
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Use Customizable Commands

Workspace Desktop Edition
Developer's Guide

4/28/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Use Customizable Commands

Use Customizable Commands

Workspace Desktop Edition Developer's Guide 2



Purpose: To provide information about the customizable commands
available in the Workspace Desktop Edition.

Contents

• 1 Use Customizable Commands
• 1.1 Before You Start
• 1.2 Inserting a Command in a Chain
• 1.3 Creating a Command
• 1.4 Multiple Commands and Overlapping
• 1.5 Subscribing to Events

Use Customizable Commands

Workspace Desktop Edition Developer's Guide 3



Before You Start

• The command system is based on the chain of command (or chain of responsibility) design pattern.
• All the code snippets in this page are extracted from the Genesyslab.Desktop.Modules.ExtensionSample source files.
• In addition to this page, read:

• Creating a New Module
• Deploying Your Custom Module into the Genesys Out-Of-The-Box Application

Inserting a Command in a Chain

Each element of command is unique across the given chain. You can use the ICOmmandManager.InsertCommandToChainOfCommandAfter() method
to insert your command after a specific command by passing its name. The following code snippet shows how to insert the element of command
"CloseSample" in the chain of command "BundleClose" after the element of command "IsPossibleToClose":
[C#]

commandManager.InsertCommandToChainOfCommandAfter("BundleClose", "IsPossibleToClose", new List<CommandActivator>()
{

new CommandActivator()
{

CommandType = typeof(CloseSampleCommand), Name = "CloseSample"
}

});

Creating a Command

Creating a new command is considered an advanced topic. Genesys recommends that you do so with caution. Consider doing this in consultation

Use Customizable Commands

Workspace Desktop Edition Developer's Guide 4



with the development community:

• Genesys Engage DevFoundry
• Genesys Community

The following example illustrates how to create your own commands by using Genesys best practices. For each new command, create a class which
implements the IElementOfCommand interface. After creating the command, you must add it to a chain of command in your module (see Creating a
New Module). The custom command created in the following step-by-step example displays a confirmation dialog before executing the ReleaseCall
command.

1. Create the elementary command class: [C#]

// File: CustomCommand.cs
namespace Genesyslab.Desktop.Modules.ExtensionSample.CustomCommand
{

// Custom command which prompts a confirmation dialog before executing the ReleaseCall command
class BeforeReleaseCallCommand : IElementOfCommand
{

readonly IObjectContainer container;
ILogger log;
public BeforeReleaseCallCommand(IObjectContainer container)
{

this.container = container;
// Initialize the trace system
this.log = container.Resolve<ILogger>();
// Create a child trace section
this.log = log.CreateChildLogger("BeforeReleaseCallCommand");

}
public string Name { get; set; }
public bool Execute(IDictionary<string, object> parameters, IProgressUpdater progress)
{

// To go to the main thread
if (Application.Current.Dispatcher != null && !Application.Current.Dispatcher.CheckAccess())
{

object result = Application.Current.Dispatcher.Invoke(DispatcherPriority.Send,
new ExecuteDelegate(Execute), parameters, progress);

return (bool)result;
}
else
{

Use Customizable Commands

Workspace Desktop Edition Developer's Guide 5



log.Info("Execute");
// Get the parameter
IInteractionVoice interactionVoice = parameters["CommandParameter"] as IInteractionVoice;
// Prompt the alert dialog
return MessageBox.Show("Do you really want to release this call?\r\nThe call",

"Release the call?", MessageBoxButton.YesNo) == MessageBoxResult.No;
}

}
delegate bool ExecuteDelegate(IDictionary<string, object> parameters, IProgressUpdater progressUpdater);

}
}

2. Create the chain of command in the Module initialization by using the CommandManager:
[C#]

// File: ExtensionSampleModule.cs
ICommandManager commandManager = container.Resolve<ICommandManager>();
// Add a command before the release call
// Method 1:
commandManager.CommandsByName["InteractionVoiceReleaseCall"].Insert(0, new CommandActivator() {

CommandType = typeof(BeforeReleaseCallCommand), Name = "BeforeReleaseCall" });
// Method 2 (recommended):
commandManager.InsertCommandToChainOfCommandBefore("InteractionVoiceReleaseCall", "ReleaseCall",

new CommandActivator() { CommandType = typeof(BeforeReleaseCallCommand), Name = "BeforeReleaseCall" });

3. You can add several commands to a chain of command. The order of execution follows the order in which the commands are added.
BeforeReleaseCallCommand is executed before ReleaseCallCommand, for example: [C#]

commandManager.AddCommandToChainOfCommand("InteractionVoiceReleaseCall",
new List<CommandActivator>()
{

new CommandActivator() { CommandType = typeof(BeforeReleaseCallCommand), Name = "BeforeReleaseCall" },
new CommandActivator() { CommandType = typeof(ReleaseCallCommand), Name = "ReleaseCall" }

});

4. Finally, execute the chain of command by using parameters, as shown in the following example (defined here: Command list): [C#]

IDictionary<string, object> parameters = new Dictionary<string, object>();
parameters.Add("CommandParameter", interaction);
parameters.Add("Reasons", reasons);
parameters.Add("Extensions", extensions);

Use Customizable Commands

Workspace Desktop Edition Developer's Guide 6



commandManager.GetChainOfCommandByName("InteractionVoiceReleaseCall").Execute(parameters);

Multiple Commands and Overlapping

When you pass several commands to a given chain, they share the parameters which have identical names. This can lead to over-lapping issues
when you execute the command. To by-pass this issue, make sure that your parameters are correct before your application executes the command.
For instance, consider using the Command1 and Command2 of MyChain:

Chain of Command Default commands Parameters

MyChain

Command1
• Parameter1: IInteractionChat
• Parameter2: KeyValueCollection

Command2
• Parameter1: IInteractionChat
• Parameter3: KeyValueCollection

• IInteractionChat: Genesyslab.Desktop.Modules.OpenMedia.Model.Interactions.Chat.IInteractionChat
• KeyValueCollection: Genesyslab.Enterprise.Commons.Collections.KeyValueCollection

When you execute MyChain, you must pass all the parameters of Command1 and Command2. Parameter1 is shared amongst Command1 and
Command2.
[C#]

IDictionary<string, object> parameters = new Dictionary<string, object>();
parameters.Add("Parameter1", interaction);
parameters.Add("Parameter2", reasons);
parameters.Add("Parameter3", extensions);
commandManager.GetChainOfCommandByName("MyChain").Execute(parameters);

Use Customizable Commands

Workspace Desktop Edition Developer's Guide 7



Subscribing to Events

When you are creating custom commands there is no “command” that you can intercept; however,
there is an “event” that you can subscribe to that will notify you when the interaction bar tab
selection is changed. The following sample demonstrates how this is done:
CustoInteractionBarSelectHandler.zip

Use Customizable Commands

Workspace Desktop Edition Developer's Guide 8


	Workspace Desktop Edition Developer's Guide
	Use Customizable Commands

