:$DRIVER/
export ORACLE_SID=my_oraq

6. Go to $UNIXODBC/bin and test DSN with the command:
./isql -v ORAONSOL

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 61

Configure unixODBC for Oracle on Linux 64
1. Go to the $DRIVER directory.
2. Run the command:

./odbc_update_ini.sh $UNIXODBC $DRIVER Oracle11gDriver ORAONLIN64

a. As a result, odbcinst.ini gets updated with:

[Oracle11gDriver] Description = Oracle ODBC driver for Oracle 11g
Driver = $DRIVER/libsqora.so.11.1
Setup =
FileUsage =
CPTimeout =
CPReuse =

b. .odbc.ini gets updated with:

[ORAONLIN64]
Application Attributes = T
Attributes = W
BatchAutocommitMode = IfAllSuccessful
BindAsFLOAT = F
CloseCursor = F
DisableDPM = F
DisableMTS = T
Driver = Oracle11gDriver
DSN = ORAONLIN64
EXECSchemaOpt =
EXECSyntax = T
Failover = T
FailoverDelay = 10
FailoverRetryCount = 10
FetchBufferSize = 64000
ForceWCHAR = F
Lobs = T
Longs = T
MaxLargeData = 0
MetadataIdDefault = F
QueryTimeout = T
ResultSets = T
ServerName =
SQLGetData extensions = F
Translation DLL =
Translation Option = 0
DisableRULEHint = T
UserID =
StatementCache=F
CacheBufferSize=20
UseOCIDescribeAny=F

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 62

3. Create a new Network Configuration file named $HOMEDIR/.tnsnames.ora with the following:
MY_ORAQ =

(DESCRIPTION =
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = oraclehost)(PORT = 1521))
)
(CONNECT_DATA =

(SERVICE_NAME = my_oraq)
)

)

4. In the .odbc.ini file, change ServerName to be the same as SERVICE_NAME in the .tnsnames.ora file,
and set UserID to SCOTT and set Password=tiger.

5. Set variables:

export ORACLE_HOME=$DRIVER/
export LD_LIBRARY_PATH=$UNIXODBC/lib/:$DRIVER/:

6. Test the DSN connection:
./isql -v ORAONLIN64

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 63

Configure unixODBC for Oracle on Linux 32
1. Go to the $DRIVER directory.
2. Run:

./odbc_update_ini.sh $UNIXODBC $DRIVER Oracle11gDriver ORAONLIN32

a. As a result, odbcinst.ini gets updated with:

[Oracle11gDriver]
Description = Oracle ODBC driver for Oracle 11g
Driver = $DRIVER/libsqora.so.11.1
Setup =
FileUsage =
CPTimeout =
CPReuse =

b. .odbc.ini gets updated with:

[ORAONLIN32]
Application Attributes = T
Attributes = W
BatchAutocommitMode = IfAllSuccessful
BindAsFLOAT = F
CloseCursor = F
DisableDPM = F
DisableMTS = T
Driver = Oracle11gDriver
DSN = ORAONLIN32
EXECSchemaOpt =
EXECSyntax = T
Failover = T
FailoverDelay = 10
FailoverRetryCount = 10
FetchBufferSize = 64000
ForceWCHAR = F
Lobs = T
Longs = T
MaxLargeData = 0
MetadataIdDefault = F
QueryTimeout = T
ResultSets = T
ServerName =
SQLGetData extensions = F
Translation DLL =
Translation Option = 0
DisableRULEHint = T
UserID =
StatementCache=F
CacheBufferSize=20
UseOCIDescribeAny=F

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 64

3. Create a new Network Configuration file named $HOMEDIR/.tnsnames.ora with the following:
MY_ORAQ =
(DESCRIPTION =

(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = oraclehost)(PORT = 1521))

)
(CONNECT_DATA =

(SERVICE_NAME = my_oraq)
)

)

4. In the .odbc.ini file, change ServerName to be the same as SERVICE_NAME in the .tnsnames.ora file,
and set UserID to SCOTT and set Password=tiger.

5. Set variables:
export LD_LIBRARY_PATH=$UNIXODBC/lib/:$DRIVER/:
export ORACLE_HOME=$DRIVER/

6. Test the DSN connection:
./isql -v ORAONLIN32

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 65

Configure unixODBC for Oracle on AIX 64
1. Go to the $DRIVER directory.
2. Run

./odbc_update_ini.sh $UNIXODBC $DRIVER Oracle11gDriver ORAIX64

a. As a result, odbcinst.ini gets updated with:
[Oracle11gDriver]
Description = Oracle ODBC driver for Oracle 11g
Driver = $DRIVER/libsqora.so.11.1
Setup =
FileUsage =
CPTimeout =
CPReuse =

b. .odbc.ini gets updated with:
[ORAIX64]
Application Attributes = T
Attributes = W
BatchAutocommitMode = IfAllSuccessful
BindAsFLOAT = F
CloseCursor = F
DisableDPM = F
DisableMTS = T
Driver = Oracle11gDriver
DSN = ORAIX64
EXECSchemaOpt =
EXECSyntax = T
Failover = T
FailoverDelay = 10
FailoverRetryCount = 10
FetchBufferSize = 64000
ForceWCHAR = F
Lobs = T
Longs = T
MaxLargeData = 0
MetadataIdDefault = F
QueryTimeout = T
ResultSets = T
ServerName =
SQLGetData extensions = F
Translation DLL =
Translation Option = 0
DisableRULEHint = T
UserID =
StatementCache=F
CacheBufferSize=20
UseOCIDescribeAny=F

3. Replace the following line in odbcinst.ini:
Driver= $DRIVER/libsqora.so.11.1
with
Driver= $DRIVER/libsqora.so
which is the reference to the driver file. Verify the existence of this file, which is delivered during the
unpacking of the ORACLE drivers.

4. Create a new Network Configuration file named $HOMEDIR/.tnsnames.ora with the following:
MY_ORAQ =
(DESCRIPTION =

(ADDRESS_LIST =

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 66

(ADDRESS = (PROTOCOL = TCP)(HOST = oraclehost)(PORT = 1521))
)
(CONNECT_DATA =

(SERVICE_NAME = my_oraq)
)

)

5. In the .odbc.ini file, change ServerName to be the same as SERVICE_NAME in the .tnsnames.ora file,
and set UserID to SCOTT and set Password=tiger.

6. Set variables:
export LIBPATH=$UNIXODBC/lib/:$DRIVER/:
export ORACLE_HOME=$DRIVER/

7. Test the connection:
./isql -v ORAIX64

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 67

Configure unixODBC for Oracle on AIX 32
1. Go to the $DRIVER directory.
2. Run

./odbc_update_ini.sh $UNIXODBC $DRIVER Oracle11gDriver ORAONAIX32

a. As a result, odbcinst.ini gets updated with:
[Oracle11gDriver]
Description = Oracle ODBC driver for Oracle 11g
Driver = $DRIVER/libsqora.so.11.1
Setup =
FileUsage =
CPTimeout =
CPReuse =

b. .odbc.ini gets updated with:

[ORAONAIX32]
Application Attributes = T
Attributes = W
BatchAutocommitMode = IfAllSuccessful
BindAsFLOAT = F
CloseCursor = F
DisableDPM = F
DisableMTS = T
Driver = Oracle11gDriver
DSN = ORAONAIX32
EXECSchemaOpt =
EXECSyntax = T
Failover = T
FailoverDelay = 10
FailoverRetryCount = 10
FetchBufferSize = 64000
ForceWCHAR = F
Lobs = T
Longs = T
MaxLargeData = 0
MetadataIdDefault = F
QueryTimeout = T
ResultSets = T
ServerName =
SQLGetData extensions = F
Translation DLL =
Translation Option = 0
DisableRULEHint = T
UserID =
StatementCache=F
CacheBufferSize=20
UseOCIDescribeAny=F

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 68

3. Replace the following line in odbcinst.ini:

Driver= $DRIVER/libsqora.so.11.1
with:
Driver= $DRIVER/libsqora.so

4. Create a new Network Configuration file named $HOMEDIR/.tnsnames.ora with the following:
MY_ORAQ =

(DESCRIPTION =
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = oraclehost)(PORT = 1521))
)
(CONNECT_DATA =

(SERVICE_NAME = my_oraq)
)

)

5. In the .odbc.ini file, change ServerName to be the same as SERVICE_NAME in the .tnsnames.ora file,
and set UserID to SCOTT and set Password=tiger.

6. Set variables:

export LIBPATH=$UNIXODBC/lib/:$DRIVER/:
export ORACLE_HOME=$DRIVER/

7. Test the DSN connection:
bash-3.2$./isql -v ORAONAIX32

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 69

Configure unixODBC for DB2 on Solaris
1. In $DRIVER/clidriver/cfg:

a. Rename db2cli.ini.sample to db2cli.ini

b. Rename db2dsdriver.cfg.sample to db2dsdriver.cfg

c. Modify the <dsncollection> element of db2dsdriver.cfg by inserting

<dsn alias="DB2_ALIAS" name="DB2_NAME" host="db2host.<your company>.com"
port="5000"?> <parameter name="Authentication" value="Client"/></dsn>

d. Modify the <databases> element of db2dsdriver.cfg by inserting
<database name="DB2_NAME" host="db2host.<your company>.com" port="5000"?>
<parameter name="CurrentSchema" value="DB2I"/>
<wlb> <parameter name="enableWLB" value="true"/><parameter name="maxTransports"

value="50"/></wlb>
<acr> <parameter name="enableACR" value="true"/> </acr>
</database>

5. Modify $HOMEDIR/.odbc.ini by adding the following:
[DB2_ALIAS]
Description=my DB2
Driver=DB2_DRIVER

6. Modify $UNIXODBC/etc/odbcinst.ini by adding the following:
[DB2_DRIVER] Description=DB2 ODBC Driver Driver=$DRIVER/clidriver/lib/libdb2o.so
Fileusage=1 DontDLClose=1

7. Set variables:
export LD_LIBRARY_PATH=$DRIVER/clidriver/lib/:$UNIXODBC/lib/

8. Test the DSN connection:
./isql -v DB2_ALIAS username password

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 70

Configure unixODBC for DB2 on Linux 32 or
64
1. In $DRIVER/clidriver/cfg:

a. rename db2cli.ini.sample to db2cli.ini

b. Rename db2dsdriver.cfg.sample to db2dsdriver.cfg

c. Modify the <dsncollection> element of db2dsdriver.cfg by inserting
<dsn alias="DB2_ALIAS" name="DB2_NAME" host="db2host.<your company>.com"
port="5000"?> <parameter name="Authentication" value="Client"/></dsn>

d. Modify the <databases> element of db2dsdriver.cfg by inserting
<database name="DB2_NAME" host="db2host.<your company>.com" port="5000"?>
<parameter name="CurrentSchema" value="DB2I"/>
<wlb> <parameter name="enableWLB" value="true"/><parameter name="maxTransports"

value="50"/></wlb>
<acr> <parameter name="enableACR" value="true"/> </acr>

e. Modify $HOMEDIR/.odbc.ini by adding the following:
[DB2_ALIAS]
Description=my DB2
Driver=DB2_DRIVER

6. Modify odbcinst.ini in $UNIXODBC/etc/ by adding the following:
[DB2_DRIVER]
Description=DB2 ODBC Driver
Driver=$DRIVER/clidriver/lib/libdb2.so
Fileusage=1
DontDLClose=1

7. Test the connection:
./isql -v DB2_ALIAS username password

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 71

Configure unixODBC for DB2 on AIX 64
1. In $DRIVER/clidriver/cfg:

a. Rename db2cli.ini.sample to db2cli.ini

b. Rename db2dsdriver.cfg.sample to db2dsdriver.cfg

c. Modify the <dsncollection> element of db2dsdriver.cfg by inserting
<dsn alias="DB2_ALIAS" name="DB2_NAME" host="db2host.<your company>.com"
port="5000">
<parameter name="Authentication" value="Client"/></dsn>

d. Modify the <databases> element of db2dsdriver.cfg by inserting
<database name="DB2_NAME" host="db2host.<your company>.com" port="5000">
<parameter name="CurrentSchema" value="DB2I"/>
<wlb> <parameter name="enableWLB" value="true"/><parameter name="maxTransports"
value="50"/></wlb>
<acr> <parameter name="enableACR" value="true"/> </acr>
</database>

5. Modify $HOMEDIR/.odbc.ini by adding the following:
[DB2_ALIAS]
Description=my DB2
Driver=DB2_DRIVER

6. In $DRIVER/clidriver/lib/:
a. Unzip libdb2.a using the command

ar -x -X64 libdb2.a

b. A new file named shr_64.o appears as a result of unzipping. Rename it libdb2.so.1.

7. Modify odbcinst.ini in $UNIXODBC/etc/ by adding the following:
[DB2_DRIVER]
Description=DB2 ODBC Driver
Driver=$DRIVER/clidriver/lib/libdb2.so.1
Fileusage=1
DontDLClose=1

8. Set variables:
export LIBPATH=$DRIVER/clidriver/lib/

9. Test the connection:
./isql -v DB2_ALIAS username password

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 72

Configure unixODBC for DB2 on AIX 32
1. In $DRIVER/clidriver/cfg:

a. Rename db2cli.ini.sample to db2cli.ini

b. Rename db2dsdriver.cfg.sample to db2dsdriver.cfg

c. Modify the <dsncollection> element of db2dsdriver.cfg by inserting
<dsn alias="DB2_ALIAS" name="DB2_NAME" host="db2host.<your company>.com"
port="5000">
<parameter name="Authentication" value="Client"/></dsn>

d. Modify the <databases> element of db2dsdriver.cfg by inserting
<database name="DB2_NAME" host="db2host.<your company>.com" port="5000">
<parameter name="CurrentSchema" value="DB2I"/>
<wlb> <parameter name="enableWLB" value="true"/><parameter name="maxTransports"
value="50"/></wlb>
<acr> <parameter name="enableACR" value="true"/> </acr>
</database>

5. Modify $HOMEDIR/.odbc.ini by adding the following:
[DB2_ALIAS]
Description=my DB2
Driver=DB2_DRIVER

6. In $DRIVER/clidriver/lib/:
a. Unzip libdb2.a using the command

ar -x libdb2.a

b. A new file named shr.o appears as a result of unzipping. Rename it libdb2.so.1.

7. Modify odbcinst.ini in $UNIXODBC/etc/ by adding the following:
[DB2_DRIVER]
Description=DB2 ODBC Driver
Driver=$DRIVER/clidriver/lib/libdb2.so.1
Fileusage=1
DontDLClose=1

8. Set variables:
export LIBPATH=$DRIVER/clidriver/lib/

9. Test the connection:
./isql -v DB2_ALIAS username password

Database Capture Point ODBC Drivers Non-Windows

Integrated Capture Points Guide 73

Notification Queries for Database Capture
Point
Read the general description of configurable queries for the Database Capture Point. Notification
queries are invoked upon the corresponding reporting events being generated. All notification queries
are optional. If no query exists in the configuration, then no action is performed when the
corresponding event occurs. Notification queries are queued (up to a batch-size, or up to storing-
timeout, both configurable options) and executed in one transaction.

Notification Queries

Query parameter Description Reporting event (and
condition)

assignedUpdateSql

The database query that updates
the database to reflect that the
associated interaction has been
assigned to an agent. Values of
all interaction properties and
user data (except binary and kv-
lists) of the corresponding
interaction are available to this
query.
For example: (for Interaction Server
8.5.106 and later) update inbound set
status = 'assigned',
assignedto=?'PartyAgentId' where
interactionid=?'InteractionId'
(for Interaction Server versions prior to
8.5.106) update inbound set status =
'assigned' where
interactionid=?'InteractionId'

EventPartyAdded (party is not
strategy)

completedUpdateSql

The database query that updates
the database to reflect that the
associated interaction has been
placed into a queue belonging to
the CompleteQueues set
specified in the iwd-parameters
section of the configuration
options (if the section and
property are configured). Values
of all interaction properties and
user data (except binary and kv-
lists) of the corresponding
interaction are available to this
query.
For example: update inbound set
status = 'completed' where
interactionid=?'InteractionId'

EventPlacedInQueue (queue in
CompleteQueues)

canceledUpdateSql The database query that updates
the database to reflect that the

EventPlacedInQueue (queue in
CancelQueues)

Database Capture Point Notification Queries for Database Capture Point

Integrated Capture Points Guide 74

Query parameter Description Reporting event (and
condition)

associated interaction has been
placed into a queue belonging to
the CancelQueues set specified
in iwd-parameters section of the
configuration options (if the
section and property are
configured). Values of all
interaction properties and user
data (except binary and kv-lists)
of the corresponding interaction
are available to this query.
For example: update inbound set
status = 'canceled' where
interactionid=?'InteractionId'

heldUpdateSql

The database query that updates
the corresponding database
record to reflect that the
associated interaction has been
put on hold. Values of all
interaction properties and user
data (except binary and kv-lists)
of the corresponding interaction
are available to this query.
For example: update inbound set
status = 'held' where
interactionid=?'InteractionId'

EventHeld

queuedUpdateSql

The database query that updates
the database to reflect that the
associated interaction has been
placed into any queue not
belonging to the sets of iWD
queues specified in the iwd-
parameters section of the
configuration options (such as
CancelQueues, CompleteQueues,
and so on). Values of all
interaction properties and user
data (except binary and kv-lists)
of the corresponding interaction
are available to this query.
For example: update inbound set
status = 'queued', queue=?'Queue'
where
interactionid=?'InteractionId'

EventPlacedInQueue (queue not
in any iWD queues)

errorHeldUpdateSql

The database query that updates
the database to reflect that the
associated interaction has been
placed into a queue belonging to
the ErrorHeldQueues set
specified in the iwd-parameters
section of the configuration

EventPlacedInQueue (queue in
ErrorHeldQueues)

Database Capture Point Notification Queries for Database Capture Point

Integrated Capture Points Guide 75

Query parameter Description Reporting event (and
condition)

options (if the section and
property are configured). Values
of all interaction properties and
user data (except binary and kv-
lists) of the corresponding
interaction are available to this
query.
For example: update inbound set
status = 'errorheld' where
interactionid=?'InteractionId'

rejectedUpdateSql

The database query that updates
the database to reflect that the
associated interaction has been
placed into a queue belonging to
the RejectQueues set specified
in the iwd-parameters section of
the configuration options (if the
section and property are
configured). Values of all
interaction properties and user
data (except binary and kv-lists)
of the corresponding interaction
are available to this query.
For example: update inbound set
status = 'rejected' where
interactionid=?'InteractionId'

EventPlacedInQueue (queue in
RejectQueues)

restartedUpdateSql

The database query that updates
the database to reflect that the
associated interaction has been
placed in the RestartQueues set
specified in the iwd-parameters
section of the settings (if the
section and property are
configured). Values of all
interaction properties and user
data (except binary and kv-lists)
of the corresponding interaction
are available to this query.
For example: update inbound set
status = 'restarted' where
interactionid=?'InteractionId'

EventPlacedInQueue (queue in
RestartQueues)

stoppedUpdateSql

The database query that updates
the database to reflect that the
associated interaction has been
stopped in Interaction Server.
Values of all interaction
properties and user data (except
binary and kv-lists) of the
corresponding interaction are
available to this query.

EventProcessingStopped

Database Capture Point Notification Queries for Database Capture Point

Integrated Capture Points Guide 76

Query parameter Description Reporting event (and
condition)

For example: update inbound set
status = 'stopped' where
interactionid=?'InteractionId'

routeRequestedUpdateSql

The query statement that
updates the database to reflect
that the associated interaction
has been sent to a router. Values
of all interaction properties and
user data (except binary and kv-
lists) of the corresponding
interaction are available to this
query.
For example: update inbound set
status = 'routing' where
interactionid=?'InteractionId'

EventPartyAdded (party is
strategy)

updatedUpdateSql

The query statement that
updates the database to reflect
that the associated interaction
has been updated in Interaction
Server by some other entity (not
this Database Capture Point).
Values of all interaction
properties and user data (except
binary and kv-lists) of the
corresponding interaction are
available to this query.
For example: update inbound set
priority=?'Priority' where
interactionid=?'InteractionId'

EventPropertiesChanged

resumedUpdateSql

The query statement that
updates the corresponding
database record to reflect that
the associated interaction has
been resumed from a hold.
Values of all interaction
properties and user data (except
binary and kv-lists) of the
corresponding interaction are
available to this query.
For example: update inbound set
status = 'resumed' where
interactionid=?'InteractionId'

EventResumed

Database Capture Point Notification Queries for Database Capture Point

Integrated Capture Points Guide 77

Inbound Queries for Database Capture
Point
Read the general description of configurable queries for the Database Capture Point. The three
inbound queries are listed below. All three are required.

Inbound Queries
Query parameter Description

captureQuerySql

The database query that returns the result set in
which each row will be captured as an interaction
by Interaction Server. If a column name does not
belong to the predefined interaction properties'
names, its value will be attached to the user data
of the interaction with a key corresponding to the
column name.
For example: select externalid "ExternalId", stamp
"ReceivedAt", tenantid "TenantId", priority
"Priority", status "Status" from inbound where
status='new'

capturedUpdateSql

The database query that updates the
corresponding database record to reflect that
certain data has been successfully captured as an
interaction by Interaction Server. Besides the
values available from the corresponding capture
query, the InteractionId value is available to this
query if it has not been provided in the result set of
the corresponding capture query.
For example: update inbound set
interactionid=?'InteractionId', status='submitted'
where externalid=?'ExternalId'

errorUpdateSql

The database query that updates the
corresponding database record to reflect that the
associated interaction has not been captured by
Interaction Server. Besides the values available
from the corresponding capture query, additional
values ErrorCode (integer) and ErrorDescription
(string up to 256 characters) are available to this
query.
For example: update inbound set status='error',
errorcode=?'ErrorCode', errordescr=?'ErrorDescription'
where externalid=?'ExternalId'

Database Capture Point Inbound Queries for Database Capture Point

Integrated Capture Points Guide 78

Source Update Queries for Database
Capture Point
Read the general description of configurable queries for the Database Capture Point. If
sourceUpdateQuerySql is specified, the other two queries are required to be configured and correct.
If no query exists in the configuration, then no action is performed when the corresponding event
occurs.

Source Update Queries
Query parameter Description

Query parameter Description

sourceUpdateQuerySql

The database query that fetches a set of rows,
where each row represents an update request.
Each such update request may contain one or more
columns that represent interaction properties. The
name of the column represents the name of the
interaction property and the value is the new value
of that interaction property. Each row of the result
set must contain either "InteractionId' or
"ExternalId'. If both "InteractionId' and
"ExternalId' are contained in a row, the value of
"InteractionId' will be used to access the
interaction, and the value of "ExternalId' will be
treated as one of the interaction properties to
update.
For example: select interactionid "InteractionId",
stamp "SomeTime", priority "Priority" from updates
where status='new'

sourceUpdatedUpdateSql

The database update (or delete) query that will
execute against a special table in the source
database to mark a particular update as having
been processed.
For example: update updates set status='applied' where
interactionid=?'InteractionId'

sourceErrorUpdateSql

This update is executed when there is an error
executing an update request (the one that is
fetched by sourceUpdateQuerySql). Besides the
values available from the corresponding capture
query, additional values "ErrorCode' (integer) and
"ErrorDescription' (string up to 256 characters)
are available to this query.
For example: update updates set status='error',
errorcode=?'ErrorCode', errordescr=?'ErrorDescription'
where interactionid=?'InteractionId'

Database Capture Point Source Update Queries for Database Capture Point

Integrated Capture Points Guide 79

Query Language for Database Capture
Point

Interaction Properties
Setting and Getting Interaction Properties and their Data

Interaction
property

Can be provided
in submit

Can be updated
by source

update query
Input data type Output data

type

InteractionId Y N Varchar Varchar(256)
ExternalId Y Y Varchar Varchar(256)
ParentID Y Y Varchar Varchar(256)
MediaType Y N Varchar Varchar(256)
InteractionType Y N Varchar Varchar(256)
InteractionSubtypeY N Varchar Varchar(256)
TenantId Y N Varchar or Int Int
Queue Y N Varchar Varchar(256)
Workbin Y N Varchar Varchar(256)
WorkbinAgentId Y N Varchar Varchar(256)
WorkbinPlaceId Y N Varchar Varchar(256)
WorkbinAgentGroupIdY N Varchar Varchar(256)
WorkbinPlaceGroupIdY N Varchar Varchar(256)
IsOnline Y N Varchar or Int Int
ReceivedAt Y N Datetime Varchar(256)
SubmittedBy N N Not applicable Varchar(256)
State N N Not applicable Int
IsLocked N N Not applicable Int
SubmittedAt N N Not applicable Varchar(256)
DeliveredAt N N Not applicable Varchar(256)
SubmittedToRouterAtN N Not applicable Varchar(256)
PlacedInQueueAt N N Not applicable Varchar(256)
MovedToQueueAt N N Not applicable Varchar(256)
AbandonedAt N N Not applicable Varchar(256)
IsHeld N N Not applicable Int
HeldAt N N Not applicable Varchar(256)

Database Capture Point Query Language for Database Capture Point

Integrated Capture Points Guide 80

Interaction
property

Can be provided
in submit

Can be updated
by source

update query
Input data type Output data

type

AssignedAt N N Not applicable Varchar(256)
AssignedTo N N Not applicable Varchar(256)
CompletedAt N N Not applicable Varchar(256)

Special Column Names and Data Keys

Refer to the following table for special column names or data keys.

Special Column Names & Data Keys
Special column
names or data

keys
Can be provided

in submit
Can be updated

by source
update query

Input data type Output data
type

Hold Y Y (but should not) Int or Varchar
ErrorCode Y (but should not) Y (but should not) Not applicable Int
ErrorDescription Y (but should not) Y (but should not) Not applicable Varchar(256)

EventTime N N Not applicable
Varchar(256)
available to
notification queries
only

ActorType N N Not applicable Int
ActorMediaServerIdN N Not applicable Varchar(256)
ActorStrategyId N N Not applicable Varchar(256)
ActorRouterId N N Not applicable Varchar(256)
ActorTenantId N N Not applicable Int
ActorPlaceId N N Not applicable Varchar(256)
ActorAgentId N N Not applicable Varchar(256)
PartyType N N Not applicable Int
PartyStrategyId N N Not applicable Varchar(256)
PartyRouterId N N Not applicable Varchar(256)
PartyTenantId N N Not applicable Int
PartyPlaceId N N Not applicable Varchar(256)
PartyAgentId N N Not applicable Varchar(256)
ReasonSystemName N N Not applicable Varchar(256)
ReasonDescription N N Not applicable Varchar(256)
Operation N N Not applicable Int
ItxServerName N N Not applicable Varchar(256)
ItxServerDBID N N Not applicable Int

Database Capture Point Query Language for Database Capture Point

Integrated Capture Points Guide 81

Special column
names or data

keys
Can be provided

in submit
Can be updated

by source
update query

Input data type Output data
type

TenantsNames N N Not applicable Varchar(256)
TenantsDBIDs N N Not applicable Varchar(256)

ReportingEventSequenceNumberN N Not applicable
Varchar(256),
available to
notification queries
only

User Data

All other column names not corresponding to interaction properties, special column names, or data
keys are interpreted as user data keys.

Data Types

The tables above refer to data types Datetime, Int, and Varchar. More formally, these data types are
defined for each DBMS as follows:

Data Types Defined Per DBMS
DBMS Int Types Datetime Types Varchar Types

Oracle int, integer, smallint date, timestamp varchar2

DB2 numeric, decimal,
smallint timestamp varchar, char

MSSQL
numeric, decimal,
smallint, money,
smallmoney

datetime, datetime2 varchar

Important
The values in columns of Datetime type are converted and attached to their
corresponding keys as strings, therefore their values are available as Varchar type for
output parameters. If they need to be inserted into actual datetime columns, either
casting or conversion should be performed.

Database Capture Point Query Language for Database Capture Point

Integrated Capture Points Guide 82

Web Service Capture Point
The web service Capture Point provides a web service interface for interaction-related requests such
as submit, stop, update, hold, resume, and get info, as well as for ping requests. It can
operate in either of the following two modes:

• iWD compatibility mode, exposing the functionality of the Web Service Capture Point that is described in
the intelligent Workload Distribution Deployment Guide.

• Native mode, with a more general set of requests as compared to iWD compatibility mode

Common Aspects

Service URL
The Web Service Capture Point service URL can be easily obtained from the Interaction Server startup
log. Look for the following message and simply copy the URL:

11:17:58.814 Trc 23323 Capture point 'WSCapturePoint' will set endpoint:
'http://zoolander.us.int.genesyslab.com:10080
/Genesys/Interaction/WSCP_812_zoo/WebServiceCapturePoint'

You can also construct the URL using the template provided by the Web Service Capture Point
application optionsoap-endpoint, whose default value is:
<Protocol>://<ServerName>:<ServerPort>/Genesys/
Interaction/<CapturePointName>/WebServiceCapturePoint where

• Protocol is HTTP or HTTPS, as specified in the protocol option.
• Server Name is either specified in the soap-hostname option or is equal to the name of Interaction

Server's host.
• Port is the port of the Web Service Capture Point Application object.
• CapturePointName is the name of the Application object.

This template can be changed, but generally it contains the four parts just listed. Note that none of
the parameters are mandatory and the entire endpoint can be simply specified in its final form, which
may be preferable in some cases.

WSDL URL
The WSDL URL is the service URL with ?wsdl appended; for example:

http://zoolander.us.int.genesyslab.com:10080/Genesys/Interaction/WSCP_812_zoo/
WebServiceCapturePoint?wsdl

Web Service Capture Point Query Language for Database Capture Point

Integrated Capture Points Guide 83

Checking Connectivity and Inspecting WSDL
Once you get the service URL, you can use it in different tools to generate a Web Service client. To
check that the service is up and running and to inspect the service WSDL, first ensure that Interaction
Server is running, then navigate to the WSDL URL using any web browser. The following figure shows
WSDL in Internet Explorer.

WSDL

This confirms that you have access to the WSCP service. You can inspect the WSDL or save it to a file
to later use. Saving the WSDL is not required since most tools can simply access the WSDL URL
directly, as long as Interaction Server is running.

Generating a Client

The following tools were used to generate WSCP clients for this document:

Web Service Capture Point Query Language for Database Capture Point

Integrated Capture Points Guide 84

• Visual Studio 2010
• JAX-WS 2.2
• Apache CXF
• Apache Axis2

This document provides the following examples of generating a client:

• .NET client
• JAX-WS
• Apache CXF

• Java client
• Javascript client

• Apache Axis2/Java

Web Service Capture Point Client Over Secure HTTP

This section provides an example of configuring a Web Service Capture Point, generating and
importing certificates, and using .NET and Java clients over Secure HTTP. OpenSSL version 1.0.0g or
better is assumed to be installed. This example configuration assumes the presence of a server host
(zoolander.us.int.genesyslab.com in the example) and a client host
(clienthost.us.int.genesyslab.com in the example). The server host has an Interaction Server
with a Web Service Capture Point namedWSCP_812_zoo connected to it.

Server Certificate
The server certificate is used for server authentication (by the client) and ensures that server can be
trusted. The Web Service Capture Point requires a server certificate to support SSL. You must
generate a server certificate and put it into the client's trusted certificates store.

Client Certificate
A client certificate is required for mutual SSL authentication. If the Web Service Capture Point is
configured for server authentication only, the client certificate is not required. This guide provides
examples of

• Generating a client certificate for a .NET client.
• Generating a client certificate for a Java client.

Web Service Capture Point Configuration
In a Web Service Capture Point application, named, for example, WSCP_812_zoo, set the following
options:

Web Service Capture Point Query Language for Database Capture Point

Integrated Capture Points Guide 85

• server-key-file=<Path to wscpserver.pem>\wscpserver.pem

• password=<'PEM pass phrase' for wscpserver.pem>

• protocol=https

• require-client-authentication=true

• cacert-file=<Path to wscp_clients.pem>\wscp_clients.pem

Do not change any other options. You must restart Interaction Server for these option values to take
effect. If client authentication is not required, set the option require-client-authentication to
false and omit all procedures relevant to generation and manipulation of client certificates (Client
Certificate for Browser and .NET Client and Client Certificate for Java Client).

WSDL over HTTPS in the Browser
Assuming the client host has the server certificate in the trusted certificates, and the client certificate
in personal certificate, you can request the WSDL from the client host by entering the URL that you
obtained in Service URL:

https://zoolander.us.int.genesyslab.com:10080/Genesys/Interaction/WSCP_812_zoo
/WebServiceCapturePoint?wsdl

The browser then prompts the user to select a certificate, as shown below.

Select a Certificate

Select the imported certificate and click OK. The contents of the WSDL file should display in the
browser.

Client Modifications
Once a client has been configured, certain modifications are required:

• For .NET clients
• For Java clients

Web Service Capture Point Query Language for Database Capture Point

Integrated Capture Points Guide 86

Messaging

This section presents details of requests and responses, as follows:

• Native Mode
• Requests
• Sample Responses

• iWD-Compatible Mode
• Requests
• Sample Responses

Web Service Capture Point Query Language for Database Capture Point

Integrated Capture Points Guide 87

Web Service Capture Point Configuration
Options
The eServices 8.1 Reference Manual contains detailed descriptions of all Capture Point-related
configuration options.

Web Service Capture Point Web Service Capture Point Configuration Options

Integrated Capture Points Guide 88

Web Service Capture Point Native Mode
When operating in native mode, the Web Service Capture Point defines and supports the following
capabilities:

• Submit an interaction to a queue or a workbin
• Hold an interaction, either by InteractionId or by ExternalId

• Resume an interaction, either by InteractionId or by ExternalId

• Stop an interaction, either by InteractionId or by ExternalId

• Update an interaction, either by InteractionId or by ExternalId; this includes:
• Move to a different queue
• Update interaction properties
• Delete interaction properties

• Get Info on an interaction, either by InteractionId or by ExternalId

• Ping (for heartbeat monitoring and to obtain health monitoring information)

Web Service Capture Point Web Service Capture Point Native Mode

Integrated Capture Points Guide 89

Web Service Capture Point iWD
Compatibility Mode
When operating in iWD Compatibility Mode, the Web Service Capture Point is functionally equivalent
to iWD Web Service Capture Point 8.0.

Supported Requests

iWD Compatibility Mode supports the following capabilities:

• Create a task
• Cancel a task, either by InteractionId or by CaptureId

• Hold a task, either by InteractionId or by CaptureId

• Resume a task, either by InteractionId or by CaptureId

• Update a task, either by InteractionId or by CaptureId

• Get task data, either by InteractionId or by CaptureId

• Restart a task, either by InteractionId or by CaptureId

• Complete a task, either by InteractionId or by CaptureId

• Ping (for heartbeat monitoring)

Ignored Elements

The following elements of iWD compatible requests have limited or no mapping in the corresponding
Interaction Server requests and therefore are ignored by Interaction Server:

• The element actor is not mapped.
• The element reason is mapped to ReasonSystemName in the requests holdTaskByCaptureId,

resumeTaskByCaptureId, holdTaskByTaskId, and resumeTaskByTaskId. This element is ignored in
all other iWD requests.

• The value of the element mediaType in the request createTask is ignored. You can specify a Genesys-
compatible media type in the element data using the key MediaType, as shown in this example.

• The element hold in restartTaskByCaptureId and restartTaskByTaskId is ignored.
• The element completeDateTime in completeTaskByCaptureId and completeTaskByTaskId is

ignored, as Interaction Server has an interaction attribute CompletedAt which is set automatically
when the interaction (task) is placed into a completed queue.

Web Service Capture Point Web Service Capture Point iWD Compatibility Mode

Integrated Capture Points Guide 90

iWD WSDL Modification

The original WSDL document from the Web Service Capture Adapter of iWD has been modified to
permit all elements of the DateTime type be nillable, and to allow zero occurrence
(minOccurs="0"). This change should not affect existing clients of iWD Web Service Capture Adapter.

Web Service Capture Point Web Service Capture Point iWD Compatibility Mode

Integrated Capture Points Guide 91

Web Services Capture Point—Generate a
.NET Client
This page provides an example of generating a .NET Client. See the list of tools used to generate
clients in this document.

Start

1. Open Visual Studio 2010 and create a C# Win32 console application.
2. In Solution Explorer right-click References and choose Add Service Reference. The dialog box of

the same name appears, shown below.

Add Service Reference

3. Enter the WSDL URL of the Web Service Capture Point.

Web Service Capture Point Web Services Capture Point—Generate a .NET Client

Integrated Capture Points Guide 92

4. Enter the service namespace (for example, WSCP):
5. Click Go.

Provided Interaction Server is running and the WSDL URL is specified
correctly, WebServiceCapturePoint should appear in the Services list.

6. Click OK to generate the service client.
7. To test the service, open the Program.cs file and insert the following code in the main method:

WSCP.iWebServiceCapturePointClient client = new WSCP.iWebServiceCapturePointClient();
// This is an optional step to reconfigure the client to use different endpoint.
// It's usually done using configuration setting for the application
//client.Endpoint.Address = new System.ServiceModel.EndpointAddress(
// "http://localhost/Genesys/Interaction/MyCP/WebServiceCapturePoint");
// Create a key-value list of extensions and specify the signature,
// so we can recognize the request in Interaction Server log
var extension = new WSCP.KVList();
extension.Add(new WSCP.KVPair() { key = "signature",
value = new WSCP.KVPairValue() { ValueString = ".Net WSCP test client" } });
// We expect ping info back in Ping response
WSCP.KVList userdata = null;
WSCP.KVList pinginfo = null;
try
{

// Ping the server and get some statistics back
client.Ping(out userdata, out pinginfo, ref extension);
Console.Out.WriteLine(trace_list(pinginfo));

}
catch (FaultException<FaultMessage> ex)
{

// process WSCP specific error code
Console.Out.WriteLine("Error {0}: {1}",

ex.Detail.ErrorCode, ex.Detail.ErrorDescription);
}
catch (Exception ex)
{

Console.Out.WriteLine(ex.ToString());
}

8. Add the method trace_list to your program to output the server response:
static string trace_list(WSCP.KVList list, string indent = "")
{

StringBuilder result = new StringBuilder();
list.ForEach((item) =>
{

result.Append(indent);
result.Append(item.key);
if(null != item.value.ValueString)
{

result.Append(" [string] = ");
result.Append(item.value.ValueString);
result.Append('\n');

}
else if (null != item.value.ValueList)
{

result.Append(" [list] = \n");
result.Append(trace_list(item.value.ValueList, indent + " "));

}
else
{

Web Service Capture Point Web Services Capture Point—Generate a .NET Client

Integrated Capture Points Guide 93

result.Append(" [int] = ");
result.Append(item.value.ValueInt.ToString());
result.Append('\n');

}
});
return result.ToString();

}

This simple test prints Interaction Server statistics into a console window. You can then discover
the service methods using autocompletion and the object browser.

End

Web Service Capture Point Web Services Capture Point—Generate a .NET Client

Integrated Capture Points Guide 94

Generate Service Proxy with wsimport
Start

To generate a Web Service Capture Point service proxy for Java, use the wsimport utility, which is
included in JDK:

wsimport -d <output directory> <WSDL URL>

For example:

wsimport -d c:\Temp\MyJSClient
http://zoolander.us.int.genesyslab.com:10080/Genesys/Interaction/WSCP_812_zoo/
WebServiceCapturePoint?wsdl

The tool generates a set of files for the proxy.

Create a simple Java console application to ping the service:

import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Holder;
import com.genesyslab.interaction.*;
public class Test {

public static void main(String[] args) throws Exception {

WebServiceCapturePoint service = new WebServiceCapturePoint(new
URL("http://zoolander.us.int.genesyslab.com:10080/Genesys/Interaction/WSCP_812_zoo/
WebServiceCapturePoint/?WSDL"),new
QName("http://www.genesyslab.com/interaction", "WebServiceCapturePoint"));

IWebServiceCapturePoint cp = service.getIWebServiceCapturePointHttpBinding();

KVPairValue val = new KVPairValue();

val.setValueString("I am coming from JAXWS client");

KVPair pair = new KVPair();

pair.setKey("Source");
pair.setValue(val);

KVList extList = new KVList();

extList.getKvitem().add(pair);

Holder<KVList> extension = new Holder<KVList>(extList);

Holder<String> eventTime = new Holder<String>();
Holder<KVList> userData = new Holder<KVList>();
Holder<KVList> pingInfo = new Holder<KVList>();

cp.ping(extension, eventTime, userData, pingInfo);

System.out.println("Ping response time:" + eventTime.value);
printKVList("PingInfo", pingInfo.value);
printKVList("UserData", userData.value);

Web Service Capture Point Generate Service Proxy with wsimport

Integrated Capture Points Guide 95

printKVList("Extension", extension.value);
}

public static void printKVList(String name, KVList kvList) {
printKVList(name, kvList, "");

}

private static void printKVList(String name, KVList kvList, String shift) {
if (null == kvList) {

System.out.println(shift + name + "[KVList]=null");

} else {

System.out.println(shift + name + "[KVList]=");

for (KVPair pair : kvList.getKvitem()) {
KVPairValue value = pair.getValue();

if (value.getValueInt() != null) {
System.out.println(shift + "\t" + pair.getKey() + "[int]="

+ value.getValueInt());
} else if (null != value.getValueList()) {

printKVList(pair.getKey(), value.getValueList(), shift
+ "\t");

} else {
System.out.println(shift + "\t" + pair.getKey()

+ "[string]=" + value.getValueString());
}

}
}

}
}

End

Web Service Capture Point Generate Service Proxy with wsimport

Integrated Capture Points Guide 96

Apache CXF—Java Client
To generate a Web Service Capture Point service proxy for Java use the wsdl2java tool:

wsdl2java -frontend jaxws21 -d <output directory> <WSDL URL>

For example:

wsdl2java -d c:\Temp\MyJSClient
http://zoolander.us.int.genesyslab.com:10080/Genesys/Interaction/WSCP_812_zoo/
WebServiceCapturePoint?wsdl

The tool generates a set of files for the proxy.

Create a simple Java console application to ping the service:

import java.net.URL;
import javax.xml.ws.Holder;
import com.genesyslab.interaction.*;

public class Test {
public static void main(String[] args) throws Exception {

WebServiceCapturePoint service = new WebServiceCapturePoint(new
URL("http://zoolander.us.int.genesyslab.com:10080/Genesys/Interaction/WSCP_812_zoo/
WebServiceCapturePoint/?WSDL"));

IWebServiceCapturePoint cp = service.getIWebServiceCapturePointHttpBinding();

KVPairValue val = new KVPairValue();

val.setValueString("I am coming from CXF client");

KVPair pair = new KVPair();

pair.setKey("Source");
pair.setValue(val);

KVList extList = new KVList();

extList.getKvitem().add(pair);

Holder<KVList> extension = new Holder<KVList>(extList);

Holder<String> eventTime = new Holder<String>();
Holder<KVList> userData = new Holder<KVList>();
Holder<KVList> pingInfo = new Holder<KVList>();

cp.ping(extension, eventTime, userData, pingInfo);

System.out.println("Ping response time:" + eventTime.value);
printKVList("PingInfo", pingInfo.value);
printKVList("UserData", userData.value);
printKVList("Extension", extension.value);

}
public static void printKVList(String name, KVList kvList) {

printKVList(name, kvList, "");

Web Service Capture Point Apache CXF—Java Client

Integrated Capture Points Guide 97

}
private static void printKVList(String name, KVList kvList, String shift) {

if (null == kvList) {
System.out.println(shift + name + "[KVList]=null");

} else {
System.out.println(shift + name + "[KVList]=");

for (KVPair pair : kvList.getKvitem()) {
KVPairValue value = pair.getValue();

if (value.getValueInt() != null) {
System.out.println(shift + "\t" + pair.getKey() + "[int]="

+ value.getValueInt());
} else if (null != value.getValueList()) {

printKVList(pair.getKey(), value.getValueList(), shift
+ "\t");

} else {
System.out.println(shift + "\t" + pair.getKey()

+ "[string]=" + value.getValueString());
}

}
}

}
}

Web Service Capture Point Apache CXF—Java Client

Integrated Capture Points Guide 98

Apache CXF—Javascript Client
This page provides an example of generating a Javascript client using the Apache CXFwsdl2js tool.
See the list of tools used to generate clients in this document. You can also generate a Java client in
Apache CXF.

To generate a Javascript client using the Apache CXFwsdl2js tool:

wsdl2js -d <output directory> <WSDL URL>

For example:

wsdl2js -d c:\Temp\MyJSClient
http://zoolander.us.int.genesyslab.com:10080/Genesys/Interaction/WSCP_812_zoo/
WebServiceCapturePoint?wsdl

The tool generates a single file that contains a proxy that can send requests to the service and
receive replies asynchronously. You must also include the cxf-util.js file, which is part of Apache
CXF.

The sample below does not require anything beyond HTML and Javascript (wscp.js is the file
generated by wsdl2js):

<html>
<head>
<script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
jquery.min.js"></script>
<script type="text/javascript" src="cxf-utils.js"></script>
<script type="text/javascript" src="wscp.js"></script>

<script language="JavaScript" type="text/javascript">

var gCounter = 0;

function print_list(list, indent)
{

var r = '';

for(var i=0; i < list._kvitem.length; ++i)
{

r += indent;

var pair = list._kvitem[i];
r += pair._key;
if(pair._value._ValueString)
{

r += " [str] = '";
r += pair._value._ValueString;
r += "'";
r += "
";

}
else if(pair._value._ValueInt)
{

r += " [int] = ";
r += pair._value._ValueInt;
r += "
";

}

Web Service Capture Point Apache CXF—Javascript Client

Integrated Capture Points Guide 99

else
{

r += " [list] = ";
if(pair._value._ValueList)
{

r += "
";
r += print_list(pair._value._ValueList, indent + "....");

}
else
{

r += " EMPTY";
r += "
";

}
}

}
return r;

}
function test()
{

var svc = new _iWebServiceCapturePoint();
svc.url = 'http://zoolander.us.int.genesyslab.com:10080/Genesys/Interaction/WSCP_812_zoo/

WebServiceCapturePoint';

var extension = new _KVList();
var items = new Array();

var signature = new _KVPair();
signature.setKey("signature");
var signature_value = new _KVPairValue();
signature_value.setValueString("JavaScript client generated with CXF");
signature.setValue(signature_value);

var counter = new _KVPair();
counter.setKey("Request count");
var counter_value = new _KVPairValue();
counter_value.setValueInt(++gCounter);
counter.setValue(counter_value);
items.push(signature);
items.push(counter);
extension.setKvitem(items);

svc.Ping(
function(response)
{

var r = "Response timestamp: " + response.getEventTime() + ", ping info:
";
r += print_list(response.getPingInfo(), "");
$("#response_text").html(r);

},
function(status, statusText)
{

$("#response_text").html("Response failed: (" + status + ") " + statusText);
},
extension

);
}

</script>
</head>
<body>
<p>Press the button to call the service...</p>
<p><input value="Ping the service" type="button" onclick="test()"/></p>
<p><div id="response_text"></div></p>
</body>

Web Service Capture Point Apache CXF—Javascript Client

Integrated Capture Points Guide 100

</html>

Web Service Capture Point Apache CXF—Javascript Client

Integrated Capture Points Guide 101

Generate Service Proxy with Axis2
This page provides an example of generating a Web Service Capture Point service proxy using the
Axis2 plug-in. See the list of tools used to generate clients in this document.

The following sample demonstrates how to send a Ping request and to print out the contents of the
PingResponse.

import com.genesyslab.www.interaction.WebServiceCapturePointStub.*;
import com.genesyslab.www.interaction.*;

public class TestWSCP {
public static void main(String[] args) {

try {
WebServiceCapturePointStub serviceStub = new WebServiceCapturePointStub(

"http://zoolander.us.int.genesyslab.com:10080/Genesys/Interaction/WSCP_812_zoo/
WebServiceCapturePoint");

Ping ping = new Ping();

KVList ext = new KVList();

// create a string kv pair
KVPair strPair = new KVPair();
KVPairValue value = new KVPairValue();
strPair.setKey("Source");
value.setValueString("I am coming from axis2 client");
strPair.setValue(value);

// add this pair to the extension
ext.addKvitem(strPair);

// set extension
ping.setExtension(ext);

PingResponse response = serviceStub.Ping(ping);

System.out.println("Ping response time:" + response.getEventTime());
printKVList("PingInfo", response.getPingInfo());
printKVList("UserData", response.getUserData());
printKVList("Extension", response.getExtension());

} catch (Exception e) {
e.printStackTrace();

}
}

public static void printKVList(String name, KVList kvList) {
printKVList(name, kvList, "");

}
private static void printKVList(String name, KVList kvList, String shift) {

if (null == kvList) {
System.out.println(shift + name + "[KVList]=null");

} else {
System.out.println(shift + name + "[KVList]=");
for (KVPair pair : kvList.getKvitem()) {

KVPairValue value = pair.getValue();
if (null != value.getValueList()) {

printKVList(pair.getKey(), value.getValueList(), shift

Web Service Capture Point Generate Service Proxy with Axis2

Integrated Capture Points Guide 102

+ "\t");
} else if (null != value.getValueString()) {

System.out.println(shift + "\t" + pair.getKey()
+ "[string]=" + value.getValueString());

} else {
System.out.println(shift + "\t" + pair.getKey() + "[int]="

+ value.getValueInt());
}

}
}

}
}

Web Service Capture Point Generate Service Proxy with Axis2

Integrated Capture Points Guide 103

Web Service Capture Point Client Over
Secure HTTP
These pages provide an example of configuring a Web Service Capture Point, generating and
importing certificates, and using .NET and Java clients over Secure HTTP. OpenSSL version 1.0.0g or
better is assumed to be installed.

This example configuration assumes the presence of a server host
(zoolander.us.int.genesyslab.com in the example) and a client host
(clienthost.us.int.genesyslab.com in the example). The server host has an Interaction Server
with a Web Service Capture Point named WSCP_812_zoo connected to it.

Web Service Capture Point Web Service Capture Point Client Over Secure HTTP

Integrated Capture Points Guide 104

Server Certificate
The server certificate is used for server authentication (by the client) and ensures that server can be
trusted. The Web Service Capture Point requires a server certificate to support SSL.

This page provides an example of generating a server certificate and putting it in the client's trusted
certificates store.

Generate a server certificate
First generate a server certificate, along with a private key:

openssl req -x509 -days 365 -subj "/C=US/ST=California/L=Daly City/CN
=zoolander.us.int.genesyslab.com" -newkey rsa:2048 -keyout wscpserver.pem -out wscpserver.pem

The output file wscpserver.pem contains a private key along with a certificate. During the private
key generation, the user is prompted for a password, which will be required later. The user will be
asked to come up with a PEM pass phrase, which will be later used in the WSCP configuration, along
with the generated .pem file. The server certificate can also be a self-signed certificate or a
certificate signed by any Certificate Authority (CA). The certificate generated for the server must be
imported or copied into the client's trusted certificates store. Use the procedure and tools appropriate
for your platform.

The private key should never be copied or given to anyone. It should be
password protected (encoded) and should be accessible to the server only. The
client is given only the certificate (public key) to put into the trusted certificates
store.

The following is a procedure for putting server certificates into client's trusted certificates store for
Windows, using the openssl utility.

Put server certificate in client's store
Start

1. Convert the generated certificate to DER format:
openssl x509 -outform der -in wscpserver.pem -out wscpserver.cer

The output file wscpserver.cer contains a public server certificate, which will be added to the trusted certificates of the client
using the Web Service Capture Point.

2. Import the generated .CER server certificate into the trusted certificates store (for browser and .NET
client):
a. Start Microsoft Management Console.
b. On the File menu, select Add or Remove Snap-ins.

c. Choose Certificates, then click Add.

Web Service Capture Point Web Service Capture Point Client Over Secure HTTP

Integrated Capture Points Guide 105

d. When prompted, choose Computer account and Local Computer.

e. Click Finish, then OK.

f. Right-click Certificates > Trusted Root Certification Authorities > Certificates.

g. Choose All tasks > Import"

h. Choose wscpserver.cer for import.
The certificate is added to the trusted certificates, as shown below.

Certificate Added to Trusted Certificates

3. For Java clients only, import the generated .CER server certificate into a Java keystore. Assuming that a
standard JDK is present on the client host, add the server certificate to a trust store on the client host:
keytool -import -keystore truststore.jks -file wscpserver.cer -alias wscpserver

End

Client Certificate for Browser and .NET Client
A client certificate is required for mutual SSL authentication. If the Web Service Capture Point is
configured for server authentication only, the client certificate is not required.

Examples are available of generating the certificate for .NET and for Windows.

Web Service Capture Point Web Service Capture Point Client Over Secure HTTP

Integrated Capture Points Guide 106

Configure Web Service Capture Point for
HTTPS
In a Web Service Capture Point application, named, for example, WSCP_812_zoo, set the following
options:

• server-key-file=<Path to wscpserver.pem>\wscpserver.pem
• password=<'PEM pass phrase' for wscpserver.pem>
• protocol=https
• require-client-authentication=true
• cacert-file=<Path to wscp_clients.pem>\wscp_clients.pem

Do not change any other options.

If client authentication is not required, set the option require-clientauthentication to false and
omit all procedures relevant to generation and manipulation of client certificates.

Web Service Capture Point Web Service Capture Point Client Over Secure HTTP

Integrated Capture Points Guide 107

HTTPS for WS CP .NET Client
> [1]

Assuming that a .NET client has been previously configured without secure HTTPS, and all of the
procedures of generating, exporting, and importing certificates have been completed, you must edit
the existing .NET client's app.config to make it work over HTTPS. The following example shows the
required changes in italics:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.serviceModel>
<behaviors>

<endpointBehaviors>
<behavior name="ProvideClientCertificate">

<clientCredentials>
<clientCertificate storeLocation="CurrentUser" x509FindType="FindByIssuerName"

findValue="clienthost.us.int.genesyslab.com"/>
</clientCredentials>

</behavior>
</endpointBehaviors>

</behaviors>
<bindings>

<basicHttpBinding>
<binding name="iWebServiceCapturePointHttpBinding" closeTimeout="00:01:00"

openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"
allowCookies="false" bypassProxyOnLocal="false"

hostNameComparisonMode="StrongWildcard"
maxBufferSize="65536" maxBufferPoolSize="524288"

maxReceivedMessageSize="65536"
messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered"
useDefaultWebProxy="true">
<readerQuotas maxDepth="32" maxStringContentLength="8192"

maxArrayLength="16384"
maxBytesPerRead="4096" maxNameTableCharCount="16384" />

<security mode="Transport">
<transport clientCredentialType="Certificate"/>

</security>
</binding>

</basicHttpBinding>
</bindings>
<client>

<endpoint address="https://zoolander.us.int.genesyslab.com:10080/Genesys/
Interaction/WSCP_812_zoo/WebServiceCapturePoint"

binding="basicHttpBinding"
bindingConfiguration="iWebServiceCapturePointHttpBinding"
behaviorConfiguration="ProvideClientCertificate"

contract="WSCP.iWebServiceCapturePoint"
name="iWebServiceCapturePointHttpBinding" />

</client>
</system.serviceModel>

</configuration>

Web Service Capture Point Web Service Capture Point Client Over Secure HTTP

Integrated Capture Points Guide 108

https://docs.genesys.com/Documentation/IXN/8.1.4/ICP/

HTTPS for WS CP Java Client
Assuming that all of the procedures of generating, exporting, and importing certificates have been
completed, the following modifications are required for a Java client to run over HTTPS:

1. Update the URL of WebService or WebService Stub by replacing http with https.

2. Start your client with the following JVM options:
• -Djavax.net.ssl.keyStore="<Path to keystore.jks>/keystore.jks"

• -Djavax.net.ssl.keyStorePassword="<Key store password, set when creating the
keystore>"

• -Djavax.net.ssl.keyStoreType=jks

• -Djavax.net.ssl.trustStore="<Path to keystore.jks>/truststore.jks"

• -Djavax.net.ssl.trustStorePassword=<Trust store password, set when creating the
truststore>"

• -Djavax.net.ssl.trustStoreType=jks

Web Service Capture Point Web Service Capture Point Client Over Secure HTTP

Integrated Capture Points Guide 109

Generate Client Certificate (.NET)
This page provides an example of generating a client certificate on Windows using the openssl utility.

Deploy a client certificate for a .NET Client
Start

1. Generate a client certificate:
openssl req -x509 -days 365 -subj "/C=US/ST=California/L=Daly City/
CN=clienthost.us.int.genesyslab.com" -newkey rsa:2048 -keyout
wscpclientkey.pem -out wscpclient.pem

The output certificate without a private key, wscpclient.pem, will be given to the WSCP so that it can authenticate the client.
The user will be asked to provide a PEM pass phrase, which is later used to export the certificate, along with the key,
wscpclientkey.pem, to another format.

2. Export the generated client certificate and the private key into PFX format:
openssl pkcs12 -export -out wscpclient.pfx -inkey wscpclientkey.pem -in wscpclient.pem

When exporting to PFX format, the user will be asked to provide a pass phrase (the same as the PEM pass phrase referred to in
Step 1) and to set an Export Password, which will be used later.

3. Import the PFX certificate to Personal Certificates for Current User: Import the wscpclient.pfx with
Microsoft Management Console and follow the same procedure as used to import the sever certificate
(Step 2 of the server certificate procedure), except that you must choose My user account rather
than Computer account in Step d. The result will appear as shown below.

Importing PFX Certificate

4. Copy the client certificate to the server host: host: Copy the contents of wscpclient.pem into a file
named wscp_clients.pem on the server host.

End

Web Service Capture Point Web Service Capture Point Client Over Secure HTTP

Integrated Capture Points Guide 110

Generate a Client Certificate (Java)
The following procedure provides an example of generating a client certificate using keytool.

Deploy a client certificate for a Java client

Start

1. Generate a Java client key:
keytool -genkey -alias javawscpclient -keyalg RSA -keystore
keystore.jks -keysize 2048

This command generates a client key and places it in the local keystore.

2. Export the generated certificate from the keystore:
keytool -export -alias javawscpclient -keystore keystore.jks -file
javawscpclient.cer

3. Convert the exported certificate to .PEM format:
openssl x509 -inform der -in javawscpclient.cer -out
javawscpclient.pem

4. Copy the Java client certificate: Append the contents of javawscplient.pem to the contents of
wscp_clients.pem on the server host.

End

Web Service Capture Point Web Service Capture Point Client Over Secure HTTP

Integrated Capture Points Guide 111

Web Service Capture Point Requests
(Native)
This page presents details of requests used by the Web Service Capture Point operating in Interaction
Server native mode.

Request Submit

This request is used for creating a new interaction. It assumes that Queue, TenantId,
InteractionType, InteractionSubType,and MediaType are either specified in the default-
values section of the Web Service Capture Point or provided in the request parameters. Example
Submit request:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/
encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/
2001
/XMLSchema" xmlns:ixn="http://www.genesyslab.com/interaction">
<SOAP-ENV:Body>
<ixn:Submit xmlns="http://www.genesyslab.com/interaction">
<TenantId>101</TenantId>
<Queue>Queue1</Queue>
<ExternalId>Test00001</ExternalId>
<UserData>
<kvitem><key>StringKey</key><value><ValueString>StringValue</ValueString></value></kvitem>
<kvitem><key>IntKey</key><value><ValueInt>812</ValueInt></value></kvitem>
<kvitem><key>List1Key</key><value><ValueList>

<kvitem><key>StringKeyL1</key><value><ValueString>StringValueL1</ValueString></value></kvitem>
<kvitem><key>IntKeyL1</key><value><ValueInt>1812</ValueInt></value></kvitem>
<kvitem><key>List2Key</key><value><ValueList>

<kvitem><key>StringKeyL2</key><value><ValueString>StringValueL2</ValueString></value></kvitem>
<kvitem><key>IntKeyL11</key><value><ValueInt>11812</ValueInt></value></kvitem>

</ValueList></value></kvitem>
</ValueList></value></kvitem>
</UserData>
</ixn:Submit>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Request Hold

This request is used for putting an interaction on hold. It must have either an InteractionId or an
ExternalId argument. Example Hold request:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:
xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ixn="http://www.genesyslab.com/interaction">
<SOAP-ENV:Body>
<ixn:Hold xmlns="http://www.genesyslab.com/interaction">

Web Service Capture Point Web Service Capture Point Requests (Native)

Integrated Capture Points Guide 112

<ExternalId>Test00001</ExternalId>
</ixn:Hold>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Request Stop

This request is used for stopping a running interaction. It is very similar to request Hold. It must have
either an InteractionId or an ExternalId argument. Only existing, running, or held interactions
can be stopped. Example Stop request:

<tt><?xml version="1.0" encoding="UTF-8"?></tt>
<tt><SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ixn="http://www.genesyslab.com/
interaction"></tt>
<tt><SOAP-ENV:Body></tt>
<tt><ixn:Stop xmlns="http://www.genesyslab.com/interaction"></tt>
<tt><ExternalId>Test00001</ExternalId></tt>
<tt></ixn:Stop></tt>
<tt></SOAP-ENV:Body></tt>
<tt></SOAP-ENV:Envelope></tt>

Request Resume

This request is used for resuming a held interaction. It is very similar to request Hold. It must have
either an InteractionId or an ExternalId argument. Example Resume request:

<tt><?xml version="1.0" encoding="UTF-8"?></tt>
<tt><SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ixn="http://www.genesyslab.com/
interaction"></tt>
<tt><SOAP-ENV:Body></tt>
<tt><ixn:Resume xmlns="http://www.genesyslab.com/interaction"></tt>
<tt><ExternalId>Test00001</ExternalId></tt>
<tt></ixn:Resume></tt>
<tt></SOAP-ENV:Body></tt>
<tt></SOAP-ENV:Envelope></tt>

Request Update

This request is used for changing interaction properties. It must have either an InteractionId or an
ExternalId argument. For changing properties there are the following two structures:

• Changed—For changing existing fields or creating new ones
• Deleted—For removing fields from the interaction

Example Update request:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ixn="http://www.genesyslab.com/
interaction">
<SOAP-ENV:Body>
<ixn:Update xmlns="http://www.genesyslab.com/interaction">
<ExternalId>Test00001</ExternalId>

Web Service Capture Point Web Service Capture Point Requests (Native)

Integrated Capture Points Guide 113

<Changed>
<kvitem><key>StringKey</key><value><ValueString>StringValueAfterChange</ValueString></value></kvitem>
<kvitem><key>IntKey</key><value><ValueInt>8120</ValueInt></value></kvitem>
</Changed>
<Deleted>
<kvitem><key>List1Key</key><value></value></kvitem>
</Deleted>
</ixn:Update>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Request GetInfo

This request is used for getting interaction properties. It must have either an InteractionId or an
ExternalId argument. Example Getinfo request:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ixn="http://www.genesyslab.com/
interaction">
<SOAP-ENV:Body>
<ixn:GetInfo xmlns="http://www.genesyslab.com/interaction">
<ExternalId>Test00001</ExternalId>
</ixn:GetInfo>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Request Ping

This request is used for heartbeat monitoring. It has no required parameters. Example Ping request:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ixn="http://www.genesyslab.com/
interaction">
<SOAP-ENV:Body>
<ixn:Ping>
</ixn:Ping>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Web Service Capture Point Web Service Capture Point Requests (Native)

Integrated Capture Points Guide 114

Web Service Capture Point Responses
(Native)
This page presents examples of responses used by the Web Service Capture Point when operating in
Interaction Server native mode. All requests except GetInfo return a structure called
RequestResponse. For a successful request, this structure has the following characteristics:

• Hold, Stop, Resume, Update—The response is empty.
• Submit—The response's Extension field contains the Interaction ID returned by Interaction Server.
• Ping—The response contains Interaction Server and Capture Points statistics.

The GetInfo request returns a structure called GetInfoResponse, which contains various fields
holding interaction properties.

Example Error Response
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ixn="http://www.genesyslab.com/
interaction">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Client</faultcode><faultstring>Required value is missing</faultstring>
<detail>
<ixn:FaultMessage>< ixn:ErrorCode>2</ ixn:ErrorCode>
< ixn:ErrorDescription>Missing InteractionId or ExternalId</ ixn:ErrorDescription>
</ixn:FaultMessage>
</detail>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example of a Response to a Successful Submit Request
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ixn="http://www.genesyslab.com/
interaction">
<SOAP-ENV:Body>
<ixn:RequestResponse>

<ixn:Extension>
<ixn:kvitem>

<ixn:key>InteractionId</ixn:key>
<ixn:value><ixn:ValueString>02JH8H2FE3Q3T00E</ixn:ValueString></ixn:value>

</ixn:kvitem>
</ixn:Extension>

</ixn:RequestResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Web Service Capture Point Web Service Capture Point Responses (Native)

Integrated Capture Points Guide 115

Web Service Capture Point Requests (iWD-
Compatible)
This section presents details of requests used by the Web Service Capture Point when operating in
iWD Compatibility Mode.

Request ping

Example of a ping request:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:iwd="http://webservice.capture.gtl.evo">
<SOAP-ENV:Body>

<iwd:ping>
</iwd:ping>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Sample Request createTask

This sample shows how to specify two k-v pairs and a Genesys-compatible media type in the data
part of the message, and how to specify a customerId Task Extension in the ext part of the
message.

<?xml version="1.0" encoding="UTF-8"
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ns2="http://webservices.evo"
xmlns:ns4="http://taskinfo.gtl.evo"
xmlns:ns3="http://broker.gtl.evo"
xmlns:ns1="http://evo"
xmlns:iwd="http://webservice.capture.gtl.evo">
<SOAP-ENV:Body>

<iwd:createTask>
<iwd:captureId>TestiWD_0002</iwd:captureId>
<iwd:data xsi:type="iwd:string2stringMap">
<iwd:entry><iwd:key xsi:type="xsd:string">Key1</iwd:key>
<iwd:value xsi:type="xsd:string">Value1</iwd:value></iwd:entry>
<iwd:entry><iwd:key xsi:type="xsd:string">Key2</iwd:key>
<iwd:value xsi:type="xsd:string">Value2</iwd:value></iwd:entry>
<iwd:entry><iwd:key xsi:type="xsd:string">MediaType</iwd:key>
<iwd:value xsi:type="xsd:string">workitem</iwd:value></iwd:entry>
</iwd:data>
<iwd:ext xsi:type="ns3:TaskExt">
<ns3:customerId>My Best Customer</ns3:customerId>
</iwd:ext>

Web Service Capture Point Web Service Capture Point Requests (iWD-Compatible)

Integrated Capture Points Guide 116

</iwd:createTask>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Sample Request getTaskByTaskId
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:iwd="http://webservice.capture.gtl.evo">
<SOAP-ENV:Body>

<iwd:getTaskByTaskId>
<iwd:taskId>02JHNT2FEDRTR005</iwd:taskId>
</iwd:getTaskByTaskId>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Sample Request getTaskByCaptureId
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:iwd="http://webservice.capture.gtl.evo">
<SOAP-ENV:Body>

<iwd:getTaskByCaptureId>
<iwd:captureId>TestiWD_0002</iwd:captureId>
</iwd:getTaskByCaptureId>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Sample request updateTaskByTaskId

This sample demonstrates how to update various interaction properties.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns2="http://webservices.evo" xmlns:ns4="http://taskinfo.gtl.evo"
xmlns:ns3="http://broker.gtl.evo" xmlns:ns1="http://evo"
xmlns:iwd="http://webservice.capture.gtl.evo">
<SOAP-ENV:Body>
<iwd:updateTaskByTaskId>
<iwd:taskId>02JHNT2FEDRTR00B</iwd:taskId>
<iwd:priority>123</iwd:priority>
<iwd:dueDateTime>2012-03-28T20:20:18Z</iwd:dueDateTime>
<iwd:data xsi:type="iwd:string2stringMap">
<iwd:entry><iwd:key xsi:type="xsd:string">Key1</iwd:key>
<iwd:value xsi:type="xsd:string">NewValue1</iwd:value></iwd:entry>
<iwd:entry><iwd:key xsi:type="xsd:string">Key3</iwd:key>
<iwd:value xsi:type="xsd:string">NewKeyNewValue</iwd:value></iwd:entry>
</iwd:data>
<iwd:ext xsi:type="ns3:TaskExt">

Web Service Capture Point Web Service Capture Point Requests (iWD-Compatible)

Integrated Capture Points Guide 117

<ns3:customerId>The same customer</ns3:customerId>
</iwd:ext>
</iwd:updateTaskByTaskId>
</SOAP-ENV:Body></SOAP-ENV:Envelope>

Web Service Capture Point Web Service Capture Point Requests (iWD-Compatible)

Integrated Capture Points Guide 118

Web Service Capture Point Responses
(iWD-Compatible)
This page presents examples of responses used by the Web Service Capture Point when operating in
iWD compatibility mode.

WebserviceFault Error Response
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ns2="http://webservices.evo"
xmlns:ns4="http://taskinfo.gtl.evo" xmlns:ns3="http://broker.gtl.evo" xmlns:ns1="http://evo"
xmlns:iwd="http://webservice.capture.gtl.evo">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring>Interaction Server protocol error</faultstring>
<detail>
<fault xsi:type="ns2:WebserviceFault">
<code>43</code>
<message>Unknown interaction identifier specified</message>
<severity>ERROR</severity>
</fault>
</detail>
</SOAP-ENV:Fault></SOAP-ENV:Body></SOAP-ENV:Envelope>

createTaskResponse

The only parameter returned in the createTaskResponse is the out string, which contains the
interaction ID of the new interaction.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ns2="http://webservices.evo"
xmlns:ns4="http://taskinfo.gtl.evo" xmlns:ns3="http://broker.gtl.evo" xmlns:ns1="http://evo"
xmlns:iwd="http://webservice.capture.gtl.evo"><SOAP-ENV:Body>
<iwd:createTaskResponse>
<iwd:out>02JGQY2FEEP9P000</iwd:out>
</iwd:createTaskResponse>
</SOAP-ENV:Body></SOAP-ENV:Envelope>

Web Service Capture Point Web Service Capture Point Responses (iWD-Compatible)

Integrated Capture Points Guide 119

Java Configuration

Important
The 8.5.1 family of Interaction Server releases support JRE 1.8. For a full list of
supported Java versions, see the eServices page in the Genesys Supported Operating
Environment Reference Guide.

Use the latest Java JRE versions for JMS Capture Points and Groovy transformation scripts, as well as
for File Capture Points if Groovy transformation scripts are used (for example, for iWD compatibility
mode). Versions before JRE 1.5 are not supported.

Here is a general description of the configuration requirements for Java:

• Configure the jvm-path option in Interaction Server. In the java-config section, the jvm-path option
must specify the path to the jvm.dll file (for Windows) or libjvm.so file (for UNIX platforms).
Interaction Server requires this to start JVM by means of JNI. This option is required for JMS Capture
Points and Groovy transformation scripts.

• Configure the jvm-options section in Interaction Server. This section lists JVM option pairs, for example
["-Xmx256m",""] or ["-Djava.class.path",".;C:\myjars\my-jar.jar;C:\myotherjars\my-other-
jar.jar"]. If JMS Capture Points or Groovy transformations are present, the option
-Djava.class.path must contain a path to the Genesys-provided JAR files, as well as the Message
Queue provider-specific JAR files, which are required in order for JMS and Groovy scripts to run.

These options are explained in more detail below.

For more information about these and other Capture Point-related Interaction Server options, refer to
the eServices Reference Manual.

Configuring Interaction Server to Load the Java Virtual Machine
(JVM)

To enable JMS capture point functionality or Groovy transformation functionality, Interaction Server
must be configured to load the Java Virtual Machine. The latest JRE 1.5 or 1.6 is required (JDK is not
required). Take care to specify the correct virtual machine with regard to the architecture; that is, for
64-bit Interaction Server, 64-bit JVM must be used and for 32-bit Interaction Server, 32-bit JVM must
be used.

Interaction Server java-config Section
The section should contain only one option: jvm-path. This option specifies the full path to the

Java Configuration Web Service Capture Point Responses (iWD-Compatible)

Integrated Capture Points Guide 120

https://docs.genesys.com/Documentation/System/Current/SOE/ES
https://docs.genesys.com/Documentation/System/Current/SOE/Welcome
https://docs.genesys.com/Documentation/System/Current/SOE/Welcome

jvm.dll (on the Windows platform) or to libjvm.so (on UNIX platforms). If this option is not
present, Interaction Server does not attempt to load JVM. The following is an example of this option
for the Windows platform:

jvm-path=C:\Program Files\Java\jdk1.6.0_13\jre\bin\server\jvm.dll

The following is an example of this option for Solaris 10:

jvm-path=/usr/local/java/jdk1.6.0_22/jre/lib/sparcv9/server/libjvm.so

Note that JVM comes in two flavors: client and server. The server VM is preferred since it is optimized
for long-running processes and mostly runs compiled code, while the client VM starts up faster but
runs slower using an interpreted mode of execution.

Interaction Server jvm-options Section
This section specifies options that are used to run the JVM. Interaction Server composes the startup
string for the JVM containing all of the options specified in this section.

-Xss1m

This option, with empty value, is required for all platforms. It specifies that the Java stack size should
be 1 megabyte.

-Xoss1m

This option, with empty value, is required for all platforms. It specifies that the Native code stack size
should be 1 megabyte.

It is important to note that Interaction Server creates many working threads to perform its tasks. If
the stack size is set to be large, the multiplicity of threads will consume an unnecessarily large
amount of memory. Many UNIX systems have unreasonably large default setting for stack size; the
recommended stack size for Interaction Server is 1 megabyte.

ESR-13509
Peter Chaplin says: Please confirm suggested changes to the suggested text -
forward slashes are changed to back slashes.
Corrections to new section -Djava.class.path

This option specifies the list of the files required to access JMS or for Groovy transformation
functionality. On Windows, the semicolon (;) is used as a list separator, and the colon (:) on non-
Windows platforms.

The Interaction Server Installation package provides several JAR files that implement Java
wrappers and they should be present in the list along with the path to the JAR files from the JMS
provider as necessary.

Below is a sample of a minimal class path for non-Windows that contains all the standard JAR files
provided with Interaction Server:

-Djava.class.path=transformation\xml_transformer_capture_point.jar:transformation\groovy-
all-1.7.3.jar:transformation\xercesImpl.jar:transformation\xsltc.jar:jms\jms_wrapper.jar

Java Configuration Web Service Capture Point Responses (iWD-Compatible)

Integrated Capture Points Guide 121

Important
Numbers in the name of the file <groovy-all-1.7.3.jar> represent the version of
the Groovy language library. With future releases the installation package may
contain a newer version of it with a different number.

For OpenMQ, the provider-specific jar files are:

• jms.jar
• imq.jar
• fscontext.jar

For TIBCO, the provider-specific jar files are:

• jms.jar
• tibjms.jar

For ActiveMQ, the provider-specific jar file is activemq-all-5.N.N.jar, where <5.N.N> represents
the specific version number from your installation of the ActiveMQ.

Additionally, a special file with the list of message queues should be configured, packed into the
JAR file and the JAR added to the list. See vendor documentation on ActiveMQ about JNDI support
for more details.

Below is a sample of the -Djava.class.path option value when Interaction Server is run on
Windows and OpenMQ JMS is installed in the default destination:

-Djava.class.path=transformation\xml_transformer_capture_point.jar; transformation\groovy-
all-1.7.3.jar;transformation\xercesImpl.jar; transformation\xsltc.jar;jms\jms_wrapper.jar;C:\Program
Files\Sun\MessageQueue\mq\lib\fscontext.jar;C:\Program Files\Sun\MessageQueue\mq\lib\
jms.jar;C:\Program Files\Sun\MessageQueue\mq\lib\imq.jar

-Djava.library.path

This option specifies the path to native libraries that might be required by JVM or specific JMS
providers. On the Windows platform it is usually not necessary to specify this option. On UNIX
platforms this option must specify the path to the JRE libraries and in certain cases the path to
libjvm.so itself. For example, the IMB AIX platform requires libjvm.so to be in the library path since
standard native libraries depend on it and will not load if it is not in the library path.

Take extreme care to specify the library path to the same JRE directory from which libjvm.so is
loaded (the jvm-path option). If these do not match, it is often hard to find the reason why the
solution is not working.

The following is an example of the option for IBM AIX platform (assuming 64-bit Interaction Server):
-Djava.library.path=/lib:/usr/java6_64/jre/lib/ppc64:/usr/java6_64/jre/lib/ppc64/j9vm

For AIX, in most cases you must modify the ./run.sh file that was prepared for you during the

Java Configuration Web Service Capture Point Responses (iWD-Compatible)

Integrated Capture Points Guide 122

installation process, as follows:

1. Locate the string ./interaction_server -host <your_host> -port 8001 -app
"InteractionServer"

2. Add to the begining of it an expression that sets the LIBPATH environment. The resulting string will be:
env LIBPATH=/lib:/usr/java6_64/jre/lib/ppc64:/usr/java6_64/jre/lib/ppc64/j9vm:$LIBPATH
./interaction_server -host <your_host> -port 8001 -app "InteractionServer"

Special Handling of xercesImpl.jar in JRE 1.5
If you are using JRE 1.5, there might be a conflict between the libraries included in the groovy-
all-1.7.3.jar and xercesImpl.jar, resulting in the inability of JVM to either work with Xerces
classes or to correctly execute the optional XML schema validation. To avoid this situation when
working with 1.5 JRE, do the following must during configuration of the parameters:

• Move the xercesImpl.jar file from the .\transformation directory to the .\transformation\
endorsed directory.

• In the jvm-options section of the Interaction Server object, create an option called
-Djava.endorsed.dirs and give it the value .\transformation\endorsed.

• Ensure that the option -Djava.class.path correctly refers to the xercesImpl.jar located in the
.\transformation\endorsed directory.

Operating System Environment
Interaction Server itself does not make use of any environment variables and should not require Java
to be in the path or JAVA_HOME environment variable to be set. But if these are set, they must refer
to the same JRE that is configured in the Interaction Server configuration options.

Different operating systems have different default settings for maximum number of threads a process
can create. Interaction Server can and will create a few dozen threads. It is important that limits set
for the operating system allow creating a few hundred threads. The default value of 1024 should be
sufficient for almost all purposes. Consult with your system administrator to check the operating
system limits and ensure that these are adequate for Interaction Server.

For example, the following might be required for AIX to change the limit (assuming that Interaction
Server runs under the itxsrvuser account):

chuser threads=2048 itxsrvuser

Another important operating system parameter is the stack size for the thread. As previously
mentioned, Interaction Server creates many threads and requires reasonable stack size for the
threads. Some systems might have a default in the vicinity of 256 MB or more, which will definitely
lead to problems when a process tries to create a few dozen threads. The stack size should be set to
2 MB for Interaction Server. The following command changes the thread stack size for most UNIX
operating systems:

ulimit -s 2048

Again, consult your system administrator to check and ensure the correct operating system limits are
in place before running Interaction Server.

Java Configuration Web Service Capture Point Responses (iWD-Compatible)

Integrated Capture Points Guide 123

XML Representation
The integrated JMS Capture Point is capable of capturing interactions in the form of XML documents
from JMS-compliant message queue providers. The File Capture Point also captures XML documents,
but from a local or network directory. This section describes both inbound and outbound XML
messages for these two types of capture points.

Inbound Messages
A correctly generated XML document can use different encodings and will contain encoding
specification in the document header. For that reason, XML should be always treated as binary data,
not text. An XML document should always be put in a message queue as a binary message or written
to a file as binary data. Message queue capture points, such as the JMS capture point, can accept
binary messages and text messages (for backward compatibility). To avoid incorrect or unnecessary
transcoding, ensure that the XML document uses the same encoding that a specific message queue
provider uses to encode the text messages. The following encodings of inbound XML documents are
supported:

• UTF-8
• UTF-16
• ISO-8859-1
• US-ASCII

All outbound XML documents are encoded using UTF-8. Inbound XML documents should follow the
element structure outlined in this guide.

Important
Timestamps in inbound messages for Capture Points that process XML requests (JMS
and File Capture Points) are treated as UTC.

Processed and Error Queues in JMS Capture Point
For message queue capture points, a copy of the original message is put either into the processed
or error queues specified by the options processed-queue-name and error-queue-name,
respectively. These options are configured in the settings section of the Capture Point Application
object. No reformatting of the message takes place and no XML parsing or transformation is involved.
This is an exact copy of the original message.

Outbound Notifications
The outbound XML encoding is UTF-8. For the JMS capture point, the message type of the outbound
notification messages is controlled by the option outbound-message-type, and can be either
binary (the default) or text. The messages placed in the notifications queue (JMS Capture Point) or

XML Representation Web Service Capture Point Responses (iWD-Compatible)

Integrated Capture Points Guide 124

folder (File Capture Point) consist of outbound notifications and responses to capture point requests.
The correlation identifiers in notification messages are not set because these are unsolicited
notifications and not the replies. The correlation identifier is set for reply messages to correlate
responses with requests. Outbound notifications are generated as separate XML documents with the
root element interaction. The operation attribute specifies the type of notification and can be
one of the following:

• changed—The interaction properties have changed.
• stopped—The interaction has been stopped/deleted.
• held—The interaction has been put on hold.
• resumed—The interaction has been resumed from hold.
• moved—The submitted interaction has been moved from one queue.
• assigned—The interaction has been delivered to an agent or pushed to a strategy.

Timestamps for outbound notifications and responses sent by the integrated capture points are in
UTC (Coordinated Universal Time). This is inconsistent with iWD capture points. Outbound
notifications and responses sent by iWD capture points are in local time. Outbound notifications are
generated in a specific XML format.

Responses to Capture Point Requests
The responses are formatted the same way as notifications. Everything that is applicable to
notification messages also applies to response messages, except for:

• Correlation Id (JMS Capture Point)
• Response Types (JMS and File Capture Points)
• Error Notification (JMS and File Capture Points)

These three areas are unique to the responses to capture point requests.

XML Representation Web Service Capture Point Responses (iWD-Compatible)

Integrated Capture Points Guide 125

Inbound Messages
Operation Elements and Root Element

An inbound XML document can contain multiple operations, but only a single root element. For
maximum flexibility the name of the root element can be anything, and it is not taken into account.
The transformation scripts use messages as the name of the root element. If the document contains
a single operation, this operation can be a root element. Any operation item is specified by an
interaction element. The following are sample XML messages:

Sample 1

<?xml version="1.0" encoding="UTF-8"?>
<interaction operation="submit" ExternalId="SomeExternalId"/>

Sample 2

<?xml version="1."? encoding="UTF-8"?>
<messages>
<interaction operation="submit" ExternalId="ExternalId2"/>
<interaction operation="submit" ExternalId="ExternalId3"/>
</messages>

Sample 3

<?xml version="1."? encoding="UTF-8"?>
<myinteractions>
<interaction operation="submit" ExternalId="ExternalId4"/>
<interaction operation="submit" ExternalId="ExternalId5"/>
</myinteractions>

Operations

The operation type is specified by the operation attribute and can be one of the following:

• submit—Submit a new interaction
• update—Update or change interaction properties
• hold—Hold the interaction
• resume—Resume the interaction
• stop—Stop or delete the interaction
• getinfo—Request interaction properties

XML Representation Inbound Messages

Integrated Capture Points Guide 126

Properties Element

The properties element, which should be a direct child of the interaction element, specifies the
interaction properties that are needed to perform the operation.

• For submit, the properties element specifies all of the interaction properties including any user data
or custom properties. It also specifies standard attributes such as the tenant and queue to which
interactions are submitted. Any attribute can have a default value specified in the capture point
configuration.

• For update, the properties element specifies properties that need to be changed. This might include
the Queue property, in which case the interaction will be moved into the specified interaction queue.
For the update operation, configured default values are not used, and the attribute InteractionId or
ExternalId must be specified.

• For hold, resume, and stop, the only attribute required or processed is InteractionId (or
ExternalId), which specifies the interaction that is to be held, resumed, or stopped.

For simplicity, any child element of the properties element can be specified as an attribute of the
interaction element. For example, to hold an interaction the following interaction element can
be used:

<?xml version="1."? encoding="UTF-8"?>
<interaction operation="hold" InteractionId="itx00777"/>

Interaction Server supports key-value lists (of any depth) as interaction properties. To specify such
attributes, natural XML structure is used. Note the CustomerInfo group of properties in the following
example:

<?xml version="1."? encoding="UTF-8"?>
<interaction operation="submit">

<properties>
<ExternalId>SomeExternalId</ExternalId>
<CustomerSegment>Gold</CustomerSegment>
<CustomerInfo>

<FirstName>William</FirstName>
<LastName>Bell</LastName>

</CustomerInfo>
</properties>

</interaction>

Interaction Server supports spaces and some special characters in interaction property names. To
allow for this in XML messages, any property can have a "real" name specified as a name attribute.
For example:

<?xml version="1."? encoding="UTF-8"?>
<interaction operation="submit">

<properties>
<property name="First Name">William</property>
<property name="Last Name">Bell</property>

</properties>
</interaction>

The following is a list of Interaction Server's predefined properties and their meanings. Custom
properties can also specified and attached to the interaction. <InteractionId>—Interaction
Identifier. Can be omitted and generated by Interaction Server. <ParentId>—Parent interaction
IDentifier. <ExternalId>—Identifier used by the external system. <TenantId>—Tenant IDentifier.
<MediaType>—Interaction media type. <InteractionType>—Inbound, Outbound, or Internal.

XML Representation Inbound Messages

Integrated Capture Points Guide 127

<InteractionSubtype>—Interaction subtype, selected from the list defined for the tenant.
<IsOnline>—The interaction is (1) or is not (0) online. <IsHeld>—The interaction is (1) or is not (0)
on hold. <Queue>—Name of the queue in which the interaction is initially placed. <Workbin>—Initial
workbin name; optional. <WorkbinAgentId>—Initial workbin agent ID.
<WorkbinAgentGroupId>—Initial workbin agent group ID. <WorkbinPlaceId>—Initial workbin place
ID. <WorkbinPlaceGroupId>—Initial workbin place group ID. <ReceivedAt>—Date and time received;
format is YYYY-MM-DD HH:MM:SS. <Priority>—Initial interaction priority. <ServiceType>—Service
type. <ServiceObjective>—Service objective in seconds.

Delete Element

The delete element, which must be a direct child of the interaction element, is used only for the
update operation, and specifies the names of the properties that are to be deleted. For example:

<?xml version="1."? encoding="UTF-8"?>
<interaction operation="update" InteractionId="itx00777">

<properties>
<property name="Last Name">Ball</property>

</properties>
<delete>

<property name="Middle Name"/>
</delete>

</interaction>

Reason Element

The reason element, which must be a direct child of the interaction element, can specify the
reason for the operation. This attribute is optional and can be used with the hold, resume and
stop operations. The reason element has the attributes name and description. For example:

<?xml version="1."? encoding="UTF-8"?>
<interaction operation="hold" ExternalId="Loan1022011-02">

<reason name="AwaitingInfo" description="Waiting for credit history report"/>
</interaction>

XML Representation Inbound Messages

Integrated Capture Points Guide 128

Responses to Capture Point Requests
Correlation Id

In response messages the JMSCorrelationID parameter is set to the JMSMessageID of the request by
default. In Interaction Server 8.1.200 and later, you can change this default behavior using the JMS
Capture Point's use-correlation-id-in-reply option: with a setting of true, the
JMSCorrelationID parameter of the reply message is set to the value of JMSCorrelationID parameter of
the request. A setting of false retains the default behavior.

Response types

The following operation types are used in responses to capture point requests:

• submitted—Only as a response to the submit operation, and never as an unsolicited notification
• changed—As a response to a capture point's change request or as a notification regarding changes to

interactions submitted by this capture point
• stopped—As a response to the stop operation or as unsolicited notification if an interaction submitted

by this capture point is stopped by another entity
• held—As a response to the hold operation or as unsolicited notification if an interaction submitted by

this capture point is held by another entity
• resumed—As a response to the resume operation or as unsolicited notification if an interaction

submitted by this capture point is resumed by another entity
• info—Only as a response to a getinfo request from a capture point
• error—In response to any failed request

Error Notification

The error element specifies the error code and (optionally) a description if an operation has failed.
The following is an example of the error element:

<interaction operation="error" code="agent" description="107"/>

XML Representation Responses to Capture Point Requests

Integrated Capture Points Guide 129

Outbound Notifications
Properties Element

The properties element specifies all current interaction properties. The following is the list of
predefined Interaction Server properties. Note that any user data is also presented along the
predefined properties. <InteractionId>—Interaction identifier.

<ParentId>—Parent interaction identifier.

<ExternalId>—Identifier used by external system.

<TenantId>—Tenant identifier.

<MediaType>—Interaction media type.

<InteractionType>—Inbound, Outbound, or Internal.

<InteractionSubtype>—Interaction subtype, selected from the list defined for the tenant.

<IsOnline>—The interaction is (1) or is not (0) online.

<IsHeld>—The interaction is (1) or is not (0) on hold.

<Queue>—Current queue name.

<Workbin>—Current workbin name, optional.

<WorkbinAgentId>—Workbin agent ID.

<WorkbinAgentGroupId>—Workbin agent group ID.

<WorkbinPlaceId>—Workbin place ID.

<WorkbinPlaceGroupId>—Workbin place group ID.

<SubmittedBy>—Capture point name.

<InQueues>—List of suggested destination queues.

<ReceivedAt>—Date and time received; format is YYYY-MM-DD HH:MM:SS.

<SubmittedAt>—Date and time submitted; format is YYYY-MM-DD HH:MM:SS.

<DeliveredAt>—Date and time delivered; format is YYYY-MM-DD HH:MM:SS.

<PlacedInQueueAt>—Date and time placed in queue; format is YYYY-MM-DD HH:MM:SS.

<MovedToQueueAt>—Date and time moved to queue; format is YYYY-MM-DD HH:MM:SS.

<AssignedTo>—Agent ID (Place ID if no Agent ID is present in the login).

XML Representation Outbound Notifications

Integrated Capture Points Guide 130

<AssignedAt>—Date and time assigned; format is YYYY-MM-DD HH:MM:SS.

<Priority>—Current interaction priority.

<ServiceType>—Service type.

<ServiceObjective>—Service objective in seconds.

Changed and Deleted Elements

The changed and deleted elements are used only with the changed notification and specify
changed and deleted interaction properties respectively. For example:

<?xml version="1."? encoding="UTF-8"?>
<interaction operation="changed" event_time="2010-10-22T07:34:05Z">

<properties>
<InteractionId>05512B2CQRPPR001</InteractionId>
<InteractionType>Inbound</InteractionType>
<InteractionSubtype>InboundNew</InteractionSubtype>
<TenantId>107</TenantId>
<Queue>Inbound</Queue>
<MediaType>workitem</MediaType>
<SubmittedBy>CapturePointMSMQPerceptron</SubmittedBy>
<State>3</State>
<ReceivedAt>2010-10-19T23:47:32Z</ReceivedAt>
<SubmittedAt>2010-10-19T23:47:32Z</SubmittedAt>
<DeliveredAt>2010-10-22T07:33:05Z</DeliveredAt>
<PlacedInQueueAt>2010-10-19T23:47:32Z</PlacedInQueueAt>
<MovedToQueueAt="MovedToQueueAt="">2010-10-19T23:47:32Z</MovedToQueueAt>
<AssignedAt>2010-10-22T07:33:05Z</AssignedAt>
<AssignedTo>a0001</AssignedTo>
<ExternalId>MyExternalId</ExternalId>
<LastName>Ball</LastName>

</properties>
<changed>

<LastName>Ball</LastName>
</changed>
<deleted>

<CustomerSegment/>
</deleted>
<actor type="agent" tenant="107" place="p0001" agent="a0001"/>

</interaction>

Reason and Actor Elements

The reason element specifies the reason for the operation, if it is provided by the server (and if, in
turn, it was provided by the client in the request). The actor element specifies the actor of the
operation and can be one of the following types:

• agent—The actor is an agent application and the tenant, place, and agent attributes specify the
tenant identifier, place name and agent employee ID.

• strategy—The actor is a strategy and the tenant, strategy, and router attributes specify the
strategy.

• mediaserver—The actor is a media server and the mediaserver attribute specifies the name of the
media server.

The following is an example of the actor and reason elements (not all properties are included in

XML Representation Outbound Notifications

Integrated Capture Points Guide 131

this example):

<?xml version="1."? encoding="UTF-8"?>
<interaction operation="held" event_time="2010-10-22T07:54:43Z">

<properties>
<InteractionId>05512B2CQRPPR001</InteractionId>
<ExternalId>MyExternalId</ExternalId>

</properties>
<actor type="agent" tenant="107" place="p0001" agent="a0001"/>
<reason name="AwaitingInfo" description="Waiting for credit report"/>

</interaction>

The following is an example of the strategy actor:

<actor type="strategy" tenant="107" strategy="InboundStrategy" router="URServer"/>

The following is an example of the mediaserver actor:

<actor type="mediaserver" server="CapturePointJMS"/>

Party Element

The party element is used in assigned notifications and specifies a party to which the interaction
has been assigned. A party can be either an agent or a strategy. The type attribute specifies the
party type and can be either agent or strategy. The tenant attribute specifies the identifier for the
tenant to which the party belongs. The following is an example of an agent party (note the place and
agent attributes):

<party type="agent" tenant="107" place="p0001" agent="a0001"/>

The following is an example of a strategy party (note the strategy and router attributes):

<party type="strategy" tenant="107" strategy="InboundStrategy" router="URServer"/>

XML Representation Outbound Notifications

Integrated Capture Points Guide 132

Transformation
The integrated capture point functionality in Interaction Server supports optional message
transformation for the File, JMS, and Kafka capture points. Internally, these capture points work with
messages in XML format. XML message transformation can be applied to each incoming and outgoing
message, allowing integration with custom interaction definitions and XML formats.

A sample iWD compatibility transformation script is included with the installation of Interaction Server
and can be used as a basis for customization. The sample script is a transformation script that allows
you to format an XML message according to the iWD 8.0 schema, and then have it transformed into
Interaction Server's native message format.

Inbound vs. Outbound Transformations
The inbound transformation Groovy script (if specified by the xsl-inbound-transform-path option)
is called when a capture point needs to transform an inbound XML message. The outbound
transformation Groovy script (if specified by the xsl-outbound-transform-path option) is called
when a capture point needs to transform outbound XML message.

Configuration Options
In order to enable transformation, the following options must be configured in the settings section
of the Capture Point Application object:

For full descriptions of each of the following options, refer to the eServices
Reference Manual.

• xsl-inbound-transform-path—String representation of a Uniform Resource Identifier (URI) that points
to a shared Groovy script file containing the inbound transformation script.

• xsl-outbound-transform-path—String representation of a URI that points to a shared Groovy script
file containing the transformation scripts for outbound notifications.

Transformers Interface
The interface for the transformation script is defined as follows:

package com.genesyslab.eservices.interactionserver.capturepoints.xmltransformer;
public interface XmlTransformer
{

void init(java.util.Properties parameters);
byte[] transform(byte[] inputXml, java.util.Properties parameters);
void cleanup();
void setLogger(Logger logger);
void reconfigure(java.util.Properties parameters);

}

Any custom script should implement this interface in order to be usable by Interaction Server. For a
good starting point for a custom script, refer to the sample scripts that are provided with Interaction
Server.

Transformation Outbound Notifications

Integrated Capture Points Guide 133

When Interaction Server creates a transformer, it calls its init method and passes all of the
parameters that are defined in the inbound-transformer-parameters section (for inbound
transformation scripts) or in the outbound-transformer-parameters section (for outbound
transformation scripts). The transformer object should store these properties for possible future use
during transformation.

The main functional method transform transforms the inputXML XML message into the required
form and returns the transformed XML message that will be either parsed by Interaction Server (for
inbound messages) or, for outbound messages, put directly into notification message queue (for
message queue capture points). Each call to the transform method by Interaction Server can be
given a set of properties to account for during the individual transformation process of a single
document. Interaction Server provides the following parameters to the transformation method:

• In release 8.0.2 and later:
• CapturePointName—The name of the capture point invoking the transformation.
• CurrentTime—The current UTC timestamp in the format YYYY-MM-DDTHH:MM:SSZ.

• In release 8.1.200.25 and later:
• CapturePointType—The type of capture point: jms or file.
• MessageId

• JMS capture point—The JMSMessageId property of the JMS message being transformed.
• File capture point—The file name of the of the inbound file currently being transformed; only

passed to the inbound transformer.

• CorrelationId—With the JMS CP, the JMSCorrelationId property of the JMS message being
transformed. Not passed with the File CP.

• OutboundMessage (JMS Capture Point only)—Contents of the original outbound JMS message.
• InboundMessage (JMS Capture Point only)—Contents of the original inbound JMS message.

The Logger interface provided to the script allows for logging of any diagnostic or error messages
into the Interaction Server log by the same means that Interaction Server logs messages. Logging
configuration works the same as for any other Interaction Server messages, including logging to the
console, a file, or network logging. The Logger interface is defined as follows:

package com.genesyslab.eservices.interactionserver.capturepoints.xmltransformer;
public interface Logger
{

public static enum LogLevel { DEBUG, TRACE, STANDARD };
public void log(LogLevel level, String logMessage);

}

XML Encoding Considerations
Interaction Server can parse XML messages in the following encodings:

• UTF-8
• UTF-16
• ISO-8859-1

Transformation Outbound Notifications

Integrated Capture Points Guide 134

• US-ASCII

Outbound notification messages are encoded in UTF-8. This requires the transformation scripts to
provide output in one of the supported encodings (for inbound transformations) and to be capable of
parsing the UTF-8 encoded XML messages (for outbound transformation scripts).

Because Groovy scripts use the XmlParser class to parse XML messages, they have no difficulty
processing UTF-8 and can support any encoding supported by Java (depending on the installed
packages). The outbound transformation scripts can also produce outbound XML messages in any
encoding if the appropriate Java packages are installed. The outbound transformer provided with
Interaction Server generates output in UTF-8 and is capable of generating output (without any
additional Java packages) in the following encodings:

• US-ASCII
• ISO-8859-1
• UTF-8
• UTF-16BE
• UTF-16LE
• UTF-16

Care should be taken to correctly handle encoding in Groovy. The recommended place to look for an
example is the transformation scripts that are provided with the Interaction Server installation. The
following pattern shows how to correctly generate XML in the required encoding and with appropriate
XML declaration:

def outputDoc = new StreamingMarkupBuilder()
outputDoc.encoding = "utf-8"
def outputStream = new ByteArrayOutputStream()
new OutputStreamWriter(outputStream, outputDoc.encoding) << outputDoc.bind {

mkp.xmlDeclaration()
somecontent {

}
}
return outputStream.toByteArray()

iWD Compatibility Transformation Scripts
There are two Groovy scripts provided for transformation of inbound and outbound messages to and
from iWD message format. These scripts provide backward compatibility with iWD 8.0 message
format considering the structure of the iWD specific business process provided with iWD 8.0. The iWD
8.0 message format is described in detail in the iWD 8.0 Deployment Guide. Only general rules of the
transformation process are described here. The provided transformation scripts below are only for
standard iWD messages as specified in the document. For custom messages, customization of these
scripts is necessary.

• Inbound Transformation Script
• Outbound Transformation Script

Transformation Outbound Notifications

Integrated Capture Points Guide 135

Inbound Transformation Script
The inbound transformation script path is iwd_scripts\iWD2IxnServerTransformer.groovy. The
script produces output in UTF-8 for Interaction Server to parse.

Inbound Script Parameters

The script uses the following parameters:

• CompleteQueues—A comma-separated list of queue names for completed interactions (default
iWD_Completed).

• RestartQueues—A comma-separated list of queue names for new interactions (default iWD_New).
• CancelQueues—A comma-separated list of queue names for canceled interactions (default

iWD_Canceled).
• ExtendedAttributes—A comma-separated list of attributes that must be present under the <Ext> tag

of the CreateTask iWD message.
• AllowAnyAttributes—If set to true or yes, the transformation script copies any unknown attributes

to the transformed message.
• CaseSensitiveAttributes—If set to false or no, the transformation script ignores the case of

known attribute names (including Ext and Data section names).
• CaseSensitiveActions—If set to false or no, the transformation script ignores letter case of action

names.

Interaction Server parser and interaction representation are case sensitive.
The customized script must take care to produce the output in the correct
case.

Root Element

The root element of iWD inbound message may be GTLMessages or GTLMessage. The script checks
for the root element name and generates an error if the document root element is anything else. The
root element of the transformed messages is always messages and the child elements describe the
operations.

Transforming Actions

The iWD message action is the name of the tag of the child element of the root element. Possible
actions and their translations are as follows:

• CreateTask—Translates to <interaction operation='submit'>

• GetTaskInfo—Translates to <interaction operation='getinfo'>

• UpdateTask—Translates to <interaction operation='update'>

• CompleteTask—Translates to <interaction operation='update'>

Transformation Inbound Transformation Script

Integrated Capture Points Guide 136

• HoldTask—Translates to <interaction operation='hold'>

• ResumeTask—Translates to <interaction operation='resume'>

• RestartTask—Translates to <interaction operation='update'>

• CancelTask—Translates to <interaction operation='update'>

CompleteTask, RestartTask, and CancelTask are transformed into the
update operation, which allows changing the queue for the interaction. The
queue name is then added based on transformer parameters. Specifically, for
the CompleteTask action, the first queue name from the transformer
parameter CompleteQueues is added as the Queue property of the
translated message. For the rest of these actions, the first queue name from
the appropriate parameter is taken.

Transforming Properties

The following transformation takes place for the inbound iWD message:

• All known direct children of the action element are translated according to the Translation Table for
Known Attributes (Inbound) below and put into the properties tag of the transformed message.

• If any unknown tag is encountered, it is ignored if the AllowAnyAttributes option of the transformer
is not set to true or yes. If the option is set to true or yes, the attribute is copied without any
translation to the properties tag of the transformed message.

• If the Ext tag is encountered, all children of this tag are copied into the properties tag of the
transformed message with the prefix IWD_ext_.

• If the Data tag is encountered, all children of this tag are copied into the properties tag of the
transformed message without any changes.

• If the Reason tag is encountered, it is translated to the reason tag with the name attribute containing
the value of the original Reason tag (for example <reason name="Original Reason"/>).

Attributes appear in the transformed message in the order described above.
Translation Table for Known Attributes (Inbound)

iWD Message Attribute Attribute Name in Interaction
Server Notes

BrokerId InteractionId
CaptureId ExternalId
Actor Ignored
ActionDateTime Ignored
tenantId IWD_tenantId
solutionId IWD_solutionId
capturePointId IWD_capturePointId Same as SubmittedBy
priority Priority
businessValue IWD_businessValue
channel iWD_channel

Transformation Inbound Transformation Script

Integrated Capture Points Guide 137

iWD Message Attribute Attribute Name in Interaction
Server Notes

category IWD_category
activationDateTime IWD_activationDateTime No default value
dueDateTime IWD_dueDateTime No default value
expirationDateTime IWD_expirationDateTime No default value
processId IWD_processId
departmentId IWD_departmentId
reprioritizeDateTime IWD_reprioritizeDateTime

Hold IsHeld Changed to 0 or 1 (from false or
true)

Transformation Inbound Transformation Script

Integrated Capture Points Guide 138

Outbound Transformation Script
The outbound transformation script path is iwd_scripts\IxnServer2iWDTransformer.groovy. The
script produces output in UTF-8 for Interaction Server to put into the notification queue (or to deliver
to an external system by other means).

Outbound Script Parameters

The script uses the following parameters:

• CompleteQueues—A comma-separated list of queue names for completed interactions (default
iWD_Completed)

• RestartQueue—A comma-separated list of queue names for new interactions (default iWD_New)
• CancelQueues—A comma-separated list of queue names for canceled interactions (default

iWD_Canceled)
• RejectQueues—A comma-separated list of queue names for rejected interactions (default

iWD_Rejected)
• ExtendedAttributes—A comma-separated list of interaction attributes that has to appear under the

<Ext> tag of the iWD notification messages

The script uses the following internal parameters (hard-coded as static member variables) to
maintain the compatibility with previous versions of iWD:

• includeWorkbinQueueName—If set to true, the default, the script includes the workbin queue name in
TaskDistributedQueue messages, as is done in iWD. If set to false, the actual workbin name is
included.

• specificQueueNotifications—If set to true, the script generates specific unsolicited notifications
based on the queue name (for example, TaskCompleted, TaskCanceled, TaskRestarted,
TaskRejected, TaskErrorHeld are generated instead of a generic TaskDistributedQueue). The
default value is false, which generates the generic TaskDistributedQueue as is done in iWD.

The two internal parameters described above can be changed in the script file. Changes take effect
after restart.

Root Element

The notification messages produced by Interaction Server always contain a single notification. This
notification is a root element. The outbound transformation script expects the root element to be
messages and if it is, treats all of the child elements as notifications (which always have the name
interaction). If the root element is not messages, then it is expected to be interaction and is
treated as a single notification element. In all other cases the transformation fails. In output XML, the
root element is always GTLMessages and child elements are iWD notification elements.

Transforming Actions

The Interaction Server operation is specified by the operation attribute of the interaction tag.
Possible actions and their translations are as follows:

Transformation Outbound Transformation Script

Integrated Capture Points Guide 139

• <interaction operation='created'>—Translates to TaskCreated

• <interaction operation='changed'>—Translates to TaskUpdated

• <interaction operation='stopped'>—Translates to nothing
• <interaction operation='held'>—Translates to TaskHeld

• <interaction operation='resumed'>—Translates to TaskResumed

• <interaction operation='info'>—Translates to TaskInfo

• <interaction operation='moved'>—Translates to one of TaskCompleted, TaskRestarted,
TaskCanceled, TaskRejected or TaskDistributedQueue

• <interaction operation='assigned'>—Translates to TaskAssigned

• <interaction operation='error'>—Translates to Error

Note the transformation of the moved notification to different iWD notifications. The choice of the
appropriate notification is made based on the Queue attribute of the original notification message as
follows:

• If the value of the Queue attribute is included in the CompleteQueues parameter, then the
TaskCompleted notification is generated.

• If the value of the Queue attribute is included in the RestartQueue parameter, then the
TaskRestarted notification is generated.

• If the value of the Queue attribute is included in the CancelQueues parameter, then the TaskCanceled
notification is generated.

• If the value of the Queue attribute is included in the RejectQueues parameter, then the
TaskRejected notification is generated.

• Otherwise, the TaskDistributedQueue notification is generated.

Transforming Properties

The following transformation takes place for the outbound iWD message:

• All known direct children of the properties tag are translated according to the Translation Table for
Known Attributes (Outbound) below and put into the transformed message as direct children of the
notification message.

• All direct children of the properties tag that begin with prefix IWD_ext_ are put into the Ext tag of the
transformed message as child elements with the same name, but without the prefix IWD_ext_.

• All other children of the properties tag are put into the Data tag of the transformed message as child
elements with exactly same names.

Translation Table for Known Attributes (Outbound)
Attribute Name in

properties iWD Message Attribute Notes

InteractionId BrokerId
ExternalId CaptureId
SubmittedBy CapturePointId
IWD_CapturePointId Ignored. SubmittedBy is used

Transformation Outbound Transformation Script

Integrated Capture Points Guide 140

Attribute Name in
properties iWD Message Attribute Notes

instead.

<actor> Actor Strategy, agent ID, or server
name.

<reason> Reason Attribute name of reason tag.

event_time attribute of the
notification EventDateTime

If not present, it is set to the
CurrentTime parameter of
transformation.

IWD_tenantId tenantID
IWD_solutionId solutionId
IWD_departmentId departmentId
IWD_processId processId
IWD_channel channel
IWD_category category
State, Queue, IsHeld status Based on a set of attributes.
IWD_businessCalendarId businessCalendarId
SubmittedAt createdDateTime

HeldAt heldDateTime Only if held, no translation in
iWD 8.0

AssignedAt assignedDateTime
CompletedAt completedDateTime
IWD_activationDateTime activationDateTime
IWD_dueDateTime dueDateTime
IWD_expirationDatetime expirationDateTime
Priority priority
IWD_reprioritizeDateTime reprioritizeDateTime
IWD_businessValue businessValue
AssignedTo assignedToUser
Queue Queue

Workbin, WorkbinAgentId,
WorkbinAgentGroupId,
WorkbinPlaceId,
WorkbinPlaceGroupId

QueueType

• If Workbin is empty
InteractionQueue

• If WorkbinAgentId is set
AgentWorkbin

• If WorkbinAgentGroupId is
set AgentGroupWorkbin

• If WorkbinPlaceId is set
PlaceWorkbin

• If WorkbinPlaceGroupId is
set PlaceGroupWorkbin

Transformation Outbound Transformation Script

Integrated Capture Points Guide 141

Attribute Name in
properties iWD Message Attribute Notes

WorkbinAgentId,
WorkbinAgentGroupId,
WorkbinPlaceId,
WorkbinPlaceGroupId

QueueTarget First not empty

Transformation Outbound Transformation Script

Integrated Capture Points Guide 142

	Integrated Capture Points Guide
	Table of Contents
	eServices Integrated Capture Points Guide
	Configure the Integrated Capture Point
	JMS Capture Point
	JMS Capture Point Configuration Options
	OpenMQ—JMS Capture Point Queues
	OpenMQ—JMS Capture Point Application
	OpenMQ—Interaction Server JVM
	TIBCO—JMS Capture Point Application
	TIBCO—Interaction Server JVM
	ActiveMQ—JMS Capture Point Queues
	ActiveMQ—JMS Capture Point Application
	ActiveMQ—Interaction Server JVM
	WebSphereMQ-JMS CP Queues
	WebSphereMQ—JMS CP Application
	WebSphereMQ—Interaction Server JVM
	ActiveMQ—SSL for JMS CP
	OpenMQ—SSL for JMS CP
	TIBCO—SSL for JMS Capture Point

	Kafka Capture Point
	Kafka Capture Point Configuration Options
	Kafka Capture Point Sample Configuration
	Kafka Capture Point - Interaction Server JVM
	Kafka Capture Point - Topic Partitioning
	Kafka Capture Point - Matching Requests and Replies
	Kafka Capture Point - Debugging

	File Capture Point
	File Capture Point Modes of Operation
	File Capture Point File Naming Rules
	File Capture Point Configuration Options

	Database Capture Point
	Database Capture Point Configuration Options
	ODBC Drivers
	ODBC Drivers for Windows
	ODBC Drivers Non-Windows
	Configure unixODBC for Oracle on Solaris
	Configure unixODBC for Oracle on Linux 64
	Configure unixODBC for Oracle on Linux 32
	Configure unixODBC for Oracle on AIX 64
	Configure unixODBC for Oracle on AIX 32
	Configure unixODBC for DB2 on Solaris
	Configure unixODBC for DB2 on Linux 32 or 64
	Configure unixODBC for DB2 on AIX 64
	Configure unixODBC for DB2 on AIX 32

	Notification Queries for Database Capture Point
	Inbound Queries for Database Capture Point
	Source Update Queries for Database Capture Point
	Query Language for Database Capture Point

	Web Service Capture Point
	Web Service Capture Point Configuration Options
	Web Service Capture Point Native Mode
	Web Service Capture Point iWD Compatibility Mode
	Web Services Capture Point—Generate a .NET Client
	Generate Service Proxy with wsimport
	Apache CXF—Java Client
	Apache CXF—Javascript Client
	Generate Service Proxy with Axis2
	Web Service Capture Point Client Over Secure HTTP
	Server Certificate
	Configure Web Service Capture Point for HTTPS
	HTTPS for WS CP .NET Client
	HTTPS for WS CP Java Client
	Generate Client Certificate (.NET)
	Generate a Client Certificate (Java)

	Web Service Capture Point Requests (Native)
	Web Service Capture Point Responses (Native)
	Web Service Capture Point Requests (iWD-Compatible)
	Web Service Capture Point Responses (iWD-Compatible)

	Java Configuration
	XML Representation
	Inbound Messages
	Responses to Capture Point Requests
	Outbound Notifications

	Transformation
	Inbound Transformation Script
	Outbound Transformation Script

