
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Advanced Customization

Workspace Desktop Edition
Developer's Guide

4/4/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Advanced Customization
Purpose: To provide information about the
advanced customization with the Enterprise
Service API.
Available since: 8.1.100.14; updated in:
8.1.300.17

Contents

• 1 Advanced Customization
• 1.1 Get the Enterprise Service API Reference
• 1.2 Get EnterpriseService
• 1.3 Managing Connections and Channels
• 1.4 Getting Additional Service Events

Advanced Customization

Workspace Desktop Edition Developer's Guide 2



Get the Enterprise Service API Reference

The Enterprise Services are core components used by the modules, views, and resources to connect
to Genesys Servers and maintain the information flow consistent with the state of Interaction
Workspace. The main entry point is available through the EntrepriseService property of the
Genesyslab.Desktop.Modules.Core.Model.Agents.IAgent interface. This interface enables you to
access all of the available Enterprise services. All of these services handle the core objects that
Interaction workspace creates and displays. Modifications to these objects through Interaction
Workspace API should be fine; however, if you create new instances or alter objects through the
Enterprise API, your customization is responsible for maintaining the information flow consistent with
the data displayed in Interaction Workspace. The following table contains the list of downloadable API
References available:

Interaction Workspace Release VersionEnterprise Service Release VersionRelease Date Enterprise Service CHM
8.1.400.24 8.1.400.19 03/29/2013 Download chm
8.1.300.17 8.1.300.14 07/31/2012 Download chm
8.1.200.16 8.1.200.10 01/31/2012 Download chm
8.1.100.14 8.1.100.10 07/29/2011 Download chm

If you encounter difficulties with opening the .chm files, please check the known
issues and solutions of Dr. Explain.

Get EnterpriseService

The main entry point is available through the EntrepriseService property of the
Genesyslab.Desktop.Modules.Core.Model.Agents.IAgent interface. The Resolve methods of the
IEnterpriseServiceProvider simplify the retrieval of a service instance.

[C#]
public MyNewSampleClass(IUnityContainer container, ILogger log)
{
IAgent myAgent= container.Resolve<IAgent>();
IEnterpriseServiceProvider enterpriseService = myAgent.EntrepriseService;
//...
INameService nameService = enterpriseService.Resolve<INameService>("key");

}

• Where Name is the service name, and key is the mapping key that is predefined in the native source of
the Enterprise API.

Advanced Customization

Workspace Desktop Edition Developer's Guide 3



Service Name Service Key
Associated

Protocols<ref>Protocols can
be used when you are

managing channels.</ref>

IAgentService agentService
• AgentProtocolRequest-"agent"
• DeviceProtocolRequest-

"device"

IChannelService channelService none

IDeviceService deviceService • DeviceProtocolRequest-
"device"

IIdentityService identityService • OpenMediaProtocolRequest-
"openmedia"

IIMService IMService

• VoiceProtocolRequest-"voice"
• DeviceProtocolRequest-

"device"
• IMProtocolRequest-"im"

IContactService contactService • ContactProtocolRequest --
"contacts"

IInteractionService interactionService none

IChatService chatService
• OpenMediaProtocolRequest-

"openmedia"
• WebMediaProtocolRequest

-"webmedia"

IOpenMediaService openmediaService none

IMonitorService monitorService • OpenMediaProtocolRequest-
"openmedia"

IWorkbinService workbinService

none

• OpenMediaProtocolRequest-
"openmedia"

IPSTService PSTService none
ICampaignService campaignService none
IOutboundService outboundService none

Advanced Customization

Workspace Desktop Edition Developer's Guide 4



<references />

Additional Entry Points
Interaction Workspace API provides additional entry points through properties in the specific classes
that are listed in the table below:

Class Name Property Description
Genesyslab.Desktop.Modules.OpenMedia.Model.
Agents.IAgentMultimedia EntrepriseAgent IAgent instance which contains

the agent data.

Genesyslab.Desktop.Modules.Core.
Model.Interactions.IInteraction EntrepriseInteractionCurrent Current interaction processed by

Interaction Workspace.

IList<Genesyslab.Enterprise.Model.Interaction.IInteraction>EntrepriseInteractions The history of interactions.
Genesyslab.Platform.Commons.Protocols.IMessageEntrepriseLastInteractionEvent The last interaction event.
Genesyslab.Desktop.Modules.OpenMedia.
Model.Interactions.Chat.IInteractionChatCommonEntrepriseChatInteractionCurrent

Current chat interaction
processed by Interaction
Workspace.

Genesyslab.Desktop.Modules.OpenMedia.
Model.Interactions.Email.IInteractionEmail EntrepriseEmailAttachments E-mail attachments.

Genesyslab.Desktop.Modules.OpenMedia.
Model.Interactions.Email.IInteractionEmail EntrepriseEmailInteractionCurrent

Current e-mail interaction
processed by Interaction
Workspace.

Genesyslab.Desktop.Modules.OpenMedia.Model.
Interactions.IInteractionOpenMedia EntrepriseOpenMediaInteractionCurrent

Current open media interaction
processed by Interaction
Workspace.

Genesyslab.Desktop.Modules.OpenMedia.
Model.Interactions.Sms.IInteractionSms

EntrepriseSmsInteractionCurrent
Current sms interaction in page
mode processed by Interaction
Workspace.

EntrepriseSmsSessionInteractionCurrent
Current sms interaction in
session mode processed by
Interaction Workspace.

Enterprise Extensions
The Genesyslab.Enterprise.Extensions namespace defines a list of extensions classes which
provide the switch-specific action areas of each related service.

Service Extension Related features

IIdentityService AgentServiceExtensions Manage login,
Ready, Not Ready

IDeviceService DeviceServiceExtensions Manage the call-forward and Do
Not Disturb features.

IIMService IMServiceExtensions Manage the messages and

Advanced Customization

Workspace Desktop Edition Developer's Guide 5



Service Extension Related features
transcripts of instant messaging
sessions.

IInteractionService InteractionServiceExtensions
Manage the requests on
interactions
(Make the call, answer the call,
transfer the call, and so on.)

IMonitorService PAMExtensions Manage subscriptions and
statistic notifications.

Add the Genesyslab.Enterprise.Extensions namespace to your code to enable the
extension methods of your service.

Managing Connections and Channels

Interaction Workspace manages the connections defined in the application configuration. You can
access them through the Genesyslab.Desktop.Modules.Core.SDK.Protocol.IChannelManager.
You can retrieve the connection by passing the configured application name at the registration of the
channel, as shown below:

IChannelManager channelManager = container.Resolve<IChannelManager>();
Genesyslab.Enterprise.Model.Channel.IClientChannel tserverChannel =
channelManager.Register(("YourApplicationName","MyClientName");

Four application types are supported:

• TServer
• StatServer
• InteractionServer
• UCSServer

Through the IChannelManager interface, you can open channels for applications of these types
without burdening Interaction Workspace. However, if you wish to open new channels for other
application types, you can use the IChannelService of the Enterprise API. Genesys recommends
that you name those channels according to their configuration's application name.

Connect your Channel
1. Retrieve the channel service
IChannelService channelService = EnterpriseService.Resolve<IChannelService>("channelService");

2. Create a new channel for each connection to open.
string channelName = "configName";
TServerConfiguration configuration = new TServerConfiguration(channelName);
configuration.ClientName = channelName;
configuration.Uri = new Uri("tcp://hostname:port");
configuration.WarmStandbyAttempts = 10;

Advanced Customization

Workspace Desktop Edition Developer's Guide 6



configuration.WarmStandbyTimeout = 5;
configuration.WarmStandbyUri = new Uri("tcp://hostname:port");
configuration.UseAddp = false;
channelService.CreateChannel(channelName, configuration, SwitchModelType.LucentDefinityG3);

3. Register the channel's event handler before you open the connection, to
ensure that your application does not miss any events. The following code
snippet shows also how to retrieve the channel instance created.
Genesyslab.Enterprise.Model.Channel.IClientChannel channel =
channelService.GetChannel(channelName);
//Register for Channel events
channelService.RegisterEvents(channel, new
Action<Genesyslab.Enterprise.Model.Channel.IClientChannel>(ChannelEvent));

4. To make the connection to all of the channels, call the
IChannelService.Connect() method..
channelService.Connect();

The code snippet uses the channelName string as a label to identify your
connection. Your application will use this label later to access this channel.

Get the Protocol
The table in Get EnterpriseService provides the key for the protocols that associated with channels.
You can retrieve the protocols once they are connected, as shown in the following code snippet.

IEnterpriseProtocol media = voiceChannel.EnterpriseProtocols["voice"];

Getting Additional Service Events

In the Enterprise API, all services that allow event subscription include the following pair of self-
describing methods: RegisterEvents and UnRegisterEvents. For instance, the following code
snippet shows the registration of a DeviceEvent handler for the device service:

IDeviceService deviceService = EsdkService.Resolve<IDeviceService>("deviceService");
IDevice device = deviceService.CreateDevice("myDevice", DeviceType.Extension);
deviceService.RegisterEvents(device, new Action<IEnvelope<IDN>>(DeviceEvent));

To read the envelope content take advantage of the fact that the type of object
published is specified in the handler declaration (which must match the
registration requirements).
protected void DeviceEvent(IEnvelope<IDN> tsp)
{
if (tsp != null)
{
//Retrieve the published object
IDevice device = (IDevice) tsp.Body;
System.Console.WriteLine("Name : " + device.Name + " Status: " + device.State.ToString());
switch (tsp.Header.CurrentContext.ContextState)
{

Advanced Customization

Workspace Desktop Edition Developer's Guide 7



case ContextStateType.Error:
//...
break;
//...
}
}

}

Threading Recommendations
When you write your handler code, you should process the event's Envelope in a separate thread
that can take appropriate actions. Design your handlers to return as quickly as possible, because the
library core works with all handlers sequentially-waiting for each handler to return, before working
with the next handler. This recommendation is extremely important to ensure that:

• Your application remains synchronized with up-coming events.
• Your application remains synchronized with the real-time time line of external devices.

Attributes and Filters
You can define callback and filter attributes when declaring your event handlers.

• A callback attribute is used to hard-code the automatic registration of the handler method for a given
channel.

• A filter attribute is used to hard-code the filtering of events that your application receives.

Attribute name Type Dependency

EnterpriseAgentEvent Callback,
Filter Channel name

EnterpriseChannelEvent Callback Channel Name
EnterpriseDeviceEvent Callback Channel Name
EnterpriseFilter Filter Object parameters
EnterpriseInteractionEvent Callback Channel Name
EnterpriseMonitorEvent Callback Channel Name
EnterpriseStrategy Filter Strategy instance
EnterpriseService Filter See below

Callback Attribute Syntax
If you use a callback attribute, callback registration is automatic. The following code snippet shows
how to use method attributes by defining an interaction event handler for a SIP channel. The first
part of the snippet shows the creation of the TServerSIPChannel channel. The second part shows the
attribute's declaration.

//Channel Definition
IChannelService channelService = EsdkService.Resolve<IChannelService>("channelService");
TServerConfiguration myConfiguration = new TServerConfiguration("TServerSIPChannel");
channelService.CreateChannel("TServerSIPChannel", myConfiguration, mySwitchType);
//...

Advanced Customization

Workspace Desktop Edition Developer's Guide 8



[EnterpriseInteractionEvent("TServerSIPChannel")]
protected void InteractionEvent(IEnvelope<IInteraction> tsp)
{
//...

}

Filter Attribute Syntax
If you are using filter attributes, the callback registration is not automatic; therefore, you must
implement it.

//Example of Filters:
//Callback active for the Agent 1001 when status is ready
[EnterpriseFilter("1001", "ready")]
protected void AgentEvent(IEnvelope<IAgent> tsp)
{
//...

}
//Uses the AgentCallBackFilterStrategy strategy for calling this handler (or not)
[EnterpriseStrategy("genericFilter", typeof(AgentCallBackFilterStrategy))]
protected void AgentEvent(IEnvelope<IAgent> tsp)
{
//...

}
//Callback active when ready status events.
[EnterpriseAgentEvent("ready")]
protected void AgentEvent(IEnvelope<IAgent> tsp)
{
//...

}

Advanced Customization

Workspace Desktop Edition Developer's Guide 9


	Workspace Desktop Edition Developer's Guide
	Advanced Customization

