
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

intelligent Workload Distribution 9.0.0

iWD REST API Reference Guide

4/21/2024

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Table of Contents
IWD REST API Reference Guide 4
Tasks 7

Fetch paginated list of tasks 8
Fetch list of task IDs from current snapshot 16
Export selected tasks 17
Fetch single task by task ID 19
Fetch history 21
Task operations 22
Single task modification - fetch task modifiable data 23
Single task modification 25
Get common task attributes for modification 27
Bulk operations 29

Task Attributes 33
Fetch list of all available task attributes for criteria in filter definitions 34
Fetch list of all available task attributes for columns in filter definitions 35
Fetch list of all available task attributes for Customer Filter Query in GTL 36

Filter Operations 38
Fetch a list of filters available for GTL 39
Fetch a list of filters accessible by the current user 40
Fetch filter 41
Fetch filter criteria templates 45
Create filter 47
Update filter 49
Delete filter 50

Media Icons 51
Fetch list of media types 52
Fetch list of media icons 53
Fetch media icon to display in GTL 55
Upload media icon 56
Delete media icon 57
Media icons export 58
Media icons import 59

Tenants 60
Fetch Business Structure 61
Fetch tenants tree 63



User Settings 64
Fetch user settings 65
Update user settings 68
Update current tenant 69
Update current entity 70
Change password on demand 71

Security 72
Login via POST form 73
Login via GET parameters 74
Logout 75
Automatic logout 76
Content Security Policy 77
Using CSRF/XSRF tokens 78

History Node 79
Download event history for single Interaction ID 80
Download range of events for given Solution ID 81
Delete range of events for given Solution Id 82
Return maximum available event sequence number internal to History Node 83



IWD REST API Reference Guide
Welcome to the IWD REST API Reference. This guide provides information about how you can use the
IWD REST API to incorporate Genesys IWD Manager features into custom applications and
integrations with third-party software.

This API is based on HTTP and has some properties of REST.

Resources

The API defines the following resources:

• Tasks
• Task Attributes (for filter definitions)
• Filters
• Media Icons
• Tenants
• Business Structure (Solutions, Departments, Processes, Capture Points)
• Security (for login/logout)

Verbs

Standard REST verbs are used:

• GET
• POST
• PUT
• DELETE

Messages

If not written explicitly, the Content-Type for requests and responses is "application/json". Error
responses may contain a list of messages, for example:

[
{

"severity" : "ERROR",
"message_id" : "MSG_COULD_NOT_LOGIN_TO_PLACE",

IWD REST API Reference Guide

iWD REST API Reference Guide 4



"args" :
{
"<name>": "<value>",
...

},
"message": "English message to log/debug"

}
]

Severity may be one of:

• ERROR
• WARNING
• INFO.

message_id is a key that should be replaced with a localized message in the front end.

Date Format

All date/time values are in ISO8601 format with time zone. The exact supported variants of ISO8601
format are:

• yyyy-MM-dd'T'HH:mm:ss.SSSZZ
• yyyy-MM-dd'T'HH:mm:ssZZ

Time zone offset is mandatory. Examples:

• 2015-12-16T09:10:50.000+01:00
• 2015-10-01T00:00:00.000Z
• 2015-12-16T07:10:50-01:00

Additionally, for quick filters in GTL, a shortened, date-only format is allowed:

• yyyy-MM-dd['T'ZZ]

Time zone offset is optional in this case; if it is missing, the default configured time zone is used. The
time returned from the server should be in the configured time zone.

Priority of time zones

1. User profile time zone
2. Solution time zone
3. UTC

IWD REST API Reference Guide

iWD REST API Reference Guide 5



Base Address

The base address is:

http(s)://<host>:<port>/<path/to/application>/api

where <path/to/application> is a path to the iWD Manager web application. By default it is
iwd_manager, but can be different if deployed under another path.

All addresses in this document are based on this address. Addresses returned from the server must
contain the whole path, including the /<path/to/application>/api prefix.

IWD REST API Reference Guide

iWD REST API Reference Guide 6



Tasks
• Fetch paginated list of tasks
• Fetch list of task IDs from current snapshot
• Export selected tasks
• Fetch single task by task ID
• Fetch history
• Task operations
• Single task modification - fetch task modifiable data
• Single task modification
• Get common task attributes for modification

Tasks

iWD REST API Reference Guide 7



Fetch paginated list of tasks

Tasks Fetch paginated list of tasks

iWD REST API Reference Guide 8



Method

Up to 9.0.012
GET

From 9.0.013
POST

Important
The new request has exactly the same parameters as the old one and allows you to pass the ql_expression in the request body
in JSON format.

Syntax

Up to 9.0.012
GET /gtl/tasks/<solution_dbid>/<page>?entity_dbid=<dbid>&entity_type=department/process/capturePoint/
solution>&filter=<filter_name>ℴ_by=qualified_attribute_name>ℴ_direction=<ascending/
descending>&snapshot_id=snapshot_id>&release_snapshot=<snapshot_id>

Tasks Fetch paginated list of tasks

iWD REST API Reference Guide 9



From 9.0.013
POST /gtl/tasks/<solution_dbid>/<page>/search?entity_dbid=<dbid>&entity_type=department/process/capturePoint/
solution>&filter=<filter_name>ℴ_by=qualified_attribute_name>ℴ_direction=<ascending/
descending>&snapshot_id=snapshot_id>&release_snapshot=<snapshot_id>

Request Body

The Request body should contain a valid JSON data with array of <ql_items>.

[<ql_item>, <ql_item>, ...]

<ql_item> is a JSON object with the following fields:

Key Is Mandatory Comment
attribute - Database column name.

operator + "LIKE", "IN", "=", ">", "<", ">=", "<=", "OR",
"AND", "(", ")"

value - String, array of strings or numbers.

Important
1. Any string or date value must be wrapped in single quotes.
2. Operators are case insensitive.
3. Date format is "YYYY-MM-DDTHH:mm:ssZ", for example: 2020-06-18T14:10:12Z

Here is a JSON example of query "Queue IN ( 'iWD_Rejected' , 'iWD_Canceled' ) and 'Business Value' in ( 1, 2, 3) and 'Completed Date' <=

Tasks Fetch paginated list of tasks

iWD REST API Reference Guide 10



2020-06-16" :

[
{

"operator": "IN",
"value": [

"'iWD_Rejected'",
"'iWD_Canceled'"

],
"attribute": "queue"

},
{

"operator": "AND"
},
{

"operator": "IN",
"value": [

1,
2,
3

],
"attribute": "IWD_businessValue"

},
{

"operator": "AND"
},
{

"operator": "<=",
"value": "'2020-06-16T23:59:59Z'",
"attribute": "completed_at"

}
]

Parameters
Parameter Name Description Default Value

entity_dbid DBID of solution, department, process or capture
point The same value as solution_dbid in the path)

Tasks Fetch paginated list of tasks

iWD REST API Reference Guide 11



Parameter Name Description Default Value

entity_type
solution, department, process or capturePoint; if
solution then entity_dbid must be the same as
solution_dbid in the path

solution

filter Filter name -

order_by
Qualified attribute name used to sort the results
(qualified attribute name is a name with core/ext/
data prefix and a dot delimiter)

core.createdDateTime

order_direction ascending or descending descending
Custom Filter Query

core.{any core task attribute} attribute value -
ext.{any extended task attribute} attribute value -
data.{any custom task attribute} attribute value -
any_id A value of id or captureId -

Snapshot Management

snapshot_id
Reuse a previously taken snapshot (Interaction
Server's query result) if still valid. Create a new
snapshot otherwise.

-

release_snapshot
If present, a new snapshot in Interaction Server is
requested. The snapshot with ID given in this
parameter is released.

-

• snapshot_id and release_snapshot are optional and mutually exclusive.
• entity_dbid and entity_type must be both present or both omitted.

Response Body
{

"page": <page number>,

Tasks Fetch paginated list of tasks

iWD REST API Reference Guide 12



"tasks_per_page": <number of tasks per page>,
"total_tasks": <number of tasks>,
"snapshot_id": "<snapshot ID>",
"columns":
[

{
"name": "<column name>",
"label": "<localized column label>",
"type": "<string/date/int/img>",
"sortable": <true/false>,
"sorted": <ascending/descending>,
"category": "<core/ext/data>"

},
...

],
"tasks":
[

{
"core":
{

<attribute definitions>
},
"ext":
{

<attribute definitions>
},
"data":
{

<attribute definitions>
}

},
...

]
}

Attribute Definitions
"<attribute name>":
{

Tasks Fetch paginated list of tasks

iWD REST API Reference Guide 13



"value": <attribute value>,
"display_value": <value_to_display>,
"tooltip": "<tooltip>"

},
...

• Returned tasks contain only attributes selected by the filter plus task ID, which is always present, regardless of whether it is selected by the filter or not.
• "snapshot_id" is not the same as the Interaction Server's snapshot ID. In order to be unique across the application, "snapshot_id" is combined from a

connection ID and Interaction Server's snapshot ID.
• If a selected attribute is not set for a task, it is omitted in the returned record.
• If the attribute type is "img", the value is a URL of the image. The URL is relative to the host base address, i.e. it contains the whole path, including the

path to the application and the api prefix. For example: "value": "/iwd_manager/api/gtl/icons/102/workitem". Currently there is only one attribute of
this type - mediaIcon. "tooltip" for this attribute contains the associated media type.

• The list of tasks may be empty. Pages are numbered starting from 1.
• At most one column is expected to contain the field "sorted".
• "tooltip" and "display_value" are present only if different to the value. "display_value" is currently used only for channel.

HTTP Status Codes

• 404 Not Found—Solution, department, process, capture point or filter does not exist. Page number is 0 (zero) or negative
• Up to release 9.0.012: 302 Found—Requested page is out of range. Location header contains a URL of the last valid page

From release 9.0.013: 307 Temporary Redirect

• 400 Bad Request—One of the following:
Wrong value of order_direction

Both release_snapshot and snapshot_id are present in the request

The snapshot identified by snapshot_id was taken with different query parameters (solution DBID, filter, order etc.) from those used for the current
request

Any other request error

Tasks Fetch paginated list of tasks

iWD REST API Reference Guide 14



• 403 Forbidden—The snapshot identified by release_snapshot does not belong to the current user session

Tasks Fetch paginated list of tasks

iWD REST API Reference Guide 15



Fetch list of task IDs from current snapshot

Method

GET

Syntax
GET /gtl/task_ids/<solution_dbid>?snapshot_id=<snapshot_id>

• snapshot_id is mandatory

Response Body
[

"<task_id_1>",
"<task_id_2>",
...

]

• According to the Interaction Server configuration, there may be up to 2000 task IDs for one snapshot
(See: the configuration option))

• Or, when a snapshot or solution with the given ID not found:

HTTP 404 Not Found

Tasks Fetch list of task IDs from current snapshot

iWD REST API Reference Guide 16



Export selected tasks

Method

Up to 9.0.012
GET

From 9.0.013
POST

Important
The new request has exactly the same parameters as the old one and allows you to
pass the ql_expression in the request body in JSON format.

Syntax

Up to 9.0.012
GET /gtl/tasks/{solutionDbid}/{page}

From 9.0.013
POST /gtl/tasks/{solutionDbid}/{page}/search

Headers
Accept: application/xml,*/*

Request Body: up to 9.0.012
{

"include": [ <task_id1>, <task_id2>, ...]

Tasks Export selected tasks

iWD REST API Reference Guide 17



}

Or:

{
"exclude": [ <task_id1>, <task_id2>, ...]

}

Request Body: from 9.0.013
{

"content": {
"include": [ <task_id1>, <task_id2>, ...]

},
"qlExpression": [<ql_item>, <ql_item>, ...]

}

Or:

{
"content": {

"exclude": [ <task_id1>, <task_id2>, ...]
},
"qlExpression": [<ql_item>, <ql_item>, ...]

}

• It is not allowed to send both "include" and "exclude" lists.
• snapshot_id is mandatory.
• The returned format is XML.
• It is necessary to set the Accept header with application/xml as the first value. The following "*/*" is

needed to correctly return an error message in JSON.
• The value for the qlExpression field is the same object as request body from Fetch paginated list of

tasks.

Tasks Export selected tasks

iWD REST API Reference Guide 18



Fetch single task by task ID

Method

GET

Syntax
GET /gtl/task/<solution_dbid>/<task_id>

Response Body
{

"attribute_definitions":
[

{
"name": "<attribute name>",
"label": "<localized attribute label>",
"type": "<string/date/int/img/list/age>",
"category": "<core/ext/data>"

},
...

],
"task":

{
"core":
{

"<attribute_name>":
{

"value": <value>,
"display_value": <display value>,
"tooltip": <tooltip>,
"missing": true

},...
},
"ext":
{

...
},
"data":
{

...
}

}
}

• "data" attribute definitions are sorted ascending by the localized attribute label. "core" and "ext"
attribute definitions are in the same order as they were in previous releases of iWD Manager.

Tasks Fetch single task by task ID

iWD REST API Reference Guide 19



• "age" type has the following format:

"value":
{

"start": "<start_date_time>",
"end": "<optional_end_date_time>"

}

• If "end" is present and not null, the UI should display the duration between "start" and "end".
Otherwise, it should display the duration between "start" and the current time.

• The process, department and capturePoint attributes contain names of business structure objects
found by IDs (RTID) from the task: processId, departmentId and capturePointId, respectively. If an
ID is set in a task but the corresponding object is missing, the attribute value is set to a default value
(RTID) and a flag—missing: true—is set for such an attribute. The UI should display the default value
in a specific way; for example crossed out and with a localized tooltip. Example: The attribute is
missing.

• "tooltip" and "display_value" are present only if different to the value. "display_value" is
currently used only for channel.

• HTTP 404 Not Found if the task was not found.

Tasks Fetch single task by task ID

iWD REST API Reference Guide 20



Fetch history

Method

GET

Syntax
GET /gtl/task_history/<solution_dbid>/<task_id>

Response Body
{
"task_id" : "<task ID>",
"rows_limited_to" : <number>,
"columns":
[
{

"name": "<column_ID>",
"label": "<localized column label>",
"type": "<string/date>"

}, ...
],
"history":
[

{
"date_time": "<date_time>",
"actor": "<actor>",
"event_code": "<event_code>",
"event": "<localized event message>"

}, ...
]

}

• "rows_limited_to" is added only when the configured maximum number of events has been achieved.
Its value is the number of events.

Tasks Fetch history

iWD REST API Reference Guide 21



Task operations

Method

POST

Syntax
POST /gtl/task/<solution_dbid>/<task_id>/hold
POST /gtl/task/<solution_dbid>/<task_id>/resume
POST /gtl/task/<solution_dbid>/<task_id>/cancel

Payload is empty as all information is in the URL.

Tasks Task operations

iWD REST API Reference Guide 22



Single task modification - fetch task
modifiable data

Method

GET

Syntax
GET /gtl/task/modifiable/<solution_dbid>/<task_id>

Response Body
{
"attribute_definitions":
[

{
"name": "<attribute name>",
"label": "<localized attribute label>",
"type": "<string/date/int/list>",
"values":
[
{
"value": "<name or value>",
"label": "<display name>"

},
"editable_list": <true/false>,

...
],
"category": "core/ext/data",

},
...

],
"attribute_values":

{
"core":
{

"<attribute_name>":
{

"value": <value>
},...

},
"ext":
{

...
},

Tasks Single task modification - fetch task modifiable data

iWD REST API Reference Guide 23



"data":
{

...
}

}
}

• Only modifiable attributes are included in the content,
• "editable_list" applies to the "list" type attributes only. If true, it is allowed to enter a value out of

the "values" list. Currently, the "list" type is treated as the "string" type; support for the "list"
type is not implemented.

Tasks Single task modification - fetch task modifiable data

iWD REST API Reference Guide 24



Single task modification

Method

POST

Syntax
POST /gtl/task/solution_dbid>/<task_id>/modify
POST /gtl/task/solution_dbid>/<task_id>/modify_restart

Request Body
{

"core":
{
"<attribute_name>":
{

"value": <value>
},...

},
"ext":
{
...

},
"data":
{
...

}
}

• Only modified attributes are included in the content.
• Attributes of type int—priority, businessValue—can have either a new numeric value, or a relative

change, such as: +10, -5.

Response Body

Either:

HTTP/1.1 204 No Content

Or:

Tasks Single task modification

iWD REST API Reference Guide 25



HTTP/1.1 200 Ok

plus:

[
<message>

]

A warning message may be returned when the operation is successful, but an update to Universal
Contact Server (UCS) failed. For example:

[ {
"severity" : "WARNING",
"message_id" : "CANNOT_OPEN_CONNECTION_TO_UCS",
"message" : "CANNOT_OPEN_CONNECTION_TO_UCS",
"args" : { }

} ]

Tasks Single task modification

iWD REST API Reference Guide 26



Get common task attributes for
modification

Method

POST

Syntax
POST /gtl/tasks/common_data/<solution_dbid>?entity_dbid=<dbid>&entity_type=<department/
process/capturePoint/
solution>&filter=<filter_name>ℴ_by=<qualified_attribute_name>ℴ_direction=<ascending/
descending>&snapshot_id=<snapshot_id>

Request Body

Up to 9.0.012
Either:

{
"include": [ <task_id1>, <task_id2>, ...]

}

Or:

{
"exclude": [ <task_id1>, <task_id2>, ...]

}

From 9.0.013
Either:

{
"content": {

"include": [ <task_id1>, <task_id2>, ...]
},
"qlExpression": [<ql_item>, <ql_item>, ...]

}

Or:

Tasks Get common task attributes for modification

iWD REST API Reference Guide 27



{
"content": {

"exclude": [ <task_id1>, <task_id2>, ...]
},
"qlExpression": [<ql_item>, <ql_item>, ...]

}

Notes

• It is not allowed to send both "include" and "exclude" lists.
• snapshot_id is mandatory.
• The value for the qlExpression field is the same object as the request body from Fetch paginated list of

tasks.

Response Body
{

"attribute_definitions":
[

{
"name": "<attribute name>",
"label": "<localized attribute label>",
"type": "<string/date/int/img/list>",
"values":
[
{
"value": "<name of value>",
"label": "<display name>"

},
...

],
"category": "core/ext/data",

},
...

],
"attribute_values":
{

"core":
{

<attribute definitions>
},
"ext":
{

<attribute definitions>
},
"data":
{

<attribute definitions>
}

}
}

• "attribute_definitions" contains only editable attributes.
• "attribute_values" contains only attributes that have the same value for all the selected tasks.

Tasks Get common task attributes for modification

iWD REST API Reference Guide 28



Bulk operations

Summary

1. A first user issues POST with the operation specification.
2. The API responds with the URL of the job status.
3. The user can query this URL with GET to check the operation status (for example to update progress

bar).
4. When the user recognizes that the operation has completed (processed=total), resources should be

released with DELETE.
5. Issuing DELETE when a bulk operation is still in progress aborts it, but does not roll back already

modified interactions.

Methods

• POST
• GET
• DELETE

POST
Syntax
POST /gtl/tasks/<solution_dbid>/<page>?entity_dbid=<dbid>&entity_type=<department/process/
capturePoint/
solution>&filter=<filter_name>ℴ_by=<qualified_attribute_name>ℴ_direction=<ascending/
descending>&snapshot_id=<snapshot_id>

Request Body: up to 9.0.012
{

"action": "<hold/resume/cancel/modify/modify_restart>",
"include": [ <task_id1>, <task_id2>, ...],
"exclude": [ <task_id1>, <task_id2>, ...],
"attributes":

{
"core":
{

<attribute definitions>
},
"ext":

Tasks Bulk operations

iWD REST API Reference Guide 29



{
<attribute definitions>

},
"data":
{

<attribute definitions>
}

},
}

Request Body: from 9.0.013
{

"content": {
"action": "<hold/resume/cancel/modify/modify_restart>",
"include": [ <task_id1>, <task_id2>, ...],
"exclude": [ <task_id1>, <task_id2>, ...],
"attributes":
{

"core":
{

<attribute definitions>
},
"ext":
{

<attribute definitions>
},
"data":
{

<attribute definitions>
}

}
},
"qlExpression": [<ql_item>, <ql_item>, ...]

}

Notes

• include and exclude cannot both be present in one request.
• If include is present, only the selected tasks from the query will be affected.
• If exclude is present, all tasks from the query except for those selected will be affected.
• If neither include nor exclude is present, then all tasks from the snapshot will be affected.
• The attributes section should contain new values of attributes to be modified. It will be ignored for

actions other than modify or modify_restart.
• The <page> path attribute is ignored in this case. All tasks that matches the query and the include/

exclude list will be affected, regardless of the page.
• snapshot_id is mandatory.
• The value for the qlExpression field is the same object as request body from Fetch paginated list of

tasks.

Result
HTTP 202 Accepted
Location: <URL of the job status>

Tasks Bulk operations

iWD REST API Reference Guide 30



Response Body
{

"location": "<URL of the job status>"
}

Example URL:

/gtl/tasks/jobs/statuses/1234

GET
Syntax
GET <job status URL>

Response Body
HTTP 202 Accepted
{

"processed": <number of processed tasks>,
"total": <total number of tasks to process>,
"wait": <number of milliseconds>

}

• "wait" is a suggested number of milliseconds to wait before asking again for the status.

HTTP 200 OK
[

{
"task_id": "<task_id>",
"status": "OK",
"message": <message definition>

},
{

"task_id": "<task_id>",
"status": "ERROR",
"message": <message definition>

},
...

]

Notes

• <message definition> has the same format as message. Can be skipped if there is no message.
• For status = "OK" there may be a warning message when the operation succeeded, but an update to

UCS failed.
• Or, if there is no remembered snapshot ID for the requested query:

HTTP 404 Not Found

The last option may occur if the request was sent without first sending a request for a tasks list, or
the snapshot was released in the meantime. When this happens, the client should download the
tasks list again, allow the user to review the tasks selection and submit the modification request
again.

Tasks Bulk operations

iWD REST API Reference Guide 31



DELETE
Syntax

When bulk operation results have been read, they should be removed to release resources:

DELETE <job status URL>

Response Body
HTTP 204 No Content

regardless of whether the job was found or not.

If the given job is still running, calling DELETE will stop it as soon as possible. Results can also be
removed automatically after some (configurable) time after finishing.

Tasks Bulk operations

iWD REST API Reference Guide 32



Task Attributes
• Fetch list of all available task attributes for criteria in filter definitions
• Fetch list of all available task attributes for columns in filter definitions
• Fetch list of all available task attributes for Custom Filter Query in GTL

Task Attributes Bulk operations

iWD REST API Reference Guide 33



Fetch list of all available task attributes for
criteria in filter definitions

Method

GET

Syntax
GET /filter/attributes/<tenant_dbid>

Reponse body
[

{
"name" : "<attribute name>",
"column_label": "<localized column label>",
"filter_label" : "<localized attribute label used in filter conditions>",
"type" : "<string/date/int/img/list>",
"values" :

[
{

"value": "<name or value>",
"label": "<display name>"

}
],

"category" : "core/ext/data",
"editable_list" : true/false,
"column_name": "<column name used for mapping>"
"filterable" : true/false

}
]

Notes

• Only attributes with filterable = true will be returned in response.
• Only attributes with type = list will have properties editable_list and values.

Task Attributes Fetch list of all available task attributes for criteria in filter definitions

iWD REST API Reference Guide 34



Fetch list of all available task attributes for
columns in filter definitions

Method

GET

Syntax
GET /filter/columns/<tenant_dbid>

Response body
[

{
"name" : "<attribute name>",
"column_label": "<localized column label>",
"filter_label" : "<localized attribute label used in filter conditions>",
"type" : "<string/date/int/img/list>",
"values" :

[
{

"value": "<name or value>",
"label": "<display name>"

}
],

"category" : "core/ext/data",
"editable_list" : true/false,
"column_name": "<column name used for mapping>"
"filterable" : true/false

}
]

Notes

• Only attributes with type = list will have properties editable_list and values.

Task Attributes Fetch list of all available task attributes for columns in filter definitions

iWD REST API Reference Guide 35



Fetch list of all available task attributes for
Customer Filter Query in GTL

Method

GET

Syntax
GET /gtl/attributes/<solution_dbid>

Response Body
[

{
"name": "<attribute name>",
"column_label": "<localized column label>",
"filter_label": "<localized attribute label used in filter conditions>",
"type": "<string/date/int/img/list>",
"values":

[
{

"value": "<name or value>",
"label": "<display name>"

},
...

],
"category": "core/ext/data",
"filterable": true/false,
"editable_list": true/false
"column_name": "<column name used for mapping>"

},
...

]

Notes

• The data format is the same for all the three types of requests, but the lists are different.
• Lists of attributes for filter definitions will be selected for a given tenant. Available values for "list"

attributes are also tenant-specific.

Task Attributes Fetch list of all available task attributes for Customer Filter Query in GTL

iWD REST API Reference Guide 36



• The list of attributes for Custom Filter Query in GTL is specific for a selected solution. Available values
are also solution-specific.

• All the lists of attributes should be sorted by filter_label or column_label.
• All the lists of available values should be sorted by label.
• filter_label should be used to display the attribute in filter criteria and in customer filter query on

GTL. column_label should be used to define a column in a filter. In most cases both labels are the same,
but some attributes (of type date) should be displayed with different labels as a column title and in
filter criteria. For example, "Activated D/T" and "Activated Date", respectively.

• values will be used only for the type "list". If true, a user should be allowed to type in a value that is
not on the list.

• editable_list will be used only for the type "list".
• Attribute names are those used by iWD Manager internally (for example, createdDateTime and not

received_at). They may differ from those used by Interaction Server. The databse attribute names,
defined in Interaction Custom Properties/Values/<property>/annex/translation/translate-to,
should not be exposed by the API and will be used only internally to execute queries.

• filterable indicates if an attribute can be used in filter criteria or in Customer Filter Query. All
attributes received in response to queries /gtl/attributes and /filter/attributes have filterable set to
true. Some attributes received in response to the query /filter/columns have filterable set to
false.

• filter_label, column_label and column_name can be used in Custom Filter Query in GTL: they all
provide equal functional capabilities.

Task Attributes Fetch list of all available task attributes for Customer Filter Query in GTL

iWD REST API Reference Guide 37



Filter Operations
• Fetch a list of filters available for GTL
• Fetch a list of filters accessible by the current user
• Fetch filter
• Fetch filter criteria templates
• Create filter
• Update filter
• Delete filter

Filter Operations Fetch list of all available task attributes for Customer Filter Query in GTL

iWD REST API Reference Guide 38



Fetch a list of filters available for GTL

Method

GET

Syntax
GET /gtl/filters/<tenant_dbid>

Response Body
[

"<filter name>",
...

]

Notes

The list contains names of filters that are owned by the current user or are public (the list may be
empty). Private filters owned by other users are not displayed. This is the default behavior for Global
Task List.

Filter Operations Fetch a list of filters available for GTL

iWD REST API Reference Guide 39



Fetch a list of filters accessible by the
current user

Method

GET

Syntax
GET /filters/<tenant_dbid>?invalidateCache=<true/false>

Parameters
Parameter Name Description Default Value

invalidateCache

Optional. Can be either true or
false. With value true, the iWD
Manager backend does not use
the inner cache and must reload
filters from Configuration Server.
Value false means that iWD
Manager can use the inner cache
for better performance. If the
parameter is not present, the
inner cache is used (same as for
invalidateCache=false).

false

Response Body
[

"<filter name>",
...

]

Notes

All filters accessible by the current user are returned. This is used by the Filters page to allow editing
or deleting of other users' filters by users with appropriate permissions.

Filter Operations Fetch a list of filters accessible by the current user

iWD REST API Reference Guide 40



Fetch filter

Filter Operations Fetch filter

iWD REST API Reference Guide 41



Method

GET

Syntax
GET /filters/<tenant_dbid>/<filter_name>

Response Body
{

"name": "<filter name>",
"owner": "<owner user name>",
"public": <true/false>,
"columns": [

<column definition>,
...

],
"criteria": [

<criterion definition>,
...

]
}

Where:

• <column definition>:

{

Filter Operations Fetch filter

iWD REST API Reference Guide 42



"category": "core/ext/data",
"name": "<attribute name>"

}

And:

• <criterion definition>:

{
"template_expression": "<template_expression>",
"template_key": "<template label key for i18n>",
"elements":
[

{
"type": "INPUT_INTEGER/INPUT_DATE/INPUT_TEXT/INPUT_ATTRIBUTE_NAME/INPUT_ATTRIBUTE_VALUE/PLAIN_TEXT",
"name": "<element name>",
"label": "<label key for i18n>",
"value": "<current value>",
"editable_list": <true/false>,
"values":
[

{
"value": "<available value>",
"label": "<value label key>"

}
...

]
},
...

]
}

Notes

• values define a list of items that can be picked from a drop-down menu.
• A list of values is empty for elements of INPUT_DATE type. It can be non-empty for INPUT_TEXT and INPUT_INTEGER types. It is typically empty for

INPUT_ATTRIBUTE_NAME and INPUT_ATTRIBUTE_VALUE - a list of available attributes and their values should be taken by a separate request (see:

Filter Operations Fetch filter

iWD REST API Reference Guide 43



Attributes). If the list of values exists and is not empty, it has precedence over the list of all attributes.
• Internal element types IS_IS_NOT, OPERATOR, TIME_UNIT, WAS_WAS_NOT, MORE_LESS, QUEUE are being converted to and from INPUT_TEXT with

appropriate lists of values.
• editable_list indicates whether the element value input component is or is not editable, i.e. if a user is able to put a value out of the given list. For

INPUT_ATTRIBUTE_VALUE the value of this property has precedence over the same property on the attribute definition.
• Labels for elements have a form of "CRITERION_LABEL_<CAPITALIZED_NAME>", for example CRITERION_LABEL_IS_IS_NOT.
• Actual labels for the criterion, elements and available values should be loaded from resources (localized). If there are not found, the element name should

be used instead.
• template_key is a key to find a localized criterion template in resources. The localized template can contain parameters as element names in braces (for

example {attributeName}). These parameters are replaced by either a proper input GUI component in edition mode or element’s localized labels for
displaying the criterion template. In case the template_key is not found in resources the criterion template is built of elements directly – one by one
(elements of PLAIN_TEXT type – not used usually in localized templates - fill the text space then). All dynamic elements from template_expression must be
included in the localized string to allow correct creation of a query string.

• INPUT_ATTRIBUTE_VALUE is an input element which data type should be dynamically determined basing on the type of attribute, chosen with
INPUT_ATTRIBUTE_NAME, unless the element’s values list exists and is not empty, because it has the precedence over the attribute values.

• template_expression is a legacy template expression, which is used here as the template criterion identifier only.
• A list of available columns is available under a separate address.

Filter Operations Fetch filter

iWD REST API Reference Guide 44



Fetch filter criteria templates

Method

GET

Syntax
GET /filter/criteria/<tenant_dbid>

Response Body
[

{

"template_expression": "<filter expression template>",

"template_key": "<template expression identifier>",

"elements":

[

{

"name": "<element name>",

"value": "<element value>",

"type": "<element type>",

"label": "<element label>",

"supported_types": ["<string/date/integer>", ...]

},

...

]

}

...

]

Filter Operations Fetch filter criteria templates

iWD REST API Reference Guide 45



Notes

• A format of the criterion definition is the same as for criteria in filter definitions.
• value of an element is a default value in this case.

Filter Operations Fetch filter criteria templates

iWD REST API Reference Guide 46



Create filter

Method

POST

Syntax
POST /filters/<tenant_dbid>

Response Body
{

"name": "<filter name>",
"public": <true/false>,
"columns": [

<column definition>,
...

],
"criteria": [

<short criterion definition>,
...

]
}

Where short criterion definition is defined as the following:

{
"template_expression": "<template_expression>",
"elements":
[

{
"name": "<element name>",
"value": "<current value>"

},
...

]
}

Notes

• A filter is required to contain at least one column. If there is no column, an error status HTTP 400 Bad
Request will be returned.

Filter Operations Create filter

iWD REST API Reference Guide 47



• The list of criteria may be empty or missing.
• If an element name is INPUT_ATTRIBUTE_NAME, its value must be a qualified attribute name. If the

attribute is not recognized in the requested category, the data category is assumed, regardless of its
prefix.

Filter Operations Create filter

iWD REST API Reference Guide 48



Update filter

Method

PUT

Syntax
PUT /filters/<tenant_dbid>/<filter_name>

Notes

The payload contains a modified filter definition. The format is the same as for Create filter.

Filter Operations Update filter

iWD REST API Reference Guide 49



Delete filter

Method

DELETE

Syntax
DELETE /filters/<tenant_dbid>/<filter_name>

Response Body

Whether the filter is found or not:

HTTP 204 No Content

Filter Operations Delete filter

iWD REST API Reference Guide 50



Media Icons
• Fetch list of media types
• Fetch list of media icons
• Fetch media icon to display in GTL
• Upload media icon
• Delete media icon
• Media icons export
• Media icons import

Media Icons Delete filter

iWD REST API Reference Guide 51



Fetch list of media types

Method

GET

Syntax
GET /media_types/<tenant_dbid>

Response Body
[

"alert",
"any",
"appsharing",
"auxwork",
"busevent",
"callback",
"chat",
"cobrowsing",
"email",
"fax",
"imchat",
"mms",
"mmssession",
"outboundpreview",
"smail",
"sms",
"smssession",
"trainingitem",
"video",
"vmail",
"voice",
"voip",
"webform",
"whiteboard",
"workitem"

]

Media Icons Fetch list of media types

iWD REST API Reference Guide 52



Fetch list of media icons

Method

GET

Syntax
GET /icons/<tenant_dbid>?invalidateCache=<true/false>

Parameters
Parameter Name Description Default Value

invalidateCache

Optional. Can be either true or
false. With value true, the iWD
Manager backend does not use
the inner cache and must reload
icons from Configuration Server.
Value false means that iWD
Manager can use the inner cache
for better performance. If the
parameter is not present, the
inner cache is used (same as for
invalidateCache=false).

false

Response Body
[

{
"media_type": "<media_type>",
"media_icon":
{

"content_type": "<content_type>",
"name": "<icon_file_name>",
"encoding": "base64",
"data": "<icon_data_encoded_with_encoding_method>"

}
},
...

]

Media Icons Fetch list of media icons

iWD REST API Reference Guide 53



Notes

• There may be icons with media_type that is missing in the media types list. They should be returned as
well.

• Currently only "base64" is a valid value of "encoding".

Media Icons Fetch list of media icons

iWD REST API Reference Guide 54



Fetch media icon to display in GTL

Method

GET

Syntax
GET /gtl/icons/<tenant_dbid>/<media_type>

Response Body
<raw image data>

Notes

• Content-Type is image/png, image/bmp, image/jpg or image/gif.
• If icon is missing or its content-type is invalid, status HTTP 404 is returned.

Media Icons Fetch media icon to display in GTL

iWD REST API Reference Guide 55



Upload media icon

Method

PUT

Syntax
PUT /icons/<tenant_dbid>/<media_type>

Request Body
{

"content_type": "<content_type>",
"name": "<icon_file_name>",
"encoding": "base64",
"data": "<icon_data_encoded_with_encoding_method>"

}

Notes

• Animated GIF images may be uploaded, but they are not guaranteed to work correctly. Especially if
resizing is necessary on the server, the image is assumed to be static and saved as PNG.

• "name" is optional. It must be up to 255 characters long. In case of resizing, a new name is being
created.

• Depending on a back-end database management system a missing name may be returned later as an
empty string or omitted.

• "encoding" is optional—if it is missing, "base64" is assumed, as that is currently the only option.
• "content_type" must be one of the supported image content types.
• "media_type" must be one of media types defined on the configuration server and also it must be up to

255 characters long.

Media Icons Upload media icon

iWD REST API Reference Guide 56



Delete media icon

Method

DELETE

Syntax
DELETE /icons/<tenant_dbid>/<media_type>

Notes

There is no separate POST operation for media icons, because the list of media types is fixed in IWD
and new one cannot be created by GTL. PUT is used for both create and update operations.

Media Icons Delete media icon

iWD REST API Reference Guide 57



Media icons export

Method

GET

Syntax
GET /icons/xml/<tenant_dbid>

Output

XML

Media Icons Media icons export

iWD REST API Reference Guide 58



Media icons import

Method

POST

Syntax
POST /icons/xml/<tenant_dbid>

Response Body

The format of imported/exported icons is compatible with iWD 8.1+ configuration, including icons
encoded with Base64. Example:

<?xml version="1.0" encoding="UTF-8"?>
<EvoConfiguration>
<iWDVersion>(version)</iWDVersion>
<MediaIcons>

<Icon name="webform.png" contentType="image/png" mediaType="webform"
data="iVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8/9hAAAABGdBTUEAAK/INwWK6QAAABl0RVh0&..." />

...
</MediaIcons>

</EvoConfiguration>

Media Icons Media icons import

iWD REST API Reference Guide 59



Tenants
• Fetch business structure
• Fetch tenants tree

Tenants Media icons import

iWD REST API Reference Guide 60



Fetch Business Structure

Method

GET

Syntax
GET /gtl/business_structure

Response Body

Returns all available tenants, including "Environment", with business structure.

[
{

"dbid": 1,
"name": "Environment",
"type": "tenant",
"rules_authoring_tool_url": "http://server.example.com:8380/genesys-rules-authoring",
"iwd_web_url": ""http://server.example.com:8080/iwd_web",
"tenants":
[

{
"dbid": 102,
"name": "SubTenant",
"type": "tenant",
"tenants": [],
"solutions": []

}
],
"solutions":
[

{
"dbid": 1001,
"name": "Solution1",
"type": "solution",
"timezone": "<timezone name>",
"first_day_of_week": "<MONDAY|SUNDAY>",
"departments":
[

{
"dbid": 102,
"name": "Department 1",
"type": "department",
"processes":
[

{

Tenants Fetch Business Structure

iWD REST API Reference Guide 61



"dbid": 1111,
"name": "Process 1",
"type": "process"

}
]

}
],
"capture_points":
[

{
"dbid": 222,
"name": "Capture Point 1",
"type": "capturePoint"

}
]

},
{

"dbid": 104,
"name": "Solution 2",
"type": "solution",
"departments": [],
"capture_points": []

}
],

}
]

Notes

• rules_authoring_tool_url is taken from Configuration Server; location: Business Structure/<path
to tenant>/annex/iWD/rules-authoring-tool-url

• iwd_web_url is taken from Configuration Server; location: Business Structure/<path to
tenant>/annex/iWD/iwd-web-url. (Configuration of this option is to be added to iWD GAX Plugin in
the future).

Tenants Fetch Business Structure

iWD REST API Reference Guide 62



Fetch tenants tree

Method

GET

Syntax
GET /tenants

Response Body

Response—thetree of all available tenants without business structure.

[
{

"dbid": 1,
"name": "Environment",
"type": "tenant",
"rules_authoring_tool_url": "http://server.example.com:8380/genesys-rules-authoring",
"iwd_web_url": "http://server.example.com:8080/iwd_web",
"tenants":
[

{
"dbid": 102,
"name": "SubTenant",
"type": "tenant",
"tenants": [],
"solutions": []

}
],
"solutions": []

}
]

Notes

• "solutions" may be present for convenience; they are always empty.

Tenants Fetch tenants tree

iWD REST API Reference Guide 63



User Settings
• Fetch user settings
• Update user settings
• Update current settings
• Update current entity
• Change password on demand

User Settings Fetch tenants tree

iWD REST API Reference Guide 64



Fetch user settings

Method

GET

Syntax
GET /user_settings

Response Body

From 9.0.016
logged_with_saml and slo_enabled are removed.

{
"user_dbid": <dbid>,                // for example 1234
"user": "<short_user_name>",        // for example "django"
"user_first_name": "<first_name>",  // for example "Django"
"user_last_name": "<last_name>",    // for example "Freeman"
"timezone": {

"value": "<current_TZ_value>",    // for example "America/Chicago"
"values": [

{
"value": "<TZ_value>",        // for example "America/Chicago"
"label": "<TZ_label>"         // for example "America/Chicago (GMT-6)(+DST)"

},
...

]
},
"language": "<language_ID_string>",                // for example "fr-CA" (IETF notation

recommended)
"date_time_format": "<date_time_format_string>",   // for example "yyyy/MM/dd HH:mm:ss Z"
"date_format": "<date_format_string>",             // for example "yyyy/MM/dd"
"first_day_of_week": "<SUNDAY|MONDAY>",            // default: MONDAY
"last_logged_in": "<date_time_of_last_logging_in>",// for example

"2016-05-03T12:30:55+02:00"
"default_filter": {

"selected_filter": <filter_name>,                // for example Assigned
"available_filters": [

"<filter_name_1>",
"<filter_name_2>",                             // for example Assigned
...

]
},
"user_privileges": [

User Settings Fetch user settings

iWD REST API Reference Guide 65



{
"tenant_dbid": <tenant_dbid>,
"privileges": [

"<privilege_1>",  // for example "GLOBAL_TASK_LIST_MODIFY"
"<privilege_2>",
...

]
},
...

],
"system_timezone": "<timezone>",                   // time zone from the server; for

example "America/Chicago"
"external_authentication": <true|false>,           // shows whether external authentication

is enabled on Config Server.
}

Up to 9.0.015
{

"user_dbid": <dbid>,                // for example 1234
"user": "<short_user_name>",        // for example "django"
"user_first_name": "<first_name>",  // for example "Django"
"user_last_name": "<last_name>",    // for example "Freeman"
"timezone": {

"value": "<current_TZ_value>",    // for example "America/Chicago"
"values": [

{
"value": "<TZ_value>",        // for example "America/Chicago"
"label": "<TZ_label>"         // for example "America/Chicago (GMT-6)(+DST)"

},
...

]
},
"language": "<language_ID_string>",                // for example "fr-CA" (IETF notation

recommended)
"date_time_format": "<date_time_format_string>",   // for example "yyyy/MM/dd HH:mm:ss Z"
"date_format": "<date_format_string>",             // for example "yyyy/MM/dd"
"first_day_of_week": "<SUNDAY|MONDAY>",            // default: MONDAY
"last_logged_in": "<date_time_of_last_logging_in>",// for example

"2016-05-03T12:30:55+02:00"
"default_filter": {

"selected_filter": <filter_name>,                // for example Assigned
"available_filters": [

"<filter_name_1>",
"<filter_name_2>",                             // for example Assigned
...

]
},
"user_privileges": [

{
"tenant_dbid": <tenant_dbid>,
"privileges": [

"<privilege_1>",  // for example "GLOBAL_TASK_LIST_MODIFY"
"<privilege_2>",
...

]
},
...

],
"system_timezone": "<timezone>",                   // time zone from the server; for

example "America/Chicago"
"external_authentication": <true|false>,           // shows whether external authentication

User Settings Fetch user settings

iWD REST API Reference Guide 66



is enabled on Config Server.
"logged_with_saml": false,                         // In 9.0.015: deprecated. Always

returns false.
"slo_enabled": false                               // In 9.0.015: deprecated. Always

returns false.
}

Notes

• system_timezone is taken from the server running the iWD Manager application. May be empty if the
time zone is not compatible with Joda Time.

• external_authentication shows using external authentication by Management Framework.

User Settings Fetch user settings

iWD REST API Reference Guide 67

https://docs.genesys.com/Documentation/FR/Current/ExtAuth/UsingEA


Update user settings

Method

PUT

Syntax
PUT /user_settings

Request Body
{

"timezone": {
"value": "<current_TZ_value>"    // for example "America/Chicago"

},
"language": "<language_ID_string>",                // for example "fr-CA" (IETF notation

recommended)
"date_time_format": "<date_time_format_string>",   // for example "yyyy/MM/dd HH:mm:ss Z"
"date_format": "<date_format_string>",             // for example "yyyy/MM/dd"
"first_day_of_week": "<SUNDAY|MONDAY>"            // default: MONDAY

}

Notes

• It is also possible to use the full data format as returned by the GET method. In this case, all the
unnecessary properties are ignored.

• current_tenant_dbid is considered a read-only property; it can be changed by a separate request.

User Settings Update user settings

iWD REST API Reference Guide 68



Update current tenant

Method

PUT

Syntax
PUT /user_settings/current_tenant

Request Body

• Content-Type: application/json
• Payload: single decimal number - tenant DBID. For example:

101

User Settings Update current tenant

iWD REST API Reference Guide 69



Update current entity

Method

PUT

Syntax
PUT /user_settings/current_entity

• Content-Type: application/json—for example:

{
"current_tenant_dbid": "<current_tenant_dbid>",
"current_solution_dbid": "<current_solution_dbid>",
"current_entity_dbid": "<current_entity_dbid>"
"current_entity_type": "<current_entity_type>"      // for example solution, department,

process
}

Notes

• current_solution_dbid, current_entity_dbid, current_entity_type are being reset to null upon a tenant
change

User Settings Update current entity

iWD REST API Reference Guide 70



Change password on demand

Method

PUT

Syntax
PUT /user_settings/password

Request Body
{
"old_password": "<plain_text_or_base64_encoded_old_password>",
"new_password": "<plain_text_or_base64_encoded_new_password>",
"password_encoded": "<true/false>"

}

Notes

• "password_encoded" is optional—if missing, plain text old and new password are assumed.
• When it is set to true, both passwords must be encoded with Base64.

User Settings Change password on demand

iWD REST API Reference Guide 71



Security
• Login via POST Form
• Login via GET Parameters
• Logout
• Automatic Logout
• Content Security Policy
• Using CSRF/XSRF tokens

Security Change password on demand

iWD REST API Reference Guide 72



Login via POST form

Method

POST

Syntax
POST /login

Request Body

Body is url-encoded and contains the following data:

username=<username>&password=<password>[&passwordEncoded]

Security Login via POST form

iWD REST API Reference Guide 73



Login via GET parameters

Method

GET

Syntax
GET /login?username=<username>&password=<password>[&passwordEncoded]

or

GET /ui/login?username=<username>&password=<password>[&passwordEncoded]

or

GET /ui/
login.jsf?username=<username>&password=<password>[&passwordEncoded][≈plication=<application_name>]

Login request with GET parameters must be syntactically backward-compatible with previous
versions of iWD Manager. In both cases (POST and GET), passwordEncoded is optional; if present, the
password must be encoded with Base64. The application parameter is optional and is ignored; it is
allowed for compatibility only.

Response
HTTP 302 Found

The Location header contains either to the GUI starting page (on success) or to the login page with an
error message (on failure).

Security Login via GET parameters

iWD REST API Reference Guide 74



Logout

Method

• POST
• GET (no longer supported from release 9.0.014)

Syntax

From 9.0.014
POST /logout.jsf

Up to 9.0.013
POST|GET /logout.jsf

Response

From 9.0.014
HTTP 302 (only returned for logged in user).
HTTP 401 (otherwise).

Up to 9.0.013
HTTP 302 Found

Notes

The Location header redirects to the login page.

Security Logout

iWD REST API Reference Guide 75



Automatic logout
The iWD Manager server session expires after a time period set up in the configuration. Every http
request sent to API resets the session expiration timer.

Method

• GET
• POST

Syntax

There is a special request just to keep the session alive:

GET /api/session/idle

Response

Result:

HTTP 204 No content

There is also another API request to automatic logout:

POST /api/session/autologout

Result:

HTTP 302 Found

Notes

• The Location header redirects to the login page (with reason=sessionExpired).
• The difference between automatic and the normal logout requests is in a logout reason responding back

to the front-end. The automatic logout request redirects to the login screen with the reason "session
expired" and the normal logout - with "logged out successfully".

• In every response a special cookie "SESSIONLIFETIME=<timestamp>_<lifetime>" is applied where the
front-end is able to find necessary information to use the automatic logout and keeping alive
mechanism.

Security Automatic logout

iWD REST API Reference Guide 76



Content Security Policy

Header Value

All server responses contains a Content-Security-Policy header:

default-src 'self'; img-src 'self' data:; frame-ancestor 'self'

Security Content Security Policy

iWD REST API Reference Guide 77



Using CSRF/XSRF tokens

Overview

Every POST, PUT and DELETE request in iWD's REST API, as well as GET requests described in Login
via GET parameters, should include a CSRF/XSRF token.

Important
All such requests sent without a CSRF/XSRF token result in a HTTP code 403.

Procedure

1. Send any GET request to iWD Manager (such as GET/iwd_manager).
2. Read the value of a token from the XSRF-TOKEN cookie in the received response.
3. Use the token value in subsequent REST API requests by setting it up in either the X-XSRF-TOKEN

header or the _csrf query parameter.

Security Using CSRF/XSRF tokens

iWD REST API Reference Guide 78

https://docs.genesys.com/Documentation/IWD/latest/IWDRESTAPI/IWDAPILoginViaGETParameters
https://docs.genesys.com/Documentation/IWD/latest/IWDRESTAPI/IWDAPILoginViaGETParameters


History Node
• Download event history for single Interaction ID
• Download range of events for given Solution ID.
• Delete range of events for given Solution Id.
• Return maximum available event sequence number internal to History Node.

History Node Using CSRF/XSRF tokens

iWD REST API Reference Guide 79



Download event history for single
Interaction ID
This query is used by iWD Manager for fetching task history. It contains a list of event records sorted
from newest to oldest.

Method

GET

Syntax
GET /gtl/events/{InteractionId}

Response Body
{
"actor": "urs/Prioritization",
"eventKey": "QUEUE",
"eventSeqNum": 1052197,
"eventTime": 1490878831000,
"id": 1910,
"interactionId": "028GB2TRUM0NV04G",
"param1": null,
"param2": null,
"param3": null

}

History Node Download event history for single Interaction ID

iWD REST API Reference Guide 80



Download range of events for given
Solution ID
Downloads a range of events for a given Solution Id. Parameters (from) and (to) are event sequence
numbers internal to History Node and are treated inclusively. Contains list of event records.

Method

GET

Syntax
GET /datamart/events/{solutionId}/{from}/{to}

Response Body

The record has the following structure with the "'properties"' field containing serialized Interaction
Server reporting events:

{
"eventKey": "NEW",
"eventSeqNum": 1048579,
"id": 1,
"interactionId": "028GB2TRUM0NV000",
"properties": "FgAAAKAAA .... DEAAACQaQAAAAAA",
"queueKey": "NEW",
"solutionId": "SLT1"

},

History Node Download range of events for given Solution ID

iWD REST API Reference Guide 81



Delete range of events for given Solution Id

Method

DELETE

Syntax
DELETE /datamart/events/{solutionId}/{from}/{to}

Description

Parameters from and to are event sequence numbers internal to History Node and are treated
inclusively. Only the Data Mart part of the History Node database is affected.

History Node Delete range of events for given Solution Id

iWD REST API Reference Guide 82



Return maximum available event sequence
number internal to History Node

Method

GET

Syntax
GET /datamart/events/id

History Node Return maximum available event sequence number internal to History Node

iWD REST API Reference Guide 83


	iWD REST API Reference Guide
	Table of Contents
	IWD REST API Reference Guide
	Tasks
	Fetch paginated list of tasks
	Fetch list of task IDs from current snapshot
	Export selected tasks
	Fetch single task by task ID
	Fetch history
	Task operations
	Single task modification - fetch task modifiable data
	Single task modification
	Get common task attributes for modification
	Bulk operations

	Task Attributes
	Fetch list of all available task attributes for criteria in filter definitions
	Fetch list of all available task attributes for columns in filter definitions
	Fetch list of all available task attributes for Customer Filter Query in GTL

	Filter Operations
	Fetch a list of filters available for GTL
	Fetch a list of filters accessible by the current user
	Fetch filter
	Fetch filter criteria templates
	Create filter
	Update filter
	Delete filter

	Media Icons
	Fetch list of media types
	Fetch list of media icons
	Fetch media icon to display in GTL
	Upload media icon
	Delete media icon
	Media icons export
	Media icons import

	Tenants
	Fetch Business Structure
	Fetch tenants tree

	User Settings
	Fetch user settings
	Update user settings
	Update current tenant
	Update current entity
	Change password on demand

	Security
	Login via POST form
	Login via GET parameters
	Logout
	Automatic logout
	Content Security Policy
	Using CSRF/XSRF tokens

	History Node
	Download event history for single Interaction ID
	Download range of events for given Solution ID
	Delete range of events for given Solution Id
	Return maximum available event sequence number internal to History Node


