
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Customize Views and Regions

Workspace Desktop Edition
Developer's Guide

4/2/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Customize Views and Regions
Purpose: To provide information about
customizable views and their regions.

Contents

• 1 Customize Views and Regions
• 1.1 Before You Start
• 1.2 Replacing an Existing View
• 1.3 Creating a New View
• 1.4 Hiding and Showing Custom Views
• 1.5 Read Next

Customize Views and Regions

Workspace Desktop Edition Developer's Guide 2

Before You Start

• All the code snippets in this page are extracted from the Genesyslab.Desktop.Modules.ExtensionSample
source files. See About the Extension Samples for additional information about the samples.

• In addition to this page, read:
• Creating a New Module
• Deploying Your Custom Module into the Genesys Out-Of-The-Box Application

Replacing an Existing View

There are several ways to customize Interaction Workspace. The most basic way is to change an
existing behavior or appearance by changing the implementation of an existing interface. The code
that is displayed after the figure demonstrates how to replace an existing view,
DispositionCodeView, with the new view, DispositionCodeExView. You can replace the existing
view with another by associating the existing IDispositionCodeView interface with the new
DispositionCodeExView implementation.

Voice Interactions View Before Customization. The out-of-the-box application uses
radio buttons in the Disposition Code View. The code sample that is displayed
after the figure modifies this view.

1. Start by creating a new Windows Presentation Foundation (WPF) UserControl that is composed of the
following two files:
• DispositionCodeExView.xaml

Customize Views and Regions

Workspace Desktop Edition Developer's Guide 3

• DispositionCodeExView.xaml.cs

2. Ensure that your custom-built view named, DispositionCodeExView implements the genuine
IDispositionCodeView interface:
[C#]

// File: DispositionCodeExView.cs
public partial class DispositionCodeExView : UserControl, IDispositionCodeView
{

public DispositionCodeExView(IDispositionCodeViewModel dispositionCodeViewModel)
{

this.viewManager = viewManager;
this.Model = dispositionCodePresentationModel;
InitializeComponent();
Width = Double.NaN;
Height = Double.NaN;

}
#region IDispositionCodeView Members
public IDispositionCodeViewModel Model
{

get { return this.DataContext as IDispositionCodeViewModel; }
set { this.DataContext = value; }

}
#endregion
...

}

3. Register the new view in your module to make it replace the former view when the module is loaded. Do
this by calling the IObjectContainer.RegisterType method must be used to register the new
implementation in the initialization method of the ExtensionSampleModule:
[C#]

// File: ExtensionSampleModule.cs
public class ExtensionSampleModule : IModule
{

readonly IObjectContainer container;
...
public void Initialize()
{

container.RegisterType<IDispositionCodeView, DispositionCodeExView>();
}

}

You can replace any view with your own custom-built view by using the preceding examples. The figure below shows the view for
Interaction Workspace Voice Interactions after customization. In the customized view, the radio buttons for disposition codes are
replaced with check boxes.

Customize Views and Regions

Workspace Desktop Edition Developer's Guide 4

Disposition Code View After Customization

Although the application has a different appearance, it retains its previous behavior.

Creating a New View

Advanced customization provides the IViewManager interface to add a new view to an existing region
(which is embedded in an existing view). Regions which embed multiple views, tabs, or buttons, can
be enriched with new views. To use the Model-View-ViewModel (MVVM) pattern, you must create both
the view (for instance, MySampleView) which extends the IView interface and the view-model, for
instance MySampleViewModel. The following subsections detail the creation for two new views
through the customization samples.

Adding a Tab to the ToolbarWorkplaceRegion
The Genesyslab.Desktop.Modules.ExtensionSample example creates a new view in the Voice
Interaction panel. In the following figure, the out-of-the-box application has a single tab called My
Channels, which is part of the ToolbarWorkplaceRegion region. The customization adds a new tab
called My Sample Header which contains a button and a time counter.

Customize Views and Regions

Workspace Desktop Edition Developer's Guide 5

Voice Interactions View before customization. A single tab 'My Channels' is
available in the ToolbarWorkplaceRegion

The following steps details the content of the Genesyslab.Desktop.Modules.ExtensionSample.

1. To create the view-model, create a new interface named IMySampleViewModel which manages a time
counter and the header label for the new tab:
[C#]

// File: IMySamplePresentationModel.cs
public interface IMySampleViewModel
{

string Header { get; set; }
TimeSpan Counter { get; set; }
void ResetCounter();

}

2. Implement this interface by creating the MySampleViewModel class, as follows:
[C#]

// File: MySamplePresentationModel.cs
public class MySampleViewModel : IMySampleViewModel, INotifyPropertyChanged
{

// Field variables
string header = "My Sample Header";
TimeSpan counter = TimeSpan.Zero;
public MySampleViewModel()
{

// Start the counter timer
DispatcherTimer dispatcherTimer = new DispatcherTimer();
dispatcherTimer.Interval = new TimeSpan(0, 0, 1);
dispatcherTimer.Tick += new EventHandler(delegate(object sender, EventArgs e)

{
Counter += TimeSpan.FromSeconds(1.0);

});
dispatcherTimer.Start();

}
#region IMySamplePresentationModel Members
public string Header
{

get { return header; }
set { if (header != value) { header = value; OnPropertyChanged("Header"); } }

}
public TimeSpan Counter
{

Customize Views and Regions

Workspace Desktop Edition Developer's Guide 6

get { return counter; }
set { if (counter != value) { counter = value; OnPropertyChanged("Counter"); } }

}
public void ResetCounter()
{

Counter = TimeSpan.Zero;
}
#endregion
#region INotifyPropertyChanged Members
public event PropertyChangedEventHandler PropertyChanged;
protected void OnPropertyChanged(string propertyName)
{

if (PropertyChanged != null)
PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

}
#endregion

}

3. Create the the view interface you want to implement, named IMySampleView, for your built-in
component:
[C#]

// File: IMySampleView.cs
public interface IMySampleView : IView
{

IMySampleViewModel Model { get; set; }
}

4. Create a content for the new view with a new WPF UserControl that is composed of the following two
files:
• MySampleView.xaml

[XAML]

<UserControl x:Class="Genesyslab.Desktop.Modules.ExtensionSample.MySample.MySampleView"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Height="220" Width="279" MinHeight="90">

<Grid>
<Ellipse Margin="12" Name="ellipse1" Stroke="Black" />
<StackPanel HorizontalAlignment="Center" VerticalAlignment="Center">

<Button Click="Button_Click">Button</Button>
<TextBlock Text="{Binding Counter}"/>

</StackPanel>
</Grid>

</UserControl>

• MySampleView.xaml.cs which contains your custom-built class named MySampleView implementing
the IMySampleView interface created previously:

[C#]

// File: MySampleView.xaml.cs
public partial class MySampleView : UserControl, IMySampleView
{

public MySampleView(IMySampleViewModel mySampleViewModel)
{

this.Model = mySampleViewModel;
InitializeComponent();
Width = Double.NaN;
Height = Double.NaN;

}

Customize Views and Regions

Workspace Desktop Edition Developer's Guide 7

#region IMySampleView Members

public IMySampleViewModel Model
{

get { return this.DataContext as IMySampleViewModel; }
set { this.DataContext = value; }

}
#endregion
#region IView Members
public object Context { get; set; }
public void Create()
{
}
public void Destroy()
{
}
#endregion
private void Button_Click(object sender, System.Windows.RoutedEventArgs e)
{

Model.ResetCounter();
}

}

5. In the Initialize() method of your module (see Creating a New Module):
• Register your new view and model with the IObjectContainer.RegisterType method.
• Insert the view in the appropriate view or region.

[C#]

// File: ExtensionSampleModule.cs
public class ExtensionSampleModule : IModule
{

public void Initialize()
{

container.RegisterType<IMySampleView, MySampleView>();
container.RegisterType<IMySampleViewModel, MySampleViewModel>();
// Add the MySample view to the region "ToolbarWorkplaceRegion" (The TabControl in

the main toolbar)
viewManager.ViewsByRegionName["ToolbarWorkplaceRegion"].Insert(0,

new ViewActivator() { ViewType = typeof(IMySampleView), ViewName =
"MySample" });

...
}

}

The figure below depicts the MySampleView after customization with the second tab (My Sample
Header) included in the view. In the following example, the ToolbarWorkplaceRegion of the view is
modified. For a complete list of views and regions, see How to Customize Views and Their Regions
Reference for Windows.

Customize Views and Regions

Workspace Desktop Edition Developer's Guide 8

Voice Interactions View After Customization: A new tab 'MySampleHeader' is
available.

Adding a View to the Interaction Window
Similar to the Genesyslab.Desktop.Modules.ExtensionSample is the
Genesyslab.Desktop.Modules.InteractionExtensionSample which adds a view to the right panel of the
Interaction Window.

The Interaction Window before customization. In the middle bar which separates the windows in two parts, a "CONTACT" expand button
displays the current contact view to the right side of the window.

Customize Views and Regions

Workspace Desktop Edition Developer's Guide 9

1. Create a new interface named IMySampleViewModel.
The view model implemented includes a case for the interaction management, in addition to the
counter and the header.
[C#]

// File: IMySamplePresentationModel.cs
namespace Genesyslab.Desktop.Modules.InteractionExtensionSample.MySample
{

public interface IMySampleViewModel
{

string Header { get; set; }
TimeSpan Counter { get; set; }
ICase Case { get; set; }
void ResetCounter();

}
}

2. the implementation of the interface includes the management of the case.
[C#]

// File: MySamplePresentationModel.cs
namespace Genesyslab.Desktop.Modules.InteractionExtensionSample.MySample
{

public class MySampleViewModel : IMySampleViewModel, INotifyPropertyChanged
{

// Field variables
string header = "My Sample Header";
TimeSpan counter = TimeSpan.Zero;
ICase @case;
public MySampleViewModel()
{

// Start the counter timer
DispatcherTimer dispatcherTimer = new DispatcherTimer();
dispatcherTimer.Interval = new TimeSpan(0, 0, 1);
dispatcherTimer.Tick += new EventHandler(delegate(object sender, EventArgs e)

{
Counter += TimeSpan.FromSeconds(1.0);

});
dispatcherTimer.Start();

}
#region IMySamplePresentationModel Members

...

public ICase Case
{

get { return @case; }
set { if (@case != value) { @case = value; OnPropertyChanged("Case"); } }

}

#endregion
#region INotifyPropertyChanged Members

...
#endregion

}
}

3. Then, you create the view interfaces you want to implement, named IMySampleView and
IMySampleButtonView.cs, for your built-in components:
[C#]

// File: IMySampleButtonView.cs
namespace Genesyslab.Desktop.Modules.InteractionExtensionSample.MySample

Customize Views and Regions

Workspace Desktop Edition Developer's Guide 10

public interface IMySampleButtonView : IView
{

IMySampleViewModel Model { get; set; }
}
// File: IMySampleView.cs
namespace Genesyslab.Desktop.Modules.InteractionExtensionSample.MySample
{

// Interface matching the MySampleView view
public interface IMySampleView : IView
{

// Gets or sets the model.
IMySampleViewModel Model { get; set; }

}
}

4. Create a content for the new view with a new WPF UserControl that is composed of the following two
files:
• MySampleButtonView.xaml
• MySampleButtonView.xaml.cs

See the files in the InteractionExtensionSample.
5. In the Initialize() method of your module (see Creating a New Module):

• Register your views and models with the IObjectContainer.RegisterType method.
• Insert the views in the appropriate view or region, as shown here:

[C#]

// File: InteractionExtensionSampleModule.cs
public void Initialize()
{

// Add a view in the right panel in the interaction window
// Here we register the view (GUI) "IMySampleView" and its behavior counterpart

"IMySampleViewModel"
container.RegisterType<IMySampleView, MySampleView>();
container.RegisterType<IMySampleViewModel, MySampleViewModel>();
// Put the MySample view in the region "InteractionWorksheetRegion"
viewManager.ViewsByRegionName["InteractionWorksheetRegion"].Add(

new ViewActivator() { ViewType = typeof(IMySampleView),
ViewName = "MyInteractionSample", ActivateView = true }

);
// Here we register the view (GUI) "IMySampleButtonView"
container.RegisterType<IMySampleButtonView, MySampleButtonView>();
// Put the MySampleMenuView view in the region "CaseViewSideButtonRegion"

// (The case toggle button in the interaction windows)
viewManager.ViewsByRegionName["CaseViewSideButtonRegion"].Add(

new ViewActivator() { ViewType = typeof(IMySampleButtonView),
ViewName = "MySampleButtonView", ActivateView = true }

);
}

The figure below depicts the Interaction window after customization.

Customize Views and Regions

Workspace Desktop Edition Developer's Guide 11

The Interaction Window after customization. In the middle bar which separates the windows in two parts, a "MySample" expand button
displays the sample view.

Hiding and Showing Custom Views
Available since: 8.1.100.14
You can display a custom view according to specific parameters by using the concept of conditions.
To do this, include a Condition when you register your view with the IViewManager. This condition
will be executed each time that the application framework instantiates the region. For instance, if you
wish to change the displayed tabs in the interaction window based on the context of the displayed
interaction, then you can include a condition when adding your customized IMySampleView to the
InteractionDetailsRegion region: [C#]

viewManager.ViewsByRegionName["InteractionDetailsRegion"].Add(new ViewActivator() {
ViewType = typeof(IMySampleView), ViewName = "MyInteractionSample", ActivateView =

true,
Condition = MySampleViewModel.MySampleViewModelCondition});

Next, implement this condition somewhere in your code. In the following example, this method
returns true to show the custom view or false to hide it: [C#]

public static bool MySampleViewModelCondition(ref object context)
{

Customize Views and Regions

Workspace Desktop Edition Developer's Guide 12

IDictionary<string, object> contextDictionary = context as IDictionary<string,
object>;

object caseView;
contextDictionary.TryGetValue("CaseView", out caseView);
object caseObject;
contextDictionary.TryGetValue("Case", out caseObject);
ICase @case = caseObject as ICase;
if (@case != null)
{

if (@case.MainInteraction != null)
{

IInteraction i = @case.MainInteraction;
return (i.HasBeenPresentedIn);

}
}
return false;

}

Read Next

Advanced Customization

Customize Views and Regions

Workspace Desktop Edition Developer's Guide 13

	Workspace Desktop Edition Developer's Guide
	Customize Views and Regions

