
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Service Client API

Workspace Web Edition Developer’s
Guide and API Reference

4/12/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Service Client API

Contents

• 1 Service Client API
• 1.1 API Overview
• 1.2 Getting Started
• 1.3 Security Configuration
• 1.4 Working with the API

Service Client API

Workspace Web Edition Developer’s Guide and API Reference 2

API Overview

You can use the Service Client API to customize how your web application or website integrates with
Workspace Web Edition. Genesys provides this API, which is based on window.postMessage, so that
your application can access the Workspace Web Edition object model and bypass the cross-domain
security limitations.

You can use the Service Client API to perform the following actions:

• Controlling call recording from a third-party application
• Embedding multiple third-party applications in Workspace
• Updating attached data from a third-party application
• Enabling click-to-dial from a third-party application
• Enabling Service Client API to invoke toast in Agent Desktop
• Controlling Case Selection from a Third Party Application

Controlling Call Recording from a Third-Party Application
Review the following methods for details about call recording control:

• pauseCallRecording
• resumeCallRecording
• startCallRecording
• stopCallRecording

The call recording state is stored in the recordingState attribute on the interaction.Interaction
object.

Embedding Multiple Third-Party Applications in Workspace
You can now set the interaction.web-content option to a list of option section names that correspond
to web extension views. This means that you can configure Workspace to include more than one
third-party web application, displayed as either a tab, a popup window, in the background at the
interaction level, or hidden.

You should also make sure that the service-client-api.accepted-web-content-origins option references
all the websites that should use the Service Client API.

See Enabling integration of web applications in the agent interface for details about setting up
multiple web applications in Workspace.

Service Client API

Workspace Web Edition Developer’s Guide and API Reference 3

https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/Interaction#interaction.web-content
https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/ServiceClientAPI#service-client-api.accepted-web-content-origins
https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/SettingUpAgents#Enabling_integration_of_web_applications_in_the_agent_interface

Updating Attached Data from a Third-Party Application
Review the following methods for details about updating attached data:

• deleteUserData
• getByInteractionId
• getInteractions
• setUserData

The user data is stored in the userData attribute on the interaction.Interaction object.

You should also be sure to configure the service-client-api.user-data.read-allowed and service-client-
api.user-data.write-allowed options to enable read and write access to user data.

Enabling Click-to-Dial from a Third-Party Application
If you configure Workspace Web Edition to display your web application in a new tab in the
Workspace user interface (as described in Enabling integration of web applications in the agent
interface), then the service API only gives access to the dial operation.

Enabling Service Client API to invoke toast in Agent Desktop
Review the following methods for details about enabling and updating toast:

• system.popupToast
• system.updateToast
• system.closeToast

Controlling Case Selection from a Third Party Application
Review the following method for details about case selecting control:

• selectCaseByCaseId

The case selection state is stored in the isCaseSelected attribute and the isCaseExpanded attribute
on the interaction.Interaction object.

Getting Started

Here's an overview of the steps you should to follow to access the API:

1. You have a web application that you've integrated in Workspace Web Edition. See Enabling integration
of web applications in the agent interface for details.

2. Download the sample application: service-client-api.zip.

Service Client API

Workspace Web Edition Developer’s Guide and API Reference 4

https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/ServiceClientAPI#service-client-api.user-data.read-allowed
https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/ServiceClientAPI#service-client-api.user-data.write-allowed
https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/ServiceClientAPI#service-client-api.user-data.write-allowed
https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/SettingUpAgents#Enabling_integration_of_web_applications_in_the_agent_interface
https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/SettingUpAgents#Enabling_integration_of_web_applications_in_the_agent_interface
https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/SettingUpAgents#Enabling_integration_of_web_applications_in_the_agent_interface
https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/SettingUpAgents#Enabling_integration_of_web_applications_in_the_agent_interface

3. Copy the wwe-service-client-api.js file in the sample application to a location your web application
can access.

4. Set the options described below in Security Configuration.
5. Review Working with the API for more information about how to use the API.
6. Review the methods and types available in each namespace:

• Agent Namespace
• Email Namespace
• Interaction Namespace
• Media Namespace
• System Namespace
• Voice Namespace

Security Configuration

The Service Client API involves two parties inside the agent's web browser: the service (the main web
page) and the client (in an iframe on the same web page as the service). In order for the client web
page to access the API, you need to set a few configuration options to work around web browser
security restrictions for cross-origin requests and to enable request limits. You set these options on
the WWEWS Cluster application only at the Application level; you can't set these options at the
Agent or Agent Group level. Check out the Service Client API topic in the Workspace Web Edition
Configuration Guide for a full list of the options available to configure the API.

Origin
First, to work around web browser security restrictions set the service-client-api.accepted-web-
content-origins option to the domain you want to be able to access to the API. For example, if you
want to give access to a web page located at http://my-web-server/path/page.html, then you
would set service-client-api.accepted-web-content-origins to http://my-web-server.

If you have several pages that need access to the API and they're located at different domains, you
can also provide service-client-api.accepted-web-content-origins with a list. For example:
http://my-web-server, http://my-second-web-server, http://my-third-web-server.

Finally, if you want to allow any page to access the API, just set service-client-api.accepted-web-
content-origins to *.

You can also set the service-client-api.accepted-web-content-origins option to values that filter
by API request, using any of the following keywords:

• agent.get
• agent.getState
• agent.getStateList
• agent.setState

Service Client API

Workspace Web Edition Developer’s Guide and API Reference 5

https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/ServiceClientAPI
https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/ServiceClientAPI#service-client-api.accepted-web-content-origins
https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/ServiceClientAPI#service-client-api.accepted-web-content-origins

• email.create
• interaction.deleteUserData
• interaction.getByInteractionId
• interaction.getInteractions
• interaction.selectCaseByCaseId
• interaction.setUserData
• media.getMediaList
• media.setState
• voice.dial
• voice.pauseCallRecording
• voice.resumeCallRecording
• voice.startCallRecording
• voice.stopCallRecording

For example, you could set service-client-api.accepted-web-content-origins to http://my-web-
server0, http://my-web-server1 (*), http://my-web-server2 (agent.*, voice.dial),
http://my-web-server3 (agent.*, interaction.*). In this example, everything is allowed for the
http://my-web-server0 and http://my-web-server1. For the http://my-web-server2 domain,
only the agent.get, agent.getStateList, agent.setState, agent.getState and voice.dial
requests are allowed.

As seen in the example above, you can also filter by wildcards, using the asterisk in parenthesis. For
example, http://my-web-server1 (*) or http://my-web-server3 (agent.*, interaction.*).

Rate Limit
You can limit the maximum number of requests per minute on any Service Client API request by
setting the service-client-api.rate-limit option. For example, setting the value to 50 would restrict the
number of requests to 50 per minute. Set the value to 0 for unlimited requests.

If you want to limit the maximum number of requests per minute on a particular Service Client API
request, use service-client-api.rate-limit.<service-name>.

Consider the following sample configuration:

service-client-api.rate-limit=0
service-client-api.rate-limit.voice.dial=4
service-client-api.rate-limit.email.create=2

In this example, there are no limits globally, but voice.dial requests are limited to 4 requests per
minute and email.create requests are limited to 2 requests per minute.

Workspace calculates the limitation as a fixed interval of time, each minute (this is not calculated on
a costly sliding window).

When the number of requests reaches the limit, Workspace ignores all further requests of the same
type for a configurable period of time, known as the quarantine delay. In response, Workspace Web

Service Client API

Workspace Web Edition Developer’s Guide and API Reference 6

https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/ServiceClientAPI#service-client-api.rate-limit
https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/ServiceClientAPI#rateLimitServiceName

Edition sends a result with an explicit error message to the first request it receives after the limit is
reached:

{
"errorMessage": "The rate limit for the request 'voice.dial' has been reached.\nFurther

requests of the same type will be ignored for 30 seconds.",
"request": "agent.getState"

}

To specify the global quarantine delay, set the service-client-api.rate-limit-quarantine-delay option.
For example, setting the option to 60 means that Workspace Web Edition ignores requests for 60
seconds after the limit is reached. A value of 0 means that Workspace Web Edition ignores further
requests forever, so use this value carefully.

Attached Data Access
Workspace offers two configuration options to limit the read or write access to the key/value pairs in
user data:

• service-client-api.user-data.write-allowed specifies the list of keys in user data that can be written with
the interaction.setUserData() or interaction.deleteUserData() functions.

• service-client-api.user-data.read-allowed specifies the list of keys in user data that can be read. This
applies in the userData property of the Interaction object returned by a function or an event.

For example, consider the following configuration:

service-client-api.user-data.write-allowed=Key1,Key3
service-client-api.user-data.read-allowed=Key1,Key2,Key3

This configuration lets you read the attached data with they keys Key1, Key2, and Key3, but only
allows writes on keys Key1, and Key3.

Working with the API

After you've completed the setup and security steps, you're ready to start working with the Service
Client API. The first thing you need to do is add a <script> tag to your web application that points to
the wwe-service-client-api.js file (remember, you stored it somewhere accessible in Step 3 above).

Now you can access the API through the genesys.wwe.service namespace. For example:

<html>
<head>

<script src="wwe-service-client-api.js"></script>
<script>

function test() {
genesys.wwe.service.sendMessage({

request: "agent.get"
}, function(result) {

console.debug("SUCCEEDED, result: " + JSON.stringify(result, null, '\t'));
}, function(result) {

console.debug("FAILED, result: " + JSON.stringify(result, null, '\t'));
});

Service Client API

Workspace Web Edition Developer’s Guide and API Reference 7

https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/ServiceClientAPI#service-client-api.rate-limit-quarantine-delay
https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/ServiceClientAPI#service-client-api.user-data.write-allowed
https://docs.genesys.com/Documentation/HTCC/latest/IWWDep/ServiceClientAPI#service-client-api.user-data.read-allowed

}

function eventHandler(message)
{

console.debug("Event: " + JSON.stringify(message, null, '\t'));
}

genesys.wwe.service.subscribe(["agent", "interaction"], eventHandler, this);

</script>
</head>
<body>

Hello world
</body>

</html>

Here's an example of how you could modify attached data:

genesys.wwe.service.interaction.setUserData("1",
{

MyKEY1: "MyValue1",
MyKEY2: "MyValue2"

})

In the above example, the request is interaction.setUserData and the parameters are the
interactionId of 1 and the keyValues of MyKEY1 and MyKEY2.

All methods provided in the Service Client API are asynchronous, so to get the successful or failed
result, just add the matching callback:

genesys.wwe.service.interaction.setUserData("1",
{

MyKEY1: "MyValue1",
MyKEY2: "MyValue2"

}, function(result){
console.debug("SUCCEEDED, result: " + JSON.stringify(result, null, '\t'));

}, function(result){
console.debug("FAILED, result: " + JSON.stringify(result, null, '\t'));

})

The global template for a service call is:

genesys.wwe.service.<Service name>.<Service function>(<... function parameters ...>,
[<optional done() callback>, [<optional fail() callback>]]);

The done() callback is called when a request is successfully sent without an error.

The fail() callback is called when a request generates an error or an exception.

The result of these functions is provided in a JSON object as a unique parameter.

Notifications
You can use the following code to subscribe to agent and interaction notifications:

function eventHandler(message)
{

console.debug("Event: " + JSON.stringify(message, null, '\t'));
}

Service Client API

Workspace Web Edition Developer’s Guide and API Reference 8

genesys.wwe.service.subscribe(["agent", "interaction"], eventHandler, context);

In the above example, eventHandler is the event handler function and context is an optional
contextual object.

Here's an example with an agent STATE_CHANGED to Ready:

{
"event": "agent",
"data": {

"eventType": "STATE_CHANGED",
"mediaState": "READY"

}
}

Here's an example with an agent STATE_CHANGED to Not Ready with a reason:

{
"event": "agent",
"data": {

"eventType": "STATE_CHANGED",
"mediaState": "NOT_READY_ACTION_CODE",
"reason": "Break",
"reasonCode": "1511"

}
}

Finally, here's an example with an ATTACHED_DATA_CHANGED event on a voice interaction:

{
"event": "interaction",
"data": {

"eventType": "ATTACHED_DATA_CHANGED",
"media": "voice",
"interaction": {

"interactionId": "1",
"caseId": "4dda1ab6-aeab-4a33-f5d0-0153c9fdb43b",
"userData": {

"IWAttachedDataInformation": {
"DispositionCode.Label": "DispositionCode",
"Option.interaction.case-data.header-foreground-

color": "#FFFFFF",
"CaseDataBusinessAttribute": "CaseData",
"DispositionCode.Key": "ChooseDisposition",
"Option.interaction.case-data.frame-color": "#17849D"

},
"IW_CaseUid": "4dda1ab6-aeab-4a33-f5d0-0153c9fdb43b",
"IW_BundleUid": "dfaca66c-4149-42a1-7244-337e949a12b5"

},
"parties": [

{
"name": "5001"

}
],
"callUuid": "4L6JGNEE9H7DT671FRPTKE6CQ000000G",
"state": "DIALING",
"previousState": "UNKNOWN",
"isConsultation": false,
"direction": "OUT",
"callType": "Internal",
"dnis": "5001",

Service Client API

Workspace Web Edition Developer’s Guide and API Reference 9

"isMainCaseInteraction": true
}

}
}

Event Type References

The system eventType field can be one of the following:

eventType Description

CUSTOM_TOAST_BUTTON_CLICK

Uses the following parameters:

• customToastId: The identifier of the toast
where the button has been clicked. The
identifier is returned by the popupToast
method.

• buttonIndex: The index of the clicked button.
The index starts by 0.

The interaction eventType field can be one of the following:

eventType Description
Common events to all interaction types
UNKNOWN An unknown event occurs.

ADDED The interaction has been added in the list of
interactions.

REMOVED The interaction has been removed from the list of
interactions.

ATTACHED_DATA_CHANGED The attached data have changed in the interaction.

CASE_OR_BUNDLE_ID_CHANGED The case or the bundle identifier of this interaction
has changed.

NEW_MESSAGE This event represents a new message.
ERROR An error occurs in the interaction.
Voice events
CALL_RECORDING_STATE_CHANGED The call recording state changed.
DIALING The outbound call starts ringing.
ESTABLISHED The call has been established.
HELD The call has been held.

PARTY_CHANGED The list of party has been changed in the
interaction.

RELEASED The call has been released.
RINGING The inbound call starts ringing.
OpenMedia events

Service Client API

Workspace Web Edition Developer’s Guide and API Reference 10

eventType Description
ACCEPTED The open media interaction is accepted.

COMPLETED The open media interaction has been completed
(Mark as done).

COMPOSING The open media interaction is in composing mode.
CREATED The open media interaction has been created.

INSERT_STANDARD_RESPONSE A standard response has been inserted in the
interaction.

INVITED The open media interaction is an invitation.

INVITED_CONFERENCE The open media interaction receive a conference
invitation.

IN_QUEUE_FAILED The place in queue has failed.
IN_WORKBIN The interaction has been placed in the work-bin.
IN_WORKBIN_FAILED The place in work-bin has failed.
LEFT_CONFERENCE The open media interaction has left the conference.

PULLED The open media interaction has been pulled from a
work-bin.

PULL_FAILED The pull from the queue has failed.
PULL_WORKBIN_FAILED The pull from the work-bin has failed.
REVOKED The open media interaction has been revoked.

TRANSFER_COMPLETED The open media interaction has been transferred
and the transfer has been completed.

Chat events (inherit from OpenMedia events)
ENDED The chat has been ended.
JOIN_FAILED The connection with the chat server failed.
JOIN_PENDING The interaction is trying to join the chat session.
Outbound email events (inherit from OpenMedia events)
CANCELLED The outbound email has been cancelled.
SENT The outbound email has been sent.

Service Client API

Workspace Web Edition Developer’s Guide and API Reference 11

	Workspace Web Edition Developer’s Guide and API Reference
	Service Client API

