
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Best Practices for Views

Workspace Desktop Edition
Developer's Guide

4/13/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Best Practices for Views
• 1.1 Keyboard Navigation
• 1.2 Branding
• 1.3 Localization
• 1.4 Parameterization
• 1.5 Internationalization
• 1.6 Screen Reader Compatibility
• 1.7 Themes
• 1.8 Loosely-coupled Application Library and Standard Controls
• 1.9 Views

Workspace Desktop Edition Developer's Guide 2



Best Practices for Views
Purpose: To provide a set of recommendations that are required in order to implement a typical view
within Workspace Desktop Edition.

Best Practices for Views

Workspace Desktop Edition Developer's Guide 3



Keyboard Navigation

TAB Key--Every control in a window has the ability to have focus. Use the TAB key to move from one control to the next, or use SHIFT+TAB to move
the previous control. The TAB order is determined by the order in which the controls are defined in the Extensible Application Markup Language
(XAML) page.
Access Keys--A labeled control can obtain focus by pressing the ALT key and then typing the control's associated letter (label). To add this
functionality, include an underscore character (_) in the content of a control. See the following sample XAML file:
[XAML]

<Label Content="_AcctNumber" />

Focus can also be given to a specific GUI control by typing a single character. Use the WPF control AccessText (the counterpart of the TextBlock
control) to modify your application for this functionality. For example, you can use the code in the following XAML sample to eliminate having to press
the ALT key:
[XAML]

<AccessText Text="_AcctNumber" />

Shortcut Keys--Trigger a command by typing a key combination on the keyboard. For example, press CTRL+C to copy selected text. Alarm
Notification--Workspace Desktop Edition can be configured to emit a sound when an unsolicited event occurs.

Branding

To replace trademark logos, icon images and text, you must create two files, a .module-config file and a Rebranding.xml file. The
RebrandingTheme.xml file is similar to a language dictionary and enables you customize the appearance of your application. The .module-config
file links to the RebrandingTheme.xml file. For example, you could make a Rebranding.module-config file with the following content:

[.module-config]

<?xml version="1.0" encoding="utf-8"?>

Best Practices for Views

Workspace Desktop Edition Developer's Guide 4



<configuration>
<configSections>
<section name="themes" type="Genesyslab.Desktop.Infrastructure.Theming.ThemesSection, Genesyslab.Desktop.Infrastructure" />
</configSections>
<themes>
<theme name="Default">
<xmlDictionaries>
<xmlDictionary name="rebranding" path=".\RebrandingTheme.xml"></xmlDictionary>
</xmlDictionaries>
</theme>
</themes>
</configuration>

The second file, which here is named RebrandingTheme.xml, is file where the new images for logos, Splash Screen, Copyrights, about window text,
and so on, are defined:

[XML]

<?xml version="1.0" encoding="utf-8" ?>
<Dictionary>
<Value Id="Application.SplashScreen" Source="pack://application:,,,/Genesyslab.Desktop.WPFCommon;component/Images/Splash.png"/>
<!--Value Id="Application.SplashScreen" Source="./Splash.png"/-->
<Value Id="Common.Images.CompanyLogo" Source="pack://siteoforigin:,,,/CompanyLogo.png" ResourceKey=""/>
<Value Id="Windows.Common.Copyright" Text="2009-2014 My New Copyright."/>
<Value Id="Windows.AboutWindow.TextBlockWarning" Text="Warning: "/>
<Value Id="Windows.Common.Text.InteractionWorkspace" Text="NewCO"/>
</Dictionary>

For information about URIs in Windows Presentation Foundation (WPF), see: [1]

Localization

To dynamically change the language in your view, modify the XAML by using the following sample:
[XAML]

<UserControl xmlns:loc="http://schemas.tomer.com/winfx/2006/xaml/presentation">

Best Practices for Views

Workspace Desktop Edition Developer's Guide 5



<Expander>
<Expander.Header>

<TextBlock loc:Translate.Uid="DispositionCodeView.TextBlockDisposition"
Text="{loc:Translate Default=The Disposition}" />

</Expander.Header>
<Button/>

</Expander>
</UserControl>

Refer to DispositionCodeView.TextBlockDisposition in the language XML file. For English, modify the
Genesyslab.Desktop.Modules.Windows.en-US.xml file as shown in the following example:
[XML]

<Dictionary EnglishName="English" CultureName="English" Culture="en-US">
<Value Id="DispositionCodeView.TextBlockDisposition" Text="The Disposition"/>

</Dictionary>

For French, modify the Genesyslab.Desktop.Modules.Windows.fr-FR.xml file as shown in the following example:
[XML]

<Dictionary EnglishName="French" CultureName="France" Culture="fr-FR">
<Value Id="DispositionCodeView.TextBlockDisposition" Text="La Disposition"/>

</Dictionary>

The language can also be changed within the code itself, as shown in the following example:
[C#]

string text = LanguageDictionary.Current.Translate("DispositionCodeView.TextBlockDisposition", "Text");

Parameterization

Workspace Desktop Edition is configured as a role-based application. For example, if an agent is assigned the task of TeamCommunicator, the Click-
Once group file that is related to this task is downloaded when the application starts up and the associated module is loaded in RAM. The GUI that is
specific to this task is then displayed only to the agents that are assigned the TeamCommunicator task. The task section in the following example
enables you to download and execute a custom module extension. If the task name (InteractionWorkspace.TeamCommunicator.canUse) is
configured in Configuration Manager, the required group of files (TeamCommunicator) is downloaded, and the module (TeamCommunicatorModule) are

Best Practices for Views

Workspace Desktop Edition Developer's Guide 6



executed. This parameterization functionality is configured in the InteractionWorkspace.exe.config file, as shown in the following example:
[XML]

<configuration>
...
<tasks>

...
<task name="InteractionWorkspace.Features.TeamCommunicator"

clickOnceGroupsToDownload="TeamCommunicator"
modulesToLoad="TeamCommunicatorModule" />

...
</tasks>

<modules>
...
<module assemblyFile="Genesyslab.Desktop.Modules.TeamCommunicator.dll"

moduleType="Genesyslab.Desktop.Modules.TeamCommunicator.TeamCommunicatorModule"
moduleName="TeamCommunicatorModule"
startupLoaded="false"/>

...
</modules>
...

</configuration>

Parameterization functionality can also be accomplished by loading a custom module conditioned with a task. In the Configuration Manager, a role
must be configured with the name of the task. In this example, the task is named InteractionWorkspace.ExtensionSample.canUse and assigned
to the agent. This custom parameterization functionality is configured in the ExtensionSample.module-config file, as shown in the following
example:
[XML]

<configuration>
<configSections>

<section name="tasks"
type="Genesyslab.Desktop.Infrastructure.Config.TasksSection, Genesyslab.Desktop.Infrastructure" />

<section name="modules"
type="Microsoft.Practices.Composite.Modularity.ModulesConfigurationSection, Microsoft.Practices.Composite" />

</configSections>
<tasks>

<task name="InteractionWorkspace.ExtensionSample.canUse"
clickOnceGroupsToDownload="ExtensionSample"
modulesToLoad="ExtensionSampleModule" />

Best Practices for Views

Workspace Desktop Edition Developer's Guide 7



</tasks>
<modules>

<module assemblyFile="Genesyslab.Desktop.Modules.ExtensionSample.dll"
moduleType="Genesyslab.Desktop.Modules.ExtensionSample.ExtensionSampleModule"
moduleName="ExtensionSampleModule"
startupLoaded="false"/>

</modules>
</configuration>

Internationalization

WPF and .NET work with Unicode strings, so internationalization does not normally require extra coding. However, there are some potential issues to
consider when creating your custom code, such as:

• Strings coming from the server might not be in true Unicode.
• The language might not be read/written from left to right (for example, Arabic languages).
• The correct font must be installed on the agents system.

Screen Reader Compatibility

The Microsoft UI Automation API is used for WPF applications that require accessibility functionality. The following two tools are available to assist you
in developing applications that are compliant with accessibility software, such as Job Access With Speech (JAWS):

• UISpy.exe (Microsoft Windows SDK)--Displays the GUI controls tree along with the UIAutomation properties of the controls (such as AccessKey, Name, and
others)

• Narrator (Microsoft Windows)--Reads the content of a window

Use the following code sample to add a name to a GUI control in the XAML file:
[XAML]

Best Practices for Views

Workspace Desktop Edition Developer's Guide 8



<TextBox Name="textBoxUserName" AutomationProperties.Name="UserName" />

The AutomationProperties.Name of the TextBox control is automatically set with the content value of a Label control. If a GUI control already has a
Label control the XAML file looks similar to the following example:
[XAML]

<Label Target="{Binding ElementName=textBoxUserName}" Content="_UserName" />
<TextBox Name="textBoxUserName" />

Note: The AutomationProperties.Name must be localized.

Themes

Genesys recommends that you place the control styles and color resources that are used in the application into an XAML file containing a WPF
ResourceDictionary. This enables you to modify and extend an existing theme. To make the themes extensible, use ThemeManager to register all the
available themes in the application. When a theme is changed, ThemeManager copies this ResourceDictionary to the global application
ResourceDictionary. All previously copied styles and brushes are overwritten with the new ones. Note: The XAML file that you create to contain the
control styles and color resources is not a Microsoft Composite Application Library (CAL) module.

To add a new theme, you must first create a new theme in a .module-config file, for example:

[.module-config]

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<configSections>
<section name="themes" type="Genesyslab.Desktop.Infrastructure.Theming.ThemesSection, Genesyslab.Desktop.Infrastructure" />
</configSections>
<themes>
<theme name="CustomTheme" displayNameKey="Theme.Custom.DisplayName"
mainResourceDictionary="/Genesyslab.Desktop.Modules.CustomThemeSample;component/Resources/themes/CustomTheme.xaml">
<xmlDictionaries>
<xmlDictionary name="NewTheme" path=".\Resources\ResourcesDefinitionCustom.xml"></xmlDictionary>
</xmlDictionaries>
</theme>

Best Practices for Views

Workspace Desktop Edition Developer's Guide 9



</themes>
</configuration>

The CustomTheme.xaml file must declare the main resource dictionary of the new style and Custom Color dictionary, for example:

[XAML]

<ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/
xaml">
<ResourceDictionary.MergedDictionaries>
<!-- New IW Style -->
<ResourceDictionary Source="/Genesyslab.Desktop.WPFCommon;component/Resources/NewStyles/NewStylesResourceLibrary.xaml"/>
<ResourceDictionary Source="/Genesyslab.Desktop.Modules.CustomThemeSample;component/Resources/ColorBrushes/CustomDefaultColorTheme.xaml"/>
</ResourceDictionary.MergedDictionaries>
</ResourceDictionary>

Use the gui.themes option to add the new theme name.

Loosely-coupled Application Library and Standard Controls

Workspace Desktop Edition is a modular Windows Presentation Foundation (WPF) client application and uses the standard WPF controls. This section
provides information about these controls. The Loosely-coupled Application Library is part of the Composite Application Guidance which aims to
produce a flexible WPF client application that is loosely coupled. The following graphical tree shows a typical composite application built with loosely-
coupled applications:

Shell
Region1
View11
View12

Region2
View21
Region21

View211
View212

Shell

Best Practices for Views

Workspace Desktop Edition Developer's Guide 10



The typical GUI is composed of a shell, region(s), and view(s). The shell is the main window of the application where the primary user interface (UI)
content is contained. The shell is usually a single main window that contains multiple views. The shell can contain named regions where modules can
add views. A region is a rectangular graphical area that is embedded in a shell or a view and can contain one or more views. Views are the composite
portions of the user interface that are contained in the window(s) of the shell. Views are the elementary pieces of UI, such as a user control that
defines a rectangular portion of the client area in the main window.

Views

A view contains controls that display data. The logic that is used to retrieve the data, handle user events, and submit the changes to the data is
often included in the view. When this functionality is included in the View, the class becomes complex, and is difficult to maintain and test. You can
resolve these issues by using Presentation Patterns and Data Binding.

Presentation Patterns
Use patterns to separate the responsibilities of the display and the behavior of the application into different classes, named the View and the View
Model. Genesys suggests the following presentation patterns:

• Model-View-ViewModel (MVVM)
• Model-View-PresentationModel (Presentation Model)

The MVVM pattern is used in Genesys samples.

• The Model is similar to having several data sources (InteractionService from Enterprise Services, Statistics from the Platform SDK, or any other data).
• The View is a stateless UserControl; a graphical interface with no behavior.
• The ViewModel is an adaptation layer between the Model and the View. It offers the Model data to the View. The behavior of the View is defined in this

layer. For instance, the View launches the commands, but the commands are implemented in the ViewModel.

Each view consists of several classes. The VoiceView is described in the following table:

Best Practices for Views

Workspace Desktop Edition Developer's Guide 11



Roles Classes/Interfaces Files Description
View IVoiceView IVoiceView.cs The interface

View VoiceView VoiceView.xaml VoiceView.xaml.cs

The implementation of the
IVoiceView. VoiceView.xaml is the
XAML file that describes the view
and VoiceView.xaml.cs contains the
code behind.

ViewModel IVoiceViewModel IVoiceViewModel.cs The interface

ViewModel VoiceViewModel VoiceViewModel.cs The implementation of the
IVoiceViewModel.

Data Binding
When you use presentation patterns in application development you have the option of using the data-binding capabilities that are provided by the
WPF. Data-binding is used to bind elements to application data. The bound elements automatically reflect changes when the data changes its value.
For example, if the DataContext property of the VoiceView class is set to an instance of the VoiceViewModel class, then the Text property of a
TextBlock control can have a DataBinding toward the PhoneNumber property of the VoiceViewModel class. By default it is a two-way binding. If the
value of either the VoiceViewModel.PhoneNumber or the TextBlock display changes then the other changes as well. The following example also
shows how the command VoiceViewModel.AnswerCallCommand can be initiated from the VoiceView:

<TextBlock Text="{Binding PhoneNumber}"/>
<Button Command="{Binding AnswerCallCommand}">Answer Call</Button>

Note: Modularity requires that each interface is registered in the module initialization. See Customize Views and Regions for details on how to
register an interface.

Tips and Tricks
When you need to control several Views, you can use a Controller class to coordinate the activities of multiple Views (and others controllers). The
ViewModel is created by the View, and the Views are created and managed by the Controllers. The following logical tree is a depiction of the
relationship between the instantiated classes:

Controller1
Controller11

Best Practices for Views

Workspace Desktop Edition Developer's Guide 12



View111
ViewModel111

View112
ViewModel112

View12
ViewModel12

Controller2
View21
ViewModel21

View22
ViewModel22

Use the information provided in this section along with the information in the Customizing Workspace Desktop Edition topic to create your own view.

Best Practices for Views

Workspace Desktop Edition Developer's Guide 13



Best Practices for Views

Workspace Desktop Edition Developer's Guide 14


	Workspace Desktop Edition Developer's Guide
	Best Practices for Views

