
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Introduction

Workspace Desktop Edition
Developer's Guide

5/1/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Introduction
Purpose: Presents the architecture and design
concepts of the Interaction Workspace.

Contents

• 1 Introduction
• 1.1 Introducing Interaction Workspace
• 1.2 Architecture
• 1.3 Dependency Injection Container Application Block
• 1.4 Loosely-coupled Application Library
• 1.5 Interaction Workspace Modules
• 1.6 Read Next

Introduction

Workspace Desktop Edition Developer's Guide 2



Introducing Interaction Workspace

Interaction Workspace is the customer interaction interface for the Genesys 8 software suite.
Interaction Workspace contains many components that you can use to enrich the content of
Interaction Workspace with custom views and functionality. You can use the following Interaction
Workspace components to customize your interface:

• Platform SDK-The low-level SDK that is used to access Genesys back-end servers
• Enterprise SDK-The high-level SDK that is built on top of Platform SDK and is used to render models

and services
• Interaction Workspace API-The methods that are used to implement extensions for Interaction

Workspace

A set of Interaction Workspace Extension Samples is also provided to illustrate the best coding
practices for Interaction Workspace customization. Limitation: Usage of Enterprise SDK that is
provided with this release of Interaction Workspace is supported only for the purpose of Interaction
Workspace customization.

Architecture

The following figure illustrates a minimal deployment that consists of agent workstations that are
connected directly to the Genesys back-end servers.

Simple Client-Server Architecture

Dependency Injection Container Application Block

The Dependency Injection Container Application Block is available for use when you use loosely-
coupled applications to develop Interaction Workspace. This lightweight, extensible Dependency
Injection container enables developers to build loosely-coupled applications and provides the

Introduction

Workspace Desktop Edition Developer's Guide 3



following advantages:

• Simplified object creation, especially for hierarchical object structures and dependencies
• Abstraction of requirements, enabling developers to specify dependencies at run time or in

configuration, and to simplify management of crosscutting concerns
• Increased flexibility by deferring component configuration to the container
• Service location capability, enabling clients to store or cache the container
• Instance and type interception

Note: Genesys Enterprise SDK also implements Dependency Injection recommendations, which
makes integration easier.

Technical and Design Concepts Application to Customization

Dependency Injection and Inversion of Control

Used by developers to declare and retrieve
alternative implementation of services, models,
views, and presenters. Developers can use the
Dependency Injection and Inversion of Control
when they are developing software.

Loosely-coupled Application Library

The Interaction Workspace is built by using a loosely-coupled application library. This library is used
by developers to create composite Windows Presentation Foundation (WPF) applications. It is
designed to help architects and developers achieve the following objectives:

• Create a complex WPF application from modules that can be built, assembled, and optionally, deployed
by independent teams.

• Minimize cross-team dependencies and enable teams to specialize in different areas, such as UI design,
business logic implementation, and infrastructure code development.

• Use an architecture that promotes reusability across independent teams.
• Increase the quality of applications by abstracting common services that are available to all the teams.
• Incrementally integrate new capabilities.

The Interaction Workspace provides guidance and implements patterns that make customization
easier. In general, all of these concepts have a common aim, which is to implement loosely-coupled
applications and ease extensibility.

Technical and
Design Concepts Description Application to Customization

Model View ViewModel (MVVM)

The MVVM can separate the
responsibilities of the visual
display and the responsibilities of
user interface state and behavior
into different classes named View
and View Model, respectively.

You can build an alternate
custom View for any given out-of-
the-box ViewModel, and you can
build an alternate custom
ViewModel for any given out-of-
the-box View.

Introduction

Workspace Desktop Edition Developer's Guide 4



Technical and
Design Concepts Description Application to Customization

• The View class manages the
controls on the user interface.

• As a facade on the model, the
View Model class provides
you with UI-specific state and
behavior:
• It encapsulates the access

to the model.
• Its public interface is easy

to consume from the View
(for example, for using
data binding).

Module
A module can be individually
developed, tested, and deployed
by different teams.

Customization can be
implemented by partners or by
customers, in a reusable or
single-use purpose.

Region Manager
Regions enable a compositional
pattern and are commonly used
in template layouts and multiple
view layouts.

Integration of custom views into
out-of-the-box named and
documented Regions is
simplified, even without
knowledge of the application
construction. For example, in a
typical application, a region can
be a tab area.

Interaction Workspace Modules

As defined in the software development kit (SDK), a module is a software element that can be
individually developed, tested, and deployed by different teams. Interaction Workspace contains
several modules that can cover one or several layers of the application. They can contain views,
presenters (ViewModel), or models. In general, the functional modules cover the full stack, whereas
the service modules focus on a particular layer. By using a modular approach in the application,
Genesys is able to provide an SDK to developers who are planning to add customized code into
Interaction Workspace. The figure below summaries the various types of modules in Interaction
Workspace.

Introduction

Workspace Desktop Edition Developer's Guide 5



Types of Modules in Interaction Workspace

<references/>

Read Next

Introducing Extensions

Introduction

Workspace Desktop Edition Developer's Guide 6


	Workspace Desktop Edition Developer's Guide
	Introduction

